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Abstract

This paper looks at some recent work on estimating quadratic variation using realised
variance (RV) — that is sums of M squared returns. This econometrics has been motivated
by the advent of the common availability of high frequency financial return data. When
the underlying process is a semimartingale we recall the fundamental result that RV is a
consistent (as M → ∞) estimator of quadratic variation (QV). We express concern that
without additional assumptions it seems difficult to give any measure of uncertainty of the
RV in this context. The position dramatically changes when we work with a rather general
SV model — which is a special case of the semimartingale model. Then QV is integrated
variance and we can derive the asymptotic distribution of the RV and its rate of convergence.
These results do not require us to specify a model for either the drift or volatility functions,
although we have to impose some weak regularity assumptions. We illustrate the use of the
limit theory on some exchange rate data and some stock data. We show that even with large
values of M the RV is sometimes a quite noisy estimator of integrated variance.

Keywords: Integrated variance; Power variation; Quadratic variation; Realised variance; Re-
alised volatility; Semimartingale; Volatility.

1 Introduction

In this paper we ask two questions about realised variance1 (RV), that is the sum of M squared

returns.

• What does RV estimate?

• How precise is RV?
1Sums of squared returns are often called realised volatility in econometrics. We will discuss later in this

introduction why we prefer to call this statistic realised variance.
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The answer to the first question is straightforward and well known: it is a consistent estimator

(as M → ∞) of the corresponding quadratic variation (QV), for all semimartingales. We will
see that this is potentially helpful for QV is quite often an econometrically revealing quantity in

special cases of semimartingales models. Unfortunately, although RV is a consistent estimator of

QV in general, we do not know anything about its precision or indeed even its rate of convergence

as M → ∞. This is potentially troublesome, for it does not allow us to deal with the issue
that RV and QV are distinct. This obstacle can be overcome when we work within a stochastic

volatility (SV) framework, which is an important special case of semimartingales with continuous

sample paths. For such models we have been able to derive the rate of convergence and indeed

the asymptotic distribution. We will illustrate this theory in the context of some high frequency

exchange rate data and daily stock data, showing in particular that RV can sometimes be a very

noisy estimator of QV even when M is large.

In order to formalise some of these issues we begin with some definitions and notation.

We write the log-price as y∗(t), where t denotes time. Such a price series is usually synthesised

from quote or transaction data. Over small time intervals the details of this construction greatly

matters and has been studied extensively in the econometric literature on market microstructure

(e.g. see the interesting work of Andreou and Ghysels (2001) and Bai, Russell, and Tiao (2000)

in this context). For the moment we abstract from this issue. If we think of a fixed interval of

time of length � > 0, then the returns over the n-th such interval are defined as

yn = y∗ (n�)− y∗ ((n− 1) �) , n = 1, 2, ....

During this interval, we can also compute M intra-� returns. These are defined, for the n-th

period, as

yj,n = y∗
(
(n− 1) �+ �j

M

)
− y∗

(
(n− 1) �+ � (j − 1)

M

)
, j = 1, 2, ...,M.

Then many financial economists have measured variability during this period using realised

variance, defined as

[y∗M ]n =
M∑

j=1

y2
j,n.

This term is often called the realised volatility in econometrics, although we will keep back that

name for √√√√ M∑
j=1

y2
j,n,

reflecting our use of volatility to mean standard deviations rather than variances2. Examples of

the use of realised variances are given by, for example, Merton (1980), Poterba and Summers
2The use of volatility to denote standard deviations rather than variances is standard in financial economics.

See, for example, the literature on volatility and variance swaps, which are derivatives written on realised volatility

2



(1986), Schwert (1989), Richardson and Stock (1989), Schwert (1990), Taylor and Xu (1997) and

Christensen and Prabhala (1998). An elegant survey of the literature on this topic, including

a discussion of its economic importance, is given by Andersen, Bollerslev, and Diebold (2002).

See also the recent important contribution by Meddahi (2002).

From a formal econometric viewpoint we consider [y∗M ]n as an estimator, allowing us to study

its finite sample behaviour for fixed M or its asymptotic properties as M → ∞. Unfortunately,
although we know RV converges to QV in probability, this result lacks a theory of measurement

error which makes it hard to use this estimator. It would seem additional assumptions are

needed. One set of assumptions is to say that y∗ is Brownian motion with drift which is

deformed by a subordinator (that is a process with non-negative, independent and stationary

increments). We study QV in this context in Section 2 of this paper. Such models are frequently

used in finance in order to derive derivative pricing formulas. An alternative is to assume a rather

general stochastic volatility (SV) model. The latter framework is the mainstay of the discussion

we give here.

