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Abstract

A central tenet of economics is that people respond to incentives. While an appropriately

crafted incentive scheme can achieve the second-best optimum in the presence of moral hazard,

the principal must be very well informed about the environment (e.g., the agent�s preferences

and the production technology) in order to achieve this. Indeed, it is often suggested that

incentive schemes can be gamed by an agent with superior knowledge of the environment, and

furthermore that lack of transparency about the nature of the incentive scheme can reduce

gaming. We provide a formal theory of these phenomena. We show that ambiguous incentive

schemes induce more balanced e¤orts from an agent who performs multiple tasks and who is

better informed about the environment than the principal is. On the other hand, such ambiguous

schemes impose more risk on the agent per unit of e¤ort induced. By identifying settings in which

ambiguous schemes are especially e¤ective in inducing balanced e¤orts, we show that, if tasks

are su¢ ciently complementary for the principal, ambiguous incentive schemes can dominate the

best deterministic scheme and can completely eliminate the e¢ ciency losses from the agent�s

better knowledge of the environment. (JEL L13, L22)

1 Introduction

A fundamental consideration in designing incentive schemes is the possibility of gaming : the notion

that an agent with superior knowledge of the environment to the principal can manipulate the

incentive scheme to his own advantage. This is an important issue in theory as it suggests a reason

why the second-best might not be attained and hence an additional source of e¢ ciency loss. It
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is also an important practical matter. There is a large informal literature which documents the

perverse e¤ects of (high-powered) incentive schemes. Much of this literature concludes that unless

the incentive designer can measure performance on all relevant tasks extremely well (as is the

objective of a �balanced scorecard�), she must inevitably trade o¤ the negative e¤ects of gaming

against the positive ones from incentive provision.

It is also commonly suggested that lack of transparency�being deliberately ambiguous about the

criteria which will be rewarded�can help circumvent gaming. This notion has a long intellectual

history. It dates at least to Bentham (1830), who advocated the use of randomness in civil service

selection tests.1

One view as to why courts often prefer standards�which are somewhat vague�to speci�c rules

is that it reduces incentives for gaming. For example, Weisbach (2000) argues that vagueness

can reduce gaming of taxation rules, and Scott and Triantis (2006) argue that vague standards in

contract law can improve ex ante incentives. Recently there have been calls for less transparency

in the incentives provided to hospitals in the UK in light of apparent gaming of incentive schemes

that were designed to reduce patient waiting times (Bevan and Hood 2004).2 Similarly, the recent

research assessment of UK universities was marked by signi�cant ambiguity about the criteria that

were to be used, in an apparent attempt to deter gaming. Gaming is also pervasive in law school

rankings as reported prominently in the popular press (e.g., �Law School Rankings Reviewed to

Deter �Gaming��, Wall Street Journal, August 26, 2008). In fact, �it�s become an open secret that

many law-school deans strategize speci�cally to improve their rank in U.S. News, to try to reap

more interest by employers in their students, energize alumni donors and to put their own job out

of jeopardy�.3 In response, U.S. News considered changing its widely read law school ranking to

deter such gaming. Similarly, law scholars (e.g., Osler 2010) have argued against transparency in

law school rankings methodology to prevent schools from gaming the same rankings that �legal

academics almost uniformly criticize�. There are numerous other examples in di¤erent, but related,

incentive provision problems. The locations of speed cameras are often randomized,4 security checks

at airports and tax audits are often random, and even foreign policy often contains a signi�cant

degree of strategic ambiguity.

Despite the intuitive appeal of this line of argument, no formal theory has investigated it, and it

is unclear how it relates to well-known economic theories of incentives. In the classic principal-agent

1�Maximization of the inducement a¤orded to exertion on the part of learners, by impossibilizing the knowledge
as to what part of the �eld of exercise the trial will be applied to, and thence making aptitude of equal necessity in
relation to every part: thus, on the part of each, in so far as depends on exertion, maximizing the probable of absolute
appropriate aptitude.�(Bentham, 1830/2005, Ch. IX, §16, Art 60.1)

2Dranove, Kessler, McClellan and Satterthwaite (2003) also document that in the US report cards for hospitals
encourage providers to �game�the system by avoiding sick patients or seeking healthy patients.

3Standard measures include cutting the number of full-time students to boost the median LSAT scores and GPAs
and adding more part-time students, make-work jobs for own graduates to bump up employment numbers and spending
more heavily to promote faculty scholarship to U.S. News voters than supporting the production of that scholarship.
These measures have signi�cant e¤ects on rankings. For example, the University of Baltimore Law School rose from
#170 to #125 in one year and its dean admitted that �U.S. News is not a moral code, it�s a set of seriously �awed
rules of a magazine, and I follow the rules without hiding anything�.

4See Lazear (2006) for a model of this and related phenomena.
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model (Mirrlees 1974, Holmström 1979, Grossman and Hart 1983), the principal cannot observe the

agent�s action(s), but knows his preferences, cost of e¤ort, and the stochastic mapping from e¤ort

to output. The multi-task principal-agent model of Holmström and Milgrom (1991) gets closer to

capturing the idea of gaming, by providing conditions under which incentives may optimally be very

low-powered in response to the e¤ort substitution problem. Yet there is still no role for ambiguity

in this model. In some sense, the principal still knows �too much�.

In this paper we construct a formal theory of gaming and identify circumstances in which am-

biguity, or lack of transparency, can be bene�cial. Randomness is generally thought of as a bad

thing in moral hazard settings. Indeed, the central trade-o¤ in principal-agent models is between

insurance and incentives, and removing risk from the agent is desirable.5 Imposing less risk on the

agent allows the principal to provide higher-powered incentives. In our model, however, ambigu-

ity, despite having this familiar drawback, can nevertheless be bene�cial overall, because it helps

mitigate the undesirable consequences of the agent�s informational advantage.

In our model, the agent performs two tasks, which are substitutes in his cost-of-e¤ort function,

and receives compensation that is linear in his performance on each of the tasks, just as in Holmström

and Milgrom (1991). The crucial di¤erence is that there are two types of agent, and only the agent

knows which type he is. One type has a lower cost of e¤ort on task 1, and the other has a lower cost

of e¤ort on task 2. The principal�s bene�t function is complementary in the e¤orts on the two tasks;

other things equal, she prefers to induce both types of agent to choose balanced e¤orts. However, we

show that the agent�s private information about his preferences makes such an outcome impossible

to achieve with deterministic linear contracts, even when menus of contracts are used as screening

devices, because at least one type of agent would always want to choose the �wrong�contract. In

this setting, it is advantageous to consider a richer contracting space, including ambiguous contracts.

Such contracts make compensation ambiguous from the point of view of the agent, in that he knows

that the compensation schedule ultimately used will take one of two possible forms, but at the time

he chooses his e¤orts, he does not know which form will be used. The two possible compensation

schedules di¤er with respect to which performance measure is more highly rewarded. Under ex ante

randomization, the principal chooses randomly, before outputs are observed, which compensation

schedule to employ. Under ex post discretion, the principal chooses which compensation schedule

to employ after observing outputs on the two tasks.

Ex ante randomization pushes the agent toward balanced e¤orts on the tasks as a means of

partially insuring himself against the risk generated by the random choice of compensation schedule.

Under ex post discretion, there is an additional incentive to choose balanced e¤orts: The fact that

the principal will choose to base compensation on the performance measure which minimizes her

wage bill raises the agent�s expected marginal return to e¤ort on the task on which he exerts less

e¤ort relative to the expected marginal return on the other task. For both types of ambiguous

incentive scheme, we show how the principal can use the relative weight on the two performance

5For example, Holmström (1982) shows that in a multi-agent setting where agents� outputs are correlated, the
use of relative performance evaluation can remove risk from the agents and make it optimal to o¤er higher-powered
incentive schemes.
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measures to adjust the intensity of the incentives provided to the agent to choose balanced e¤orts.

Our analysis shows that ambiguous contracts are more robust to uncertainty about the agent�s

preferences than are deterministic ones. Speci�cally, we show that with ambiguous contracts, the

ratio of the e¤orts exerted on the two tasks varies continuously when we introduce a small amount

of uncertainty, whereas it varies discontinuously for deterministic contracts.

The bene�ts of ambiguous incentive schemes in deterring gaming do, nevertheless, come at a

cost: they impose more risk on the agent. We show that a deterministic contract can induce any

given level of aggregate e¤ort on the two tasks while imposing lower risk costs than any ambiguous

scheme. In general, therefore, the principal faces a trade-o¤ between the stronger incentives for

balanced e¤orts that arise under ambiguous schemes and the better insurance that is provided by

deterministic schemes.

Our key contribution is to identify settings in which optimally designed ambiguous contracts

dominate all deterministic incentive schemes. We identify three such environments. Each of these

environments has the feature that optimally designed ambiguous contracts induce both types of

agent to choose perfectly balanced e¤orts on the two tasks. The �rst such setting is that in which

the agent has private information about his preferences but the magnitude of his preference across

tasks is arbitrarily small. The second is the limiting case where the agents�risk aversion becomes

in�nitely large and the variance of the shocks to outputs becomes arbitrarily small. The �nal setting

is that where the shocks a¤ecting measured performance on the tasks become perfectly correlated.

In all three of these environments, we show that optimally designed ambiguous schemes allow the

principal to achieve as high a payo¤ as if he knew the agent�s preferences across tasks. That is,

in these environments, ambiguous incentive schemes completely eliminate the e¢ ciency losses from

the agent�s hidden information.

1.1 Related Literature

Our model can best be thought of in the light of two path-breaking papers by Holmström and

Milgrom (1987, 1991). In the �rst of these they provide conditions under which a linear contract is

optimal. A key message of Holmström and Milgrom (1987) is that linear contracts are appealing

because they are robust to limitations on the principal�s knowledge of the contracting environment.6

They illustrate this in the context of the Mirrlees (1974) result in which the �rst-best can be approx-

imated by a highly non-linear incentive scheme. According to them, �to construct the [Mirrlees]

scheme, the principal requires very precise knowledge about the agent�s preferences and beliefs,

and about the technology he controls.�Holmström and Milgrom (1991) highlight that the e¤ort

substitution problem can lead to optimal incentives being extremely low-powered. When actions are

technological substitutes for the agent, incentives on one task crowd out incentives on others.

There is also a large literature on subjective performance evaluation and relational contracts in

which the principal has discretion over incentive payments (Bull 1987, MacLeod and Malcomson

6A di¤erent strand of literature documents perverse incentives attributed to nonlinear schemes whereby agents
make intertemporal e¤ort shifts (e.g., Asch (1990), Oyer (1998) and Larkin (2006) among many others).
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1989, Baker, Gibbons and Murphy 1994). As Prendergast (1999) points out, such discretion allows

the principal �to take a more holistic view of performance; the agent can be rewarded for a par-

ticular activity only if that activity was warranted at the time�. Parts of this line of work share

an important feature with our investigation: the agent (at least ex ante) has superior knowledge of

the environment, e.g., Levin (2003). Unlike us, this literature focuses on how repeated interactions

can allow for self-enforcing contracts, even when they are not veri�able by a court. In contrast,

we show why even a precise contract rewarding multiple veri�able performance measures will often

be problematic. We also explicitly model the risk imposed by introducing uncertainty about which

performance measures will ultimately be used and show that despite this risk, a contract with ran-

domization can dominate the best deterministic one. In models of subjective performance evaluation

the (relational) contract itself imposes no additional risk on the agent, because there is common

knowledge of equilibrium strategies by virtue of the solution concept employed for analyzing the

repeated game.

Bernheim and Whinston (1998) analyze the incompleteness of observed contracts, a phenom-

enon they term �strategic ambiguity�and show that when some aspects of an agent�s performance

are non-contractible, it can be optimal not to specify other contingencies, even when these other

contingencies are veri�able. Unlike us, they focus on explaining optimal contractual incompleteness,

rather than incentive provision in a moral hazard setting. Jehiel (2011) shows in an abstract moral

hazard setup that it can be desirable that some aspects of the interaction between principal and

agent (e.g., incentive schemes governing their team coworkers and how important tasks are) be

kept unknown to the workers. Finally, Jehiel and Newman (2009) study the evolution of incentive

systems. Principals may o¤er either loophole contracts that deter only the harmful actions they

deem su¢ ciently likely to exist (and agents then cheat) or loophole-free contracts that deter all

cheating, thereby conveying little information about feasible actions to other principals. The result

is cycling of contract types that alternately deter and encourage undesired behavior.

The paper perhaps most closely related to ours is MacDonald and Marx (2001). Like us, they

analyze a principal-agent model with multiple tasks where the agent�s e¤orts on the tasks are

substitutes in the agent�s cost function but complements in the principal�s bene�t function, and

like us, they assume that the agent is privately informed about which of the two tasks he �nds less

costly. They, too, focus on how to design an incentive contract to overcome the agent�s privately

known bias and induce him to exert positive e¤ort on both tasks. Since task outcomes are binary

in their model, contracts consist of at most four distinct payments, and they show that the more

complementary the tasks are for the principal, the more the agent�s reward should be concentrated

on the outcome where he produces two successes. While their model is designed to highlight the

bene�ts of a simple type of nonlinear contract, they do not consider at all the bene�ts and costs of

ambiguous incentive schemes.

Gjesdal�s (1982) analysis of a single-task principal-agent model provides an example of a utility

function for the agent for which randomization is bene�cial.7 The bene�t of randomization derives

7The utility function is U(s; a) = s(4� a)� s2=a; where s is the payment and a is the action.
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from the fact that the agent�s risk tolerance varies with the level of e¤ort he exerts. Grossman and

Hart (1983) show that the critical condition for ruling out randomness as optimal in such a setting

is that the agent�s preferences over income lotteries are independent of his action. A su¢ cient

condition for this is that the agent�s utility function is additively or multiplicatively separable in

action and reward. In our model, the agent has a multiplicatively separable utility function, and

hence the attractiveness of random incentive schemes arises for quite di¤erent reasons than in

Gjesdal (1982).

It is worth noting at this point that randomness and non-linearity are di¤erent concepts. One

might argue that the linear contract used in Holmström and Milgrom (1991) is not optimal in

a static setting and that therefore, by adding additional features to the contract, it is hardly

surprising that one can do better. To such an argument we have several responses. First, the

special case of our model in which the principal is fully informed about the agent�s preferences

is precisely the Holmström-Milgrom setting, and we show that, in that special case, ambiguous

contacts cannot dominate the best deterministic contract. Thus, the attractiveness of ambiguous

schemes arises because of the agent�s superior knowledge of the environment. In fact, as we show,

this superior knowledge can be arbitrarily small and still make ambiguous contracts optimal. Second,

the ambiguous contracts in our model do not require the principal to commit to the randomizing

procedure in advance. Under ex ante randomization, the outcome is equivalent to the equilibrium

outcome of a game in which the principal chooses the randomizing probability at the same time

as the agent chooses e¤orts. Ex post discretion allows the principal to retain discretion over which

performance measure to reward until after observing outputs. Therefore, our ambiguous schemes

are feasible even when the principal is unable to commit to complicated non-linear contracts. Indeed,

we speculate that much of the appeal of ambiguous contracts is that they approximate the outcomes

of complicated non-linear contracts in environments with limited commitment.

The remainder of the paper is organized as follows. Section 2 outlines the model. In section 3,

we analyze the form of the optimal deterministic incentive scheme and the payo¤ it generates for

the principal. Section 4 studies ex ante randomization and ex post discretion. Section 5 identi�es

settings in which ambiguous contracts are dominated by one or more of the deterministic schemes.

Section 6, which is the heart of the paper, identi�es environments in which ambiguous contracts

dominate the best deterministic scheme. Section 7 shows that our results are robust to various

extensions such as relaxing the assumption that tasks are perfect substitutes for the agent. Proofs

not provided in the text are contained in the appendix.

