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Abstract

In Norman (2003a), the introduction of individual strategy switch-
ing costs, and thus inertia, into stochastic evolutionary coordination
games was found inter alia to strengthen the mixed-strategy equilib-
rium as a short- to medium-run equilibrium. This paper considers
the impact of such switching costs on the conflict scenario of Hawk-
Dove games. The “attractive” mixed-strategy equilibrium of Hawk-
Dove games represents a far better candidate for long-run equilibrium
than its unstable counterpart in coordination games, and yet robust
selection results have proved elusive, with conditions on the selection
dynamics generally being required. Such a condition remains a ne-
cessity in the switching cost model with state-independent mutations.
However, a more realistic model of state-dependent mutations driven
by stochastic switching costs overcomes this problem, and identifies a
threshold mean switching cost, above which the mixed-strategy equi-
librium is selected in the long run for a wide class of switching cost
distributions.

∗Discussions with my supervisors, David Myatt and Chris Wallace, as well as with Mar-
garet Meyer, Kevin Roberts and seminar participants at the Department of Economics,
Oxford University, are gratefully acknowledged. The usual disclaimer applies.
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1 Introduction

“The truth is rarely pure, and never simple.”
Oscar Wilde, The Importance of Being Earnest (1895) Act I

In Norman (2003a), the implications of player inertia in stochastic evo-
lutionary coordination games were considered. The presence of “switch-
ing costs” to individual strategy changes in the Kandori, Mailath, and Rob
(1993) (henceforth KMR) model was found to create a number of new short-
to medium-run equilibria, centred around the mixed-strategy equilibrium.
However, this unusual evolutionary justification for the controversial concept
of mixed-strategy equilibrium did not extend to the long run, where risk-
dominance continued to reign supreme. But if the “unattractive” mixed-
strategy equilibrium of coordination games can be strengthened by inertia,
it is natural to ask what will be the effect in games which have an “attrac-
tive” mixed-strategy equilibrium. This question motivates this paper’s shift
of focus to the conflict scenario of Hawk-Dove games.

In contrast to coordination games, the mixed-strategy equilibrium in
Hawk-Dove games constitutes the unique symmetric Nash equilibrium. Yet
despite this “attractiveness” of the Hawk-Dove mixed-strategy equilibrium,
existing models (Kandori, Mailath, and Rob 1993, Robson and Vega-Redondo
1996) have not found it to be selected robustly as a long-run equilibrium.
Instead, long-run behaviour in this “most problematic type of game”1 de-
pends crucially on the precise selection dynamic employed, and convergence
to the mixed-strategy equilibrium generally requires some restrictive con-
ditions to be placed on that dynamic. It is shown in section 3 that this
unhappy situation is essentially unaltered by the presence of switching costs
when the mutation rate is uniform; the same restrictive conditions must be
placed on the selection dynamic in order for the mixed-strategy equilibrium
to be selected, and in fact some dilution of this selection occurs due to the
creation of competing mixed absorbing states.

However, in section 4, the model is altered to make the switching cost
itself stochastic across players and time. This is a realistic modification; in
reality, different players (with different priorities, abilities and constraints)
will vary in the size of their switching costs, and any given player’s switching
cost will fluctuate in size over time (as his priorities, abilities and constraints
change). Moreover, the introduction of this stochastic switching cost obvi-
ates the need to introduce the state-independent mutations of the KMR-style
model, thus also serving to address the criticisms of Bergin and Lipman
(1996) by building a model with endogenously generated “state-dependent
mutations”. In this setting, the problem of requiring the selection dynamic
to meet a restrictive condition in order to select the mixed-strategy equilib-
rium of Hawk-Dove games is overcome. Instead, there is a threshold mean

1Robson and Vega-Redondo (1996), p. 67.
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switching cost, above which the appropriate selection takes place for a wide
class of switching cost distributions.

To begin with, however, the next section introduces the relevant litera-
ture.

2 Relevant Literature

There is a longstanding controversy in game theory over the validity of
mixed-strategy equilibrium. Mixed-strategy equilibria are seen by many as
dubious on a number of grounds, chiefly doubts over whether players ran-
domise and whether knife-edge behaviour (playing with the exact required
probabilities) based on indifference can be stable. Various responses have
been offered to these criticisms, generally offering different interpretations of
mixed-strategy equilibrium to that of individual-level randomisation taken
literally.2 The most notable of these is Harsanyi’s (1973) purification argu-
ment, which implies that all mixed equilibria are approximations of strict,
and hence evolutionarily stable, equilibria of games with slightly perturbed
payoffs. However, the most interesting interpretation of mixed-strategy equi-
librium from an evolutionary standpoint is as a steady state of an environ-
ment in which players act repeatedly and ignore any strategic link that may
exist between plays.3 This is precisely the stochastic evolutionary paradigm:
statistical frequencies of current and/or past play form the basis of players’
beliefs about the future behaviour of the other players, which in turn form
the basis of their own play.

Stochastic evolutionary game theory was born in the papers of Foster and
Young (1990), Kandori, Mailath, and Rob (1993), and Young (1993). Foster
and Young (1990), drawing on the Markovian techniques of Freidlin and
Wentzell (1984), introduced the concept of stochastic stability in continuous
dynamical systems into evolutionary biology, and provided a method for the
analytical computation of the stochastically stable set. Kandori, Mailath,
and Rob (1993), and Young (1993) then brought the somewhat simpler
discrete analysis into the realm of economics. These papers provided the
basis of a new and fruitful direction for evolutionary game theory, appearing
to offer a solution to the persistent problem of multiple equilibria and path
dependence: the long-run equilibrium of a stochastic model was unique for
generic games with strict Nash equilibria.

This “solution” was, however, soon questioned by Bergin and Lipman
(1996), who highlight the arbitrariness of mutations occurring at a rate inde-
pendent of the current state of the system. Such “state-independent muta-
tions”, embodied in the fixed mutation rate ε of KMR and others, imply that

2See Osborne and Rubinstein (1994), pp. 37-44, for an excellent survey of such inter-
pretations.

3See Osborne and Rubinstein (1994), pp. 38-9.
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players make mistakes (or experiment, etc.) with the same probability irre-
spective of the current strategy frequencies, and thus of the expected payoffs
at stake. Bergin and Lipman demonstrate that, given any model of the effect
of mutations, any invariant distribution of the “mutationless” process is close
to an invariant distribution of the process with appropriately chosen small
mutation rates. This implies that any strict Nash equilibrium of a strategic
form game is selected under some suitably chosen mutation model. Bergin
and Lipman’s paper highlights the importance of developing models or other
criteria to determine “reasonable” classes of “state-dependent mutations”.
Myatt and Wallace (1998) present a candidate for just such a “reasonable”
mutation process with their model of state-dependent mutations driven by
payoff heterogeneity (rather than mistakes, or experimentation). More gen-
erally, Blume (1999) alleviates the indeterminacy of the Bergin and Lipman
critique with his finding that the known stochastic stability results are pre-
served for the (large) class of noise processes satisfying a certain symmetry
condition.

On the basis of existing stochastic evolutionary work, however, there
is little support for the population steady state interpretation of mixed-
strategy equilibrium. In most stochastic evolutionary models, mixed-strategy
equilibria are unstable knife-edges, and as such are comprehensively dese-
lected in the long run. As will be seen in section 3 below, Kandori, Mailath,
and Rob (1993) and Robson and Vega-Redondo (1996) do provide theo-
rems for long-run selection of the mixed-strategy equilibrium in Hawk-Dove
games, but even this requires the imposition of apparently ad hoc constraints
on the selection dynamics. Oechssler (1997) also investigates evolutionary
convergence to mixed-strategy equilibrium, but again for a particular form
of selection dynamic; every period each player receives the opportunity to
adjust his strategy with probability θ ∈ (0, 1). This variable speed dy-
namic guarantees eventual convergence to the mixed-strategy equilibrium
in Hawk-Dove games.

Some models of learning and deterministic evolution have sought to jus-
tify mixed-strategy equilibrium in population contexts. In two related pa-
pers, Fudenberg and Kreps (1993) and Ellison and Fudenberg (2000) explore
a potential justification for mixed-strategy equilibria based on the idea that
an equilibrium distribution might arise in a large population as the result
of a learning process in the style of fictitious play. This follows the earlier
pessimistic result of Crawford (1985) that such a process is locally unstable
at the mixed equilibrium for almost all games. Fudenberg and Kreps (1993)
find play unlikely to converge to a mixed-strategy equilibrium in their model,
until the stage game is perturbed in the manner of Harsanyi’s purification
theorem, at which point such convergence becomes natural. Their paper and
several subsequent analyses show that, for the type of “smoothed” learning
models studied, play in 2 × 2 games converges to the mixed equilibrium in
games like matching pennies, while the seemingly unreasonable mixed equi-
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libria of coordination games are unstable. Ellison and Fudenberg (2000),
meanwhile, extend the model to more complicated settings, and find that
- contrary to some previous suggestions - learning can sometimes provide
a justification for complicated mixed equilibria. Whether an equilibrium is
stable is found often to depend on the distribution of payoff perturbations.

On the evolutionary side, meanwhile, Eshel and Sansone (1995) also ap-
peal to Harsanyi’s purification argument in warning against a premature
rejection of mixed strategies in an evolutionary context, arguing that small
payoff perturbations and incomplete information about opponents’ payoffs
are inescapable in realistic evolutionary models. Binmore and Samuelson
(2001) explore this idea further, seeking to reconcile Harsanyi’s defence
of mixed-strategy equilibrium with Selten’s (1980) demonstration that no
mixed equilibria are evolutionarily stable when players can condition their
strategies on their roles in a game. They find that approximations of mixed
equilibria are likely to persist when payoff perturbations are relatively im-
portant and role identification is relatively noisy, but are unlikely to persist
when payoff perturbations are unimportant and role identification is precise.