The SV model we work with has a very flexible form. We assume

y∗(t) = α(t) +
∫ t

0
σ(s)dw(s), t ≥ 0,

where α, the drift, and σ > 0, the spot volatility, obey some weak assumptions outlined in

Section 3. In particular the spot volatility can have, for example, deterministic diurnal effects,

jumps, long memory, no unconditional mean or be non-stationary. No knowledge of the form of

the stochastic processes which govern α and σ are needed. SV models are a fundamental special

type of semimartingale; in particular most semimartingales which possess continuous sample

paths can be represented as SV models.

In these models, assuming σ and α are jointly independent from w, returns

yn|αn, σ
[2]
n ∼ N(αn, σ

[2]
n ), (1)

where

αn = α (n�)− α ((n− 1) �) (2)

and

σ[2]
n = σ2∗ (n�)− σ2∗ ((n− 1) �) , where σ2∗(t) =

∫ t

0
σ2(s)ds. (3)

We call σ2(t) the spot variance and σ2∗(t) the integrated variance. Importantly, for all SV

models σ2∗ exactly equals QV

σ2∗(t) = [y∗](t), (4)
or variance, which includes Demeterfi, Derman, Kamal, and Zou (1999), Howison, Rafailidis, and Rasmussen
(2000) and Chriss and Morokoff (1999). We have choosen to follow this nomenclature rather than the one more
familiar in econometrics.
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and so

σ[2]
n = [y

∗] (n�)− [y∗] ((n− 1) �) = [y∗][2]n .

Thus QV reveals exactly the actual variance σ[2]
n in SV models. It does this without knowledge

of the actual processes which govern α or σ.
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Figure 1: First 9 days. RV is plotted against M, with the smallest M being 8, the largest 288.
Also plotted are the 95% intervals. Code: se realised.ox.

The above theory means that [y∗M ]n consistently estimates σ
[2]
n , just using the theory of

semimartingales. Barndorff-Nielsen and Shephard (2002a) have shown that [y∗M ]n converges to

σ
[2]
n at rate

√
M and have additionally derived the asymptotic distribution of the estimator:∑M

j=1 y
2
j,n − ∫

�n
�(n−1) σ

2(s)ds√
2
3

∑M
j=1 y

4
j,n

L→ N(0, 1), (5)

as M → ∞, thus providing a measure of the precision of this estimator. Their preferred form
of the result, due to its superior finite sample behaviour (see Barndorff-Nielsen and Shephard

(2001a)), is that as M → ∞ then

log
(∑M

j=1 y
2
j,n

)
− log

(
σ

[2]
n

)
√

2
3

∑M
j=1 y4

j,n

{∑M
j=1 y2

j,n}2

L→ N(0, 1). (6)

4



This is a mixed Gaussian limit theory, that is the denominator is itself random. Of course this

theory can be used to provide approximations for realised volatility as well as realised variance.

The distribution of realised volatilies can also be approximated indirectly via (5) using the delta

method which gives √∑M
j=1 y

2
j,n −

√∫
�n
�(n−1) σ

2(s)ds√
2
12

∑M
j=1 y4

j,n∑M
j=1 y2

j,n

L→ N(0, 1). (7)

The log-based approximation (6) is likely to be preferred in practice when we construct confi-

dence intervals for realised volatility.

To illustrate this result we have used the same return data employed by Andersen, Boller-

slev, Diebold, and Labys (2001a) in their empirical study of the properties of realised variance,

although we have made slightly different adjustments to deal with some missing data (in the

context of this paper the effect of these differences are tiny, but were made here to be consistent

with our other work on this dataset). Full details of this are given in Barndorff-Nielsen and

Shephard (2002a). The data was kindly supplied to us by the Olsen group in Zurich. This

United States Dollar/ German Deutsche Mark series covers the ten year period from 1st De-

cember 1986 until 30th November 1996. It records every five minutes the most recent quote to

appear on the Reuters screen. Throughout we take � to represent a day and so have up to 288

five minute returns to work with each day. This constrains our choice of M to taking the values

288, 144, 96, 72, 48, 36, 32, 24, 18, 16, 12, 9, 8, 6, 4, 3, 2, 1.

In Figure 1 we record, for a variety of values of M , RV and its 95% confidence intervals

(based on (6)) for the first 9 days of the dataset. This is the first time such graphs have been

produced. The result suggests that the confidence intervals do indeed narrow considerably with

M . However, even with M = 288 the intervals are sometimes quite wide. The implication is

that RV is a consistent but quite noisy estimator of σ[2]
n , especially when volatility is high. We

will return to this issue in more detail in Section 4.