2 The Model

A principal hires an agent to perform a job for her. The agent�s performance on the job has two

distinct dimensions, which we term �tasks�. Measured performance, xj , on each task j = 1; 2 is

observable and veri�able and depends both on the e¤ort devoted by the agent to that task, ej , and
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on the realization of a random shock, "j . Speci�cally, xj = ej + "j ; where 
"1

"2

!
� N

 
0

0
;
�2 ��2

��2 �2

!
;

where �, the correlation between the shocks, is non-negative. The e¤orts chosen by the agent are

not observable by the principal. In addition, the agent is privately informed about his costs of

exerting e¤orts. With probability one-half, the agent�s cost function is c1 (e1; e2) = 1
2 (e1 + �e2)

2 ;

in which case we will term him a type-1 agent, and with probability one-half his cost function is

c2 (e1; e2) =
1
2 (�e1 + e2)

2, in which case he will be termed a type-2 agent. We assume that the

parameter � � 1. For each type of agent i = 1; 2, e¤orts are perfect substitutes8: @ci=@e1@ci=@e2
does not

vary with (e1; e2). Nevertheless, since � � 1, each type of agent is biased towards a preferred task:
for the type-i agent, the marginal cost of e¤ort on task i is (weakly) lower than the marginal cost

of e¤ort on the other task. We assume that both types of agent have an exponential von Neumann-

Morgenstern utility function with coe¢ cient of absolute risk aversion r; so the type-i agent�s utility

function is

U = �e�r(w�ci(e1;e2));
where w is the payment from the principal. The two types of agent are assumed to have the same

level of reservation utility, which we normalize to zero in certainty-equivalent terms.

An important feature of the model is that the agent�s e¤orts on the tasks are complementary

for the principal. We capture this by assuming that the principal�s payo¤ is given by

� = B(e1; e2)� w

where the �bene�t function�B(e1; e2) takes the form

B(e1; e2) = min fe1; e2g+
1

�
max fe1; e2g :

The parameter � � 1 measures the degree of complementarity, with a larger value of � imply-

ing greater complementarity. In the extreme case where � = 1, the bene�t function reduces to
B(e1; e2) = min fe1; e2g, and the e¤orts are perfect complements� this is the case where the princi-
pal�s desire for balanced e¤orts is strongest. At the other extreme, when � = 1; B(e1; e2) = e1+ e2;

so the e¤orts are perfect substitutes� here the principal is indi¤erent as to how the agent allocates

his total e¤ort across the tasks.9

The relative size of � and � determines what allocation of e¤ort across tasks would maximize

social surplus. If � > �, so the principal�s desire for balanced e¤orts is stronger than the agent�s

preference across tasks, then the surplus-maximizing e¤ort allocation involves both types of agent

exerting equal e¤ort on the two tasks. If, instead, � < �, then the �rst-best e¢ cient e¤ort allocation

involves each type of agent focusing exclusively on his preferred task.

Below we consider a variety of incentive schemes. Throughout the analysis, we restrict attention

to compensation schedules in which, ex post, after all choices are made and random variables are

8 In Section 5, we show that our key results are robust to a relaxation of this assumption.
9We assume throughout that di¢ culties of coordination would make it prohibitively costly for the principal to split

the job between two agents and induce each agent to focus on a single dimension (task).
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realized, the agent�s payment is a linear and separable function of the performance measures:

w = �+ �1x1 + �2x2:

We will say an incentive scheme (possibly involving menus) is deterministic if, at the time the agent

signs the contract or makes his choice from the menu, he is certain about what values of �, �1, and

�2 will be employed in determining his pay. If, instead, even after making his choice from a menu,

the agent is uncertain about the values of �, �1, or �2, we will say that the incentive scheme is

ambiguous.

In the next section, we study deterministic incentive schemes and show how the form of the

optimal deterministic scheme depends on the parameters of the environment, speci�cally the values

of � (which measures the strength of each type of agent�s preferences across tasks), � (measuring

the strength of the principal�s preference for balanced e¤orts), � (the correlation of the shocks

a¤ecting the performance measures), and r�2 (which represents the importance of risk aversion

under deterministic schemes).10

Section 4 introduces the two classes of ambiguous schemes on which we focus. A contract with

ex ante randomization (EAR) speci�es that with probability 1
2 , the agent will be compensated

according to w = � + �x1 + k�x2, and with probability 1
2 , he will be compensated according to

w = � + �x2 + k�x1, where the parameter k 2 (�1; 1). Under this scheme, the principal commits
to employ a randomizing device to determine whether the agent�s pay will be more sensitive to

performance on task 1 or task 2. Thus the agent is uncertain at the time he chooses his e¤orts

about which performance measure will be more highly rewarded, and by varying the level of k,

the principal can a¤ect how much this uncertainty matters to the agent. Under a contract with ex

post discretion (EPD), the principal, after observing the performance measures x1 and x2; chooses

whether to pay the agent w = �+�x1+k�x2 or w = �+�x2+k�x1, where again k 2 (�1; 1). Under
both classes of ambiguous incentive schemes, the agent is ex ante uncertain about what weights the

two performance indicators will be given in determining his pay, but only under ex post discretion

do the agent�s e¤orts in�uence which set of weights is ultimately used.

3 Deterministic Contracts

3.1 The Special Case with Only One Type of Agent: � = 1

We begin by analyzing the special case where � = 1. There is only one type of agent, and since

c(e1; e2) =
1
2 (e1 + e2)

2, he faces an equal marginal cost of e¤ort on the two tasks. In this setting,

the optimal deterministic linear contract can take one of two possible forms. The �rst form is a

symmetric contract, with �1 = �2 = �: w = � + �x1 + �x2. Such a contract, which we denote by

SD (for �symmetric deterministic�) can induce the agent to exert balanced e¤orts on the two tasks,

but it exposes him to risk stemming from the random shocks a¤ecting both tasks. The second

10For deterministic schemes, the values of r and �2 will a¤ect the principal�s pro�ts only through their product r�2,
but as we will see below, for ambiguous schemes, r and �2 have separate in�uences on the agent�s e¤ort choices and
therefore on the principal�s payo¤.
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form of contract rewards performance on only one task (which we take to be task 1 below) and so

induces the agent to exert e¤ort on only one task, and it uses performance on the other task to

provide insurance for the agent, by exploiting the correlation between the shocks to the performance

measures. This type of contract, which we denote by OT (for �one task�) is of the form

w = �+ �x1 � ��x2:

Under the SD contract, �1 = �2 = �, and the agent is indi¤erent over all non-negative e¤ort

pairs that equate the common marginal cost of e¤ort on the two tasks, e1 + e2, to the common

marginal bene�t, �. Since the parameter � in the principal�s bene�t function is greater than or

equal to one, the principal prefers the agent to choose e1 = e2 =
�
2 , and we assume that the agent

does indeed choose this balanced e¤ort allocation.

Lemma 1 There exists a threshold �1(r�2; �) > 1 which is increasing in each of its arguments,

such that for � above �1(:), an optimally designed SD contract is optimal and for � below �1(:), an

optimally designed OT contract is optimal.

The SD contract induces the agent to exert e¤ort on both tasks, while the OT contract elicits

e¤ort only on one task. However, for any given �, the risk premium under the SD contract,

r�2�2(1 + �), is larger than that under the OT contract, 12r�
2�2

�
1� �2

�
. Therefore the principal

faces a tradeo¤ between the more balanced e¤orts induced by SD and the lower risk imposed by OT.

Lemma 1 shows that there is a critical value �1(r�2; �) of the principal�s complementarity parameter

� above which the SD contract is optimal and below which the OT contract is preferred.

3.2 Two Types of Agent but No Hidden Information

As a benchmark for the subsequent analysis, suppose now that � > 1, so there are two distinct

types of agent, but that the principal can observe the agent�s type and o¤er each type a di¤erent

contract. We will refer to this setting as the �no hidden information benchmark�(NHI).

In this setting, the optimal pair of contracts (one for each type of agent) can take one of two

possible forms (analogous to the two possible optimal contracts for the case when � = 1). The �rst

form, which we denote (Cbal1 ; Cbal2 ), induces each type of agent to choose perfectly balanced e¤orts:

Cbal1 : w1 = �+ �x1 + ��x2;

Cbal2 : w2 = �+ �x2 + ��x1:

Since Cbali , the contract assigned by the principal to the agent of type i, rewards agent i�s more

costly task at a rate � times as large as his less costly task, agent i is indi¤erent over all non-negative

e¤ort pairs satisfying � = ei + �ej , so is willing to choose ei = ej =
�
1+� . As � approaches 1, for

both types of agent the contract Cbali approaches the symmetric deterministic (SD) contract studied

in the previous subsection.

The second type of contract pair which can be optimal in the �no hidden information benchmark�

setting is a mirror-image pair of �one task�(OT) contracts, which induce each type of agent to exert
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e¤ort only on his preferred task and use performance on the other task only to improve insurance:

COT1 : w1 = �+ �x1 � ��x2;

COT2 : w2 = �+ �x2 � ��x1:

When assigned contract COTi , each agent i chooses ei = � and ej = 0. The principal�s payo¤will be

the same from each type of agent, and with � and � chosen optimally. Note that this payo¤ from

the contract pair (COT1 ; COT2 ) is independent of �, since neither type of agent exerts any e¤ort on

his more costly task.

In choosing between the contract pairs (Cbal1 ; Cbal2 ) and (COT1 ; COT2 ) in the NHI setting, the

principal faces a tradeo¤ between the more balanced e¤orts induced by the former pair and the

lower risk cost imposed by the latter pair. [**FLORIAN: Do we want a �gure like in the slides

here? I don�t think we do.]

Lemma 2 There exists a threshold

�NHI(�; r�2; �) � (�+ 1)
�
1 + r�2(1 + 2��+ �2)

1 + r�2(1� �2)

� 1
2

� 1 (1)

such that for � above �NHI(:), an optimally designed balanced (Cbal1 ; Cbal2 ) contract is optimal and for

� below �NHI(:), an optimally designed OT (COT1 ; COT2 ) contract is optimal. �NHI(:) is increasing

in each of its arguments and, as �! 1, �NHI ! �1.

3.3 The General Case: Two Types of Privately-Informed Agent

In the general case where � > 1 and the agent is privately informed about his preferences across

tasks, the principal can use menus of contracts as screening devices. In principle, three possible

patterns of e¤ort could emerge: (a) both types of agent could exert balanced e¤orts, (b) one type

could exert balanced e¤orts and the other type focused e¤ort, or (c) both types could exert focused

e¤ort. We now analyze the form of optimally designed menus of contracts, the patterns of e¤ort

they induce, and the payo¤s they generate for the principal.

Lemma 3 When � > 1, no menu of linear deterministic contracts can induce both types of agent
to choose strictly positive e¤orts on both tasks.

Lemma 3 is straightforward. If such a menu existed, it would have the form

C1 : w1 = �1 + �1x1 + ��1x2;

C2 : w2 = �2 + �2x2 + ��2x1:

But at least one type of agent would select the �wrong�contract from the menu and exert e¤ort

only on his preferred task. Therefore, we can con�ne attention to a contract that is either (b) an

�asymmetric deterministic menu�(ADM)

CADM1 : w1 = �1 + �1x1 � ��1x2;

CADM2 : w2 = �2 + �2x2 + ��2x1:
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or (c) a �symmetric deterministic menu�(SDM)

CSDM1 : w1 = �+ �x1 � ��x2;

CSDM2 : w2 = �+ �x2 � ��x1:

Under the ADM, one agent (here, type-2 agent) chooses balanced e¤orts while the coe¢ cient on x2
in CADM1 exploits the correlation in the shocks to the performance measure to improve the insurance

o¤ered to agent 1. Under the SDM, both agents exert fully-focused e¤orts and the coe¢ cient for

the output on their less preferred task is used for insurance. Relative to the SDM, the ADM has

the bene�t that it induces one type of agent to choose balanced e¤orts, but it has the costs that it

imposes more risk on that agent type and also necessitates leaving rents to the other agent type.

Whether the bene�t of the ADM outweighs its costs depends on �, the degree of complementarity

between the tasks in the principal�s bene�t function.

Proposition 1 (i) When � > �NHI , the principal is strictly better o¤ when hidden information is
absent than when it is present.

(ii) When the agent is privately informed about his preferences, there exists a critical threshold

�HI(�; r�2; �) � (�+ 1)
�
�2 + r�2(1 + 2��+ �2)

1 + r�2(1� �2)

� 1
2

� 1; (2)

such that the principal�s payo¤ is maximized by an optimally designed ADM if � > �HI , whereas

for � � �HI the principal�s payo¤ is maximized by an optimally designed SDM. �HI(�; r�2; �) is

increasing in each of its arguments, �HI > �NHI for all � > 1 and, as �! 1, �HI ! �1.

Let us now compare the results from the analyses of the settings with and without hidden

information on the agent�s part. First, it is clear that, whenever � > �NHI , the principal is strictly

better o¤ when hidden information is absent than when it is present: when � > �NHI , the principal

in the �no hidden information benchmark�opts to induce both types of agent to choose perfectly

balanced e¤orts, an outcome which is infeasible under hidden information. Second, comparing

(2) with (1) shows that for all � > 1, �HI(�; r�2; �) > �NHI(�; r�2; �), while as � approaches 1,

these two critical values of � become equal, at �1(r�2; �). In the presence of hidden information

on the agent�s part, the principal�s complementarity parameter � must be larger than when hidden

information is absent in order for her to �nd it optimal to attempt to induce balanced e¤orts

(even from just one type of agent). The reason is the rents that hidden information forces the

principal to leave to one agent type when he uses the ADM to induce balanced e¤orts from the

other type. Finally, under hidden information, for values of � > �1(r�2; �), the principal�s maximized

payo¤ drops discontinuously as � is increased from 1 (where a SD contract is optimal) to a value

slightly greater than 1, where the optimal scheme is an ADM. This discontinuous drop re�ects the

impossibility, for even a small degree of preference across tasks, of inducing balanced e¤orts from

both agent types with a deterministic incentive scheme. In contrast, in the �no hidden information

benchmark�, where it is feasible to induce balanced e¤orts from both agent types for all values of

�, the principal�s maximized payo¤ falls continuously as � is increased from 1. Figure 1 summarizes
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the conclusions from our analysis of the optimal deterministic schemes.

Figure 1: Optimal deterministic schemes under hidden information

4 Ambiguous Contracts

4.1 Ex Ante Randomization

A contract with ex ante randomization (EAR) speci�es that with probability 1
2 , the agent will be

compensated according to w = � + �x1 + k�x2, and with probability 1
2 , he will be compensated

according to w = � + �x2 + k�x1, where the parameter k 2 (�1; 1). Under such a scheme, the
principal commits to employ a randomizing device to determine whether the agent�s pay will be

more sensitive to performance on task 1 or task 2. If the agent chooses unequal e¤orts on the

two tasks, the principal�s use of randomization exposes the agent to extra risk, risk against which

he can insure himself by choosing more balanced e¤orts. By varying the level of k, the principal

can a¤ect how much risk the randomization per se imposes on the agent and thereby a¤ect the

strength of the agent�s incentives to balance his e¤orts. If k were set equal to 1, the randomness

in the compensation scheme would completely disappear, and the contract would collapse to the

symmetric deterministic (SD) scheme which, whenever � > 1, induces both types of agent to exert

e¤ort only on their preferred task. The smaller is k, the greater is the risk imposed on the agent by

the principal�s randomization, so intuitively the stronger are the agent�s incentives to self-insure by

choosing a more balanced pro�le of e¤orts.
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Proposition 2 (i) Under EAR, k < 1
� is a necessary condition for each agent�s optimal e¤orts on

both tasks to be strictly positive.

(ii) For each agent, let eEAR denote the e¤ort exerted on his less-costly task and eEAR the e¤ort

on his more-costly task. Then for a given k 2 (�1; 1�), if EAR induces interior solutions for the

agents�e¤ort choices, both types of agent choose (eEAR; eEAR) satisfying

eEAR + �eEAR =
�(1 + k)

�+ 1
(3)

eEAR � eEAR =
ln ��k

1�k�
r�(1� k) : (4)

(iii) The gap in e¤orts, eEAR � eEAR, is increasing in �, approaching 0 as �! 1; decreasing in r,

approaching 0 as r !1; and increasing in k, approaching 0 as k ! �1+.
(iv) The principal�s payo¤ from interior e¤ort choices by the agents under EAR, for given � > 0

and k 2 (�1; 1�), is

�EAR(�; k) = eEAR +
1

�
eEAR � �2(1 + k)2

2(�+ 1)2
(5)

� 1

2
r�2�2(1 + 2�k + k2)� 1

2r
ln

 
(�+ 1)2 (1� k)2

4(1� k�)(�� k)

!