However, despite all of this support in deterministic contexts (albeit
perturbed), as far as selection in explicit stochastic models is concerned, the
mixed-strategy equilibrium remains on very shaky ground. The contention
of this paper is that this ground becomes somewhat firmer in the presence
of switching costs.

The idea of inertia driven by switching costs in repeated game contexts is
of course not a new one. Within the traditional perfectly rational paradigm,
Klemperer’s (1987a, 1987b) consumer switching costs4 and Radner’s (1980)
ε-Nash equilibrium are two obvious examples. The closest parallel to the
present paper in the perfectly rational literature, however, is Lipman and
Wang (2000), who study the effects of switching costs in general repeated
game contexts. They add small costs of changing actions and frequent rep-
etition to finitely repeated games, and find that doing so makes credible
certain commitments which then serve to overturn all the standard results
for finitely repeated games.

By contrast with the perfectly rational literature, however, it would seem
that inertia has for the most part been left unmodelled in evolutionary
contexts. In reinforcement models, for example, the probability of taking an
action in the present increases with the payoff that resulted from taking that
action in the past.5 Such models admit an intuitive role for inertia, but this
inertia is assumed exogenous, its root causes left unmodelled. Meanwhile,
inertia plays an explicit role in the KMR (1993) model, with their weakly

4On consumer switching costs see, for example, Klemperer (1995), Beggs and
Klemperer (1992), Farrell and Klemperer (2001), Farrell (1987), Farrell and Shapiro
(1988, 1989), and Padilla (1995).

5See Bush and Mosteller (1955), Suppes and Atkinson (1960), Arthur (1993), Roth
and Erev (1995), Börgers and Sarin (1995, 1997).
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monotonic selection dynamic capturing the idea that only some (as opposed
to all) players need be adjusting their behaviour in any given period. But
this ignores the important possibility that no player adjusts his behaviour in
a given period, and moreover, there is again no endogenous determination
of the inertia.

There are admittedly some evolutionary papers that model costly play
of some sort. One example is Sethi (1998), whose model of “strategy-specific
barriers to learning” in the replicator dynamics explores the consequences
of strategies varying in the ease with which they can be learned. Another
example is van Damme and Weibull’s (1998) model of “mutations driven by
control costs”, which has mutation rates determined by individual mistake
probabilities, which players can control at some cost. State-dependent muta-
tions are thus based on an economically justified model here, in the manner
suggested by Bergin and Lipman (1996). But whilst both of these papers
model important ways in which strategy adoption might be costly, neither
captures the idea that strategy change is costly compared to the (cost-free)
status quo. The switching costs postulated in this paper, by contrast, draw
attention to the learning and implementation costs incurred when a player
switches to a new strategy - a plausible source of individual-level inertia.

3 Uniform Mutations

As has been seen, the unique symmetric Nash equilibrium in Hawk-Dove
games is that in mixed strategies. However, despite this “attractiveness” of
the mixed-strategy equilibrium in Hawk-Dove games, existing evolutionary
models have not found it to be selected robustly as a long-run equilibrium.
Indeed, Hawk-Dove games are seen by some as “the most problematic type
of game”6. Applying their model to Hawk-Dove games, Kandori, Mailath,
and Rob (1993) do derive a result selecting the mixed-strategy equilibrium in
the long run, but only under a certain condition on the selection dynamics.7

In effect, adjustment must be sufficiently slow to rule out overshooting of
the mixed-strategy equilibrium. This condition seems somewhat ad hoc, and
so this section explores whether introducing switching costs into the model
can serve to robustify the result, as the findings of Norman (2003a) suggest
it might. In fact, analysis reveals that it cannot do so to any satisfactory
degree, a similar condition being required on the deterministic dynamic for
long-run selection of the mixed-strategy equilibrium to hold in the presence
of switching costs as in their absence. Whilst the condition on the selec-
tion dynamics is weaker under switching costs, the long-run selection of the
mixed-strategy equilibrium is also diluted somewhat, given the concomitant

6Robson and Vega-Redondo (1996), p. 67.
7Robson and Vega-Redondo (1996) derive a similar result for a sufficiently large pop-

ulation in their model.
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creation of competing mixed absorbing states. These findings highlight the
limitations in the fixed-switching cost, state-independent mutations model
employed.

3.1 The Model

To begin with then, the uniform mutation rate model of Norman (2003a) is
employed. This is essentially the Kandori, Mailath, and Rob (1993) model
in the presence of a switching cost c of changing strategies at the individual
player level. Thus, there is a finite number N (N an even number) of players
who are repeatedly matched to play the symmetric 2×2 stage game defined
by the general payoff matrix

Λ =
[

a11 a12

a21 a22

]
(1)

and who adjust their behaviour over time. Actions are taken in discrete
time, t = 1, 2, . . ., each player choosing his pure strategy for a period t at
the beginning of that period. The number zt of players playing strategy 1
at time t defines the state of the dynamical system, the state space being
Z = {0, 1, . . . , N}. The average payoff of a player with strategy i, πi(zt), is
assumed to be8

π1(z) =
(z − 1)
(N − 1)

a11 +
(N − z)
(N − 1)

a12, (2)

π2(z) =
z

(N − 1)
a21 +

(N − z − 1)
(N − 1)

a22 (3)

These become expected payoffs under the assumption that players are my-
opic.

KMR’s “Darwinian” selection dynamics - under which better strategies
are better represented in the population in the next period - are once again
modified to include a fixed switching cost c, incurred whenever a player
switches strategies.

Definition 1 A 1-incumbent (resp. 2-incumbent) in period t is a player
who was a 1-strategist (resp. 2-strategist) in period t− 1.

Definition 2 The cost-adjusted payoff matrices are

Λ1 =
[

a11 a12

a21 − c a22 − c

]
(4)

8See KMR (1993), p. 37, for models of matching which generate these payoffs. Note
that a player will ignore his own play in forming his beliefs from the current population
strategy frequency.
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and

Λ2 =
[

a11 − c a12 − c
a21 a22

]
(5)

for 1-incumbents and 2-incumbents, respectively.

Given the presence of this switching cost, KMR’s underlying determin-
istic dynamic,

zt+1 = b(zt) (6)

now has the “modified Darwinian” property:9,10

(b(z)− z) is





strictly negative iff π1(z) < π2(z)− c
nonnegative iff π1(z) ≥ π2(z)− c
nonpositive iff π1(z)− c ≤ π2(z)

strictly positive iff π1(z)− c > π2(z)





for z 6= 0, N .

(7)
Or, more succinctly,11

(b(z)− z) is





strictly negative iff π1(z)− π2(z) < −c
0 iff − c ≤ π1(z)− π2(z) ≤ c

strictly positive iff π1(z)− π2(z) > c





for z 6= 0, N . (8)

The model is now made stochastic by introducing some noise (“muta-
tions”) into the system. Following KMR, it is assumed that each player’s
strategy “flips” with probability ε in each period (i.i.d. across players and
over time).12 This yields the nonlinear stochastic difference equation

zt+1 = b(zt) + xt − yt, (9)

where xt and yt have the binomial distributions:

xt ∼ Bin(N − b(zt), ε) and yt ∼ Bin(b(zt), ε)

The dynamical system in equation (9) defines a Markov chain on the finite
state space Z = {0, 1, . . . N}. P ε = [pij ] is the Markov matrix, with the
transition probabilities given by

pij = Pr(zt+1 = j | zt = i) (10)
9The strict and weak inequalities are assigned according to the assumption that indif-

ference leads to inertia at the individual level. This assumption is unimportant for the
results.

10For the extreme states, 0 and N , it is assumed that b(0) > 0 iff π1(0)− c > π2(0), and
b(0) = 0 iff π1(0)− c ≤ π2(0). Similarly, b(N) < N iff π1(N) < π2(N)− c, and b(N) = N
iff π1(N) ≥ π2(N)− c.

11For the extreme states, similarly, b(0) > 0 iff π1(0) − π2(0) > c,and b(0) = 0 iff
π1(0)−π2(0) ≤ c; b(N) < N iff π2(N)−π1(N) > c, and b(N) = N iff π2(N)−π1(N) ≤ c.

12The usual stories of “experimentation” or of players dying (with probability 2ε) and
being replaced by ignorant newcomers may be appealed to. For example, see KMR (1993),
pp. 38-9.
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All elements in the matrix P ε are strictly positive under the above assump-
tions.

The long-run behaviour of the Markov chain in equation (9) is captured
by the stationarity equations µεP ε = µε, the solution of which is the dis-
tribution µε (over states) that is stationary under P ε. However, it is not
immediately clear whether this solution is unique. If it is not, long-run be-
haviour will be sensitive to initial conditions, so that the path dependence
of deterministic models remains. However, for an ergodic Markov process,
the stationarity equations will have a unique solution and the long-run be-
haviour embodied in µε will be independent of initial conditions. The unique
invariant distribution µε may then be used to explore the equilibrium se-
lection issue by providing information on whether some outcomes are much
more likely than others. Indeed, µε can be interpreted as the proportion of
time that the society spends in each state in the long run.

Lemma 1 An irreducible and aperiodic Markov chain is ergodic.

This is a standard result - see, for instance, Theorem 11.2 of Stokey, Lucas,
and Prescott (1989).

Proposition 1 The adaptive response dynamic defined by the transition
probabilities pij in equation (10) is an irreducible, aperiodic Markov process
on the finite state space Z. Consequently, it has a unique invariant (ergodic)
distribution µε.

Proof. Since all elements in the Markov matrix P ε are strictly positive, i.e.
any state is accessible from any other state in a single period, it follows that
the process is irreducible. Moreover, since in every state there is a positive
probability of the system remaining in that state in the next period, the
process is aperiodic. Lemma 1 then implies that the process has a unique
invariant distribution.