The structure of this paper is as follows. In Section 2 we discuss the definition of quadratic

variation in the context of semimartingales. We will see that realised variance, by definition,

converges in probability to QV and so RV is a consistent estimator of QV. We give some exam-

ples where QV does not reveal the conditional variance of returns in a subordinated Brownian

motion model. Our conclusion is that more detailed assumptions are needed in order to pro-

vide a coherent analysis of RV. We also discuss the advantage of working with the conditional

expectation of RV and the convergence of it to the conditional expectation of quadratic varia-

tion. This follows some recent work by Andersen, Bollerslev, Diebold, and Labys (2001b). In

Section 3 we move on to consider the properties of RV in the context of SV models. We develop
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our, rather robust, asymptotic theory for RV as M → ∞. Section 4 discusses various aspects
of the empirical implications of the theory of measurement error for RV. Section 5 provides a

conclusion.

2 Quadratic variation and semimartingales

2.1 One period is enough

In applied work RV

[y∗M ]n =
M∑

j=1

y2
j,n

is usually computed for each � period (usually a day) separately. Hence from a theoretical

viewpoint we only have to think about a single period, starting from time 0 until time t but

working with M equally spaced high frequency returns to calculate RV. This approach allows

us to use a rather simpler notation.

2.2 Semimartingales

Most modern finance theory is based on semimartingales (see, for example, the excellent ex-

position in Shiryaev (1999, pp. 294–313)). In econometrics such processes are not so familiar,

so we remind the reader of the definition. Suppose y∗(t) is a stochastic process and that for

ease of exposition we assume that y∗(0) = 0. Then y∗(t) is said to be a semimartingale if it is

decomposable as

y∗(t) = α(t) +m(t), α(0) = m(0) = 0, (8)

where α(t), a drift term, is a process with locally bounded variation paths (i.e. of bounded

variation3 on any finite subinterval of [0,∞)) and m(t) is a local martingale. For an excellent

discussion of probabilistic aspects of this see Protter (1990). We will later additionally assume

that α(t) is a predictable process4, in which case y∗(t) is said to be a special semimartingale

(e.g. Protter (1990, p. 107)). Back (1991) discusses why constraining ourselves to live within

the class of special semimartingales makes sense from an economic viewpoint. For this subset

of semimartingales the canonical decomposition (8) is unique.
3If the real-valued function f on [a, b] is such that

sup
κ

∑
|f(xi)− f(xi−1)| < ∞

where the supremum is taken over all subdivisions κ of [a, b] then the function is of bounded variation.
4The value at time t of a predictable process is known an instant before time t. Examples of predictable

processes are deterministic trends and all càglàd processes (processes which are continuous from the left and have
limits from the right).
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Let y∗(t) be a general semimartingale. The quadratic variation (process) [y∗] of y∗ is defined

by

[y∗](t) = y∗2(t)− 2
∫ t

0
y∗(s−)dy∗(s). (9)

Much more interestingly it can be shown that

[y∗](t) = p- lim
M−1∑
i=0

{y∗(si+1)− y∗(si)}2 , (10)

where 0 = s0 < s1 < ... < sM = t and the limit is for the mesh size

max
1≤j≤M

|sj − sj−1| → 0 as M → ∞.

In general (e.g. Jacod and Shiryaev (1987, p. 55))

[y∗](t) = [y∗c](t) +
∑

0≤s≤t

{y∗(s)− y∗(s−)}2 ,

where y∗c is the continuous component of y∗ and

y∗(s)− y∗(s−)

is the jump at time s. In the context of special semimartingales this becomes

[y∗](t) = [y∗c](t) +
∑

0≤s≤t

{m(s)−m(s−)}2

+
∑

0≤s≤t

{α(s)− α(s−)}2 + 2
∑

0≤s≤t

{m(s)−m(s−)} {α(s)− α(s−)}

= [m](t) +
∑

0≤s≤t

{α(s)− α(s−)}2 + 2
∑

0≤s≤t

{m(s)−m(s−)} {α(s)− α(s−)} ,

the QV of m plus terms which are influenced by the jumps in α and m. If α is continuous then

we obtain the important simplification

[y∗](t) = [m](t). (11)

This holds even if there are jumps in m. The fact that in this case the QV for y∗ equals

the QV for m means that the QV is robust to smooth α processes. This is an important

feature. A thorough discussion of the quadratic variation of semimartingales is given in Protter

(1990). In the univariate case it is discussed in the econometric literature by independent and

concurrent work by Comte and Renault (1998), Barndorff-Nielsen and Shephard (2001b) and

Andersen and Bollerslev (1998). It was later developed and applied in some empirical work by

Andersen, Bollerslev, Diebold, and Labys (2001a). See also Barndorff-Nielsen and Shephard

(2001b), Barndorff-Nielsen and Shephard (2002b) and Andersen, Bollerslev, Diebold, and Labys
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(2001b) for a discussion of the multivariate case and Andersen, Bollerslev, and Diebold (2002)

for an incisive survey of this area. Andersen, Bollerslev, Diebold, and Ebens (2001) discusses

the use of the multivariate theory in the context of equity prices.