To understand the �rst part of the proposition, note that if k � 1
� , then whichever of the two

compensation schemes is randomly selected, the ratio of marginal return to marginal cost is at least

as large for e¤ort on the preferred task as for e¤ort on the less-preferred task, for both types of

agent and for any pair of e¤ort levels. Hence in this case, both types of agent would optimally exert

e¤ort only on their preferred task.

To understand equation (3), note �rst that the sum of the expected marginal monetary returns

to e¤ort on the two tasks must be �(1+k), since it is certain that one task will be rewarded at rate

� and the other at rate k�. If optimal e¤orts for the agents are interior, then adding the �rst-order

conditions for e¤ort on the two tasks must yield �(1 + k) = @c=@e+ @c=@e for both types of agent.

Since @c=@e + @c=@e = (1 + �)(e + �e), this gives us equation (3). Throughout the paper, we will

refer to the quantity e+ �e as an agent�s aggregate e¤ort, since it is the quantity which determines

his total cost of e¤ort.

Equation (4) is derived by substituting (3) into either of the �rst-order conditions for optimal

e¤orts, which yields
�� k
1� k� =

E
�
U 0(�)Ifx is rewarded more highly than xg

�
E
�
U 0(�)Ifx is rewarded more highly than xg

� ; (6)

where x (respectively, x) denotes performance on an agent�s less costly (respectively, more costly)

task. Since under EAR, each of the two possible compensation schemes is employed with probability

one-half,

E
�
U 0(�)Ifx is rewarded more highly than xg

�
E
�
U 0(�)Ifx is rewarded more highly than xg

� = exp �r�(1� k)(eEAR � eEAR)� ;
13



which when combined with (6) gives (4).

Equation (4) reveals how the strength of the agent�s incentives to insure himself against the

compensation risk imposed on him by ex ante randomization varies with his preferences and with the

parameters of the randomized contract. The smaller the cost di¤erence between tasks (the smaller

is �) and the more risk-averse is the agent (the larger is r), the smaller the gap between the agent�s

optimal e¤orts on the two tasks, and as either �! 1 or r !1, the optimal gap approaches zero.
The smaller is the parameter k, the more di¤erent are the two possible compensation schedules, so

the more risk the randomization per se imposes on the agent and hence the stronger are his incentives

to self-insure by choosing relatively balanced e¤orts. As k approaches �1, the self-insurance motive
approaches its strongest level, and the optimal gap in e¤orts approaches 0. Similarly, as the incentive

intensity on both tasks is scaled up by an increase in �, holding k �xed, the agent�s incentive to

self-insure rises, and the gap e� e falls.
Recall that under a symmetric deterministic contract, the agent�s e¤ort choices change discon-

tinuously as hidden information about the agent�s preferences is introduced, i.e., as � is increased

from one: E¤orts switch from being perfectly balanced at � = 1 (the allocation preferred by the

principal) to being completely focused e¤orts for any � > 1. As a consequence, as we saw, the

principal�s payo¤ from a symmetric deterministic contract drops discontinuously as � is raised from

1. Furthermore, even when the principal chooses the optimal deterministic scheme as a function of

�, as long as he tries to induce balanced e¤orts, his payo¤ drops discontinuously as � is increased

from 1. In contrast, under ex ante randomization, for any value of k 2 (�1; 1), both the agent�s
e¤ort choices and the principal�s payo¤ are continuous in � at � = 1, as long as the agent is strictly

risk-averse (r > 0). Thus ex ante randomization is more robust to the introduction of private in-

formation on the part of the agent than is the best deterministic scheme. EAR is also more robust

to uncertainty about the magnitude of � than is a deterministic scheme. If the principal tries to

design an asymmetric deterministic menu to induce one type of agent to choose balanced e¤orts but

is even slightly wrong about the magnitude of �, her payo¤ will be discontinuously lower than if she

were right. The performance of ex ante randomization does not display this extreme sensitivity.

Remark 1 We have established Proposition 2 under the assumption that the principal can commit
to randomizing half-half between the two compensation formulae.11 It is natural to wonder whether

the same outcome would result if, instead, the principal chooses the randomizing probability at

the same time as the agent chooses e¤orts (we term this �interim randomization�). We can

prove that under interim randomization, the unique Bayes-Nash equilibrium is the same as the

outcome described in Proposition 2.12 Thus the attractive properties of ex ante randomization are

11Given the power to commit to a randomizing probability, it is optimal for the principal to commit to rewarding
each of the two tasks with equal probability. This results in the most balanced pro�le of e¤ort choices (averaging
across the two equally-likely types of agent), and also avoids leaving any rent to the type of agent whose less-costly
task is more likely to be rewarded.
12To see that the outcome described in Proposition 2 is an equilibrium under interim randomization, note that

given that the two types of agent are equally likely and given that their e¤ort choices are mirror images of each other,
the principal anticipates equal expected output on the two tasks, so is willing to randomize half-half over the two
mirror-image compensation schedules. Given that the principal randomizes half-half, the agents� optimal behavior
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not crucially dependent on the principal�s having the power to commit to the randomizing probability.

The e¤ort-balancing incentives generated by EAR do, however, come at a cost in terms of the

risk imposed on the risk-averse agent. In the principal�s payo¤ expression (5), the two terms on the

second line represent the total cost of the risk borne by the agent under EAR. The �rst of these terms

is the risk cost that would be imposed by a deterministic contract of the form w = �+ �x1 + k�x2

(or equivalently, w = �+�x2+k�x1). Because, when � > 1, the agent only partially insures himself

against the risk imposed by the principal�s randomization over compensation schedules, there is an

additional component to the cost of risk borne by the agent, and this is represented by the �nal

term on the second line in (5). Thus the total risk cost imposed by EAR exceeds that imposed by

a deterministic contract corresponding to the same values of � and k.

To understand the e¤ect of varying the parameter k on the principal�s payo¤ from EAR, it is

helpful to de�ne the variable B � �(1+k), because as equation (3) shows, aggregate e¤ort e+�e is
proportional to B. Using this de�nition and equations (3) and (4), we can re-express the principal�s

payo¤ (5) as a function of B and k:

�EAR(B; k) =

�
e+

e

�

�
� B2

2 (�+ 1)2
� 1
2
r�2B2

�
1 + 2�k + k2

(1 + k)2

�
� 1

2r
ln

 
(�+ 1)2 (1� k)2

4(1� k�)(�� k)

!
: (7)

Holding B �xed and varying k allows us to identify the e¤ect of k on the principal�s payo¤ from

inducing any given level of aggregate e¤ort. Equation (7) shows that increasing k has three e¤ects.

First, a larger k raises the gap between e¤orts on the tasks and, with B and hence aggregate e¤ort

e+�e held �xed, this larger gap lowers the principal�s bene�t e+ e
� whenever � > �, i.e., whenever the

principal�s desire for balanced e¤orts is stronger than the agent�s preference across tasks. Second, a

larger k, because it induces the agent to choose less balanced e¤orts, raises the cost of compensating

the agent for the risk imposed by the randomization per se.13 This second e¤ect of k also reduces

the principal�s payo¤ and is re�ected in the �nal term in equation (7). Finally, a larger k reduces

the cost (per unit of aggregate e¤ort induced) of the risk imposed on the agent from the shocks to

measured performance. This improved diversi�cation raises the principal�s payo¤, as re�ected in

the third term in equation (7).

In general, the optimal design of a contract with ex ante randomization involves a trade-o¤

between these three di¤erent e¤ects. Weighting the di¤erent performance measures more equally

in the two possible compensation schedules is costly in terms of e¤ort balance and thereby in

terms of the risk cost that randomization imposes on the agent, but it is helpful in allowing better

diversi�cation in the face of the random shocks to measured performance. The following proposition

describes how the optimal value of k varies with several parameters of the contracting environment.

is clearly as described in the proposition. To see that this outcome is the unique equilibrium, observe that if the
agents conjectured that the principal would choose the schedule rewarding task 1 more highly than task 2 with a
probability greater than (less than) 1=2, then their optimal e¤orts would be such that the principal would anticipate
larger expected output on task 1 (task 2), so the principal would strictly prefer to choose the schedule rewarding task
2 more (less) highly than task 1.
13Holding the e¤ort gap �xed, an increase in k would reduce the amount of risk imposed by the randomization per

se, but when the agent optimally enlarges the e¤ort gap in response to a rise in k, the overall cost of the risk imposed
by the randomization rises.
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Proposition 3 For any given level of aggregate e¤ort to be induced, the optimal level of k under
EAR is smaller (the optimal weights on the performance measures should be more unequal)

(i) the larger is � (i.e., the stronger the principal�s preference for balanced e¤orts);

(ii) the smaller is r, holding r�2 �xed (i.e., the less risk-averse the agent, holding �xed the importance

of risk aversion under deterministic contracts);

(iii) the larger is � (i.e., the less scope for diversi�cation of the risk from the shocks to measured

performance).

It is also worth noting that the incentive instruments B (controlling aggregate e¤ort) and k

(controlling the degree of e¤ort balance) are complements in the the principal�s payo¤ function, in

the sense that @2�
@k@B � 0. Hence, ceteris paribus, when EAR provides strong incentives for aggregate

e¤ort, it is less valuable on the margin to lower the gap in e¤orts by lowering k.14

In Section 6, where we identify environments where ambiguous schemes outperform deterministic

ones, we will build on these comparative statics results. For now, though, we turn to a second class

of ambiguous contracts.

4.2 Ex Post Discretion

Under a contract involving ex post discretion (EPD), the principal, after observing x1 and x2,

chooses whether to pay the agent � + �x1 + k�x2 or � + �x2 + k�x1, where again the parameter

k 2 (�1; 1). Just as under EAR, the agent is uncertain at the time he chooses his e¤orts whether his
pay will be more sensitive to performance on task 1 or task 2, but with ex post discretion, unlike with

EAR, the agent�s choice of e¤orts can in�uence which compensation schedule is ultimately used.

With EPD, as with EAR, the closer k is to 1, the more similar are the two possible compensation

formulae, and if k were actually set equal to 1, EPD would involve no randomness at all and would

collapse to the SD scheme.

Since the principal will choose, ex post, to pay the smaller of the two possible wages, the agent

anticipates that he will receive the wage

w = minf�+ �x1 + k�x2; �+ �x2 + k�x1g:

To characterize the e¤ort choices which maximize the agent�s exponential expected utility, we employ

a result due to Cain (1994) which provides the moment-generating function for the minimum of

bivariate normal random variables.

Proposition 4 (i) Under EPD, k < 1
� is a necessary condition for each agent�s optimal e¤orts on

both tasks to be strictly positive.

(ii) When for a given k 2 (�1; 1�), EPD induces interior solutions for the agents� e¤ort choices,

14The larger is B, the smaller is the gap in e¤orts for any given k, and therefore the lower the marginal bene�t to
reducing k in order to further lower the e¤ort gap; this interaction is re�ected in the second term in (7). In addition,
the larger is B, the larger is the risk imposed by the shocks to measured performance, so the larger is the marginal
bene�t to improving diversi�cation by increasing k; this interaction is re�ected in the fourth term in (7).
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each type of agent chooses e¤ort on his less-costly task, eEPD, and e¤ort on his more-costly task,

eEPD, satisfying

eEPD + �eEPD =
�(1 + k)

�+ 1
(8)

�� k
1� k� = exp

�
r�(1� k)(eEPD � eEPD)

� �
�
(1�k)(eEPD�eEPD)+r(�k)2�(1��k)

�k

�
�
�
�(1�k)(eEPD�eEPD)+r(�k)2�(1��k)

�k

� ; (9)
where (�k)2 � var(x1 + kx2) = �2(1 + 2�k + k2), �k � corr(x1 + kx2; x2 + kx1) = �+2k+�k2

1+2�k+k2
, and

�k � �k[2(1� �k)] 12 .
(iii) When for a given � > 1 and k 2 (�1; 1�), EPD and EAR both induce interior solutions for

e¤orts, then eEPD � eEPD < eEAR � eEAR.
(iv) The gap in e¤orts, eEPD � eEPD, is increasing in �, approaching 0 as �! 1; decreasing in r,

approaching 0 as r ! 1; increasing in �2(1� �), approaching 0 as �2(1� �) ! 0; and increasing

in k, approaching 0 as k ! �1+.
(v) The principal�s payo¤ from interior e¤ort choices by the agents under EPD, for given � > 0

and k 2 (�1; 1�), is

�EPD(�; k) = eEPD +
1

�
eEPD � �

2(1 + k)2

2(�+ 1)2
� 1
2
r(�k)2�2 (10)

�1
r
ln
�
expf�r�(1� k)(eEPD � eEPD)g�(�) + �(+)

�
��(1� k)(eEPD � eEPD)�

�
�(1� k)(e

EPD � eEPD)
�k

�
+��k�

�
(1� k)(eEPD � eEPD)

�k

�
:

where

�(�) � �

�
�(1� k)(eEPD � eEPD) + r(�k)2�(1� �k)

�k

�
�(+) � �

 
(1� k)(eEPD � eEPD) + r(�k)2�

�
1� �k

�
�k

!

The �rst part of the proposition holds for the same reason as the �rst part of Proposition 2:

if k � 1
� , then whichever of the two compensation schemes is ultimately chosen by the principal,

the ratio of marginal return to marginal cost would be at least as large for e¤ort on the preferred

task as for e¤ort on the less-preferred task, for both types of agent and for any pair of e¤ort levels.

Hence it would be optimal for both types of agent to exert e¤ort only on their preferred task.

Proposition 4 shows that aggregate e¤ort, e + �e, is the same under EPD as under EAR�

compare equations (8) and (3). Since both schemes are certain to reward one task at rate � and

the other at rate k�, the sum of the expected marginal returns to e¤ort on the two tasks is (1+k)�

under both schemes, and for interior solutions, this sum is equated to the sum of the marginal e¤ort

costs on the two tasks, (� + 1)(e + �e). Just as for EAR, the �rst-order conditions for interior
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optimal e¤orts then imply

�� k
1� k� =

E
�
U 0(�)Ifx is rewarded more highly than xg

�
E
�
U 0(�)Ifx is rewarded more highly than xg

� ; (11)

but for ex post discretion

E
�
U 0(�)Ifx is rewarded more highly than xg

�
E
�
U 0(�)Ifx is rewarded more highly than xg

�
= exp

�
r�(1� k)(eEPD � eEPD)

� �
�
(1�k)(eEPD�eEPD)+r(�k)2�(1��k)

�k

�
�
�
�(1�k)(eEPD�eEPD)+r(�k)2�(1��k)

�k

� ;
which when combined with equation (11) gives us equation (9).

Under EAR, the risk-averse agent�s incentive to choose (partially) balanced e¤orts derives purely

from an insurance motive: a desire to insure himself against the risk generated by the random choice

of compensation schedule. Under EPD, the insurance motive is still present, because at the time the

agent chooses e¤orts, he is uncertain about which compensation schedule the principal will select.

Now, though, there is an additional incentive for the agent to balance his e¤orts: the principal�s

strategic ex post choice of which compensation schedule to employ means that the more the agent

focuses his e¤ort on his preferred task, the less likely that task is to be the more highly compensated

one, so the lower the relative marginal return to that task. Formally, the right-hand side of equation

(9), which is increasing in e � e, is strictly greater than the right-hand side of equation (4) for all
e� e > 0, and this implies

eEPD � eEPD < eEAR � eEAR 8� > 1: (12)

Intuitively, we might expect that the principal�s freedom, under EPD, to choose the compensa-

tion schedule that minimizes her wage bill would result in weaker overall incentives for the agent

than under EAR. This intuition is correct in the sense that the sum of the e¤orts on the two tasks,

e + e, is lower under EPD than under EAR, as follows from (8) and (12). Nevertheless, aggregate

e¤ort e+ �e, and hence the costs of e¤ort incurred, are the same under the two schemes.