The stage game Each time the players are matched to play the game
Λ in (1), they will play a symmetric “Hawk-Dove” game. The class of
symmetric Hawk-Dove games is the set of all games satisfying the conditions
a11 < a21 and a22 < a12. This class of games has two pure-strategy Nash
equilibria, (1, 2) and (2, 1), and one mixed-strategy Nash equilibrium which
has strategy 1 being played with probability

ρ =
a22 − a12

(a22 − a12) + (a11 − a21)

There is thus a set of three Nash equilibria, ΘNE = {(1, 2), (2, 1), (ρ, ρ)},
with no apparent way of selecting between them - the classic game-theoretic
problem of multiple equilibria. However, the mixed-strategy equilibrium is
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Figure 1: Maynard Smith’s (1982) “Hawk-Dove” game

immediately somewhat more appealing than the two pure-strategy equilib-
ria, by virtue of being the unique symmetric Nash equilibrium.13

Example 1 Maynard Smith’s (1982) “Hawk-Dove” game in figure 1 mod-
elled two animals contesting a resource worth V > 0. In this game’s original
biological context, the payoffs are interpreted as the incremental fitnesses that
accrue to the two animals, where “fitness” is the property of an animal that
determines its likelihood of survival/reproduction. Each animal can choose
to be aggressive (playing Hawk) or to acquiesce (playing Dove). If one ani-
mal plays Hawk and the other animal plays Dove, then the aggressive animal
takes the whole resource and the acquiescent animal gets nothing. If, mean-
while, both animals choose the same pure strategy, then each is equally likely
to get the resource, but if the strategy played is Hawk, the resulting con-
flict causes each to pay a cost of K ≥ V . The game has two pure-strategy
Nash equilibria, (Hawk,Dove) and (Dove,Hawk), but a unique symmetric
Nash equilibrium in mixed strategies which has each player using Hawk with

probability K− 1
2
V

K .
This sort of game has obvious applications to international conflicts, and

the “Hawk-Dove” terminology is widely used in the international relations
literature.

13It is worth noting that the principal refinement of deterministic evolutionary game
theory, namely evolutionary stability, selects the mixed-strategy equilibrium as the unique
evolutionarily stable strategy.
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(b(z)− z) > 0 (b(z)− z) < 0

Figure 2: KMR (1993) model: Hawk-Dove games

3.2 Analysis

3.2.1 The KMR theorem

In figure 2, the average payoffs in equations (2) and (3) are graphed as linear
functions of z,

π1(z) =
(a11 − a12)
(N − 1)

z +
Na12 − a11

(N − 1)
(11)

π2(z) =
(a21 − a22)
(N − 1)

z + a22 (12)

Note that the π2 (z) line will be steeper than the π1 (z) line if and only if

a11 − a21 < a12 − a22

and that this holds necessarily for Hawk-Dove games given that a11 < a21

and a22 < a12.14 Moreover, these same two defining conditions of Hawk-
Dove games imply that π2(z) < π1(z) for z = 0 and that π2(z) > π1(z) for
z = N (as is clear from equations (2) and (3)), so that there will certainly
exist a value z∗ ∈ Z where the two average payoff lines cross (though this
z∗ need not, of course, be an integer). This corresponds to the mixed-
strategy equilibrium of the Hawk-Dove stage game, which puts probability

14There is, however, no implication that π2(z) need have a positive slope and π1(z) a
negative slope.
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ρ = (a22−a12)
a11−a21+a22−a12

on strategy 1.15 It is straightforward to solve for the
value of z∗:

0 = π1(z∗)− π2(z∗)
(2),(3)
=⇒ z∗ =

N(a22 − a12) + a11 − a22

θ
, (13)

where θ = (a11 − a21 + a22 − a12) is the sum of the normalised stage game
payoffs, a1 = a11 − a21 and a2 = a22 − a12.

Looking at figure 2, it is clear that the mixed-strategy equilibrium of
Hawk-Dove games is “attractive” in the sense that the deterministic dy-
namic points towards z∗ in all states. In the coordination game setting of
KMR (1993) and Norman (2003a), by contrast, the configuration of the two
average payoff lines was reversed, so that the average payoff line for strat-
egy 1 was steeper than that for strategy 2, and the deterministic dynamic
pointed away from the mixed-strategy equilibrium z∗ in any given state.16

The “attractiveness” of z∗ in the Hawk-Dove setting accords with the fact
that the unique symmetric Nash equilibrium of such games is that in mixed
strategies.

In order to investigate whether this “attractiveness” of the mixed-strategy
equilibrium leads it to be selected as the long-run equilibrium of the model,
use is made of Young’s (1993) method17 for computing the stochastically sta-
ble states of a regular18 perturbed Markov process. This method is based
on the notion of rooted trees constructed on the set of the recurrent class(es)
E1, E2, . . ., EK of the unperturbed process P 0. For a given pair of (distinct)

15In this population context, the exact analogue of the stage game mixed-strategy equi-
librium is the state ρN (which again need not be an integer) where a fraction ρ of all
players are playing strategy 1. Note that z∗ will not be exactly equal to ρN because
1-incumbents and 2-incumbents face slightly different strategy distributions due to the
finiteness of the population. The difference between z∗ and ρN does, however, vanish as
the population size becomes large.

16Note that the only other possible configuration of the two average payoff lines in
figure 2 is for the lines not to cross within the state space. This then corresponds to
the remaining class of symmetric 2 × 2 games - that where there is a dominant strategy
(the strategy whose average payoff line lies entirely above that of the other strategy).
Question-beggingly high switching costs are required to overthrow the dominant-strategy
equilibrium as the unique long-run equilibrium of this class of games.

17See Young (1998), section 3.4, for more detail and illustrative examples.
18Let P ε be a Markov process on Z for each ε in some interval [0, ε∗]. P ε is described

as a regular perturbed Markov process if P ε is irreducible for every ε ∈ (0, ε∗], and for
every i, j ∈ Z, pε

ij approaches p0
ij at an exponential rate, that is,

lim
ε→0

pε
ij = p0

ij ,

and

if pε
ij > 0 for some ε > 0, then 0 < lim

ε→0

pε
ij

εr(i,j)
< ∞ for some r(i, j) ≥ 0.

The real number r(i, j) is called the resistance of the transition i → j. Note that transitions
that can occur under P 0 have zero resistance (i.e. p0

ij > 0 if and only if r(i, j) = 0).
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recurrent classes Ei and Ej , an ij-path is a sequence of states that begins in
Ei and ends in Ej . The resistance of this path is then the number of muta-
tions required to transit from recurrent class Ei to recurrent class Ej along
this path, and the minimum resistance over all possible ij-paths is denoted
rij .19 Construct a complete directed graph with K vertices (one for each
recurrent class), and weight each directed edge i → j with the appropriate
minimum resistance rij . A tree rooted at a particular recurrent class Ej ’s
vertex j (a j-tree) is then a set of (K−1) directed edges such that there is a
unique directed path in the tree to j from every vertex (i.e. recurrent class)
other than j. The resistance of a rooted tree T is the sum of the resistances
rij on T ’s (K − 1) edges, and the minimum resistance over all trees rooted
at j is called the stochastic potential γj of the recurrent class Ej .

Definition 3 A state z is stochastically stable (Young 1993) if

lim
ε→0

µε(z) > 0

The selection criterion of stochastic stability identifies which outcome(s) re-
ceive positive weight in the ergodic distribution as the amount of noise tends
to zero. Intuitively, stochastically stable states are those that are most likely
to be observed over the long run when noise is small, and they are thus some-
times referred to as the long-run equilibria of a system.

Lemma 2 (Young (1993)) If P ε is a regular perturbed Markov process,
and µε is its unique stationary distribution for each ε > 0, then limε→0 µε(z) =
µ0 exists, and the limiting distribution µ0 is a stationary distribution of the
unperturbed process P 0. The stochastically stable states are precisely those
states contained in the recurrent class(es) of P 0 having minimum stochastic
potential.

The intuition for this result is that, for a small and positive noise level ε, the
process is most likely to follow paths leading towards the recurrent classes
having minimum potential.

Returning to the application at hand, for the coordination games of KMR
(1993), the set of recurrent classes of the unperturbed process was invari-
ant under the admitted class of “Darwinian” selection dynamics. Moreover,
from any given state the underlying deterministic dynamic pointed in the
direction of one and only one absorbing state. For states below the mixed-
strategy equilibrium (z < z∗), the deterministic dynamic pointed towards
the absorbing state 0, whilst for states above the mixed-strategy equilib-
rium (z > z∗), it pointed towards the absorbing state N . In no state did
the deterministic dynamic point towards the mixed-strategy equilibrium.
Thus, the speed of the dynamic was unimportant for long-run equilibrium;

19Note that other evolutionary models (such as KMR) employ the analogous notion of
the cost of a transition path, rather than the resistance.
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immediate best-response by all players would transport the system to the
relevant extreme state within one period, but the same state would eventu-
ally be reached if the dynamic specified that only one player reviewed his
strategy each period.