In a stimulating paper Andersen, Bollerslev, Diebold, and Labys (2001a) noted that (10)

implies

Remark 1 by definition RV converges in probability5 to QV as M → ∞ for all semimartingales.

Of course this result occurs by construction. Before we discuss the meaning of this result we

note it has at least two technical limitations (to our knowledge).

Remark 2 the rate of convergence of RV to QV is unknown, as is its asymptotic distribution.

Consistency is an important feature of an estimator, however it is possible such estimators

can converge very slowly indeed to their limit. As we do not know the rate of convergence, all

we can conclude is that when α is continuous

M−1∑
i=0

{y∗(si+1)− y∗(si)}2 − [m](t) = op(1).

2.3 Semimartingales by subordination

It is clear that RV converges to QV for semimartingales. However, is QV useful? We saw in the

introduction that QV is key in the context of stochastic volatility. But elsewhere? Here we look

at a second special case of the semimartingale class. We let log-prices be a standard Brownian

motion b(t), with b(0) = 0, which is deformed by a random clock τ(t) which is assumed to be

a subordinator (that is a Lévy process with non-negative increments i.e. the increments are

independent and stationary). We obtain

y∗(t) = b(τ(t)), (12)

which implies

y∗(t)|τ(t) ∼ N(0, τ(t)).

Influential special cases of this include the variance gamma (where τ is a gamma Lévy process),

normal inverse Gaussian (where τ is an inverse Gaussian Lévy process) and generalised hyper-

bolic (where τ is a generalised inverse Gaussian Lévy process) processes discussed by Madan

and Seneta (1990), Barndorff-Nielsen (1998) and Eberlein (2001) respectively. These types of
5It is important to note that the convergence is in probability, not almost surely or in mean square error.
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models are frequently used to price European style derivatives, allowing for non-Gaussianity in

the risk-neutral process.

As the random time clock τ , which we call the chronometer, is a subordinator it is a pure

(upward) jump process. Consequently y∗ is also a pure jump process. Hence it is fundamentally

different from the SV model which inherits continuous sample paths from its chronometer —

integrated variance σ2∗. Like integrated variance, the subordinator determines the conditional

variance of the returns. Hence one might hope that, just like the SV case, QV reveals τ . However,

this is not true. The following is a simple example of this.

Example 1 Suppose τ is a homogeneous Poisson process, then the subordinated Brownian mo-

tion takes on the form

y∗(t) =
τ(t)∑
j=1

zj , zj ∼ NID(0, 1),

which has

[y∗](t) =
τ(t)∑
j=1

z2
j .

Thus the QV is a χ2
τ(t) random variable, which is a potentially noisy version of τ(t). Of course

the expectations of QV and τ are equal. This is a very important point and will be discussed in

the next subsection at some length. There is an interesting and powerful probability literature

on this topic where researchers calculate the posterior distribution of the subordinator τ given

the QV — thus quantifying the measurement error of QV as an estimator of τ , see Carr,

Geman, Madan, and Yor (2001) and Winkel (2001). These results are possible due to additional

structure being assumed in that work. Such intricate results seem not to be possible for general

semimartingales.

2.4 Expectations, QV and RV

The above observations are rather bleak. A sensible question to ask is if there are any useful

properties of QV that RV can estimate? In an important contribution Andersen, Bollerslev,

Diebold, and Labys (2001b) argued that

• The conditional expectation of QV is economically interesting.

• The conditional expectation of RV is a good approximation to QV.

Their argument proceeds in the following manner. First they note that, using the first �-time

period to simplify the notation,

Var(y∗(�)|F0) = Var (m(�)|F0) + Var(α(�)|F0) + 2Cov(α(�),m(�)|F0) (13)
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= E([m](�)|F0) + Var(α(�)|F0) + 2Cov(α(�),m(�)|F0). (14)

where F0 is the natural filtration at time 0. Then they point out that in many models

Cov(α(�),m(�)|F0) = 0 while it is commonly the case that Var(α(�)|F0) is small unless �

is large. If we assume both terms are exactly zero6 then if α is continuous we have

Var(y∗(�)|F0) = E ([m](�)|F0)

= E ([y∗](�)|F0) .