Equation (9) allows us to show that under EPD, the agent optimally chooses a gap between

the e¤ort levels on the two tasks that is smaller the smaller is � (because it is less costly for the

agent to choose balanced e¤orts) and the larger is r (because the stronger desire to self-insure is

the dominant e¤ect), and as either � ! 1 or r ! 1, this gap approaches zero. These results
parallel those for EAR. However, while �2 and � have no e¤ect on the gap in e¤ort levels under

EAR, under EPD the e¤ort gap is smaller the smaller is �2 and the larger is �. A smaller value of

�2(1� �) makes any change in the agent�s choice of e� e more likely to a¤ect which compensation
schedule the principal chooses, so gives the agent a stronger incentive to balance his e¤orts. As

�2(1� �)! 0, for example because the shocks become perfectly correlated, optimal e¤orts become

perfectly balanced.

Under EPD, just as under EAR, reducing the parameter k, and so making the two possible

compensation schedules more di¤erent, induces the agent to choose more balanced e¤orts. While

18



the e¤ect of k on the e¤ort gap e � e is more complex under EPD than under EAR, nevertheless

the proof of part 4. of Proposition 4 shows that the e¤ects of k that operate under EAR are the

dominant ones under EPD. As a consequence, under EPD, just as under EAR, the optimal level of

k, for any given level of aggregate e¤ort to be induced, will be smaller, the stronger is the principal�s

preference for balanced e¤orts (i.e., the larger is the complementarity parameter �).

What is the cost of the risk imposed by ex post discretion on the risk-averse agent, and how does

it compare to that imposed by ex ante randomization? In the principal�s payo¤ expression (10), the

total cost of the risk imposed is given by �1
2r(�

g)2�2 plus the terms on the �nal three lines. We

can show that, in fact, EPD with coe¢ cients � and k imposes lower risk costs than would either of

the deterministic contracts w = �+ �x1 + k�x2 or w = �+ �x2 + k�x1, which would impose risk

cost �1
2r(�

g)2�2. Formally, this claim corresponds to the result that the principal�s payo¤ in (10)

is greater than eEPD + 1
� e
EPD � �2(1+k)2

2(�+1)2
� 1

2r(�
g)2�2. The intuitive reason why this result holds

is that the variance of the wage under EPD, w = minf� + �x1 + k�x2; � + �x2 + k�x1g, is lower
than the variance of either � + �x1 + k�x2 or � + �x2 + k�x1.15 Section 4.1 showed, by contrast,

that for any given � and k, EAR imposes higher risk costs than would either of the deterministic

contracts above.

4.3 Ex Ante Randomization versus Ex Post Discretion

The preceding paragraphs have argued that (assuming interior solutions for the agents�e¤orts), for

any given � and k, (i) EPD induces a strictly smaller gap in e¤orts e� e than EAR, while the two
schemes induce the same aggregate e¤ort e + �e and hence the same total cost of e¤ort, and (ii)

EPD imposes lower risk costs on the agent than EAR. Taken together, these �ndings generate the

following proposition:

Proposition 5 If, for given � > 0 and k 2 (�1; 1�), both EAR and EPD induce interior solutions
for the agents� e¤ort choices, and if � � �; then EPD generates at least as great a payo¤ for the

principal as EAR.

The condition � � � ensures that the smaller gap in e¤orts under ex post discretion, coupled

with the common value of maxfe1; e2g + �minfe1; e2g under the two schemes, generates a higher
expected bene�t for the principal.16

15We can also show that the risk cost imposed by EPD is increasing in the gap eEPD � eEPD, re�ecting the fact
that the variance of w = minf�+ �x1 + k�x2; �+ �x2 + k�x1g is increasing in eEPD � eEPD.
16 It is natural to wonder whether other types of ambiguous incentive schemes can be more attractive than ex ante

randomization and ex post discretion. Suppose, for example, that the principal implements the following more general
form of ambiguous scheme: With probability q 2 [0; 1], he waits until he has observed x1 and x2 and then chooses
whether to pay the agent �+ �x1+ k�x2 or �+ �x2+ k�x1, while with probability 1� q he randomizes ex ante with
equal probabilities between the two schedules w = �+�x1+k�x2 and w = �+�x2+k�x1. Clearly, EAR corresponds
to the special case where q = 0 and EPD to that where q = 1. We can show that for any given (q; �; k) that induce
interior e¤ort choices from the agent, an increase in q leaves aggregate e¤ort e + �e unchanged, reduces the gap in
e¤orts e� e, and reduces the cost of risk imposed on the agent. Therefore, as long as � > �, the principal�s payo¤ is
increased when q increases, so the optimal ambiguous scheme within this family is what we have termed EPD.
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In supporting online material, we analyze randomized incentive schemes involving menus and

show that such menus bring no additional bene�t. Hence, for the comparisons in the following two

sections, the only ambiguous incentive schemes we consider are EAR and EPD.

5 When Are Deterministic Contracts Optimal?

This section identi�es three environments in which both types ambiguous contracts are dominated by

deterministic schemes. The �rst environment is that in which the agent has no private information

about his preferences: � = 1. The second is any setting where an ambiguous contract induces both

types of agent to exert strictly positive e¤ort on only one task. Finally, the third is that where

� � �, so the principal�s preference for balanced e¤orts is weaker than the agent�s preference across
tasks. In each of these three environments, we can show that ambiguous contracts impose too much

risk on the agent, relative to the e¤ort bene�ts they generate, and as a consequence are dominated

by a symmetric deterministic scheme.

Proposition 6 For any given � > 0 and k 2 (�1; 1), both EAR and EPD yield lower payo¤ for

the principal than a suitably designed symmetric deterministic (SD) scheme, if any of the following

conditions holds:

(i) � = 1;

(ii) EAR and EPD induce the agent to exert e¤ort only on his preferred task;

(iii) � � �.

The key to understanding this proposition is the �nding that, for any k 2 (�1; 1) and for any
�, a SD scheme can induce any given level of aggregate e¤ort e+�e while imposing lower risk costs

on the agent than EAR or EPD. At the same time, we know from Section 3 that whenever � > 1,

a SD scheme always induces the agent to exert e¤ort only on his preferred task, whereas EAR and

EPD have the potential to induce better-balanced e¤orts. In general, therefore, the principal faces a

trade-o¤ in choosing between ambiguous and deterministic incentive schemes. Ambiguous schemes

are typically better at inducing balanced e¤orts, while deterministic schemes have the advantage of

imposing lower risk costs on the agent per unit of aggregate e¤ort induced. The three conditions

identi�ed in Proposition 6 are ones under which this trade-o¤does not in fact arise. Under condition

1 or 2, ambiguous schemes are no better than a SD scheme at inducing balanced e¤orts: in the

former case, the SD scheme, like the ambiguous schemes, induces perfectly balanced e¤orts, and in

the latter case, even the ambiguous schemes induce corner solutions. Under condition 3, the socially

e¢ cient e¤ort allocation involves fully focused e¤orts. Hence, for any �xed level of aggregate e¤ort

and hence �xed cost of e¤orts incurred, a shift towards more balanced e¤orts would actually reduce

(at least weakly) the principal�s payo¤. Therefore, under any of conditions 1, 2, or 3, the potential

bene�ts of ambiguous schemes in inducing better-balanced e¤orts do not actually materialize, and

the principal�s optimal incentive scheme is a deterministic one.

Proposition 6 has an informative corollary:
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Corollary 1 Consider the limiting case where r ! 0 and �2 !1 in such a way that r�2 ! R <

1. In this limiting case, for any � > 0 and any k 2 (�1; 1), both ex ante randomization and ex post
discretion induce the agent to exert e¤ort only on his preferred task. Hence they are both dominated

by a symmetric deterministic scheme.

Recall that the principal�s payo¤ from deterministic schemes depends on the agent�s risk aversion

and the variance of the shocks to outputs only through the product r�2, whereas the performance

of ambiguous contracts depends also on the individual values of r and �2. Proposition 2 shows

that as r falls, the gap in e¤orts under ex ante randomization rises (because the agent�s desire for

self-insurance diminishes), and Proposition 3 shows that as r falls and �2 rises, both changes lead to

a larger gap in e¤orts under ex post discretion, both because the agent has less need to self-insure

and because larger �2 means that shifting e¤ort from his less-preferred to his preferred task is more

likely to raise the wage he ultimately receives. Corollary 1 shows that, for a given value of r�2;

ambiguous schemes perform badly relative to deterministic ones when r is very small and �2 is very

large, because in such settings, ambiguous schemes generate extremely weak incentives to choose

balanced e¤orts.

6 When Are Ambiguous Contracts Optimal?

We now identify three environments in which ambiguous contracts, when designed optimally, can be

shown to dominate the best deterministic scheme. In each of these environments, EAR and EPD,

with the parameter k adjusted optimally, both induce the agent to choose perfectly balanced e¤orts,

and EAR is as attractive for the principal as EPD. The �rst such setting is that in which the agent

has private information about his preferences but the magnitude of his preference across tasks is

arbitrarily small: this is the limiting case as � ! 1+. The second such setting is the limiting case

where r goes to 1 and �2 goes to 0. The �nal setting is that where the shocks a¤ecting measured

performance on the two tasks become perfectly correlated: � ! 1. In all three environments, we

show that optimally designed EAR and EPD generate a payo¤ for the principal arbitrarily close

to that she could achieve if she knew the agent�s preferences across tasks, so ambiguous schemes

eliminate the e¢ ciency losses from the agent�s hidden information. In these three environments, the

optimal incentive scheme is an ambiguous one whenever, in the �no hidden information benchmark�,

it would be optimal to induce balanced e¤orts, i.e., whenever the principal�s complementarity pa-

rameter � exceeds �NHI (as de�ned in (1)). If � < �NHI , then it is optimal for the principal to use

a symmetric deterministic menu (SDM) and abandon any attempt to induce balanced e¤orts. An

asymmetric deterministic menu (ADM) is never optimal in these environments.

6.1 The Limiting Case as �! 1+

Consider �rst a setting in which the agent has private information about his preferences, but the

magnitude of his preference across tasks is arbitrarily small. Formally, this is the case in which

� > 1 but arbitrarily close to 1, which we term the limiting case as �! 1+.
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For ex ante randomization recall that the agent�s e¤ort choices and the principal�s payo¤ are

continuous in � at � = 1. Proposition 2 established that as � ! 1, eEAR � eEAR ! 0 for any

k 2 (�1; 1). Equation (7) shows how varying k a¤ects the principal�s payo¤ from EAR, holding

�xed the level of aggregate e¤ort induced. Whereas in general, as discussed in Section 4.1, increasing

k has opposing e¤ects on the principal�s payo¤, in the limit as �! 1, the situation is dramatically

simpler. As �! 1, equation (7) becomes

�EAR(B; k) =
(� + 1)

�

B

4
� B

2

8
� 1
2
r�2B2

�
1 + 2�k + k2

(1 + k)2

�
: (13)

With perfectly balanced e¤orts ensured by � approaching 1, an increase in k has only one e¤ect on

the principal�s payo¤ from inducing any given level of aggregate e¤ort: it improves the diversi�cation

of the risk from the shocks to measured performance, as re�ected in the �nal term of equation (13).

Hence, as � ! 1, the principal�s payo¤ from EAR is increasing in k as long as k induces interior

solutions, which is guaranteed as long as k < 1
� . Therefore, as � ! 1, the principal�s payo¤ from

EAR is maximized, for any level of aggregate e¤ort induced, by setting k arbitrarily close to, but

less than, 1. With k set in this way, the principal�s payo¤ approaches

�EAR(B) =
(� + 1)

�

B

4
� B

2

8
� 1
4
r�2B2 (1 + �) : (14)

With B chosen optimally, the principal�s maximized payo¤ from the optimally designed EAR scheme

is then arbitrarily close to
(� + 1)2

8�2(1 + 2r�2(1 + �))
; (15)

which is the payo¤ the principal would achieve, at � = 1, from a SD contract. (Recall equation

(29).) This is also the payo¤ the principal would achieve in the �no hidden information benchmark�

from the contract pair (Cbal1 ; Cbal2 ) in the limit as �! 1.17

For ex post discretion, too, as �! 1, eEPD� eEPD ! 0 for any k 2 (�1; 1), as follows from the

fact that the gap in e¤orts on the two tasks is smaller under EPD than under EAR. We now convert

the payo¤ expression (10) for EPD given in Proposition 4 into one as a function of B � �(1 + k)
and k, as we did for EAR, and simplify it in the limit as �! 1. This yields

�EPD(B; k) =
(� + 1)

�

B

4
� B2

8
� 1
2
r�2B2

�
1 + 2�k + k2

(1 + k)2

�
+

1

r

�
rB�g

1 + k
�(0)� ln

�
2�

�
rB�g

2(1 + k)

���
(16)

It can be shown that this payo¤ expression, like that for EAR, is increasing in k. This shows

that the dominant e¤ect of an increase in k is the improved diversi�cation of the risk from the

shocks to measured performance (as re�ected in the �nal term on the �rst line). This improved

diversi�cation outweighs the cost (re�ected in the sum of the two terms on the second line) of

the increase in the variance of w = minf� + �x1 + k�x2; � + �x2 + k�x1g as k, and hence the
17Recall that the payo¤ in the NHI benchmark is continuous as � ! 1, in contrast to the discontinuity at � = 1

under hidden information.
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correlation between x1 + kx2 and x2 + kx1, increases. Therefore, as � ! 1, the principal�s payo¤

from EPD is maximized, for any level of aggregate e¤ort induced, by setting k arbitrarily close to,

but less than, 1. With k set in this way, the terms on the second line in (16) approach 0 since

�k � corr(x1+kx2; x2+kx1)! 1 and hence �k � �k[2(1��k)] 12 ! 0. Hence, in the limit as �! 1,

the principal�s maximized payo¤ from EPD with k adjusted optimally also approaches the level he

would achieve, at � = 1, from a SD contract.

When the principal is restricted to deterministic incentive schemes, then as shown in Section 3,

even as � gets arbitrarily close to 1 (�! 1+), it is impossible for the principal to induce balanced

e¤orts from more than one type of agent. Consequently, whenever � > lim�!1 �NHI(�; r�2; �), the

payo¤ from an asymmetric deterministic menu, even in the limit as �! 1+, remains strictly below

that which would be achievable from a SD contract at � = 1.

Proposition 7 Consider the limiting case as � ! 1+. Under both EAR and EPD, for any given

level of aggregate e¤ort, e+ �e, to be induced:

(i) the gap in e¤orts, e� e, approaches 0 for any k 2 (�1; 1);
(ii) the optimal value of k ! 1�;

(iii) with k adjusted optimally, the principal�s payo¤ under both ambiguous schemes approaches her

payo¤ in the NHI benchmark from (Cbal1 ; Cbal2 ) as �! 1, which equals her payo¤ from the symmetric

deterministic (SD) contract at � = 1.
Therefore, for � > lim�!1 �NHI(�; r�2; �), EAR and EPD with k adjusted optimally dominate the

best deterministic scheme under hidden information. For � < lim�!1 �NHI(�; r�2; �), the principal�s

optimal incentive scheme is a symmetric deterministic menu (SDM).

6.2 The Limiting Case where r !1 and �2 ! 0

In Section 4, we considered the limiting case where r ! 0 and �2 ! 1 in such a way that

r�2 ! R < 1. We found that in this limit, for any k 2 (�1; 1), both EAR and EPD induce the

agent to exert e¤ort only on his preferred task.