In Hawk-Dove games, by contrast, the deterministic dynamic in any
given state points in the direction of a multitude of possible recurrent classes.
This is because the set of recurrent classes of the unperturbed process
changes according to the precise specification of the selection dynamic. The
speed of adjustment thus becomes crucially important for both short- to
medium- and long-run equilibrium. To illustrate, consider what happens if
the speed of adjustment is as fast as it could possibly be - i.e. if the deter-
ministic dynamic is the simultaneous-review best-response dynamic BN (z),
under which all players best-respond every period. In this case, the unper-
turbed process P 0 has one recurrent class, {0, N}.20 In any state z ∈ [0, z∗),
all players’ best response is to play strategy 1 (BN (z) = N), so that the
system jumps to state N in the next period. In any state z ∈ (z∗, N ], mean-
while, all players’ best response is to play strategy 2 (BN (z) = 0), so that
the system jumps to state 0 in the next period. Thus, once the recurrent
class {0, N} has been entered, the system oscillates between the two extreme
states from one period to the next. Since this is the only recurrent class, it is
(trivially) the recurrent class with minimum stochastic potential once noise
is introduced, and (by Lemma 2, page 13) is thus selected with probability
one by the long-run invariant distribution as ε → 0 (with each of states 0
and N receiving probability 1

2).
The results are very different, however, if the speed of adjustment is as

slow as it could possibly be under KMR’s “Darwinian” dynamics - i.e. if the
deterministic dynamic is the single-revisions best-response dynamic B1(z),
under which only one player best-responds each period, the rest retaining
their previous strategy. In this case, the mixed-strategy equilibrium (or,
more precisely, its neighbouring integers) is selected in the long run. There
is again just one recurrent class, but this time it is the set {α, β} of integers
surrounding the mixed-strategy equilibrium z∗. For z ∈ [0, z∗), B1(z) =
z+1, whilst for z ∈ (z∗, N ], B1(z) = z−1. Thus, B1(α) = β and B1(β) = α,
so that {α, β} is the unique recurrent class which, once entered, sees the
system oscillate between the states α and β from one period to the next.
Another trivial application of Lemma 2 shows that the limit distribution of
the perturbed process puts probability 1

2 on each of the states α and β.
In fact, the selection dynamic does not have to be as slow as this “one-

step” single-revisions dynamic in order to deliver the mixed-strategy equilib-
rium as the unique long-run equilibrium. KMR’s (1993) Theorem 5 provides
a condition on the selection dynamics which, if satisfied, ensures the long-

20In the unlikely event that the mixed-strategy equilibrium z∗ happens to be an integer,
it will also form a (singleton) recurrent class, but an extremely unstable one.
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run selection of {α, β} as above. Given a mixed-strategy equilibrium that
places probability ρ on strategy 1 being played, KMR say that b(z) is a
contraction relative to ρN21 if

d|b(z)− ρN |e ≤ d|z − ρN |e for all z, (14)

with the inequality holding strictly if ρN ∈ Z or d|z− ρN |e ≥ 2. If b(z) is a
contraction relative to ρN , and if N is sufficiently large that 1 ≤ ρN ≤ N−1,
then the limit distribution mimics the mixed-strategy equilibrium in the way
that it did for the one-step dynamic above.

By constraining the selection dynamic to behave in this way, the mixed-
strategy equilibrium becomes inevitable, but it is not clear whether the
“contraction” condition is a reasonable constraint to impose. For KMR,
the condition is best viewed as an assumption on the length of a period:
periods are sufficiently short that only a small fraction of the population
can adjust. For example, it is satisfied by the above one-step dynamic.
However, it is not satisfied by a “two-step” dynamic, nor indeed by any
“n-step” dynamic where n > 1; a one-step dynamic is required to keep the
system at the mixed-strategy equilibrium once it is reached, and any faster
n-step dynamic will not select the mixed-strategy equilibrium in the long
run. An unperturbed two-step best-response dynamic would have two re-
current classes, {(β − 1), α} and {β, (α + 1)}, each of which would receive
probability 1

2 under the limit distribution of the perturbed process. Sim-
ilarly, an unperturbed three-step best-response dynamic would have three
recurrent classes, {(β − 2), α}, {(β − 1), (α + 1)} and {β, (α + 2)}, each of
which would receive probability 1

3 under the limit distribution of the per-
turbed process. This indeterminacy of the n-step dynamic will grow with
n (giving n equally likely recurrent classes), reaching a maximum when
n = min {α, N − β}; at this point, the limits of the state space start to
reduce the number of recurrent classes, until it eventually falls to 1 again
under the simultaneous-review best-response dynamic. These considerations
reveal the stringent requirements imposed by KMR’s “contraction” condi-
tion, and suggest the focality of the mixed-strategy equilibrium in stochastic
evolutionary Hawk-Dove games to be far from robust.

Matters are helped little by moving to a dynamic where a constant frac-
tion of those wishing to switch strategies may do so each period. What the
“contraction” condition literally requires is that a sufficiently small fraction
of those players whose current best response is to switch strategies actually
do so, and that this fraction shrink the closer is the current state to the
mixed-strategy equilibrium ρN . Thus, with a dynamic that specifies a con-
stant fraction of would-be strategy-switchers as adjusting each period, the

21Recall that ρN is the exact mixed-strategy equilibrium analogue, by contrast with the
close approximation z∗ delivered by players ignoring their own play when forming beliefs
(see note 15, page 12).
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fraction required to hold the system around the mixed-strategy equilibrium
once reached (i.e. 1/max {α, N − β}) provides a (very low) upper bound on
the permissible speed of review for the whole process, if the mixed-strategy
equilibrium is to be selected in the long run. Indeed, the fastest possible
review here occurs when α = N − β ≈ N

2 , so that the permitted reviewing
fraction is 2

N .
All in all, one is left either with the requirement of very slow review

for selection of the mixed-strategy equilibrium, or with trying to provide a
foundation for a dynamic which sees the fraction of adjusting players fall
(sufficiently quickly) as the system approaches the mixed-strategy equilib-
rium. The natural question to arise at this point, in view of the findings of
Norman (2003a), is whether the introduction of switching costs to strategy
changes could serve to strengthen the mixed-strategy equilibrium of Hawk-
Dove games, and thus robustify its selection as the long-run equilibrium.

3.2.2 Introducing inertia

As in Norman (2003a), the introduction of switching costs into the model
creates a region of new mixed absorbing states, born of player inertia when
the switching cost outweighs any potential payoff gain from a strategy
change.

Proposition 2 In the presence of a switching cost c > 0, there exists a
multiplicity of mixed absorbing states22 of the unperturbed process P 0 in
addition to the set of recurrent classes present when c = 0.

Proof. The modified Darwinian property of the selection dynamics
in equation (8) says that there is a range of the average payoff difference
between the two strategies, (π1(z)− π2(z)) ∈ [−c, c], for which (b(z)−z) = 0.
Since the average payoff lines in figure 2 will certainly cross at some z∗ ∈ Z
(as was shown above), it follows that there will be a range of z, [zL, zH ] ∈ Z,
for which (b(z)− z) = 0. Now, it is clear from the deterministic dynamic in
equation (6) that any state for which (b(z)− z) = 0 is an absorbing state of
the unperturbed process P 0 (since then zt+1 = zt for ε = 0). Thus, there
is a range of z ∈ {Z\0, N}, each (integer) element of which is a (mixed)
absorbing state.

Definition 4 Given equation (8), the lower limit zL of the range of z for
22A mixed state is one where both strategies are being played by some strictly positive

number of players (as opposed to the two pure states, 0 and N). This has also been
termed a polymorphic profile(by contrast with a monomorphic profile) in the literature
(e.g. Robson and Vega-Redondo (1996)).
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which (b(z)− z) = 0 is defined as

c = π1(zL)− π2(zL)
(2),(3)
=⇒ zL =

N(a22 − a12 + c) + a11 − a22 − c

θ
, (15)

whilst the upper limit zH is defined as

−c = π1(zH)− π2(zH)
(2),(3)
=⇒ zH =

N(a22 − a12 − c) + a11 − a22 + c

θ
(16)

Definition 5 As in KMR (1993), the integers around z∗ are defined as

α = min {z ∈ Z | π2(z) > π1(z)} = dz∗e , and
β = max {z ∈ Z | π2(z) < π1(z)} = bz∗c

Similarly, the integers around zL are defined as

αL = min {z ∈ Z | π1(z)− π2(z) < c} = dzLe , and
βL = max {z ∈ Z | π1(z)− π2(z) > c} = bzLc

whilst those around zH are defined as

αH = min {z ∈ Z | π1(z)− π2(z) < −c} = dzHe , and
βH = max {z ∈ Z | π1(z)− π2(z) > −c} = bzHc

Figure 2 is thus modified to yield figure 3. The set EM of new mixed
absorbing states is then straightforwardly characterised as:

EM = {αL, αL + 1, . . . , β, α, . . . , αH , βH}
= {αL + j} , j = 0, 1, . . . , (βH − αL) (17)

The number m of these mixed absorbing states is clearly given by

m = βH − αL + 1
= βH − βL = αH − αL (18)

Defining ζL = αL − zL and ζH = αH − zH , m can then be expressed as a
function of the parameters of the model:

m = (zH + ζH)− (zL + ζL)

= −2(N − 1)c
θ

+ (ζH − ζL) (19)

Since θ < 0 for Hawk-Dove games, the number of mixed absorbing states m
is clearly increasing in N and c, but decreasing in the absolute value of the
sum of the normalised stage game payoffs θ.
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Figure 3: KMR Hawk-Dove games with switching costs

The existence of the new mixed absorbing states is independent of the
precise selection dynamic employed, and thus hints at a new stability lacking
in the above inertialess model. In fact, however, in order for any of the new
mixed absorbing states to be selected as long-run equilibria, a “contraction”
condition (albeit slightly modified) must once again be imposed on the se-
lection dynamics. Moreover, the KMR result is in fact weakened in some
sense by the introduction of switching costs, the mixed-strategy equilibrium
losing its unique focality.

Definition 6 Given a mixed-strategy equilibrium that places probability ρ
on strategy 1 being played, say that b(z) is a contraction relative to EM if

d|b(z)− ρN |e ≤ d|z − ρN |e for all z, (20)

with the inequality holding strictly if d|z − ρN |e > (1
2m) (or d|z − ρN |e >

(1
2m + 1) for m odd).

Proposition 3 If b(z) is a contraction relative to EM , then the limit distri-
bution of the perturbed Hawk-Dove game in the presence of a fixed switching
cost c puts probability 1

m on each of the m mixed absorbing states.