This is important for it says that the conditional variance of future returns is the conditional

expectation of QV, which in turn is an object which can be consistently estimated by RV. Hence

it is tempting to conclude that the conditional variance of returns is asymptotically conditionally

unbiasedly estimated by RV, that is

Var(y∗(�)|F0)− E ([y∗M ]1|F0) = o(1), (15)

as a function of M . This is feasible for it would allow us to build an empirical time series model

for the conditional mean of RV, but then claim it gives a valid approximation to the conditional

variance of returns. This empirical approach has been pioneered in financial econometrics by

Andersen, Bollerslev, Diebold, and Labys (2001b). However, convergence in probability of RV

to QV does not imply convergence in the means of the two objects, although we believe that

this convergence property is likely to hold under very weak additional conditions on α and m.

The simplest such condition is when α is zero. In this case

E ([y∗](�)|F0) = E{[yM ]1|F0},

exactly, by the properties of local martingales.

We can formalise a more general discussion of the convergence of conditional expectations in

the following manner. Recall [xM ]n is our notation for the RV in the n-th period for an arbitrary

special semimartingale x, then by the canonical decomposition (8) of a special semimartingale,

we have that

[y∗M ]n = [αM ]n + 2[αM ,mM ]n + [mM ]n, with [αM ,mM ]n =
M∑

j=1

αj,nmj,n,

where we are using the general notation for a process x

xj,n = x
(
(n− 1) �+ �jM−1

) − x
(
(n− 1) �+ � (j − 1)M−1

)
.

6This holds exactly if α is a deterministic function of time.
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The implication is that

E{[y∗M ]1|F0} = E{[αM ]1|F0}+ 2E {[αM ,mM ]1|F0}+ E{[mM ]1|F0}
= E{[αM ]1|F0}+ 2E {[αM ,mM ]1|F0}+ E{[m]1|F0}.

Then (15) follows under the following five sufficient conditions:

• α is continuous.

• Cov(α(�),m(�)|F0) is zero.

• Var(α(�)|F0) is zero.

•
2E {[αM ,mM ]1|F0} → 0 as M → ∞. (16)

•
E{[αM ]1|F0} → 0 as M → ∞. (17)

We have already discussed the first three of these points. On the latter two, we know that

both [αM ,mM ]1 and [αM ]1 converge in probability to zero and so we would expect (16) and (17)

to hold under very weak conditions. In particular if α is continuous and deterministic then all

five conditions always hold. We will return to checking the conditions (16) and (17) at the end

of the next section.

3 SV models and realised variance

3.1 SV models and integrated variance

In response to the above difficulties of dealing with general semimartingales, we advocate making

some additional assumptions. In particular we specialise the semimartingale assumption down

to a stochastic volatility model.

In the stochastic volatility model for log-prices a basic Brownian motion is generalised to

allow the volatility term to vary over time. See, for example, Barndorff-Nielsen and Shephard

(2001b) and Ghysels, Harvey, and Renault (1996) on some of the literature on this topic. Here

we use a rather flexible model

y∗(t) = α(t) +
∫ t

0
σ(s)dw(s), t ≥ 0, (18)

where σ > 0 and α are assumed to be stochastically independent of the standard Brownian

motion w. We call σ the spot volatility, σ2 the spot variance and α the mean process. By
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allowing the spot volatility to be random and serially dependent, this model will imply returns

will exhibit volatility clustering and have unconditional distributions which are fat tailed. This

allows it to be used in finance and econometrics as the basis for option pricing models which

overcome some of the major failings in the Black-Scholes option pricing approach. Leading

references in this regard include Hull and White (1987), Heston (1993) and Renault (1997).

Importantly

y∗(t)|α(t), σ2∗(t) ∼ N(α(t), σ2∗(t)),

where

σ2∗(t) =
∫ t

0
σ2(s)ds,

is called the integrated variance. It has the rather natural interpretation as the integrated

variance for y∗(t). Hence for an econometrician it is the object to be estimated.

Throughout we will maintain the following assumption on the volatility and mean processes.

1. σ2 and α pathwise of local bounded variation on [0,∞).

2. For every t > 0, α has the property

lim
δ↓0
max

1≤j≤M
δ−1|α(jδ)− α((j − 1)δ)| < ∞, (19)

where M denotes a positive integer and δ = t/M . This condition is implied by Lipschitz

continuity and itself implies continuity7 of α.

These regularity conditions are quite mild. Of some special interest are cases where α is of

the form

α(t) =
∫ t

0
g(σ(s))ds,

for g a smooth function. Condition 2 holds in general for such models.

