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This document contains supplementary material for the proof of Proposition 7 in Appendix D.

1 Details of the derivations of equations (27) and (28)

Given δ ≡ g − f satisfying top-to-bottom symmetry, we want to decompose δ into a sum of

elementary transformations (ETs). On the hypercube L = {0, 1}4, there are 24 possible ETs of

the form defined in (4) in the text, where in principle the sign of each ET can be either positive or

negative. Given our restriction to distributions satisfying top-to-bottom symmetry, these 24 can

be grouped into 12 distinct pairs. In Appendix D, with reference to Figure 2 there, we defined the

two ETs involving the nodes a, bi, bj , and cij (there are two such ETs because of top-to-bottom

symmetry) to have size βij = βji. Similarly, we defined the two ETs involving the nodes bi, cik, cil,

bj (once again, there are two because of top-to-bottom symmetry) to have size αij = αji. There are

6 distinct values of βij and 6 distinct values of αij . We now verify that for the 24 ETs so defined

to sum to δ, it is necessary and sufficient that βij and αij satisfy equations (27) in Appendix D.

To do so, we proceed in two steps. In Step 1, we compute, for each node in L = {0, 1}4, the net

effect of the 6 distinct pairs of ETs whose sizes are represented by {βij}i<j ; in Step 2, we compute,

for each node, the net effect of the 6 distinct pairs of ETs whose sizes are represented by {αij}i<j .

We then show that, after all 12 pairs of ETs have been performed, i.e. after both Step 1 and Step

2, the overall change in the probability assigned to each node in L = {0, 1}4 equals the value of δ

at that node as defined in Figure 2.

To track the effect of the ETs on each node in L = {0, 1}4, it is helpful to label the nodes of

L = {0, 1}4 as shown in Figure S1 below. For any node (a1, a2, a3, a4), we use the same numeral to

label node (1− a1, 1− a2, 1− a3, 1− a4) as to label (a1, a2, a3, a4), since any distribution satisfying

top-to-bottom symmetry assigns the same probability to these two nodes. Thus, there are only 8

distinct labels in Figure S1.
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Figure S1: Labels for the nodes of L = {0, 1}4, given top-to-bottom symmetry. In the left cube,

node 1 corresponds to (0, 0, 0, 0); in the right cube, node 1 corresponds to (1, 1, 1, 1).

In Table S1 below, the first column lists the labels for the 8 distinct pairs of nodes in Figure S1.

The second column lists the values of δ (from Figure 2 in Appendix D) corresponding to each of

the labels in Figure S1. The third column lists, for each of the 8 pairs of nodes in Figure S1, the

net effect of Step 1 as described above, and the fourth column lists the net effect of both Step 1

and Step 2. The condition that the 6 pairs of ETs of size {βij}i<j , coupled with the 6 pairs of ETs

of size {αij}i<j , sum to δ corresponds to the condition that the fourth column of Table S1 matches

the second column of Table S1. In particular, the equality of the first entries in these two columns

corresponds to the first condition in (27), the equality of the second through fifth entries in these

two columns corresponds to the second condition in (27), and the equality of the sixth through

eighth entries corresponds to the third condition in (27).

Conditions (27) can be rearranged to yield conditions (28) as follows. Add the following three

equations from (27),

bi + βij + βik + βil = αij + αik + αil

bj + βij + βjk + βjl = αij + αjk + αjl

cij − βij − βkl = −αik − αil − αjk − αjl,
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cancel terms, and simplify using the first condition in (27) to get

a + bi + bj + cij = 2αij + 2βkl,

which is the third condition in (28). (The first two conditions in (28) match the first two in (27).)

2 Proof that the values of βkl and αij defined in equations (29)

satisfy equations (28)

Given the values of {βkl}k<l defined in (29), we have

∑
i<j

βij =
a

(4a +
∑4

h=1 bh)

6a + 3
4∑

h=1

bh +
∑
i<j

cij

 . (1)

Now, doubling equation (26) and recalling that cij = ckl because of top-to-bottom symmetry yields

2a + 2
4∑

h=1

bh +
∑
i<j

cij = 0. (2)

Using (2) to cancel terms on the right-hand side of (1) yields

∑
i<j

βij =
a

(4a +
∑4

h=1 bh)

[
4a +

4∑
h=1

bh

]
= a,

so the first condition in (28) is satisfied.
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Now substitute the values of {βkl}k<l defined in (29) into the left-hand side of the second condition

in (28) to get

bi + βij + βik + βil

= bi +
a

(4a +
∑4

h=1 bh)
[(a + bk + bl + ckl) + (a + bj + bl + cjl) + (a + bj + bk + cjk)]

=
1

(4a +
∑4

h=1 bh)

[
4abi + bi(

4∑
h=1

bh) + 3a2 + 2a(bj + bk + bl) + a(ckl + cjl + cjk)

]

=
1

(4a +
∑4

h=1 bh)

[
2abi + 3a2 + (2a + bi)(

4∑
h=1

bh) + a(ckl + cjl + cjk)

]
. (3)

Substitute the values of {αij}i<j defined in (29) into the right-hand side of the second condition in

(28) to get

αij + αik + αil =
(2a +

∑4
h=1 bh)

2(4a +
∑4

h=1 bh)
[3a + 3bi + bj + bk + bl + cij + cik + cil]

=
1

(4a +
∑4

h=1 bh)

[
3a2 + 2abi + a(

4∑
h=1

bh) + a(cij + cik + cil) + (a + bi)(
4∑

h=1

bh)

+
1
2
(

4∑
h=1

bh)(a + bi + bj + bk + bl + cij + cik + cil)

]

=
1

(4a +
∑4

h=1 bh)

[
3a2 + (2a + bi)(

4∑
h=1

bh) + 2abi + a(cij + cik + cil)

]
, (4)

where we use equation (26) to derive the final equality. Since top-to-bottom symmetry implies that

cij = ckl, cik = cjl, and cil = cjk, the right-hand sides of (3) and (4) are equal, and hence the second

condition in (28) is satisfied.

Finally, given the values of {βkl}k<l and {αij}i<j defined in (29), we have

2αij + 2βkl =
(2a +

∑4
h=1 bh)(a + bi + bj + cij)
4a +

∑4
h=1 bh

+
2a(a + bi + bj + cij)

4a +
∑4

h=1 bh

=
(4a +

∑4
h=1 bh)(a + bi + bj + cij)
4a +

∑4
h=1 bh

= a + bi + bj + cij ,

so the third condition in (28) is satisfied.
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