In the opposite limiting case where r ! 1 and �2 ! 0 in such a way that r�2 ! R < 1,
equation (4) in Proposition 2 shows that, for any k 2 (1; 1�), EAR induces the agent to choose

perfectly balanced e¤orts: eEAR � eEAR = 0. This re�ects that the fact that as the agent becomes
in�nitely risk-averse, it becomes optimal to fully insure himself against the risk associated with the

random choice of compensation schedule, by equalizing his expected measured performance on the

two tasks. Since Proposition 4 showed that eEPD � eEPD � eEAR � eEAR, it follows that in this
limiting case, EPD also induces perfectly balanced e¤orts: the reduction in �2 reinforces the agent�s

incentives for balance. Thus even if the product r�2 remains unchanged, so the payo¤, as well as

the e¤orts induced, under all deterministic schemes remain the same, when risk aversion becomes

very large and exogenous shocks very small, both types of ambiguous incentive scheme generate

very strong incentives to choose balanced e¤orts.

In the limit as r !1 and �2 ! 0, equation (7) becomes
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�EAR(B; k) =
(� + 1)

�

B

(�+ 1)2
� B2

2(�+ 1)2
� 1
2
RB2

�
1 + 2�k + k2

(1 + k)2

�
: (17)

Exactly as was the case when � ! 1, with perfectly balanced e¤orts now ensured by r ! 1 and

�2 ! 0, an increase in k has only one e¤ect on the principal�s payo¤ from inducing any given level

of aggregate e¤ort: it improves the diversi�cation of the risk imposed on the agent from the shocks

to measured performance. Hence, in this limiting case, too, the principal�s payo¤ from EAR is

increasing in k as long as k induces interior solutions, which is the case for any k < 1
� . Therefore,

it is optimal to set k arbitrarily close to, but less than, 1� . With k set in this way, the principal�s

payo¤ expression in (17) approaches

�EAR(B) =
(� + 1)

�

B

(�+ 1)2
� B2

2(�+ 1)2
� 1
2
RB2

�
�2 + 2��+ 1

(�+ 1)2

�
: (18)

This is exactly the payo¤ the principal would obtain, in the �no hidden information benchmark�,

from using (Cbal1 ; Cbal2 ) to induce perfectly balanced e¤orts and setting � = B
1+� (see equation (32)).

In this limiting case with r ! 1 and �2 ! 0 such that r�2 ! R, the principal�s payo¤ under

EPD, for given B and k, approaches the same expression as under EAR:

�EPD(B; k) =
(� + 1)

�

B

(�+ 1)2
� B2

2(�+ 1)2
� 1
2
RB2

�
1 + 2�k + k2

(1 + k)2

�
:

Hence, under EPD, too, it is optimal to set k arbitrarily close to, but below, 1
� , and optimally

designed EAR does as well in this limit as optimally designed EPD.

Proposition 8 Consider the limiting case where r ! 1 and �2 ! 0 in such a way that r�2 !
R <1. Under both EAR and EPD, for any given level of aggregate e¤ort, e+ �e, to be induced:
(i) the gap in e¤orts, e� e, approaches 0 for any � and for any k < 1

� ;

(ii) the optimal value of k !
�
1
�

��
;

(iii) with k adjusted optimally, the principal�s payo¤ under both ambiguous schemes approaches her

payo¤ in the NHI benchmark from (Cbal1 ; Cbal2 ) with incentive coe¢ cient � chosen to induce the same

level of aggregate e¤ort.

Therefore, for � > �NHI(�;R; �), EAR and EPD with k adjusted optimally dominate the best

deterministic scheme under hidden information. For � < �NHI(�;R; �), the principal�s optimal

incentive scheme is a symmetric deterministic menu (SDM).

6.3 The Limiting Case of Perfect Correlation of the Shocks

Under ex post discretion, for any k 2 (�1; 1), when the shocks to outputs are perfectly correlated,
the agent, given his e¤orts on the two tasks, faces no uncertainty about which of x1 + kx2 or

x2 + kx1 will be smaller and hence no uncertainty about whether he will be paid � + �(x1 + kx2)

or �+ �(x2 + kx1). He is certain that if e1 is greater (less) than e2, x2 + kx1 will be less (greater)

than x1 + kx2. As a consequence, under EPD, as long as k < 1
� , the agent�s optimal e¤orts on the

two tasks will be equal. To see this, consider an agent of type 1 and suppose he considers switching

from an e¤ort pair with e1 > e2 to one with equal e¤orts e� on the two tasks, where e� is chosen
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so that aggregate e¤ort is the same for the two e¤ort pairs, i.e., e1 + �e2 = e� + �e�. Both the

agent�s cost of e¤ort and the risk premium are the same under the two e¤ort pairs. Therefore, the

only e¤ect of switching from (e1; e2) to (e�; e�) on the agent�s expected utility is the e¤ect on the

expected wage. For both e¤ort pairs, since � = 1, the agent will receive � + �(x2 + kx1), so the

switch causes the expected wage to change by

(e� � e2) + k(e� � e1) = (e� � e2)� k�(e� � e2) = (e� � e2)(1� k�);

and this expression is strictly positive whenever k < 1
� . If, instead, a type-1 agent switched from

(e1; e2) with e1 < e2 to (e�; e�) such that aggregate e¤ort was unchanged, the switch would also

a¤ect his expected utility only via the expected wage, which would now increase for all k < � (which

holds by assumption). Symmetric arguments hold for a type-2 agent. Thus, when � = 1, whenever

k < 1
� , for any given level of aggregate e¤ort exerted, both types of agent always strictly prefer to

exert equal e¤orts on the two tasks under EPD.

As a consequence, in searching for either type of agent�s optimal (e1; e2) for a given � and

k 2 (�1; 1�), we can con�ne attention to pairs such that e1 = e2 = e. For such pairs, the expected
utility of both types of agent, given � = 1, is

� exp
�
�r
�
�+ �(1 + k)e� 1

2
(�+ 1)2e2 � 1

2
r�2(1 + k)2�2

��
because the agent will receive a wage with the same distribution as �+�(1+k)e+�(1+k)�, where

� � N(0; �2), that is, � has the same distribution as both of the perfectly correlated shocks.
Therefore, both types of agent choose e according to the �rst order condition

e =
�(1 + k)

(�+ 1)2
:

With � = 1, and � chosen optimally by the principal, the principal�s payo¤ under EPD for a given

� and k 2 (�1; 1�) is

�EPD(�; k) =
� + 1

�

�(1 + k)

(�+ 1)2
� �

2(1 + k)2

2(�+ 1)2
� 1
2
r�2(1 + k)2�2: (19)

De�ning, as before, B � �(1 + k), so as to examine the e¤ect of varying k holding �xed aggregate
e¤ort, we have

�EPD(B; k) =
� + 1

�

B

(�+ 1)2
� B2

2(�+ 1)2
� 1
2
r�2B2: (20)

This payo¤ expression is independent of k as long as k 2 (�1; 1�). For any k 2 (�1;
1
�), not only

are e¤orts perfectly balanced because � = 1, but also, because � = 1, varying k has no e¤ect on the

diversi�cation of the risk from the shocks to performance. Therefore, under EPD, when � = 1, any

value of k 2 (�1; 1�) is optimal. Note that the payo¤ expression (20) matches what the principal
would obtain, in the �no hidden information benchmark�with � = 1, from using (Cbal1 ; Cbal2 ) to

induce perfectly balanced e¤orts and setting � = B
1+� (see equation (32)). Thus, in this limiting

environment as well, EPD allows the principal to achieve a payo¤ as high as she would achieve in

the absence of hidden information.

25



Under EAR, the principal�s payo¤, expressed as a function of B and k 2 (�1; 1�) and evaluated
at � = 1, is

�EAR(B; k) =
(� + 1)B

� (�+ 1)2
�

(� � �) ln
�
��k
1�k�

�
�(�+ 1)rB

�
1�k
1+k

� � B2

2 (�+ 1)2

� 1

2
r�2B2 � 1

2r
ln

 
(�+ 1)2 (1� k)2

4(1� k�)(�� k)

!
: (21)

As with EPD, since � = 1, varying k has no e¤ect on the diversi�cation of the risk from the shocks

to performance. Consequently, the only e¤ects of increasing k, holding aggregate e¤ort �xed, are

the negative ones stemming from the increase in the gap between e¤orts on the two tasks as k

increases : A larger e¤ort gap e � e directly reduces the principal�s bene�t whenever � > � (the

second term in (21)) and also results in the agent bearing more risk from the randomization (the

�nal term in (21)). With � = 1, it is therefore optimal under EAR, for any level of aggregate e¤ort

to be induced, to set k as small as possible, so as to induce as small a gap in e¤orts as possible.

With k set arbitrarily close to, but larger than, -1, the agent is induced to choose a gap in e¤orts

arbitrarily close to, but larger than, 0 (as shown by Proposition 2), and the principal achieves a

payo¤ arbitrarily close to18

�EAR(B) =
� + 1

�

B

(�+ 1)2
� B2

2(�+ 1)2
� 1
2
r�2B2:

This is the same payo¤ expression as arose under EPD for any value of k 2 (�1; 1�).

Proposition 9 Consider the limiting case of perfect correlation of the shocks: � ! 1. For any

given level of aggregate e¤ort, e+ �e, to be induced:

(i) under EPD, the gap in e¤orts, e� e, approaches 0 for any � and for any k 2 (�1; 1�), and any
k 2 (�1; 1�) is optimal;
(ii) under EAR, the gap in e¤orts, e � e, approaches 0 for any � as k ! �1+, and the optimal
value of k ! �1+;
(iii) with k adjusted optimally, the principal�s payo¤ under both ambiguous schemes approaches her

payo¤ in the NHI benchmark from (Cbal1 ; Cbal2 ) with incentive coe¢ cient � chosen to induce the same

level of aggregate e¤ort.

Therefore, for � > �NHI(�; r�2; 1), EAR and EPD with k adjusted optimally dominate the best

deterministic scheme under hidden information. For � < �NHI(�; r�2; 1), the principal�s optimal

incentive scheme is a symmetric deterministic menu (SDM).

6.4 Discussion

We have identi�ed three environments in which ambiguous contracts, when designed optimally,

dominate the best deterministic scheme. In all three environments, EAR and EPD, with the para-
18As k is lowered, the incentive coe¢ cient � must be raised to keep aggregate e¤ort, which is proportional to

B � �(1 + k), �xed.
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meter k adjusted optimally, both induce both types of agent to choose perfectly balanced e¤orts,

and EAR is as pro�table for the principal as EPD. Both types of ambiguous scheme generate a

payo¤ for the principal arbitrarily close to her payo¤ in the �no hidden information benchmark�, so

in these environments, ambiguous incentive schemes eliminate the e¢ ciency losses from the agent�s

better knowledge of the environment. Figure 2 summarizes our �ndings on the optimal contract

choice for the three limiting settings.

Figure 2: Optimal incentive schemes in 3 limiting settings

In each of these settings, optimally designed ambiguous schemes are preferable to the best

deterministic scheme whenever, in the NHI benchmark, the principal wants to induce balanced

e¤orts, that is, whenever her complementarity parameter � exceeds �NHI(�; r�2; �). If, in the NHI

benchmark, the risk premium incurred in inducing balanced e¤orts would be too large relative to

the bene�ts of balance, then in these settings, ambiguous schemes are dominated by a SDM, which

induces both types of agent to focus their e¤orts on their preferred task.

In none of these settings is the asymmetric deterministic menu (ADM) ever strictly the most

attractive incentive scheme for the principal. There are two reasons for this �nding. First, the

ADM induces one type of agent to choose perfectly balanced e¤orts, while inducing the other type to

choose fully focused e¤orts (and optimally insuring this type). Its outcome is therefore intermediate

between the perfectly balanced e¤orts from both types induced by the ambiguous schemes and the

fully focused e¤orts (with optimal insurance) generated by the SDM. Second, whenever � > 1, the

ADM cannot induce balanced e¤orts from one type without leaving informational rents to the other
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type. Whenever � > 1, these rents make the ADM strictly less pro�table, for all values of �, than

the best alternative scheme.

The comparative statics results for �NHI discussed after equation (7) tell us when, in the three

environments studied above, ambiguous schemes are more likely to dominate the best deterministic

scheme under hidden information. Ambiguous schemes are more likely to be optimal the smaller

is r�2: this re�ects the imposition of greater risk on the agent by EAR/EPD than SDM per unit

of aggregate e¤ort induced. In the limit as r�2 ! 0, ambiguous schemes are optimal in these

environments if and only if � > �: with risk no longer having a cost in this limit, the principal

prefers ambiguous to deterministic schemes according to whether or not the perfectly balanced

e¤orts induced by the ambiguous schemes are socially e¢ cient. In the environments of Sections 6.2

and 6.3, ambiguous schemes are more likely to be optimal the smaller is �, since as � increases, for

any given level of aggregate e¤ort to be induced, the gap between the cost of the risk imposed on the

agent under the ambiguous schemes and the SDM widens. Finally, in the environments of Sections

6.1 and 6.2, ambiguous schemes are more likely to be preferred the smaller is �, since a smaller �

both i) reduces the gains from optimal insurance o¤ered by the SDM and ii) reduces the extra risk

costs under the ambiguous schemes of basing compensation on both performance measures.

7 Robustness and Extensions

7.1 Ex Ante Randomization and the Choice of How Many Tasks to Reward

We have assumed so far that the job performed by the agent has only two distinct dimensions (tasks)

and that noisy measures of performance on both tasks are used in randomized incentive schemes.

When, however, performance on a job has many distinct dimensions, the costs of monitoring the

di¤erent dimensions may become signi�cant. In such settings, the principal can economize on moni-

toring costs, while still providing incentives for balanced e¤orts, by randomizing over compensation

schedules each of which rewards only a subset of dimensions of performance. We now study some

of the tradeo¤s involved in the design of randomized incentive schemes in environments with many

tasks.

Let the job performed by the agent consist of n > 2 tasks, for each of which measured perfor-

mance xj = ej+�j , where (�1; : : : ; �n) have a symmetric multivariate normal distribution with mean

0, variance �2, and pairwise correlation � � 0. Suppose there are n equally likely types of agent,

with the agent of type i having cost function ci(e1; : : : ; en) = 1
2(�ei +

P
j 6=i ej)

2. Thus each type of

agent has a particular dislike for exactly one of the n tasks, and � measures the intensity of this

dislike. Let the principal�s bene�t function be

B(e1; : : : ; en) = minfe1; : : : ; eng+
1

�

0@ nX
j=1

ej �minfe1; : : : ; eng

1A ;
where as before � parameterizes the strength of the principal�s desire for a balanced pro�le of e¤orts

across tasks. With the cost and bene�t functions speci�ed, the socially e¢ cient pro�le of e¤orts is
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perfectly balanced (ei = ej for all i 6= j) whenever � > �.
We will study the following family of incentive schemes with ex ante randomization, parame-

terized by �, the number of tasks rewarded: Each subset of � out of n tasks is chosen with equal

probability, and each task in the chosen subset is rewarded at rate �; whichever subset is chosen, the

lump-sum payment is �. We will not explicitly model the direct costs of generating the performance

measures. Instead we will focus on the incentive and risk costs of varying the number of tasks �

included in each of the possible compensation schedules.