Note that the assumptions allow the spot volatility to have, for example, deterministic diurnal

effects, jumps, long memory, no unconditional mean or to be non-stationary. Also the conditions

implies that σ2 and α are bounded Riemann integrable functions, while y∗ is a semimartingale

with a continuous local martingale component
∫ t
0 σ(s)dw(s). In particular this SV model is a

special case of the semimartingale model we discussed in the previous section. This implies the

well known result that:

Remark 3 For the SV model

[y∗](t) =
[∫ t

0
σ(s)dw(s)

]
(t) = σ2∗(t).

7Continuity of α implies α is a predictable process — hence this assumption is a restriction on the class of
special semimartingales we can analyse.
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This result appeared in concurrent and independent work by Andersen and Bollerslev (1998)

(assuming α(t) = 0) and Barndorff-Nielsen and Shephard (2001b). Both of these papers were

presented at the 1997 Olsen conference. If we combine this result with Remark 1 it immediately

implies that RV consistently estimates σ2∗(t), which was first noted explicitly (assuming α(t) =

0) in Andersen and Bollerslev (1998).

Again this result is attractive for it does not depend upon the particular structure of the

mean and volatility process. Unlike the general semimartingale case, the RV is converging to

the object we wish to have. The only problem that remains is that we do not know the rate

of convergence nor the asymptotic distribution. As we have seen from the previous section the

general semimartingale theory is silent on this issue.

3.2 Asymptotic distribution of realised variance

In some recent work Barndorff-Nielsen and Shephard (2002a) derive the following asymptotic

approximation to the distribution of realised variance:

Remark 4 For M → ∞ ∑M
j=1 y

2
j,n − ∫

�n
�(n−1) σ

2(s)ds√
2
3

∑M
j=1 y

4
j,n

L→ N(0, 1). (20)

This holds under condition (1-2).

This is a considerable strengthening of the above consistency result. Now we have a measure

of error. In line with the above approach, it has the advantage that it is model free for the

denominator does not require any knowledge of α or σ. An improved understanding of this

result can be gained by noting the following result on fourth order power variation, which is

called realised quarticity, due to Barndorff-Nielsen and Shephard (2001c):

Remark 5 Under conditions (1-2) for M → ∞

M

3�

M∑
j=1

y4
j,n

p→
∫

�n

�(n−1)
σ4(s)ds.

This result allows us to recast (20) into a theoretically informative, although no longer

feasible, form √
M

(∑M
j=1 y

2
j,n − ∫

�n
�(n−1) σ

2(s)ds
)

√
2�

∫
�n
�(n−1) σ

4(s)ds

L→ N(0, 1).

This shows five things:
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Remark 6 (i) RV is converging to integrated variance at rate
√
M , (ii) the asymptotic distri-

bution is mixed Gaussian and so
M∑

j=1

y2
j,n −

∫
�n

�(n−1)
σ2(s)ds

will be marginally (much) heavier tailed than Gaussian, (iii) typically the variability of
∑M

j=1 y
2
j,n−∫

�n
�(n−1) σ

2(s)ds will be higher if the level of the volatility is higher, (iv) if the fourth moment of

returns does not exist then the unconditional variance of
∑M

j=1 y
2
j,n − ∫

�n
�(n−1) σ

2(s)ds will not

exist. This last result echoes an earlier Monte Carlo study by Bai, Russell, and Tiao (2000)

who noted the very poor mean square error performance of realised variance in the case where

the fourth moment is close to being not bounded. (v) the fourth moment not existing does not

invalidate the asymptotic result for RV. It still holds in this case.

Importantly the rate of convergence and asymptotic distribution is not impacted by non-

stationarity in the volatility or other types of irregularities in the drift.

In a recent paper Barndorff-Nielsen and Shephard (2001a) showed that if we transform the

limit theory to the log scale then

Remark 7 For M → ∞
log

(∑M
j=1 y

2
j,n

)
− log

(∫ t
0 σ2(s)ds

)
√

2
3

∑M
j=1 y4

j,n

{∑M
j=1 y2

j,n}2

L→ N(0, 1). (21)

Their Monte Carlo experiments showed that this limit law (21) had better finite sample perfor-

mance than the raw result (20).

3.3 Expectations, QV and RV revisited

We saw in the previous section that it is not possible to generally assert that

Var(y∗(�)|F0)− E ([y∗M ]1|F0) = o(1),

for all semimartingales. Under the assumptions 1 and 2 in Section 3, E{[αM ,mM ]1|F0} = 0
while α is continuous. If we ignore the contributions of Cov(α(�),m(�)|F0) and Var(α(�)|F0)

as they are likely to be tiny in applications, the only issue is to show that

E{[αM ]1|F0} → 0 as M → ∞. (22)

In this subsection we consider, for δ = �/M , E{[αM ]1|F0} where [αM ]1 =
∑M

j=1 α
2
j and

αj = α(jδ)− α((j − 1)δ). We will give a condition under which

E{[αM ][|F0} = O(δγ)

14



for some γ > 0. For this it is sufficient that

E{[α(t+ δ)− α(t)]2|Ft} = O(δ1+γ) (23)

for a deterministic O(δ1+γ), uniformly in t. In fact, under this condition,

E{[αM ]|F0} =
M∑

j=1

E
(
α2

j |F0

)

=
M∑

j=1

E
{
E

(
α2

j |F(j−1)δ

) |F0

}

=
M∑

j=1

O(δ1+γ) = O(δγ) = O(M−γ).

