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Abstract: This note proposes a necessary and sufficient condition on a preference to
guarantee that the demand function it generates satisfies the law of demand. It shows
that the law of demand may be succinctly characterized by differences in an agent’s level of
risk aversion when she is confronted with different lotteries composed of commodity bundles.

Keywords: law of demand, monotonicity, preference, risk aversion.
Affiliation: Department of Economics, Oxford University

Address: St Hugh’s College, Oxford. OX2 6LE. United Kingdom
Email: john.quah@economics.ox.ac.uk



IT 1S COMMONLY ASSUMED in economic theory that demand curves slope downwards, yet
it is also well known that this property is not guaranteed by utility maximization. The
impact of a price change on demand can be decomposed into the substitution and income
effects. The substitution effect is always well behaved, in the sense that in response to a
price increase for a good, this effect will always lead to less demand for that good. However,
the income effect may cause the agent to buy more or less of that good, so that the overall
demand response to a price change is ambiguous.

To prevent this from happening, an agent’s preference must be such that income effects,
even when they counteract substitution effects, will always be dominated by the latter. The
precise conditions on an agent’s preference guaranteeing this were established independently
by Milleron (1974) and Mitjuschin and Polterovich (1978) (henceforth to be referred to as
MMP). Assuming that the commodity space is Ri 4, we denote the demand vector at the
price vector p and income w by f(p,w). The demand function f satisfies monotonicity (or

the law of demand) if, whenever p # p/,

(p—p") - (f(p,w) = f(p',w)) <O. (1)

Monotonicity clearly implies that the demand for any good decreases with its own price and
is the natural multi-variate extension of this property.

It is well-known that under very mild assumptions, a convex preference = over the
commodity space RL 4 will admit concave (as opposed to merely quasi-concave) utility
representations. The theorem of MMP says that the preference > generates a monotonic

demand function if it could be represented by a utility function u which is concave and also



satisfies the following property:
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for all commodity bundles z. Note that 1, (x) has a straightforward geometrical inter-
pretation. Defining H(t) = u(x + tz), where t is a scalar, one could check that ¥, (z) =
—H"(0)/H'(0); in other words, ¥, (z) is a measure of the curvature of u at z and in the
direction of z. The MMP theorem requires this value to be less than 4.2

These conditions for monotonicity depend on the choice of w and are only sufficient
and not necessary for monotonicity; to formulate necessary and sufficient conditions, one
should consider at each point in the commodity space, the whole family of concave utility
functions which represents the preference in some open and convex neighborhood of z, and
then to evaluate the infimum of v, () over all possible u. We denote this by - (z) and
refer to it as the MMP coefficient; the MMP coefficient is a property of the preference and
is not dependent on any particular utility representation. If 1. (x) < 4 for all = then the
preference generates a monotonic demand function; furthermore, if it is greater than 4 at
some point z, then there will be a local violation of monotonicity at x. The significance of
Yy goes beyond the basic MMP result; generalizations of this result to guarantee monotonic
market demand in markets with exogenous or endogenous income distributions also rely on
conditions involving 1 (see Quah (1999) and Quah (2000)).

We present in this note a way of characterizing the MMP coefficient of = in terms of any
utility function representing the preference. In particular, it enables us to formulate on any
utility function representing >, a necessary and sufficient condition for the monotonicity of

the demand function it generates. This characterization is strikingly natural and also has



a nice interpretation in terms of an agent’s attitude towards risk.

Let u be a utility function (which is not necessarily concave) representing the convex
preference . Fixing the point z, we may consider the functions H(t;z) = u(z + tz),
where t is a scalar. Define ¢3(x) = —H"(0;2)/H'(0;2) (where the differentiation is done
with respect to t); essentially ¢Z(z) measures the curvature of u at x in the direction of z.

Clearly v, (z) = ¥%(z) and more generally, ¥Z(z) = —270%u(z)z/0u(x)z. We define

Au(@) = thu(r) — inf oy(z); (3)

2€7Zy ()
where Z,(z) = {z € R' : u(z)z = du(z)z}. So Z,(x) is the family of changes in consump-
tion which have the same value when evaluated with the supporting price at z, i.e., du(x),
or equivalently, have the same marginal utility. Figure 1 shows the changes in directions x
and z, while Figure 2 shows the curves H(-; z) for different values of z. The curve H(-;z)
may be flatter or or more curved than H(-;z); Ay,(z) is (essentially) the gap between the
curvature of H(-;x) and the curvature of the flattest possible H(-;z).