Proof. The mixed absorbing states, EM , constitute the only recurrent
classes of the unperturbed process when the “modified contraction” condi-
tion of Definition 6 is satisfied. Each mixed absorbing state has an essentially
identical most efficient (i.e., most probable) j-tree constituted by one-step
jumps between absorbing states (see figure 4), each such jump requiring one
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3 4 5

(a) Most efficient 3-tree

.................................................................. ..................................................................

3 4 5

(b) Most efficient 4-tree

.................................................... .............. ..................................................................

3 4 5

(c) Most efficient 5-tree

.................................................... .............. .................................................... ..............

Figure 4: Most efficient j-trees, m = 3

mutation. All of the mixed absorbing states thus have the same stochastic
potential, so that they are all selected as equally likely long-run equilibria
by Lemma 2 (page 13).

The only strengthening of the result to emerge with the addition of
switching costs is that obtained by the weakening of the “contraction” con-
dition in Definition 6; the inequality in equation (20) is now only required
to hold strictly if the system currently lies outside the EM region (compare
equation (14), page 15). This weakening is possible because the determin-
istic dynamic does not act within the EM region, so that it is only required
to deliver the system into the EM region, rather than all the way to the
mixed-strategy equilibrium as before. As a result, a wider class of selection
dynamics will now select the EM states than would have selected the mixed-
strategy equilibrium in the absence of inertia. Thus, for example, if there is
a region of five mixed absorbing states in the presence of a given switching
cost c, then a six-step dynamic satisfies the “modified contraction” condition
and will deliver the selection results of Proposition 3. This, however, seems
a hollow victory in the wake of the indeterminacy of the Proposition.

3.3 Discussion

Thus, contrary to initial expectation, the presence of switching cost-driven
inertia in the evolutionary Hawk-Dove game studied does not serve to ro-
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bustify the long-run selection of the “attractive” mixed-strategy equilibrium
to any satisfactory degree. The direct effect of the inertia is confined to the
region of the state space taken up by the new mixed absorbing states, so
that a KMR-like “contraction” condition must be placed on the selection
dynamics in order for convergence to that region to take place. The pres-
ence of the mixed absorbing states does serve to weaken the requirements
of the “contraction” condition somewhat, but it also serves to dilute the
focality of the mixed-strategy equilibrium by providing a number of equally
attractive alternative equilibria.

These findings may signal that the KMR theorem is as strong a selection
result as it is possible to derive for the mixed-strategy equilibrium here, and
- in combination with the findings of Norman (2003a) - that the presence of
switching costs cannot significantly affect long-run equilibrium. More likely,
however, is that it points up the limitations of the model employed so far. In
particular, there are two main unrealistic features of the model that may be
distorting the results or hiding additional effects: the fact that the switching
cost is uniform (across players) and fixed (over time); and the fact that the
probability of mutation is uniform across states. Both problems can be
addressed using a model of state-dependent mutations driven by stochastic
switching costs, to which attention is now turned.

4 State-Dependent Mutations

Whilst it is highly realistic that individual players will face switching costs
of changing their strategies, it has been argued that it is far less realistic
that there will be a single time-invariant switching cost that is the same
across all players, as was the case with c in the above KMR-style model.
Moreover, the model is clearly subject to the Bergin and Lipman (1996)
critique of models with state-independent mutations, the mutation rate ε
remaining constant across states. Since mutations may be chosen such that
any invariant distribution of the unperturbed process is the limiting er-
godic distribution of a perturbed process, Bergin and Lipman argue that
state-independent mutations are arbitrary, and that an economically justi-
fied model of state-dependent mutations should instead be employed.

Thus, in this section, the assumption of a fixed switching cost is dropped,
and c is instead allowed to be stochastic, determined as the realisation of a
random variable C. Each individual player takes a draw from C each period
to determine his switching cost for that period, yielding the realistic feature
of idiosyncratic, time-varying switching costs. Hence, this sort of stochas-
tic switching costs model explicitly incorporates player heterogeneity, with
players varying in their switching costs according to abilities, situations,
priorities and so on. Indeed, it has parallels with the Myatt and Wallace
(1998) model of adaptive play by idiosyncratic agents. The move to stochas-
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tic switching costs also has the potential to address the Bergin and Lipman
(1996) critique by endogenising the mutation rate. The stochastic switching
costs can provide the “error” necessary to yield an ergodic Markov chain,
with this “error” now being interpreted as players behaving differently to
what one would expect from the cost-less payoff matrix Λ in equation (1).

However, if - as the intuition for switching costs would at first suggest -
the support of the random variable C were to be restricted to the positive
real line R+, then the resulting Markov process would not be irreducible;
“mutations” against the flow of the deterministic dynamic would have zero
probability since, with a positive switching cost, no player will ever switch
away from the strategy which currently has the higher expected payoff.23 A
reducible Markov chain remains subject to path-dependence, and does not
yield an ergodic long-run distribution. To attain this, the state-independent
mutation rate ε of the earlier chapters could be re-introduced, but this seems
ad hoc and defeatist. Instead, the support of the switching cost random vari-
able C could be extended to the whole real line R, allowing the possibility
of switching benefits. The existence of switching benefits in some players,
grounded for example in an urge for creativity or nonconformity, is a re-
alistic feature to incorporate within the model, and can be kept relatively
improbable by assuming that C is distributed with positive mean. This will
suffice to deliver an irreducible Markov chain - all states now being accessi-
ble from all others - and thus the desired ergodic long-run distribution over
states.

Long-run selection of the mixed-strategy equilibrium is found to hold
in the stochastic switching costs model under the single-revisions dynamic,
which assumes that a single randomly selected member of the population
has the opportunity to revise his strategy at the end of each period. How-
ever, this was to be expected, given that the “one-step” single-revisions
dynamic satisfies both of the “contraction” conditions from the previous
section. Generality thus requires the model to be extended to a KMR-style
simultaneous-revisions framework, in which every player simultaneously has
the opportunity to review his strategy each period. This allows the rate at
which players review their strategies to be endogenised, so that the prob-
lems encountered in section 3 are overcome, and long-run convergence to the
mixed-strategy equilibrium can be given a robust theoretical foundation. It
turns out that there exists a threshold mean switching cost, above which
the mixed-strategy equilibrium is selected in the long run for a wide class of
switching cost distributions.

23This observation illustrates well the Bergin and Lipman (1996) criticism of the ar-
bitrariness of state-independent mutations: there might be no reason to expect certain
sorts of mutations under certain circumstances, and to ignore this is to assume away path-
dependence when it may be an essential feature of the real-life process. The model here
seeks to avoid this problem by providing an economically justified model of mutations
which generates irreducibility.
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4.1 The Model

The basic KMR structure of a finite population of N players repeatedly
playing the 2 × 2 game Λ (equation (1)) is retained, with associated cost-
adjusted payoff matrices Λ1 and Λ2 (equations (4) and (5)). The first major
change to the model is that the switching cost c in any given period is now
determined for each player individually as an independent and identically
distributed draw from the switching cost random variable C, which is as-
sumed to have a cumulative distribution function (cdf) F with a nonnegative
mean c̄ ≥ 0 and variance σ2. This is a natural, general representation of
differing switching costs across players, the positive mean focusing attention
on switching costs but the infinite support delivering a small probability of
switching benefits.

The expected payoffs are as they were in section 3 (see equations (2)
and (3), page 7). Define $1(z) = π1(z)− π2(z), and $2(z) = π2(z)− π1(z),
to be the expected payoff gains at stake from strategy switches in state z.
Clearly a 1-incumbent will switch to being a 2-strategist if and only if

$2(z) > c

whilst a 2-incumbent will switch to being a 1-strategist if and only if

$1(z) > c

Defining st
l to be the strategy of player l in period t, the switching prob-

abilities conditional on player l having been selected for review are then
immediate:

Pr(st+1
l = 2 | st

l = 1) = F ($2(z − 1))

Pr(st+1
l = 1 | st

l = 2) = F ($1(z))

The probability of a selected 2-incumbent switching to strategy 1 in a given
state is illustrated in figure 5 (f(·) representing the switching cost random
variable C’s probability density function (pdf)).24

The second major change to the KMR-style model of section 3 is in
the selection dynamic employed. In this more complicated setting, it is
desirable for the sake of mathematical convenience to focus attention on
the best-response dynamic B(z) - where players play their best response to
current strategy frequencies - rather than KMR’s more general “Darwinian”
dynamic b(z). This simplifies the analysis and also serves to isolate the effect
of inertia on the system’s review rate, without the distraction of having
other forms of bounded rationality at work. The effect of the selection
dynamic can still be analysed in this setting by comparing the extreme cases

24Whilst the pdf depicted in figure 5 is a Normal density, f(·) is a general pdf in the
model, and thus can take any form.

22





........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................. . .
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

c

f(·)

c̄0 $1(z)
........
.....
........
.....
........
.....
........
.....
........
.....
........
.....
........
.....
........
..

....

....

....

....

....

....

....

....

....

....

....

..

Figure 5: The switching cost C’s pdf

of the simultaneous-revisions dynamic of KMR (1993) and others, and the
“one-step” single-revisions dynamic favoured by Binmore and Samuelson
(1997), Blume (1999), and Myatt and Wallace (1998). Under the “one-
step” dynamic, a single randomly selected member of the population has
the opportunity to revise his strategy at the end of each period. Given his
realised value of c, this player observes the strategy distribution among the
incumbent population and selects a best response to this frequency.25 In the
simultaneous-revisions model by contrast, each player has this opportunity
to revise his strategy each period. Evolution can thus proceed far more
rapidly under simultaneous revisions, ceteris paribus.26

4.2 Analysis

4.2.1 Single revisions

In this subsection, use will be made of the “one-step” best-response dy-
namic B1(z), where just one player at a time has the opportunity to revise
his strategy. Given that the reviewing player l is randomly selected, the
probability that he is a 1-incumbent is simply z

N , implying the following
transition probabilities between states.