We now give an example where we can show (23) usually holds but under another set of condi-

tions (22) does not hold.

Example 2 Suppose

m(t) =
∫ t

0
τ1/2(u)dw(u),

where τ and w are independent and

α(t) = τ∗(t) =
∫ t

0
τ(u)du,

with

dτ(t) = −λτ(t)dt+ dz(λt),

where z is a non-negative Lévy process (a process with independent, stationary and non-negative

increments). Then α is a locally bounded variation process and

Cov(m(t), α(t)) = 0 and E {[αM ,mM ]1|F0} = 0.

The non-Gaussian OU processes τ were highlighted in Barndorff-Nielsen and Shephard (2001b)

as analytically tractable models for the spot volatility. Then a feature of the mean process is that

α(t) = λ−1{z(λt)− τ(t) + τ(0)},

which implies, writing ε(t;λ) = λ−1
(
1− e−λt

)
, that

α(t) =
∫ t

0
ε(t− s;λ)dz(λs) + ε(t;λ)τ(0)

≤ ε(t;λ){z(λt) + τ(0)}
≤ t{z(λt) + τ(0)}.

15



Hence we have that

ξ = E {τ(t)} = E {z(1)} and ω2 = Var {τ(t)} = Var {z(1)} /2,

exist and that

E{α(δ)2|τ(0)} ≤ δ2{λδω + λ2δ2ξ2 + 2λδξτ(0) + τ(0)2}

and hence (23) holds with γ = 1. Of course when the variance of τ(t) does not exist, then the

result (22) fails as E([y∗]1|F0) does not exist. This happens even though Var {y∗(�)|F0} exists

for very small �. �

4 Empirical examples

4.1 A time series of daily RVs

Figure 2 shows the daily time series of the realised variance for M = 144, which corresponds

to utilising 10 minute returns, using the foreign exchange data discussed in Section 1. Here we

report the first 50 days of the series.

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

Daily RV and its 95% confidence intervals

Figure 2: Daily RV, [y∗M ]n, drawn against n for the first 50 days of the sample. Also drawn
as vertical bars are the 95% intervals based on the log transformation. Throughout M = 144 .
Code: se realised.ox.
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The 95% daily confidence intervals for RV are based on the accurate log-based asymptotic

result given in equation (6). We can see the important widening and closing of the 95% confidence

intervals, with the intervals seemingly being very large when the volatility is high. In summary,

Remark 8 When volatility is low RV is quite accurate, but in periods of high volatility the

measurement error can be very large indeed.

Further, in our applied work the confidence intervals are typically wider than the level of

volatility itself.

4.2 Market microstructure biases

There are substantial efficiency gains to be made in estimating
∫
σ2(u)du not by just low fre-

quency squared returns but by computing [y∗M ]n with a high value of M (see, for example,

Andersen and Bollerslev (1998)). However, a number of econometricians have worried that this

10 20 30 40 50 60 70 80 90100 200 300

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54 Average RV over the sample, together with standard errors

Realised var 
Upper 97.5% 
Lower 2.5% 

Figure 3: Average (across days) value of the RV drawn against M . Code: se realised.ox.
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will lead to biases due to market microstructure effects. In particular Andreou and Ghysels

(2001) and Bai, Russell, and Tiao (2000) have argued that irregular spaced trading and price

discreteness can impact realised variance and that these effects become more dangerous when

M is large. Can the above theory throw any light on the above arguments? One approach to

thinking about this issue is to plot
1
N

N∑
n=1

[y∗M ]n

againstM . This is called a volatility signature plot by Andersen, Bollerslev, Diebold, and Labys

(2000). Now for large values ofM and N and assuming that the volatility between days is mixing

we have that (
1
N

N∑
n=1

[y∗M ]n − 1
N

∫ N�

0
σ2(u)du

)
.∼ N

(
0,
2
3
1
N

N∑
n=1

[y∗M ]
[4]
n

)
, (24)

where

[y∗M ]
[4]
n =

M∑
j=1

y4
j,n,

which allows us to compute confidence intervals for the sums of realised volatilities. These are

given in Figure 3 for the 2448 days in the exchange rate data discussed above. We have not

drawn the graph for very small values of M as the asymptotics would be totally unreliable.