We show in this note that A,(z) = ¥ (x). Clearly, this also means that if @ is another
utility function representing =, then A, (xz) = Ag(z). Among the family of possible utility
functions representing > is the agent’s Bernoulli utility function.? This utility function not
only represents the agents preference over the commodity bundles, but also captures the
agent’s preference over lotteries of these bundles via expected utility; in other words, the
agent’s utility over a lottery consisting of commodity bundles is the expected value of the
utility of the bundles which constitute the lottery. Assuming that the agent is risk averse,
the Bernoulli utility will be concave and if w is this utility, then ¢Z(z) is just the coefficient

of risk aversion at x and in the direction of z.



The original MMP result could be interpreted as saying that an agent generates a
monotonic demand function if he is risk averse in commodity space but not too risk averse,
in the sense that his coefficient of risk aversion at each point z, in the direction x, must not
exceed 4. In fact, this condition could be refined to say that A,(z) must not exceed 4: so
it does not matter if the agent’s coefficient of risk aversion in the direction of z is, say, 400;
monotonicity is guaranteed if and (essentially) only if his coefficient of risk aversion in any
other (normalized) direction exceeds 396. In this way, we obtain a succinct characterization
of monotonicity in terms of an agent’s attitude towards lotteries of commodity bundles.

An important application of the MMP result is to the study of demand for contingent
consumption. In that case, we may assume that uw has the expected utility form, i.e.,
u(z) = Y'_, mui(x;), where = (z1,2,...,2;) and YL, m = 1. So z; is the level of
consumption in state i, u; is the Bernoulli utility function and 7; is the subjective probability
of state ¢ occurring. A straightforward application of the MMP conditions says that demand
is monotonic if the coefficient of relative risk aversion p;(z;) = —az;ul (x;)/u}(z;) is between
0 and 4. This is a well known application of the MMP theorem, see, for example, Mas-Colell
(1991) or Hildenbrand (1994) and it has also been generalized to infinite dimensions and to
incomplete markets (see Dana (1995) and Bettzuge (1998)).

This condition, while sufficient, is plainly unnecessary. If p; is identically constant
and equals the same constant for all ¢, then u becomes a CES utility function. Since the
preference is then homothetic, we know that demand is monotonic, no matter how big the
coefficient of relative risk aversion. The refinement we propose here gives a considerably

sharper result: monotonicity is guaranteed provided |p;(z;) — p;(x;)| < 4 for all ¢ and j. In



other words, the coefficient of relative risk aversion must not vary by more than 4 across
different levels of consumption in different states.

The next section of this note contains formal statements and proofs of the results dis-
cussed in this introduction. Section 3 concludes with an outline of the connection between

the approach developed in this note and the approach via indirect utility or preference.
2. THE MMP COEFFICIENT AND MONOTONICITY

We assume that the commodity space is Rﬂr . and begin with a standard restriction on
the preferences being considered.

DEFINITION: A preference = on RQ o is regular if it is representable by a reqular utility
function, by which we mean a function v : Rﬂr 4 — R with the following properties: it is C?,
its partial derivatives are strictly positive, it is differentiably strictly quasi-concave, and the
sets Cz = {x € R, : u(z) > u(Z)} are closed in R' for any Z in R/, .

When a preference = is regular, for any (p,w) in RL 4+ X Ry, there is a unique Z in the
set S(p,w) = {z € R}, : p- 2 < w} such that Z = z for all z in S(p,w). We denote Z by
f(p,w). It is a standard result that the function f : Rl++ X Ry — Rl++ is C! (see Mas-Colell
(1985)) and we refer to it as the demand function generated by .

It is also known that a regular preference is always representable, on any convex subset
of R ., by a regular direct utility function that is also concave (see Mas-Colell (1985)).
This fact makes it possible for us to define an MMP coefficient for a regular preference >.
At any commodity bundle z, let U(x) be the non-empty collection of concave and regular

utility functions which represent > in some open and convex neighborhood of x. For each



u in U(z), we define 1y (z) by (2). The MMP coefficient at =, ¥ (z) = inf,cp(z) Yu(z).
Unlike ),,, the MMP coefficient is an ordinal concept, and using it, the condition needed to
guarantee the monotonicity of demand (as defined by (1)) can be stated precisely.

THEOREM 2.1: Suppose > is a regqular preference generating the demand function f.
(i) If at some (p,w) in R x Ry, = (f(p,w)) < 4, then there exists an open and con-
ver neighborhood around (p,w) in which monotonicity holds, i.e., (p' — p") - (f(p',w') —
f(@",w") <0 when (p/,w') and (p",w") are in that neighborhood, with p' # p".

(1t) If o (f (p,w)) < 4 for all (p,w) in S, a conver subset of RfH_ X Ry, then f is monotonic
mn S.