Denote by e each type of agent�s e¤ort on his disliked task and by e his e¤ort on each of the

other tasks. If, for a given �, the agent�s optimal e¤ort choices are interior, then aggregate e¤ort

(�e+ (n� 1)e) and the gap in e¤orts e� e satisfy, respectively,

�e+ (n� 1)e = ��

n� 1 + � and e� e = 1

r�
ln

�
�(n� �)

(n� 1)� (�� 1)�

�
: (22)

Reducing �, the number of tasks rewarded, reduces the pairwise correlation between the di¤erent

levels of compensation the agent might receive under the randomized scheme and so gives the agent

a stronger incentive to self-insure. As a result, the the agent�s optimal e¤ort pro�le is more balanced

(e� e is smaller), the smaller is the number of tasks rewarded.
Since aggregate e¤ort is proportional to ��, de�ne ~� � ��. Using equations (22), we can write

the principal�s payo¤ as a function of ~�, �, and n, given that the �xed payment � is set to ensure

zero rents:

�(~�; �; n) =

�
e+

(n� 1)
�

e

�
�

~�
2

2 (n� 1 + �)2

�1
2
r�2~�

2
�
1 + �(�� 1)

�

�
� 1

nr
ln

�
(n� �)n��(n� 1 + �)n

nn(�)� ((n� 1)� (�� 1)�)n��
�
; (23)

where

e+
(n� 1)
�

e =

�
� + n� 1

�

� ~�

(n� 1 + �)2 �
(� � �)(n� 1)�
�(n� 1 + �)r~�

ln

�
�(n� �)

(n� 1)� (�� 1)�

�
: (24)

Holding ~� and n �xed and varying � allows us to isolate the e¤ect of changing the number

of tasks rewarded, holding �xed the level of aggregate e¤ort induced. Comparison of equations

(23)-(24) with equation (7) reveals that changes in � have qualitatively the same three e¤ects on

the principal�s payo¤ in this n-task model as do variations in the weighting coe¢ cient k in EAR in

the original two-task model. Speci�cally, an increase in �, because it raises the gap between e and

e, has two negative e¤ects: i) it lowers the principal�s bene�t e + (n�1)
� e when aggregate e¤ort is

held �xed, as long as � > � (see (24)), and ii) it raises the cost of compensating the agent for the

risk imposed by the random choice of which subset of tasks to reward (see the �nal term in (23)).

At the same time, raising � also has the positive e¤ect of improving the diversi�cation of the risk

stemming from the shocks to measured performance, thereby reducing the risk premium per unit

of aggregate e¤ort induced (see the second-to-last term in (23)).

Given the observations above on the qualitative similarity of varying � in the n-task model and

k in the two-task model, we can conclude:
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Proposition 10 Consider the model with n tasks and a completely random choice of which subset

of � of them to reward. For any given level of aggregate e¤ort to be induced, the optimal number of

tasks to reward is smaller

(i) the larger is � (i.e., the stronger the principal�s preference for balanced e¤orts);

(ii) the smaller is r, holding r�2 �xed (i.e., the less risk-averse the agent, holding �xed the importance

of risk aversion under deterministic contracts);

(iii) the larger is � (i.e., the less scope for diversi�cation of the risk from the shocks to measured

performance).

7.2 Imperfect Substitutability of E¤orts for the Agent

The analysis so far has focused on the case where e¤orts are perfect substitutes in the agent�s cost

function. This assumption was made for convenience: although it does not qualitatively a¤ect the

performance of ex ante randomization and ex post discretion, it simpli�es the characterization of

the optimal linear deterministic incentive scheme. We now show that our key �ndings continue

to hold even when we introduce imperfect substitutability of e¤orts for the agent. Speci�cally, it

remains true that i) if tasks are su¢ ciently complementary for the principal, ambiguous schemes are

superior to deterministic schemes in settings where they generate very strong incentives for balanced

e¤orts and ii) in such settings, ambiguous schemes completely eliminate the e¢ ciency losses from

the agent�s better knowledge of the environment.

Let the two equally likely types of agent have cost functions of the form

c(e; e) =
1

2

�
e2 + 2s�ee+ �2e2

�
(25)

where e denotes each type of agent�s e¤ort on his preferred task and e denotes each type�s e¤ort

on the other task. The parameter � continues to measure each type�s degree of bias towards his

preferred task, and the new parameter s 2 [0; 1] measures the degree of substitutability of e¤orts.
Note that s = 1 represents perfect substitutability and s = 0 no substitutability. We will focus

on the case where s � 1
� , which represents a situation of high, but imperfect, substitutability. For

simplicity, we will also specialize to the case where the principal�s preference for balanced e¤orts is

strongest, that is, B(e1; e2) = minfe1; e2g, which corresponds to � !1.
In the �no hidden information benchmark�setting, the principal will o¤er each type of agent a

contract of the form w = �+ �x+ v�x with v � 1, where x denotes measured performance on the
agent�s preferred task and x measured performance on the other task. The parameter v determining

the relative rate of reward on the two tasks is a choice variable for the principal, and under the

assumptions above, the optimal choice of v, vNHI , can be shown to induce each type of agent to

choose equal e¤orts on the two tasks: vNHI = �(�+s)
1+s� . The principal�s payo¤ in the NHI benchmark

is continuous in � and s. In the limit as � ! 1 and s ! 1, vNHI ! 1: the optimal contract for

each type approaches the SD contract w = � + �x1 + �x2, and the principal�s payo¤ in the NHI

benchmark approaches her payo¤ from the SD contract at � = 1 (as given by equation (2)).

When the agent is privately informed about his preferences across tasks and s � 1
� , then just
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as in the original model, it is not possible with a menu of deterministic linear contracts to induce

both types of agent to choose strictly positive e¤ort on both tasks. The optimal deterministic menu

will be an asymmetric deterministic menu which induces one type to choose (relatively) balanced

e¤orts while the other type chooses fully focused e¤orts. It is easy to derive an upper bound on the

principal�s payo¤ from an ADM and to show that this bound is strictly less than her payo¤ in the

NHI benchmark. Furthermore, whereas the payo¤ in the NHI benchmark approaches the value in

equation (2) as �! 1+ and s! 1�, the payo¤ from an ADM is bounded away from this level.

Ex ante randomization continues to give the risk-averse agent an incentive to partially self-insure

by choosing relatively balanced e¤orts on the two tasks, and ex post discretion continues to give

even stronger incentives for balance because of the agent�s ability to in�uence, through his e¤orts,

which task is more highly rewarded. Interior optimal e¤orts under EAR satisfy

�(1 + k) =
@c

@e
+
@c

@e
(26)

and
c2
c1
� k

1� k c2c1
= exp [r�(1� k)(e� e)] ; (27)

where c2
c1
� @c=@e

@c=@e =
s�e+�2e
e+s�e . Note that (27) is a generalized version of (4) in which the constant �

is replaced by the function @c=@e
@c=@e . Optimal e¤orts under EPD satisfy (26) and equation (9), with

the left-hand side replaced by the left-hand side of (27).

Consider now the three environments which we studied in detail in Section 6. As � ! 1 or as

r !1, �2 ! 0, both EAR and EPD induce perfectly balanced e¤orts for any k 2 (�1; c1c2 ), so the
only e¤ect of increasing k is to improve the diversi�cation of risk from the shocks. Hence it is optimal

in both environments to set k as large as possible subject to keeping e¤orts perfectly balanced: As

� ! 1, the optimal k approaches c1
c2
! 1, while as r ! 1, �2 ! 0, the optimal k approaches

c1
c2
! 1+s�

�(�+s) . Observe that in both cases, therefore, the optimal k approaches 1=v
NHI . Therefore,

just as in the original model, in these two limiting environments, optimally designed EAR and EPD

generate a payo¤ for the principal arbitrarily close to what she achieves in the NHI benchmark. In

the setting where the correlation of the shocks approaches 1, the choice of weight k has no e¤ect on

diversifaction, so it is optimal under EAR and EPD to set k to induce perfectly balanced e¤orts,

and in this setting, too, optimally designed EAR and EPD generate a payo¤ arbitrarily close to

that in the NHI benchmark.

In these limiting environments in which optimally designed ambiguous schemes induce perfectly

balanced e¤orts, it follows that the ambiguous schemes dominate the best deterministic scheme.

As long as s � 1
� , we saw above that under hidden information, no linear deterministic incentive

scheme could induce both types of agent to choose relatively balanced e¤orts, and as a consequence,

the payo¤ from the best deterministic scheme is bounded away from the payo¤ in the NHI bench-

mark. Since the ambiguous schemes generate a payo¤ arbitrarily close to the NHI benchmark, the

ambiguous schemes perform better. Hence, allowing the agent�s e¤orts on the tasks to be less than

perfect substitutes in his cost function does not alter our main results.
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7.3 Beyond The Exponential-Normal Model

Our �ndings that ambiguous incentive schemes induce more balanced e¤orts than symmetric de-

terministic ones and do so in a way that is more robust to hidden information on the agent�s

part apply even outside the exponential-normal model we have been considering, as we show in

supporting online material.

8 Conclusion

In this paper we have formalized the notion that an agent with superior knowledge of the contracting

environment�here, his cost of e¤ort on di¤erent tasks�may game an incentive scheme. Moreover, we

have shown that ambiguous contracts can, in certain circumstances, alleviate this gaming. In such

circumstances, ambiguity in the incentive scheme helps redress the agent�s informational advantage

by introducing uncertainty into the agent�s environment.

Our key contribution is to identify settings in which optimally designed ambiguous contracts

dominate all deterministic incentive schemes. We identi�ed three such environments. Each of these

environments has the feature that optimally designed ambiguous contracts induce the agent to

choose perfectly balanced e¤orts on the two tasks. The �rst such setting is that in which the agent

has private information about his preferences but the magnitude of his preference across tasks is

arbitrarily small. The second is the limiting case where the agents�risk aversion becomes in�nitely

large and the variance of the shocks to outputs becomes arbitrarily small. The �nal setting is that

where the shocks a¤ecting measured performance on the tasks become perfectly correlated. In all

three of these environments, we showed that there is a critical degree of complementarity of tasks

for the principal above which the optimal incentive scheme is an ambiguous one. Furthermore,

in these settings, optimally designed ambiguous schemes allow the principal to achieve a payo¤

arbitrarily close to what she could achieve in the absence of hidden information on the agent�s part.

That is, ambiguous schemes eliminate the e¢ ciency losses from the agent�s better knowledge of the

environment.

It is worth noting that the outcomes achieved under ex ante randomization and ex post discretion

in our model are achievable even if the principal cannot commit to a randomizing procedure in

advance. The outcome under ex ante randomization is equivalent to the equilibrium outcome of

a simultaneous-move game between the principal and the agent, and ex post discretion allows the

principal to wait before choosing which performance measure to reward more highly until after

she has observed outputs. Therefore, our ambiguous schemes are feasible even when the principal

is unable to commit to complicated non-linear contracts. We suggest that part of the appeal of

ambiguous contracts is that they approximate the outcomes of complicated non-linear contracts in

environments with limited commitment.

We have taken a particular approach to modeling the agent�s superior knowledge of the environ-

ment. There are certainly other possibilities�such as the agent�s having private information about

other components of her preferences than the cost of e¤ort or about the stochastic mapping from
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e¤ort to output. We have also restricted attention to a one-shot interaction. Future work could

analyze the bene�ts and costs of ambiguous incentive schemes in more general environments.
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A Omitted Proofs

Proof of Lemma 1. The agent�s certainty equivalent under the contract is

ACE = E(w)� c(e1; e2)�
1

2
r�2V ar(w) = �+ �2 � �

2

2
� r�2�2(1 + �):

Given that the principal sets � to satisfy the agent�s participation constraint with equality, the principal�s
expected payo¤ as a function of � is

�SD(�;� = 1) =
�

2

�
1 +

1

�

�
� �

2

2
� r�2�2(1 + �): (28)

With � chosen optimally, the resulting maximized payo¤ is

�SD(� = 1) =
(� + 1)2

8�2 [1 + 2r�2(1 + �)]
: (29)

Under the OT contract, �1 = � and �2 = ���, so the agent sets e1 = � and e2 = 0. With � chosen
optimally by the principal, her expected payo¤ as a function of � is

�OT (�) =
�

�
� �

2

2
� 1
2
r�2�2

�
1� �2

�
;

and the optimal choice of � yields payo¤

�OT =
1

2�2 [1 + r�2 (1� �2)]
: (30)

The SD contract induces the agent to exert e¤ort on both tasks, while the OT contract elicits e¤ort only
on one task. However, for any given �, the risk premium under the SD contract, r�2�2(1 + �), is larger
than that under the OT contract, 12r�

2�2
�
1� �2

�
. Therefore the principal faces a tradeo¤ between the more

balanced e¤orts induced by SD and the lower risk imposed by OT. Comparison of (29) and (30) shows that
there is a critical value of the principal�s complementarity parameter �,

�1(r�2; �) � 2
�
1 + 2r�2(1 + �)

1 + r�2(1� �2)

� 1
2

� 1; (31)

above which the SD contract is optimal and below which the OT contract is preferred. The critical value
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�1
�
r�2; �

�
is greater than 1 and is increasing in each of its arguments.

Proof of Lemma 2. Each agent type�s certainty equivalent from contract Cbali is

ACEi(C
bal
i ) = E(wi)� ci(e1; e2)�

1

2
r�2V ar(wi) = �+ �

2 � �
2

2
� 1
2
r�2�2(1 + 2��+ �2):

The principal will set � to satisfy both types�participation constraint with equality, and her expected payo¤
from both types, as a function of �, will be

�bal(�) =
�

1 + �

�
1 +

1

�

�
� �

2

2
� 1
2
r�2�2(1 + 2��+ �2): (32)

With � chosen optimally, the resulting maximized payo¤ is

�bal =
(� + 1)2

2�2(1 + �)2
�
1 + r�2(1 + 2��+ �2)

� : (33)

This payo¤ is continuous as � ! 1 and its limiting value is the payo¤ from the SD contract when � equals
1.

The second type of contract pair which can be optimal in the �no hidden information benchmark�setting
is a mirror-image pair of �one task�(OT) contracts:

COT1 : w1 = �+ �x1 � ��x2;
COT2 : w2 = �+ �x2 � ��x1:

When assigned contract COTi , each agent i chooses ei = � and ej = 0. The principal�s payo¤ will be the
same from each type of agent, and with � and � chosen optimally, this payo¤ will be given by the expression
(30) derived previously for the OT contract. Note that this payo¤ from the contract pair (COT1 ; COT2 ) is
independent of �, since neither type of agent exerts any e¤ort on his more costly task.

Comparison of the payo¤ expressions (33) and (30) shows that there is a critical value of the principal�s
complementarity parameter �,

�NHI(�; r�2; �) � (�+ 1)
�
1 + r�2(1 + 2��+ �2)

1 + r�2(1� �2)

� 1
2

� 1; (34)

above which it is optimal to induce perfectly balanced e¤orts with (Cbal1 ; Cbal2 ) and below which it is optimal
to induce fully focused e¤orts with (COT1 ; COT2 ). This critical value �NHI(�; r�2; �) is increasing in each of
its arguments and, as � approaches 1, �NHI approaches �1.