25An equivalent scenario is the familiar story of player exit and entry, whereby a ran-
domly selected player leaves at the end of each period, and is replaced by another player
with a new draw from C.

26Both the single- and simultaneous-revisions dynamics require the implicit assumption
that the switching cost of an updating individual will have changed since the last revision,
since he must take a fresh draw from C. This is a reasonable assumption when the noise
is small, and thus unproblematic for vanishing heterogeneity results obtained as σ2 tends
to zero. More generally, the procedure can be justified by noting that players are more
likely to revise their strategy whenever their switching costs change.
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Lemma 3 The transition probabilities pij of the Markov matrix P satisfy:

pij =





(
i
N

)
F ($2(i− 1)) j = i− 1

(
i
N

)
(1− F ($2(i− 1))) +

(
N−i
N

)
(1− F ($1(i))) j = i

(
N−i
N

)
F ($1(i)) j = i + 1





and are zero elsewhere.

Proof. Given the single-revisions framework, the process cannot move
from state i to j < i − 1 or j > i + 1. A move to state i + 1 requires
that a 2-incumbent be selected for review, and that having been selected his
best response to the current strategy frequency be to switch to strategy 1.
The former occurs with probability (N − i)/N ; the latter with probability
F ($1(i)). Similar arguments apply for the cases j = i and j = i− 1.

Proposition 4 The adaptive response dynamic defined by the transition
probabilities pij in Lemma 3 is an irreducible, aperiodic Markov process on
the finite state space Z. Consequently, it has a unique invariant distribution.

Proof. Since the normal distribution has full support, either strategy may
be chosen by any reviewing player. The process can thus move in either di-
rection from any state i (except the extreme states), as formalised in Lemma
3, so that every state is accessible from all others in finite time - i.e., the
process is irreducible. Moreover, since in every state there is a positive prob-
ability of the system remaining in that state in the next period, the process
is aperiodic. The process thus has a unique invariant distribution by Lemma
1.

Long-run equilibrium with vanishing heterogeneity In the previous
section, long-run equilibrium results were obtained by analysing the limit
of the ergodic distribution as the probability of mutation ε tended to zero.
The analogue in this model, as in the model of Myatt and Wallace (1998),
is vanishing player heterogeneity over switching costs - i.e., taking σ2 → 0.

Given the departure from a uniform mutation rate ε, the simple Young
stochastic potential technique of Lemma 2 cannot be applied here. Fortu-
nately, Young’s method fits into a wider graph-theoretic approach to the
analysis of the long-run behaviour of perturbed Markov chains. This graph-
theoretic approach is in turn derived from general Markovian theory.27 If ε
were known precisely, it would (in theory) be possible to compute the ac-
tual distribution µε by simply solving the stationarity equations µεP ε = µε.
However, in most applications of interest in economics, the size of the state

27A standard reference for Markovian theory is Karlin and Taylor (1975).
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space would make this a very cumbersome task. This fact led to the im-
porting of the simplified graph-theoretic techniques of Freidlin and Wentzell
(1984) into the economics discipline by Foster and Young (1990), KMR
(1993), and Young (1993), and the resulting birth of stochastic adjustment
dynamics.

Like the computation of Young’s stochastic potential function, the graph-
theoretic computation of µε is based on the notion of rooted trees, but this
time constructed on the whole state space Z rather than merely on the set
of recurrent classes. Specifically, consider a directed graph whose vertex
set is the state space Z. The edges of this graph form a z-tree (for some
particular z ∈ Z) if it consists of |Z| − 1 edges and from every vertex i 6= z
there is a unique directed path from i to z. A z-trees’s edges are weighted
with the appropriate Markov transition probabilities pij . Representing any
given directed edge i → j by the ordered pair of vertices (i, j), a z-tree T
can then be represented as a subset of ordered pairs. Let Tz be the family
of all z-trees for a given z. Define the likelihood of z-tree T ∈ Tz to be

p(T ) =
∏

(i,j)∈T

pij

Lemma 4 (Freidlin and Wentzell (1984)) Let P be an irreducible Markov
process on a finite state space Z.28 Its stationary distribution µ has the prop-
erty that the probability µ(z) of each state z is proportional to the sum of
the likelihoods of its z-trees, that is,

µ(z) =
v(z)∑
i∈Z v(i)

, where v(z) =
∑

T∈Tz

p(T ) (21)

This result allows computation of an exact estimate of a system’s ergodic
distribution µε for each ε > 0;29 it is not a limiting result as ε tends to zero.

The additional analytical power of the Freidlin-Wentzell method in pro-
viding an immediate closed form for the invariant distribution µ comes at
the price of the greater complexity inherent in constructing trees on the
whole state space (rather than on the set of recurrent classes, as in Young’s
method30). The number of z-trees to be considered soon becomes pro-
hibitively large as the state space grows. This is where the use of the single-
revisions dynamic becomes useful, since it means that v(z) in equation (21)
takes a very simple form. With only one revision at a time, there is only

28Note that Lemma 2’s condition that P be a regular perturbed process is no longer
required.

29See Young (1998), section 3.4, for illustrative examples.
30Young’s technique in fact follows from that of Freidlin and Wentzell, taking advantage

of uniform mutation rates, and of the zero resistance of paths along the deterministic
dynamic, in order to achieve greater analytical simplicity by simply “counting mutations”
between recurrent classes.
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Figure 6: Unique positively weighted 3-tree, N = 8

one possible positively weighted z-tree for any given state z - that z-tree
involving successive one-step jumps from every state in the direction of z, as
illustrated in figure 6.31 Any other one-step z-tree violates the requirement
of a unique path to z from every other state. It follows that v(z) is given by

v(z) =
∏

0≤i<z

pi(i+1)

∏

z<i≤N

pi(i−1)

which implies, in combination with the transition probabilities in Lemma 3,
that

v(z) =
1

NN

∏

0≤i<z

(N − i) F ($1(i))
∏

z<i≤N

i F ($2(i− 1)) (22)

The unperturbed process P 0 in this model is that where there is no
heterogeneity in switching costs, σ2 = 0. In this case, the switching cost pdf
(figure 5, for example) collapses to a point mass on the mean switching cost c̄,
and the model becomes that of section 3, with c = c̄ (see figure 3, page 18).
Because the selection dynamic is the “one-step” single-revisions dynamic,
the unperturbed process has a set of recurrent classes consisting only of the
mixed absorbing states EM of Proposition 2 (page 16). As usual, the ergodic
distribution will focus all weight on these states as perturbations go to zero,
but to select between them it is necessary to consider their relative weight in
the ergodic distribution. Note that Lemma 4 implies that the relative weight
of any two states z and z′ in the ergodic distribution µ may be assessed by
considering the ratio

µ(z)
µ(z′)

=
v(z)
v(z′)

(23)

Following Myatt and Wallace, a state z will be said to dominate another
state z′ for vanishing heterogeneity whenever limσ2→0

v(z)
v(z′) = ∞. If a state

dominates all others in this sense, it is clearly the unique stochastically
stable state of the system.32

31For a proof, see Myatt and Wallace’s (1998) Lemma 3.
32Refer to the definition of stochastic stability on page 13.
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Definition 7 A distribution F with mean ȳ has a likelihood ratio unbounded
in the tails if

lim
σ2→0

F (y)
F (y − ε)

→∞, ∀y ≤ ȳ,∀ε > 0

and lim
σ2→0

1− F (y)
1− F (y + ε)

→∞, ∀y > ȳ,∀ε > 0

Proposition 5 Assume that the switching cost distribution F has a likeli-
hood ratio unbounded in the tails. Then the unique stochastically stable state
is the integer α just above the mixed-strategy equilibrium z∗.

Proof. The unique positively weighted α-tree shares all of its branches
with that of any given state z, except for those branches lying between α
and z. Hence, after cancelling these shared terms,

lim
σ2→0

v(β)
v(z)

= lim
σ2→0

∏
α<i≤z iF ($2(i− 1))∏

α≤i<z(N − i)F ($1(i))

= lim
σ2→0

∏

α≤i<z

(i + 1)
(N − i)

F ($2(i))
F ($1(i))

(24)

assuming without loss of generality that z > α, and re-indexing the numera-
tor in the second step. As σ2 → 0 (i.e., the game approaches that of section
3),33 F ($2(i)) (the probability of a selected 1-incumbent switching to strat-
egy 2) tends to 1 in the limit for i > zH , but to 0 for i ≤ zH .34 Similarly,
F ($1(i)) (the probability of a selected 2-incumbent switching to strategy
1) tends to 1 for i < zL, but to 0 for i ≥ zL. It is thus clear that both the
numerator and the denominator of equation (24) tend to 0 as heterogeneity
vanishes. However, consider the likelihood ratio term (F ($2(i))/F ($1(i)))
for a given i ∈ (zH , z). The numerator of this term tends to 1 in the limit for
any i ∈ (zH , N ], whilst the denominator tends to 0, so that the limit of the
likelihood ratio term over this range is infinity. Over the range i ∈ [α, zH ],
meanwhile, both the numerator and the denominator of any given likeli-
hood ratio term tend to 0. But since $2(i) > $1(i) for i > z∗, a sufficient
condition for this ratio to tend to infinity as σ2 → 0 is that the switching
cost distribution F have a likelihood ratio unbounded in the tails, as de-
fined in Definition 7. For such switching cost distributions then, all of the
likelihood ratio terms (F ($2(i))/F ($1(i))) for i ∈ [α, z) tend to infinity as
heterogeneity vanishes. Hence, limσ2→0(v(α)/v(z)) = ∞, and α dominates
all states z ∈ (α, N ].