(iii) If at some (p,w), ¥-(f(p,w)) > 4, then there is a price p', which could be chosen
arbitrarily close to p, such that (p —p') - (f(p,w) — f(p',w)) > 0.

Parts (i) and (ii) are just re-statements of the MMP results in terms of ¢ and are both
obvious from the standard proofs (Mas-Colell (1991) or Hildenbrand (1994)). Clearly (ii)
implies that if 1 (z) < 4 for all # in R’ |, then the demand function f is monotonic in
the whole price-income space. Part (iii) says that the condition on MMP coefficient is also
necessary in the sense that an MMP coefficient in excess of 4 at a point implies a local
violation of monotonicity. The proof requires Lemmas 2.2 and 2.3 below; since Lemma 2.2
is a standard result we will omit its proof.

LEMMA 2.2: Suppose that A is a symmetric and negative definite matriz and let (b,r)
be an element of R' x R. Then there is Z that solves maxyr,_, 2T Az and the mazimum is
r2 /T A~ 1b.

LEMMA 2.3: Let u be a regular utility function representing = and define for each x in



R ., the set Z,(z), given by Z,(z) = {z € R : Ou(z)z = du(x)z}. For a fized x, suppose

that sup,cy, (z) 2T 0%u(x)z exists. (i) For any

2T 9%u(x)z
L > r)+ sup ————,
Yul@) 2eZo(x) Ou()z

(4)
there is a C? function h : R — R such that @ = h o u satisfies 1z(z) = L and 1 is in U(z).
(i3) If there is Z in Z,(x) such that 2T 0%*u(x)z/0u(x)z = SUP.¢ 7, (z) 2T 0%u(z)z/0u(z)z,
then we can find h such that @ = h o u satisfies (a) 27 0%u(x)z < 0 for all z, with ezact
equality at z and (b) Ya(z) = Pu(2) + sup,cz, (2 2T 0%u(x)z/0u(z)z.

Proof: Differentiating @ = h o u, we obtain

Ya(z) = —%[%u(x)x]%—@bu(x). (5)

Fizing z, if we choose a function h such that A’ > 0 and A" /A’ = [—L + ¢, (x)]/(Ou(z)z),
clearly, ¢;(z) = L. We need to check that with this choice of h, @ is locally concave at x.

It is sufficient to check that z79%@(z)z < 0 for all non-zero z, where

dPu(x)z: = B (u(x)) %

[Ou(z)z])? + 2T 0%u(z)z| . (6)
If Ou(z)z = 0, strict quasi-concavity guarantees that 27 9?u(z)z < 0 and so 27 0%u(z)z < 0.
If Qu(x)z # 0, we may assume without loss of generality that z is in Z,(z). Since du(z)r =
du(x)z, (6) says that 27 9%a(z)z < 0 if [—L + vy (x)]0u(z)z + 27 0%u(z)z < 0 for all z in
Zyu(z). This inequality is implied by (4).

To establish (ii), we choose h such that ' > 0 and h" /b’ = —270%u(x)z/(0u(x)Zz)?. By

(6), & = h o u satisfies 2790%@(z)z < 0 for all z, with 27'0%u(z)z = 0. So property (a) is

satisfied, while (b) is obvious once we substitute the value of A”/h' into (5). QED



Proof of Theorem 2.1(iii): Suppose we can find a regular utility function @ representing
> in some open and convex neighborhood which satisfies property (a) in Lemma 2.3(ii)
(specifically, that 27 0%@(z)z = 0 for some Z in Z,(z)) and, in addition, g(x) > 4. Then it
is clear from the proofs of the MMP result (Mas-Colell (1991) or Hildenbrand (1994)) that
there will be a local violation of monotonicity, so we need only show that such a @ exists.

Since > is regular, there is a regular and concave « which represents > in some open
and convex neighborhood of z. By definition of ., ¥, (z) > 4; if u also satisfies property
(a) in Lemma 2.3(ii), we are done. Suppose that it does not satisfy the property (a); since
u is concave, 2T 0%u(z)z < 0 for all z # 0. By Lemma 2.2, there is z in Z, () such that
2L 0%u(z)z/Ou(z)z = SUP,cz,(z) 2T 0%u(x)z/0u(z)z. This allows us to apply Lemma 2.3(ii),
which says that there is h such that & = hou satisfies property (a). We claim that 15 (z) > 4.
Since sup,ez, (z) 2T0%i(x)z = 0, Lemma 2.3(i) tells us that for any € > 0, there is ux in
U(z) such that ¥y (x) = Yg(z) + €. If Yg(x) < 4, then ¢y (z) < 4+ ¢, which means since €
is arbitrary and ux is in U(x) that ¢ (x) < 4. This is a contradiction. QED

The next result, which follows easily from Lemma 2.3, gives the alternative formulation
of 1 that is the main result of this note. Note that u need not be concave.