The approximation given in (24) suggests that if the continuous time SV model was literally

true then the average RV should not change significantly as we alter M . The figures indicate

that there is an upward movement in the average RV for large values ofM . The size of the move

is around ten percent of the level of volatility. The standard errors suggest this is significant,

however there are quite a large number of assumptions made in their computation and so we

are reluctant to put a great deal of weight on this issue. However, the figure is indicative of

problems which arise when we take M to be above around 50.

4.3 A time series of annual realised volatilities

One use of the asymptotics for realised variances and volatilities is to compute confidence inter-

vals for low frequency data such as annual measures of volatility. Here the high frequency data

would be daily observations and our goal in this subsection is to work with realised volatilities√√√√ M∑
j=1

y2
j,n

that is the square root of realised variances. Such historical time series are very common in

financial economics. See for example, the work of Schwert (1989), Schwert (1990) and Schwert
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(1998) who discusses realised volatilities for a wide variety of financial assets over long time

periods.

In this subsection we take a long series on the closing prices on the Dow Jones Industrial

Average, starting on 26th May 1896 and going up to 31st December 2001. This is taken from

the Dow Jones website and so is in the public domain. This is a narrower index than some of

the more widely used series discussed in the literature. In particular the series constructed by

Schwert (1990) has many more advantages. However, the Dow Jones index has the virtue that

it can be downloaded free of charge which is a requirement of this journal.

This series has a small number of recording breaks, which we have ignored as they make no

substantial difference to our analysis. The series has the interesting feature that in the early

part of it the markets were open six days a week, while in more recent years this has reduced to

five. Of course this makes no difference to the implementation of our theory.

There is a very substantial break from 30th July 1914 until 31st December 1914. This was

caused by the start of World War I, with Germany declaring war on Russia on 1st August

1914. This creates some important difficulties for the index was at 71.42 when it closed, while

it reopened at 54 after Christmas in 1914. If we ignore this break, it will imply a very high

level of volatility for 1914 due to the massive movement in the index. To construct our data

series we have followed the approach of Barndorff-Nielsen and Shephard (2002a) who suggest

stochastically interpolating prices during breaks. They argue for the use of a Brownian bridge

added to a straightline trend between prices, carrying out the computations on the log-price.

The result is shown in Figure 4.

The Brownian bridge we used in this analysis links the closing price in August to the opening

price at the end of December in a random way. There is only a single parameter in the linking,

the variance of the Brownian motion. This is chosen a priori as 0.04/110 per day , which gives

a standard deviation of yearly price movements of around 0.33. This is historically moderately

high, reflecting the uncertainty of the period. The results we give below are not very sensitive

to this choice for we will see 1914 is not a particularly volatile year in this dataset.

The realised volatilities and their 95% confidence intervals are given in Figure 5. The confi-

dence intervals use the log-based limit theory given in (6). The results again reflect the tendency

for the intervals to be wide when the level of volatility is high. However, the results are more

varied in this case than in the high frequency analysis we gave for the exchange rate data. In

particular the volatility spike in 1987 is poorly measured for it is caused by high levels of price

movements over a very short time interval. There is not enough data in the daily observations to

pin down precisely the level of volatility in this case. In the 1930s, on the other hand, the high
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Stochastic interpolation of DJ Index prices

Figure 4: Between the vertical lines prices are interpolated using a Brownian bridge (on the log
scale). Code: schwert.ox.

level of movements was sustained over a long time interval and so we produce quite a precise

estimate of the level of volatility.

5 Conclusion

This paper has reviewed some recent work on the properties of RV. For the first time we have

provided a measure of precision for empirical examples of RV based on a rather flexible SV

model. We have seen that the confidence intervals for σ[2]
n are typically quite wide even when

our estimates are based on 10 minute return data. This overturns a widely held view that

integrated variance can be measured without much error. Our analysis shows that the error can

be very large and is likely to be so when the volatility in the market is high. This will mean

that when econometricians use realised variance they need to be very careful about taking care

of the measurement error. We hope that the asymptotic analysis we have provided will help

them in dealing with this task.
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Figure 5: Annual realised volatility
√∑M

j=1 y
2
j,n for the Dow Jones Industrial Average (marked

with crosses) together with 95% confidence intervals. Code: schwert.ox.

Realised variance is a special case of what we call realised power variation

[y∗M ]
[r]
n =

M∑
j=1

|yj,n|r , r > 0.

In a recent paper we have extended our asymptotic theory to cover this statistic. It is, as yet,

unclear as to the potential uses of this extended measure of volatility.
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