Proof of Proposition 1. The certainty-equivalents that each of the two ADM contracts o¤ers to each
of the two types of agent are:

ACE1 (C1) = �1 +
(�1)

2

2
� 1
2
r�2 (�1)

2 �
1� �2

�
;

ACE1 (C2) = �2 +
�2 (�2)

2

2
� 1
2
r�2 (�2)

2 �
�2 + 2��+ 1

�
;

ACE2 (C2) = �2 +
(�2)

2

2
� 1
2
r�2 (�2)

2 �
�2 + 2��+ 1

�
;

ACE2 (C1) = �1 +
(�1)

2

2�2
� 1
2
r�2 (�1)

2 �
1� �2

�
:

The problem faced by the principal is to choose (�1; �2; �1; �2) to maximize

1

2

�
�1
�
� �1 � (�1)

2

�
+
1

2

��
�2
1 + �

��
1 + �

�

�
� �2 � (�2)

2

�
;
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subject to participation and self-selection constraints for both types of agent:

ACE2 (C2) � 0;

ACE2 (C2) � ACE2 (C1) ;

ACE1 (C1) � 0; and

ACE1 (C1) � ACE1 (C2) :

Since for all � > 1 we have ACE1 (C2) � ACE2 (C2) ; the second and fourth constraints above imply that
the third constraint will not bind, and hence agent 1 earns an �information rent�.19

For the two self-selection constraints to be satis�ed simultaneously, it is necessary that

(�2)
2

2
� (�1)

2

2�2
� �2 (�2)

2

2
� (�1)

2

2
;

which is equivalent to
�1 � ��2:

For given (�1; �2), it is optimal for the principal to set �2 so agent 2�s participation constraint binds and
to set �1 so agent 1�s self-selection constraint binds. Then the constraint �1 � ��2 is both necessary and
su¢ cient for agent 2 to be willing to choose C2. We may then restate the principal�s problem as

max
�1;�2

8<:
1
2

h
�1
� �

(�1)
2

2 � 1
2r�

2 (�1)
2 �
1� �2

�
�
�
�2 � 1

� (�2)2
2

i
+ 1
2

h�
�2
1+�

� �
1+�
�

�
� (�2)

2

2 � 1
2r�

2 (�2)
2 �
�2 + 2��+ 1

�i
9=;

s.t. �1 � ��2:

It is not di¢ cult to show that the constraint �1 � ��2 will be binding at the optimum if and only if the
principal�s complementarity parameter � is greater than or equal to �̂ , where

�̂ �
�
1 + �

�

� 
�2 + r�2

�
�2 + 2��+ 1

�
1 + r�2 (1� �2)

!
� 1: (35)

If � < �̂, then the principal�s maximized payo¤ from this �unconstrained� asymmetric deterministic menu
(ADMU) is

�ADMU =
1

4�2

"
1

1 + r�2 (1� �2) +
(1 + �)

2

(1 + �)
2

 
1

�2 + r�2
�
�2 + 2��+ 1

�!# ;
whereas if � � �̂, then her maximized payo¤ from the �constrained�ADM (ADMC) is

�ADMC =

�
�2 + �+ � + 1

�2
8�2 (1 + �)

2
h
�2 + r�2

��
1� �2

2

�
�2 + ��+ 1

2

�i :
If the principal wants to induce both types of agent to focus their e¤ort on their preferred task, it is

optimal to o¤er a menu of the following form, which we term a �Symmetric Deterministic Menu�or SDM:

C1 : w1 = �+ �x1 � ��x2;
C2 : w2 = �+ �x2 � ��x1:

Faced with such a menu, agent i strictly prefers contract Ci to contract Cj and, having chosen Ci, will then
set ei = � and ej = 0. The negative coe¢ cient in each contract on the agent�s less-preferred task improves

19 If the ADM were designed to induce balanced e¤orts from (only) agent 1, then agent 2 would be the one
to earn an information rent.
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insurance by exploiting the correlation in the shocks.
Clearly, this symmetric deterministic menu generates the same outcome, for each type of agent, as the

principal achieves, in the no hidden information benchmark setting, from the contract pair (COT1 ; COT2 ).
Thus, if the principal wants both types to exert fully focused e¤ort on their preferred task, there is no loss
to the principal from not knowing which task the agent actually prefers. Therefore, from equation (30), we
know that the principal�s maximized payo¤ from a SDM is

�SDM =
1

2�2 (1 + r�2 (1� �2))
; (36)

which is independent of �.
If, instead of using a symmetric deterministic menu, the principal were to use a SD contract, w =

�+ �x1+ �x2, this would, for all � > 1, also induce fully focused e¤orts from both types of agent but would
impose a larger risk premium and hence generate a lower payo¤ for the principal. Maximized pro�t from a
SD contract when � > 1 would be

�SD(� > 1) =
1

2�2 (1 + 2r�2 (1 + �))
� �SDM 8� > 1;8�: (37)

Comparing the payo¤ expressions in (29) and (37) shows that the payo¤ from a SD contract drops discontin-
uously as the preference parameter � is increased from 1, because the agent�s e¤orts switch discontinuously
from perfectly balanced to fully focused.

We now determine whether ADM or SDM are optimal. The comparison between SDM and ADMU
involves comparing �SDM and �ADMU , where the former dominates if and only if

(�+ 1)

s
�2 + r�2

�
�2 + 2��+ 1

�
1 + r�2 (1� �2) > 1 + �;

where the left-hand-side of the inequality is denoted �SDM=ADMU + 1: The value �ADMU=ADMC solves

�ADMU=ADMC + 1 =

�
1 + �

�

� 
�2 + r�2

�
�2 + 2��+ 1

�
1 + r�2 (1� �2)

!
:

�SDM=ADMU � �ADMU=ADMC if and only if

�2 �
�2 + r�2

�
�2 + 2��+ 1

�
1 + r�2 (1� �2) ;

and since r�2 � 0, this is equivalent to

�2
�
1� �2

�
� �2 + 2��+ 1;

which is true for all � � 0.
We can also con�rm that �ADMC � �SDM for all � >d

ADMU=ADMC

since the critical value below which
�SDM > �ADMC is weakly less than �ADMU=ADMC .

We thus have

�SDM=ADMU � � = (�+ 1)
 
�2 + r�2

�
�2 + 2��+ 1

�
1 + r�2 (1� �2) � 1

!
; and

�ADMU=ADMC � � = (�+ 1)
 
�2 + r�2

�
�2 + 2��+ 1

�
� (1 + r�2 (1� �2)) � 1

!
;

from which the rest of the proposition follows.
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Proof of Proposition 2. This proof demonstrates all the assertions in the statement of the proposition.
In addition, it establishes that, if the principal could commit to arbitrary randomizing probabilities p and
1� p such that with probability p, �1 = �, �2 = 0, and with probability 1� p, �1 = 0 and �2 = �, it would
be optimal for the principal to commit to p = 1

2 , the value used throughout the text and in the statement of
the proposition.

Agent 1 maximizes expected utility

E [� exp (�r (w � c (e)))] = �p exp
�
�r
�
�+ �e1 �

r

2
�2�2 � c1 (e)

��
� (1� p) exp

�
�r
�
�+ �e2 �

r

2
�2�2 � c1 (e)

��
The �rst-order conditions are

p [� � (e1 + �e2)]�11 � (1� p) (e1 + �e2)�12 = 0

�p (e1 + �e2)��11 + (1� p) [� � (e1 + �e2)�]�12 = 0:

where

�11 = exp
�
�r
�
�+ �e1 �

r

2
�2�2 � c1 (e)

��
�12 = exp

�
�r
�
�+ �e2 �

r

2
�2�2 � c1 (e)

��
Adding the �rst-order conditions gives

p [� � (e1 + �e2) (�+ 1)]�11 + (1� p) [� � (e1 + �e2) (�+ 1)]�12 = 0

,
[� � (e1 + �e2) (�+ 1)]

�
p�11 + (1� p)�12

�
= 0

so that we have

e1 + �e2 =
�

(�+ 1)
:

Now substituting this into either one of the �rst-order conditions and rearranging yields

p��11 = (1� p)�12:

,
ln

p�

1� p = r� (e1 � e2) :

Solving the system of equations, we �nd for agent 1

e1 =
�

(�+ 1)
2 +

� ln p�
1�p

r� (�+ 1)

e2 =
�

(�+ 1)
2 �

ln p�
1�p

r� (�+ 1)
:

For agent 2, analogous steps yield optimal e¤ort levels

e1 =
�

(�+ 1)
2 �

ln (1�p)�p

r� (�+ 1)

e2 =
�

(�+ 1)
2 +

� ln (1�p)�p

r� (�+ 1)
:
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The maximized expected utilities are

EU1 = �p (�+ 1) exp
 
�r
 
�+

�2

2 (�+ 1)
2 �

r�2�2

2
+
� ln p�

1�p
r (�+ 1)

!!

= �A1 exp
 
�r
 
�+

�2

2 (�+ 1)
2 �

r�2�2

2

!!

EU2 = � (1� p) (�+ 1) exp
 
�r
 
�+

�2

2 (�+ 1)
2 �

r�2�2

2
+
� ln (1�p)�p

r (�+ 1)

!!

= �A2 exp
 
�r
 
�+

�2

2 (�+ 1)
2 �

r�2�2

2

!!

where

A1 = p (�+ 1) exp

 
�
� ln p�

1�p
�+ 1

!

A2 = (1� p) (�+ 1) exp
 
�
� ln (1�p)�p

�+ 1

!
:

Comparing these expressions we can see that EU1 < EU2 when p < 1
2 and EU1 > EU2 when p >

1
2 . Hence

at the optimum the IR constraint will be binding for agent 1 when p < 1
2 and for agent 2 when p >

1
2 . Note

that the problem is entirely symmetric around p = 1
2 , so we need only focus on p <

1
2 .

We now use agent 1�s binding IR constraint to �nd �:

�p (�+ 1) exp
"
�r
 
�+

�2

2 (�+ 1)
2 �

r�2�2

2
+
� ln p�

1�p
r (�+ 1)

!#
= �1

,

� = � �2

2 (�+ 1)
2 +

r�2�2

2
�
� ln p�

1�p
r (�+ 1)

+
ln (p (�+ 1))

r
:

Now denote agent i�s e¤ort on task j as eij Then the principal�s expected wage bill is

E [w] = �+
p

2
�e11 +

1� p
2
�e12 +

p

2
�e21 +

1� p
2
�e22

= � �2

2 (�+ 1)
2 +

r�2�2

2
�
� ln p�

1�p
r (�+ 1)

+
ln (p (�+ 1))

r

+
p

2

"
�2

(�+ 1)
2 +

� ln p�
1�p

r (�+ 1)

#
+
1� p
2

"
�2

(�+ 1)
2 �

ln p�
1�p

r (�+ 1)

#

+
p

2

"
�2

(�+ 1)
2 �

ln (1�p)�p

r (�+ 1)

#
+
1� p
2

"
�2

(�+ 1)
2 +

� ln (1�p)�p

r (�+ 1)

#

=
�2

2 (�+ 1)
2 +

r�2�2

2
+K (p; �; r)

where

K (p; �; r) = �
� ln

�
p�
1�p

�
r (�+ 1)

+
ln (p (�+ 1))

r
+
[p (�+ 1)� 1] ln

�
p�
1�p

�
2r (�+ 1)

+
[�� p (�+ 1)] ln

�
(1�p)�

p

�
2r (�+ 1)
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The principal�s expected payo¤ is

�EAR =
1

2

�
e12 +

1

�
e11 + e

2
1 +

1

�
e22

�
� E [w] ;

and substituting for E [w] yields

�EAR =
1

2

(
�

(�+ 1)
2 �

ln p�
1�p

r� (�+ 1)
+
1

�

"
�

(�+ 1)
2 +

� ln p�
1�p

r� (�+ 1)

#)

+
1

2

(
�

(�+ 1)
2 �

ln (1�p)�p

r� (�+ 1)
+
1

�

"
�

(�+ 1)
2 +

� ln (1�p)�p

r� (�+ 1)

#)
� E [w]

=
(� + 1)�

� (�+ 1)
2 �

(� � �) ln�
�r� (�+ 1)

� �2

2 (�+ 1)
2 �

r�2�2

2
�K (p; �; r) :

In this expression for the principal�s payo¤, we have assumed that 1
2 > p >

1
�+1 . Her payo¤ can be shown

to be even lower when p < 1
�+1 . Note also that since K (p; �; r) does not depend on �, the optimal choice of

� is independent of the randomizing probability p. Furthermore, the principal�s payo¤ is increasing in p for
p 2 ( 1

1+� ;
1
2 ), since

@K

@p
= � �� 1

2rp (1� p) (�+ 1) +
ln p

1�p
r

< 0:

Thus the optimal choice of p is p� = 1
2 :

When p = 1
2 we have for agent 1

e1 =
�

(�+ 1)
2 +

� ln�

r� (�+ 1)

e2 =
�

(�+ 1)
2 �

ln�

r� (�+ 1)

so that e1 > e2. Similarly for agent 2

e1 =
�

(�+ 1)
2 �

ln�

r� (�+ 1)

e2 =
�

(�+ 1)
2 +

� ln�

r� (�+ 1)

so that e2 > e1. With p = 1
2 , the optimal e¤ort level on the preferred task is the same for each agent, as is

the optimal e¤ort level on the less preferred task. Denoting the former by e and the latter by e, we have

e+ �e =
�

(�+ 1)

e� e =
ln�

r�
:

These e¤orts will constitute interior solutions to the �rst-order conditions when e > 0, i.e., when �2 >
(�+1) ln�

r .
With p = 1

2 , the agents�maximized expected utilities are equal, so neither type of agent earns rents. The
optimal value of � is

� = �1
r
ln

�
2

�+ 1

�
� � ln�

r (�+ 1)
� �2

2 (�+ 1)
2 +

r�2�2

2
:
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The expected wage payment is therefore given by

E [w] =
ln
�
(�+1)2

4�

�
2r

+
�2

2 (�+ 1)
2 +

r

2
�2�2;

so

�EAR =
(� + 1)�

� (�+ 1)
2 �

(� � �) ln�
�r� (�+ 1)

� �2

2 (�+ 1)
2 �

r�2�2

2
�
ln
�
(�+1)2

4�

�
2r

:

Proof of Proposition 4. Since the agent�s expected utility depends on E exp (�r�minfx1; x2g), we
use the moment generating function for the minimum of bivariate normal random variables:

m(t) = exp(t�1 +
1

2
t2�21)�

�
�2 � �1 � t(�21 � ��1�2)

�

�
+ exp(t�2 +

1

2
t2�22)�

�
�1 � �2 � t(�22 � ��1�2)

�

�
where � is the c.d.f. of a standard normal random variable, �1 and �2 are the means of x1 and x2, and
� � (�22� 2��1�2+�21)

1
2 . Since the principal�s expected wage depends on Eminfx1; x2g, we use the formula

(derived from the moment-generating function):

Eminfxi1; xi2g = �1�
�
�2 � �1
�

�
+ �2�

�
�1 � �2
�

�
� ��

�
�2 � �1
�

�
where � is the density function of a standard normal random variable. For more details see Cain (1994).

An agent of type 1 chooses his e¤ort levels to maximize the following expression

U1 = � exp
�
�r�+ r

2
(e1 + �e2)

2
�
E [exp (�r�minfx1; x2g)]

= � exp
�
�r�+ r

2
(e1 + �e2)

2
�
m(�r�)

where m is the moment generating function of minfx1; x2g.
The �rst order condition with respect to e1 is

0 = �r(e1 + �e2)m(�r�)

+r� exp

�
�r�e1 +

1

2
r2�2�2

�
�

�
e2 � e1 + r��2(1� �)

�

�
+
1

�
exp

�
�r�e1 +

1

2
r2�2�2

�
�

�
e2 � e1 + r��2(1� �)

�

�
�1
�
exp

�
�r�e2 +

1

2
r2�2�2

�
�

�
e1 � e2 + r��2(1� �)

�

�
: (38)

Similarly for e2 we have

0 = ��r(e1 + �e2)m(�r�)

+r� exp

�
�r�e2 +

1

2
r2�2�2

�
�

�
e1 � e2 + r��2(1� �)

�

�
+
1

�
exp

�
�r�e2 +

1

2
r2�2�2

�
�

�
e1 � e2 + r��2(1� �)

�

�
�1
�
exp

�
�r�e1 +

1

2
r2�2�2

�
�

�
e2 � e1 + r��2(1� �)

�

�
: (39)
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Adding the two �rst order conditions we �nd

e1 + �e2 =
�

(�+ 1)
: (40)

Expanding the third and fourth terms in the two �rst-order conditions (38) and (39) reveals that in both
FOC�s these terms net to 0 for all (e1; e2), and hence for (38) we have

(e1 + �e2)m(�r�) = � exp
�
�r�e1 +

1

2
r2�2�2

�
�

�
e2 � e1 + r��2(1� �)

�

�
:

Substituting into this using (40) yields

m(�r�) = (�+ 1) exp
�
�r�e1 +

1

2
r2�2�2

�
�

�
e2 � e1 + r��2(1� �)

�

�
,

� = exp [r�(e1 � e2)]
�
�
e1�e2+r��2(1��)

�

�
�
�
e2�e1+r��2(1��)

�

� : (41)

Both factors on the RHS of (41) are increasing in e1�e2. As a result, the optimal value of e1�e2 is increasing
in �. If � = 1, the optimal value of e1 � e2 = 0. Straightforward di¤erentiation shows that the RHS of (41)
is increasing in � for e1 � e2 > 0, so the optimal value of e1 � e2 is decreasing in � (if � > 1). Since EPD
treats the two tasks symmetrically ex ante, and since the two types of agent are mirror images of each other,
the type-2 agent�s optimal e¤orts on his preferred and less-preferred tasks will match the optimal values for
the type-1 agent when this labeling is used.