Theorem 2.4: Let u be a reqular utility function representing = in some open and convex
neighborhood of x. Then Ay(x) = - (z).

Proof: Assume firstly that u is concave. Then sup,cyz, (4 2T 0%u(x)z/0u(z)z clearly
exists and since the right hand side of (4) is in fact A,(z) (see (3)), Lemma 2.3(i) tells
us that - (z) < Ayu(z). By definition of 9, for any € > 0, there is @ in U(z) such

that 1g(r) < 9¥»(z) + €. We know that there is a C? function h : R — R such that



@ = howu. By (5), h"/h' = [¢u(z) — ¢a(x)]/Ou(z)z. Substituting this into (6), we see
that [y (z) — g (z)]0u(z)z + 27 0%u(x)z < 0 for z in Z,(x) since 27 9%a(x)z < 0 for all z.
Re-arranging this expression give us Ay(z) < ¢g(x) < - (x) + €. Since € is arbitrary, we
obtain Ay(x) < 4y (x). So we have shown that Ay (x) = ¢ (x) when u is concave.
Suppose now that « is not concave. Since = is regular, we know that there is a regular
and concave utility function @ representing > in some open neighborhood of x and there is

a function h such that v = h o 4. A simple calculation shows that for z in Z,(z) = Zs(z),

2T0%u(z)z
%(@JrW = ¢a(z) +

2T 0%0(x)z
di(x)z (M)

By the concavity of @, the right hand side of this equation has an upper bound as z varies
in Zy(z) = Za(), so sup,cz, (2 2T 0?u(x)z/0u(z)z must also exist. It follows that A, () is
well defined and by (7), Ay(z) = Agz(xz). We have already established that the latter equals
P (). QED

An important application of Theorem 2.2 is to the class of additive utility functions,
i.e., functions of the form u(z) = Zﬁ:l miu;(z;), where the m; > 0, u} > 0 and u] < 0
for ¢ = 1,2,...,1. This could be interpreted as an agent’s expected utility function over

consumption in [ states of the world. The function B, : RL 4+ — R is defined by

By(z) = max (—M> — min <—M> (8)

1<i<l wh(x;) 1<i<l ul ()
If we interpret u as an expected utility function, then B, (x) is just the variation in the
agent’s coefficient of relative risk aversion at the different levels of realized consumption
represented by z. (In the case where the agent’s utility is state independent, u; = u; for all

i and j.)



Corollary 2.5: Suppose u is a regular and additive utility function defined on Rﬂr+,and let
>~ be the preference over R, | that it represents. Then for any x in R' ., ¢¥»(z) < By().

Proof: For a given value of x, we may assume, without loss of generality, that du(z)z = 1.
Subsuming 7; into u;, we can write u as u(z) = Y u;(x;). By definition, Ay(x) = ¢, (x) +
SUD,c 7, (2) 2T Ou(z)z (note that du(x)z = du(x)xr = 1 if z is in Z,(x)). It is easy to check

that ¢y (z) < max;<;<; (—zu; (;)/ui(x;)) and by Lemma 2.2,

1
max 27 0%u(z)z =

2620 (x) (Ou())(0%u(x)) " (Qu(x))T
1

Sy ()2l (27)

A little work will show that this expression is less than — minj<;<; (—zug (2;)/u;(2;)).
Therefore, by Theorem 2.4, 1 (z) = Ay(z) < B(x). QED.

It follows immediately from Corollary 2.3 and Theorem 2.1 that monotonicity holds if
Byu(z) < 4 for all z. In other words, an agent whose coefficient of relative risk aversion does
not vary by more than 4 will generate a demand for consumption in different states which
is monotonic with respect to the state prices.

Quite naturally we would like the monotonic property to be extended to security prices
and their demand. This is not hard to achieve and we will conclude this section by estab-
lishing such a result. We assume that there are m securities, with m <[ (so the market
may be incomplete). The m x [ matrix D gives the payoffs of these securities, with the ijth
entry being the payoff of the ith security in state j. We say that the payoff matrix D is
well-behaved if there is @ such that D76 > 0 and the rank of D is m.