By a similar line of argument, β dominates all states z ∈ [0, β). Now,

lim
σ2→0

v(α)
v(β)

= lim
σ2→0

(N − β)
α

F ($1(β))
F ($2(β))

33Refer to the unperturbed Hawk-Dove game of figure 3 (page 18).
34zL and zH are as defined in equations (15) and (16) (page 17), with c = c̄.
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And since $1(i) > $2(i) for i < z∗, a sufficient condition for this ratio to
tend to infinity as σ2 → 0 is that the switching cost distribution F have a
likelihood ratio unbounded in the tails. For such switching cost distributions
then, α dominates β, and hence all states z ∈ [0, β]. It follows that α is the
unique stochastically stable state.

Remark 1 It should be noted that α is selected over β here because of the
integer effect of players ignoring their own strategy when calculating current
strategy frequencies. As N → ∞ - and such integer effects disappear - the
limiting ergodic distribution will place equal weight on α and β, which in
any case will both converge on the mixed-strategy equilibrium z∗ as N gets
large.

Thus, for any switching cost distribution satisfying the property of a like-
lihood ratio unbounded in the tails, the “attractive” mixed-strategy equi-
librium of Hawk-Dove games is selected as the long-run equilibrium of the
single-revisions stochastic switching costs model. And a wide variety of rea-
sonable distributions do satisfy this property - for example, the Normal,
Student’s t, exponential, logistic and gamma distributions. Moreover, the
likelihood ratio unbounded in the tails property is a sufficient, but not a nec-
essary, condition for the result, so that an even wider class of distributions
is admissible.35

However, this selection of the mixed-strategy equilibrium should come as
no surprise, since using the single-revisions dynamic with Hawk-Dove games
is begging the question somewhat; the “one-step” dynamic satisfies both
KMR’s “contraction” condition (page 15 above) and the “modified contrac-
tion” condition of Definition 6 (page 18). In the next section, the stochastic
switching cost model is extended to the more general simultaneous-revisions
dynamic, and it is shown that in this context convergence to the mixed-
strategy equilibrium can be given more satisfactory foundations.

4.2.2 Simultaneous revisions

The selection dynamic employed in this subsection is the simultaneous-
revisions best-response dynamic BN (z). Under this dynamic, all players
have the opportunity to revise their strategies each period; each player takes
an independent and identically distributed draw from the switching cost ran-
dom variable C, and then best-responds with respect to the current strategy
frequency and his c draw in deciding whether or not to switch strategies.

35Note, however, that the uniform mutation rate ε of section 3 does not satisfy this
property.
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Lemma 5 Under the simultaneous-revisions dynamic, the new transition
probabilities pij which constitute the perturbed Markov matrix P σ2

are

pij =
min{j,N−i}∑

k=max{j−i,0}

(
i

i + k − j

)(
N − i

k

)

× F ($2(i− 1))i+k−j (1− F ($2(i− 1)))j−k

× F ($1(i))
k (1− F ($1(i)))

N−i−k

Proof. There are (min {j, N − i}−max {j − i, 0}) possible combinations
of strategy switches in a period that will lead the system from state i to
state j, each of which has a number of permutations (essentially relabelling
players) given by the product of the two binomial terms. The product of F
terms is then the probability of each permutation.

Proposition 6 The adaptive response dynamic defined by the transition
probabilities pij in Lemma 5 is an irreducible, aperiodic Markov process on
the finite state space Z. Consequently, it has a unique invariant distribution.

Proof. Since F has full support, either strategy may be chosen by any
reviewing player. The process can thus move in either direction from any
state i (except the extreme states). Moreover, given that all players have
the opportunity to revise their strategies in each period, the process can
move anything from 0 to N states in one period. Thus, every state is acces-
sible from all others within one period (i.e. every entry pij in the perturbed
Markov matrix P σ2

of Lemma 5 is strictly positive), so that the process is
irreducible. Moreover, since in every state there is a positive probability of
the system remaining in that state in the next period, the process is ape-
riodic. By Lemma 1, the process thus has a unique invariant distribution.

Long-run equilibrium with vanishing heterogeneity As under single
revisions, the unperturbed Markov process P 0 under simultaneous revisions
is that where there is no heterogeneity in switching costs, σ2 = 0. And sim-
ilarly, as the switching cost pdf (figure 5) collapses to a point mass on the
mean switching cost c̄, the model again becomes that of section 3 (see figure
3, page 18). However, because the selection dynamic is now simultaneous-
revisions best-response, the set of recurrent classes of the unperturbed pro-
cess is widened to include the extreme state cycle {0, N} in addition to the
mixed absorbing states EM (see page 14). All weight will be focused on these
classes by the ergodic distribution as heterogeneity vanishes, but as before,
limiting relative weights must be considered in order to select between these
candidate equilibria.
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However, this task is considerably less straightforward than under the
single-revisions dynamic. The transition probabilities of Lemma 5 provide
a stark illustration of the potential complexity of the Freidlin-Wentzell ap-
proach to long-run equilibrium analysis. Every branch of every possible
z-tree is weighted by a transition probability pij , and under simultaneous
revisions the number of possible z-trees per state soon becomes prohibitively
large as the state space grows. Fortunately, some simplifications are avail-
able.

Lemma 6 The probability pij of the transition between states i and j is of
the order of

%ij = max
k∈[max{j−i,0},min{j,N−i}]

(
i

i + k − j

) (
N − i

k

)

× F ($2(i− 1))i+k−j (1− F ($2(i− 1)))j−k

× F ($1(i))
k (1− F ($1(i)))

N−i−k (25)

as σ2 → 0. Moreover, for switching cost distributions satisfying the condi-
tion F (−x) < (1−F (x)), and with a likelihood ratio unbounded in the tails,
this maximum is achieved at k = max {j − i, 0}.

Proof. The first part of the result is immediate from Lemma 5, given
that the order of a summation of terms is determined by the highest order
term. To see the second part, consider the effect of increasing k by 1 in
equation (25): (1−F ($2(i−1)))(1−F ($1(i))) is removed from the expres-
sion, and replaced by the strictly lower F ($2(i − 1))F ($1(i)) (under the
assumption that F (−x) < (1−F (x))). A likelihood ratio unbounded in the
tails is then sufficient to guarantee that the maximand in equation (25) is
decreasing in k as σ2 → 0.

Intuitively, the minimum value of k is selected in Lemma 6 because this
minimizes the number of strategy switches used to effect a given transition.
Two strategy switches in opposite directions merely cancel each other out,
and two players remaining inert is more probable than two players switch-
ing in opposite directions; hence, anything above the minimum number of
strategy switches serves to reduce a transition path’s probability. This is
a natural feature of a model of evolution under inertia, and indeed a wide
class of distributions satisfy the conditions of the Lemma given a positive
mean. For example, symmetry about c̄ is sufficient (but not necessary) to
ensure that F (−x) < (1− F (x)) for c̄ > 0.

Lemma 7 Under the adaptive response dynamic defined by the transition
probabilities pij in Lemma 5, state z dominates another state z′ for vanishing
heterogeneity whenever

lim
σ2→0

%(z)
%(z′)

= ∞,
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where
%(z) =

∏

(i,j)∈Tmax
z

%ij

and Tmax
z = arg maxT∈Tz p(T ) is the most probable z-tree for a given state

z.

Proof. Recall that a state z dominates another state z′ for vanishing
heterogeneity whenever limσ2→0(v(z)/v(z′)) = ∞. Recall also from Lemma
4 that v(z) is given by the sum of the likelihoods of all possible z-trees for
a given state z. Thus,

lim
σ2→0

v(z)
v(z′)

= lim
σ2→0

∑
T∈Tz

p(T )∑
T∈Tz′

p(T )
,

where p(T ) =
∏

(i,j)∈T pij is the likelihood of the tree T , which belongs to a
family of z-trees Tz (for a given state z).

Now, limσ2→0(v(z)/v(z′)) = ∞ if and only if v(z) is of higher order than
v(z′) (i.e. v(z′) = o(v(z))).36 Hence

lim
σ2→0

v(z)
v(z′)

= ∞ ⇔ lim
σ2→0

maxT∈Tz p(T )
maxT∈Tz′ p(T )

= ∞

Since this will in turn be true if and only if

max
T∈Tz′

p(T ) = o(max
T∈Tz

p(T )),

dominance is seen to be determined by a comparison of the order of the
likelihood of each state’s highest-order z-tree.37 The likelihoods of the most
probable z-trees are themselves products of the transition probabilities pij

of Lemma 5, each of which is of the order of %ij as σ2 → 0 by Lemma 6.

In order to employ Lemma 7 precisely, it is first necessary to identify the
most probable z-tree Tmax

z for each state z. This task is far from straight-
forward, and is addressed in Norman (2003b). There it emerges that the
most probable way of escaping a given basin of attraction depends on the
assumed “noise model” - in this case the density of switching costs - but in
general is unlikely to involve either one-step transitions or direct jumps. As
a result, fully operationalizing Lemma 7 is a complex task, feasible only for
particular noise models. However, the long-run equilibrium can be obtained
without knowledge of the precise form of the most probable z-trees.

36In general, for two functions f(x) and g(x), if (f(x)/g(x)) → 0 as x →∞, then f is of
smaller order than g, denoted f(x) = o(g(x)). If, on the other hand, limx→∞(f(x)/g(x)) ≤
constant, then f is of the same order as g, denoted f(x) = O(g(x)).

37This is a key result in graph-theoretic Markovian theory which, for example, underlies
Young’s stochastic potential technique.
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Lemma 8 The most probable z-trees have the following properties:

1. For the most probable 0- and N -trees, Tmax
N and Tmax

0 ,

(a) all branches rooted outside of the EM region (and hence inside
D({0, N})) are those of the deterministic dynamic (whose prob-
abilities tend to 1 as σ2 → 0);

(b) the branches rooted in the EM region constitute the (unknown)
most probable way of escaping the region of mixed absorbing states
EM (and thus of entering {0, N}’s basin of attraction D({0, N})).