Denote the level of e¤ort each type chooses on his preferred task by eEPD and on his less-preferred task
by eEPD. De�ne dEPD � eEPD�eEPD. Using (40) and (41), we can express the maximized expected utility
of both types under ex post discretion as

U = � exp
�
�r
�
�� �2

2(�+ 1)2
� 1
2
r�2�2

��
1 + �

�

� exp
�
�r�eEPD

�
�

�
eEPD � eEPD + r��2(1� �)

�

�
,

U = � exp
�
�r
��
�+ �eEPD � �2

2(�+ 1)2
� 1
2
r�2�2

���
� exp

�
�r
�
�1
r
ln

�
1 + �

�
�

�
eEPD � eEPD + r��2(1� �)

�

����
:

For both types of agent, the certainty equivalent is

ACE = �+ �eEPD � �2

2(�+ 1)2
� 1
2
r�2�2 � 1

r
ln

�
1 + �

�
�

�
eEPD � eEPD + r��2(1� �)

�

��
(42)
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while the principal�s expected payo¤ is

�EPD = eEPD +
1

�
eEPD � �� �Eminfx1; x2g

= eEPD +
1

�
eEPD � �� �

�
eEPD�

�
�d

EPD

�

�
+ eEPD�

�
dEPD

�

�
� ��

�
dEPD

�

��
= eEPD +

1

�
eEPD � �� �eEPD � �dEPD�

�
�d

EPD

�

�
+ ���

�
dEPD

�

�
: (43)

Using (42) to substitute into (43) yields the principal�s expected payo¤

�EPD = eEPD +
1

�
eEPD � �2

2(�+ 1)2
� 1
2
r�2�2

� 1
r
ln

�
1 + �

�
�

�
eEPD � eEPD + r��2(1� �)

�

��
� �dEPD�

�
�d

EPD

�

�
+ ���

�
dEPD

�

�
:

Proof of Proposition 5. Equations (5) and (10) give the principal�s payo¤ from interior e¤ort choices
by the agents under EAR and EPD, respectively, for given � > 0 and k 2 (�1; 1� ). The proof proceeds in
three steps:
Step 1:

�EPD(�; k) � eEPD + 1
�
eEPD � �

2(1 + k)2

2(�+ 1)2
� 1
2
r(�k)2�2

This inequality re�ects the fact that for any given � and k, EPD imposes lower risk costs than would either of
the deterministic contracts w = �+�x1+k�x2 or w = �+�x2+k�x1. To prove this inequality, we must show
that the sum of the terms in the �nal three lines of equation (10) is non-negative. De�ne d � (1� k)(e� e).
Then the sum in question has the sign of

�r�d�
�
�d
�k

�
+ r��k�

�
d

�k

�
� ln

"
expf�r�dg�

 
�d
�k
+
r��k

2

!
+�

 
d

�k
+
r��k

2

!#
: (44)

Now de�ne t � r��k

2 and y � d
�g . The expression (44) can be rewritten as

h(y; t) � �2ty�(�y) + 2t�(�y)� ln [expf�2tyg�(�y + t) + �(y + t)] : (45)

It is not di¢ cult to show, for all y � 0 and t � 0, that h(y; t) � 0 and, for future use, that h(y; t) is decreasing
in y.
Step 2: When � � �,

eEPD +
1

�
eEPD � �

2(1 + k)2

2(�+ 1)2
� 1
2
r(�k)2�2

� eEAR +
1

�
eEAR � �

2(1 + k)2

2(�+ 1)2
� 1
2
r(�k)2�2

This step follows, when � � �, from the facts that aggregate e¤ort e+ �e is equal under EPD and EAR and
that the gap in e¤orts, e� e, is smaller under EPD than EAR.
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Step 3: Note that

eEAR +
1

�
eEAR � �

2(1 + k)2

2(�+ 1)2
� 1
2
r(�k)2�2

� eEAR +
1

�
eEAR � �

2(1 + k)2

2(�+ 1)2
� 1
2
r(�k)2�2

� 1

2r
ln

 
(�+ 1)

2
(1� k)2

4(1� k�)(�� k)

!
= �EAR(�; k)

This step follows since, for any � � 1 and k 2 (�1; 1� ), �
1
2r ln

�
(�+1)2(1�k)2
4(1�k�)(��k)

�
� 0. This re�ects the fact

that for any given � and k, EAR imposes higher risk costs than would either of the deterministic contracts
w = �+ �x1 + k�x2 or w = �+ �x2 + k�x1.

Proof of Proposition 6.
Proof of Part 1: For � = 1, both EAR and EPD induce interior solutions for e¤orts for all � > 0 and
k 2 (�1; 1). Therefore, from Proposition 5, we know that EPD is more pro�table than EAR for any given
(�; k), so it su¢ ces to show that, for any given (�; k), EPD can be dominated in terms of payo¤s by a suitably
designed symmetric deterministic (SD) scheme.

For � = 1, aggregate e¤ort under EPD is eEPD + �eEPD = �(1+k)
2 , and eEPD = eEPD = �(1+k)

4 . Hence,
for � = 1, we can use equation (10) to write

�EPD(�; k) =

�
� + 1

�

�
�(1 + k)

4
� 1

8
�2(1 + k)2 � 1

2
r(�k)2�2 (46)

� 1

r

 
ln

"
2�

 
r��k

2

!#
� r��k�(0)

!
:

Consider now a SD scheme with incentive coe¢ cient �SD chosen to induce the same level of aggregate
e¤ort as under EPD for the given values of � and k:

�SD =
�(1 + k)

2

Then, since � = 1, eSD = eSD = �(1+k)
4 , so SD also induces exactly the same e¤ort levels on each task as

EPD. The principal�s payo¤ under the SD scheme is

�SD(�SD) =
� + 1

�

�SD

2
� 1
2

�
�SD

�2
� r�2

�
�SD

�2
(1 + �) (47)

=
� + 1

�

�(1 + k)

4
� 1
8
�2(1 + k)2 � 1

4
r�2�2(1 + k)2(1 + �)

Using equations (46) and (47) and the de�nitions of �k and �k in the statement of Proposition 4, we can
write the di¤erence in payo¤s between the SD scheme and the EPD scheme as

�SD(�SD)��EPD(�; k) =
r�2

2

�
(�k)2 � �

2(1 + k)2)(1 + �)

2

�
+
1

r

 
ln

"
2�

 
r��k

2

!#
� r��k�(0)

!

=
1

4
r�2�2(1� �)(1� k)2 + 1

r

 
ln

"
2�

 
r��k

2

!#
� r��k�(0)

!
:
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Now, as in the proof of Proposition 5, de�ne t � r��k

2 . Then

t2 =
r2�2�2(1� �)(1� k)2

2
; (48)

and the payo¤ di¤erence given by equation (48) has the sign of

g(t) � t2

2
+ ln [2�(t)]� 2t�(0): (49)

Analyzing this function we have

g(0) = 0

g0(t) = t�
r
2

�
+
�(t)

�(t)
= �

r
2

�
+
t�(t) + �(t)

�(t)

g0(0) = 0

g00(t) =

�
�(t) + t�(t) + �0(t)

�
�(t)� [t�(t) + �(t)]�(t)

[�(t)]2

=
[�(t)]

2 � t�(t)�(t)� [�(t)]2
[�(t)]2

g00(0) =
1

4
� 1

2�
> 0

and �nally the derivative of the numerator of g00(t) is

@

@t

n
[�(t)]

2 � t�(t)�(t)� [�(t)]2
o

= 2��� ��� t�0�� t�2 � 2��0

= ��+ t2��� t�2 + 2t�2

> 0

for t > 0. Therefore,

8t > 0; g00(t) > 0

8t > 0; g0(t) > 0

8t > 0; g(t) > 0

Hence, since � > 0 and � < 1 imply that t > 0, we have shown that 8� > 0 and � < 1, �SD(�SD) �
�EPD(�; k) > 0. If � = 1, then �k = 0 for all k 2 (�1; 1), so t = 0, hence �SD(�SD)��EPD(�; k) = 0.
Proof of Part 2: Since Proposition 5 provides a payo¤ comparison between EAR and EPD only for the
case where both schemes induce interior solutions for e¤orts, we analyze EAR and EPD separately to prove
the assertions in Part 2.

We �rst show that if EAR induces a corner solution for e¤orts for given (�; k), then it can be dominated
in terms of payo¤s by a suitably designed SD scheme. When EAR induces a corner solution for e¤orts (so
eEAR = 0), �eEAR satis�es the FOC

� � �eEAR
�eEAR � k� = exp

�
r��eEAR(1� k)

	
: (50)

Since the RHS of (50) is > 1 for k < 1, (50) implies that

�eEAR <
�(1 + k)

2
: (51)
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When EAR induces A to choose the corner solution
�
�eEAR; 0

�
;

�EAR (�; k) =
�eEAR

�
� 1
2

�
�eEAR

�2 � 1
2
r�2�2(1 + 2�k + k2)� 1

2r
ln

 
(1 + Z)

2

4Z

!
;

where Z � ���eEAR
�eEAR�k� > 1.

Consider now a SD scheme with incentive coe¢ cient �SD chosen to induce the same e¤ort pair
�
�eEAR; 0

�
as under EAR for the given values of � and k: �SD = �eEAR. The principal�s payo¤ under this SD scheme is

�SD
�
�SD

�
=
�eEAR

�
� 1
2

�
�eEAR

�2 � r�2 (1 + �) ��eEAR�2 :
Therefore

�SD
�
�SD

�
��EAR (�; k) >

r�2

2

h
�2(1 + 2�k + k2)� 2 (1 + �)

�
�eEAR

�2i
>

�
�eEAR

�2
r�2

2

�
4(1 + 2�k + k2)

(1 + k)2
� 2 (1 + �)

�
=

�
�eEAR

�2
r�2

(1 + k)2
�
(1� �)(1� k)2

�
� 0;

where the �rst inequality holds since Z > 1 and the second follows from inequality (51).
We now show that if EPD induces a corner solution for e¤orts for given (�; k), then it can be dominated

in terms of payo¤s by a suitably designed SD scheme. When EPD induces a corner solution for e¤orts (so
eEPD = 0), �eEPD satis�es the FOC

� � �eEPD
�eEPD � k� = exp

�
r�(1� k)�eEPD

	 �
�
(1�k)eEPD+r(�k)2�(1��k)

�g

�
�
�
�(1�k)eEPD+r(�k)2�(1��k)

�k

� : (52)

Since the RHS of (52) is � 1 for k < 1, (52) implies that �eEPD � �(1+k)
2 . When EPD induces A to choose

the corner solution
�
�eEPD; 0

�
;

�EPD(�; k) =
�eEPD

�
� 1

2

�
�eEPD

�2 � 1
2
r�2(�k)2

� 1

r
ln
�
�(+) + exp

�
�r�(1� k)�eEPD

	
�(�)

�
;

� �(1� k)�eEPD�
�
�(1� k)�eEPD

�k

�
+ ��k�

�
(1� k)�eEPD

�k

�
where

�(+) � �

 
(1� k)eEPD + r(�k)2�

�
1� �k

�
�k

!

�(�) � �

�
�(1� k)eEPD + r(�k)2�(1� �k)

�k

�
:

Consider now a SD scheme with incentive coe¢ cient �SD chosen to induce the same e¤ort pair
�
�eEPD; 0

�
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as under EPD for the given values of � and k: �SD = �eEPD. The principal�s payo¤ under this SD scheme is

�SD
�
�SD

�
=
�eEPD

�
� 1
2

�
�eEPD

�2 � (1 + �) r�2 ��eEPD�2 :
Therefore, �SD

�
�SD

�
��EPD (�; k) has the sign of

r2�2

4
[2�2(1 + 2�k + k2)� 4 (1 + �)

�
�eEPD

�2
]

+ ln
�
�(+) + exp

�
�r�(1� k)�eEPD

	
�(�)

�
+ r�(1� k)�eEPD�

�
�(1� k)�eEPD

�g

�
+ r��g�

�
(1� k)�eEPD

�g

�
: (53)

Since (52) implies that �eEPD � �(1+k)
2 , the expression on the �rst line of (53) is greater than or equal to

r2�2

4

h
2�2(1 + 2�k + k2)� (1 + �) (1 + k)2

i
(54)

Now de�ne y � (1�k)�eEPD
�k

and t � r��k

2 . Then, using (54) and the second and third lines of (53), we conclude
that

�SD
�
�SD

�
��EPD (�; k) � t2

2
� h(y; t);

where, as in the proof of Proposition 5,

h(y; t) � �2ty�(�y) + 2t�(�y)� ln [expf�2tyg�(�y + t) + �(y + t)] :

In the proof of Proposition 5 it was noted that for all y � 0, t � 0, h(y; t) is decreasing in y, and hence

t2

2
� h(y; t) � t2

2
� h(0; t)

=
t2

2
+ ln [2�(t)]� 2t�(0)

= g(t);

where the function g(t) was de�ned in the proof of Part 1 of this proposition and was there shown to be

strictly positive for all t > 0. Therefore, �SD
�
�SD

�
��EPD (�; k) � 0.

Proof of Part 3: There are two cases to consider: (i) EAR and EPD induce interior solutions for e¤orts
or (ii) EAR and EPD induce corner solutions. The proof of Part 2 has dealt with the latter case, so here
we treat the former. From Proposition 5, we know that EPD is more pro�table than EAR for any given
(�; k) when both schemes induce interior solutions for e¤orts, so it su¢ ces to show that, when � � �, for any
given (�; k), EPD can be dominated in terms of payo¤s by a suitably designed symmetric deterministic (SD)
scheme.

De�ne d � (1� k)(eEPD � eEPD), y � d
�k
, and t � r��k

2 . Then from the proof of Proposition 5, we know
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that we can write

�EPD(�; k) = e+
�e

�
� 1
2
(�e+ �e)

2 � 1
2
r�2(�k)2 +

1

r
h(y; t)

� e+
�e

�
� 1
2
(�e+ �e)

2 � 1
2
r�2(�k)2 +

1

r
h(0; t)

= e+
�e

�
� 1
2
(�e+ �e)

2 � 1
2
r�2(�k)2 +

1

2
[� ln(2�(t)) + 2t�(0)]

� �e+ �e

�
� 1
2
(�e+ �e)

2 � 1
2
r�2(�k)2 +

1

r
[� ln (2� (t)) + 2t� (0)]

=
�(1 + k)

� (1 + �)
� 1
2

�2

(1 + �)
2 �

1

2
r�2(�k)2 +

1

r
[� ln (2� (t)) + 2t� (0)] ; (55)

where the �rst inequality follows from the fact that h(y; t) is decreasing in y and the second from the fact
that, by assumption, � � �.

Consider now a SD scheme with incentive coe¢ cient �SD chosen to induce the same aggregate e¤ort as
under EPD for the given values of � and k: �SD = �(1+k)

1+� . The principal�s payo¤ under this SD scheme is

�SD(�SD) =
�(1 + k)

� (1 + �)
� 1
2

�2(1 + k)2

(1 + �)
2 � r�2�2(1 + k)2 1 + �

(1 + �)2
(56)

Hence from (55) and (56) we can conclude that

�SD(�SD)��EPD(�; k) � 1

r

"�
r��k

�2
2

� (r��)2(1 + k)2 1 + �

(1 + �)2
+ ln (2� (t))� 2t� (0)

#

� 1

r

"�
r��k

�2
2

� (r��)2(1 + k)2 1 + �
4

+ ln (2� (t))� 2t� (0)
#

=
1

r

�
(r��)2

4
(1� �)(1� k)2 + ln (2� (t))� 2t� (0)

�
=

1

r

�
t2

2
+ ln (2� (t))� 2t� (0)

�
=

1

r
[g(t)] � 0; 8t � 0;

where the �rst inequality is a consequence of the inequalities in (55), the second inequality follows from the
fact that � � 1, the second equality uses (48), and the �nal line uses the de�nition of g(t) in (49) and its
non-nonegativity, as was established in the proof of Part 1 of this proposition.
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