If ¢ in R™ are the security prices, then an agent with a preference > and positive

10



income w chooses a portfolio of securities 8* in B(q,w) = {# € R™ : ¢ -0 < w} such that
DT¢* = DT@ for all § in B(q,w). It is well-known that provided > is regular and D is
well-behaved, this problem has a solution if and only if ¢ admits no arbitrage, which is
equivalent to saying that ¢ is in the set Qp = {Dp : p € Rl+ +} Furthermore, for each (g, w)
the solution is unique; we denote it by g(q,w) and refer to the function g : @Qp x Ry — R™
as the securities demand function generated by > and D.

PROPOSITION 2.6: Suppose that the payoff matriz D is well-behaved and that = is
reqular with ¢ (x) < 4 for all x in RfH_. Then the securities demand function g generated
by = and D is monotonic, i.e., for any (q,w) and (¢',w) in Qp X Ry, with ¢ # ¢, we
obtain (¢ —¢') - (9(g,w) — g(¢';w)) < 0.4

Proof: We denote by f the demand generated by =. Since ¢ (z) < 4 for all z in R!,
Theorem 2.1(ii) says that f is a monotonic function. For any ¢ in @p and w > 0, we know
that there is p > 0 such that ¢ = Dp and DT g(q,w) = f(p,w) (see Duffie (1992) or Magill
and Quinzii (1996)). Similarly, there is p’ > 0 such that ¢’ = Dp’ and DTg(¢', w) = f(p', w).
If g # ¢' then clearly p # p', so by the monotonicity of f, (p —p') - (f(p,w) — f(p',w)) < 0.
Replacing f with DTg we obtain (¢ — ¢') - (9(¢, w) — g(¢’, w)) < 0. QED

Obviously, Proposition 2.6 and Corollary 2.3 together tell us that if the payoff matrix D
is well-behaved and > is representable by an additive utility function u satisfying B, < 4,

then the securities demand function they generate will be monotonic.
3. CONCLUSION

Our discussion in this note has focussed on the relationship between a preference in
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commodity space and the monotonicity of the demand it generates. There is in fact another
way of characterizing the monotonicity of demand via indirect utility, or more generally, via
the indirect preference over price-income situations. This approach is particularly useful in
generalizations of the basic MMP result to guarantee monotonicity for market (rather than
just individual) demand (see Quah (1999) and Quah (2000)).

In this approach one could speak of a concept analogous to the MMP coefficient, called
the indirect MMP coefficient, which is defined on an indirect preference. It turns out that
the two concepts are related most naturally: the indirect MMP coefficient at (p, w) is equal
to the MMP coefficient at f(p,w). This and other results relating the two approaches are
established in Martinez-Legaz and Quah (2002) (manuscript under preparation).

St Hugh’s College, Oxford. OX2 6LE. UNITED KINGDOM,; john.quah@economics.ox.ac.uk
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FOOTNOTES

1. I would like to thank the Economic and Social Research Council for providing me
with financial support through their Research Fellowship Scheme.

2. Milleron’s (1974) paper was never published, while Mitjuschin and Polterovich’s
(1978) paper is in Russian. More accessible and English language versions of the result
could be found in Mas-Colell (1991), Hildenbrand (1994), and Mas-Colell et al (1995). All
these adopt the method of proof found in Mitjuschin and Polterovich (1978). Mas-Colell
(1991) and Mas-Colell et al (1995) also discuss the implications of monotonicity for market
demand and general equilibrium theory. Applications of the MMP result or its extensions
to address uniqueness and stability issues in general equilibrium models could also be found
in Dana (1995), Bettzuge (1998) and Quah (1999, 2000). Quah’s papers employ conditions
on the indirect preference which are natural analogs to the MMP conditions imposed on the
(direct) preference. Kannai (1989) has a characterization of monotonicity via the normalized
gradient function defined on the direct preference.

3. The term ‘Bernoulli utility function’ follows Mas-Colell et al (1995). They point out
that the term is non-standard, though their use has probably made it less so. The fact that
one could consider an agent’s preference over lotteries of commodity bundles, and therefore
meaningfully define a Bernoulli utility function over the commodity space (provided that
the agent’s preference obey, essentially, the von Neumann-Morgenstern axioms) has long
been recognized; see, for example, Debreu (1976).

4. If the agent is not endowed with a fixed income w but is instead endowed with bundle
of securities w, then clearly the agent’s demand for securities at price ¢ in Qp is g(q,q - w).
The assumptions of Proposition 2.6 then guarantee that (¢—q')-(9(q,q-w)—g(¢', ¢ -w)) <0
provided ¢ # ¢’ and ¢-w = ¢’ - w. The case where the agent is endowed with a bundle
of contingent commodities in RL that is not spanned by the available securities is more
complicated and has to be handled differently. Bettzuge (1998) gives some conditions under
which securities demand could be monotonic in this case.