2. For the most probable α- and β-trees, Tmax
α and Tmax

β ,

(a) all branches rooted inside the EM region are one-step transitions
towards α for Tmax

α , and towards β for Tmax
β ;

(b) the branches rooted outside of the EM region (and hence inside
D({0, N})) constitute the (unknown) most probable way of escap-
ing D({0, N}) (i.e., of entering the EM region).

Proof.

1. (a) The transitions of the underlying deterministic dynamic are ob-
viously the most probable transitions available in the limit.

(b) Given 1(a), any state z ∈ D({0, N}) can be entered from the
EM region, and hence the most probable such escape is selected.
Note that, by an “escape” from the EM region here is meant a
sequence of transitions that provides a directed path from each
mixed absorbing state out of the EM region.

2. (a) The most probable event within the EM region is inertia, but
a z-tree requires a transition rooted in every state. And the
most probable transition from any given mixed absorbing state is
the minimum number of strategy switches in the more probable
direction - i.e., a one-step transition towards the mixed-strategy
equilibrium z∗.

(b) Given 2(a), any mixed absorbing state can be entered from D({0, N}),
and hence the most probable such escape is selected.

Proposition 7 Assume that the switching cost distribution F has a likeli-
hood ratio unbounded in the tails. Then, as σ2 → 0,

1. the set {0, N} dominates all states in the ranges (0, zL) and (zH , N);

2. the set {α, β} dominates all of the other mixed absorbing states.
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Proof.

1. Consider %(N)/%(0), and call this the order ratio for convenience. By
Lemma 8, the most probable 0- and N -trees share all of their branches,
except for those leading from and to each other, 0 → N and N → 0.
Thus, cancelling shared terms,

lim
σ2→0

%(N)
%(0)

= lim
σ2→0

%0N

%N0

Since both the numerator and the denominator of this ratio tend to 1
as σ2 → 0, it follows that the limit itself is equal to 1, so that neither
state 0 nor N dominates the other. This corresponds with the fact that
the extreme state cycle {0, N} is a recurrent class of the unperturbed
process.

Consider now the relative weight of the extreme states {0, N} by com-
parison with states in the regions (0, zL) and (zH , N). Clearly any
z ∈ {(0, zL), (zH , N)} lies in {0, N}’s basin of attraction D({0, N}).
And in Tmax

N and Tmax
0 , D({0, N}) is entered in the most probable

fashion (by Lemma 8). Moreover, Tmax
N ’s (resp., Tmax

0 ’s) path from z
to N (resp., 0) is clearly more probable than any path from N (resp.,
0) to z. F ’s likelihood ratio unbounded in the tails then guarantees
{0, N}’s dominance over z for vanishing heterogeneity.

2. Consider the order ratio %(α)/%(β) for the states α and β that lie
immediately above and below the mixed-strategy equilibrium z∗. By
Lemma 8, the most probable α- and β-trees share all of their branches,
except for those leading from and to each other, β → α and α → β.
Thus, cancelling shared terms,

lim
σ2→0

%(α)
%(β)

= lim
σ2→0

%βα

%αβ
(26)

Absent integer problems (i.e., as N gets large), %βα and %αβ converge
to 0 at the same rate as σ2 → 0 (since $1(β) ≈ $2(α), with equality as
N →∞). Hence, the limit in equation (26) is a positive constant, and
neither state α nor β dominates the other for vanishing heterogeneity.

However, both α and β dominate all of the other mixed absorbing
states for switching cost distributions with a likelihood ratio unbounded
in the tails. To see this, note first that any directed path from α (resp.,
β) to any other mixed absorbing state zM ∈ EM\{α, β} is strictly less
probable than Tmax

α ’s (resp., Tmax
β ’s) one-step-at-a-time directed path

from zM to α (resp., β). Given that the EM region is also entered in
the most probable manner in Tmax

α and Tmax
β (by Lemma 8), this is

sufficient to guarantee {α, β}’s dominance over all zM ∈ EM\{α, β}
for vanishing heterogeneity.
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Proposition 8 Assume that the switching cost distribution F has a like-
lihood ratio unbounded in the tails. Then there exists a threshold level of
the mean switching cost, ĉ, below which the ergodic distribution places all
weight equally on the extreme states 0 and N as σ2 → 0, but above which
the mixed-strategy equilibrium states α and β are the long-run equilibria.

Proof. Recall that if a state dominates all others for vanishing hetero-
geneity, then it is the unique stochastically stable state (or long-run equi-
librium) of the system. Lemma 7 thus implies that if limσ2→0(%(z)/%(z′)) =
∞, ∀z′ 6= z, then z is the unique long-run equilibrium.

By Proposition 7, there are only two possible candidate equilibria for
long-run selection; all weight in the limiting ergodic distribution will be
focused either on the extreme state cycle {0, N} or on the mixed-strategy
equilibrium states {α, β}. Hence, a comparison of the relative weights of
α and 0 will suffice to indicate which set of states is dominant. Lemma 8
implies that, after cancelling shared terms,

lim
σ2→0

%(α)
%(0)

= lim
σ2→0

(
Υ0M

×
∏

αL≤i≤β %i(i+1)

∏
α<i≤βH

%i(i−1)

ΥM0

)
(27)

where Υ0M is the (unknown) sequence of %ij terms (one for each branch)
leading from 0 into the region of mixed absorbing states EM , and ΥM0 is
the (unknown) sequence of %ij terms leading (all of) the mixed absorbing
states into 0’s basin of attraction. The remaining product of %ij terms
represents the one-step transitions towards α within the EM region of the
most probable α-tree. Υ0M clearly tends to 0 as σ2 → 0, but the ratio
term tends to infinity. To see this, note that every i-term in the numerator
has a corresponding i-term in the denominator ΥM0. And each term in the
numerator is the most probable transition available - i.e., towards z∗ - whilst
the denominator must contain enough transitions away from z∗ to escape
the EM region, by definition of ΥM0. Hence the numerator of the ratio term
is greater than the denominator, and dominates it as σ2 → 0 for switching
cost distributions with a likelihood ratio unbounded in the tails.

Now, raising the mean switching cost c̄ has a number of effects on equa-
tion (27). First, it increases Υ0M by reducing the number of improbable
failures to switch strategy required to escape {0, N}’s basin of attraction
(and enter the EM region), and by increasing the likelihood of these fail-
ures. Second, it reduces both the numerator and the denominator of the
ratio term by increasing the number of improbable transitions, and by re-
ducing the likelihood of each of these transitions. The net effect at any given
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point may be either to increase or to decrease the ratio term, but it will never
reduce it below 1, and hence does not threaten the numerator’s dominance
as σ2 → 0. Now, when c̄ = 0, the set of mixed absorbing states is empty,
Υ0M = 0, and {0, N} is the unique long-run equilibrium. By contrast, when
c̄ = (a21 − a11), the region of mixed absorbing states EM subsumes the
extreme state N , and Υ0M = 1. At this point, the limit in equation (27)
is determined by the limit of the ratio term, and is thus infinity. Hence,
{α, β} is selected as the unique long-run equilibrium. Since Υ0M is strictly
increasing in c̄, it follows that there exists a threshold level of the mean
switching cost, ĉ ∈ (0, (a21 − a11)), above which limσ2→0(%(α)/%(0)) = ∞
and {α, β} is selected, but below which limσ2→0(%(α)/%(0)) = 0 and {0, N}
is selected. This threshold ĉ is defined implicitly by the equation

ΥM0

Υ0M
=

∏

αL≤i≤β

%i(i+1)

∏

α<i≤βH

%i(i−1)

for switching cost distributions with a likelihood ratio unbounded in the
tails.

Remark 2 Note that α and β converge to z∗ as N →∞, so that essentially
the mixed-strategy equilibrium is selected for c̄ > ĉ.

Hence, the “attractive” mixed-strategy equilibrium of Hawk-Dove games
emerges as a possible long-run equilibrium of the simultaneous-revisions
stochastic switching costs model. Its selection does, however, require suffi-
ciently high mean switching costs, otherwise the extreme state cycle {0, N}
remains the long-run equilibrium. Essentially, increasing c̄ has two effects:
it expands the region of mixed absorbing states EM ; and it reduces the
probability of any given transition. These effects make the EM region more
likely to be entered and harder to escape - properties which Ellison (2000)
(and indeed the whole literature on basins of attraction) tells us are likely
to deliver stochastic stability.

4.3 Discussion

Thus, in the presence of high enough switching costs, long-run convergence
to the mixed-strategy equilibrium of Hawk-Dove games has a coherent the-
oretical justification. This justification is not the same as KMR’s “contrac-
tion” condition; indeed, it is more realistic. Whilst the “contraction” con-
dition locks the selection dynamic into an arbitrary pattern that makes the
mixed-strategy equilibrium inevitable, the stochastic switching costs model
provides sound economic reasons why review is likely to proceed in the re-
quired fashion. However, it is not certain to do so, and the probabilistic
nature of the long-run analysis is retained, with long-run selection depend-
ing upon the size of the mean switching cost.
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Because of the complexity of the formal analysis, it is difficult to calculate
the exact size of the threshold mean switching cost ĉ. It will, however,
certainly be “small” in the sense of being below the question-begging level
of the maximum possible payoff gain from a strategy switch, (a12 − a22)38.
In fact, it is guaranteed to be “smaller” still, since it must be below the
lower of the two maximum possible payoff gains from switching strategies,
ĉ < (a21 − a11) < (a12 − a22). Moreover, depending on the switching cost
density and population size, ĉ could be considerably lower than this upper
bound.

Selection of the mixed-strategy equilibrium is of course more robust if
one favours the single-revisions dynamic employed in subsection 4.2.1. This
increasingly popular dynamic is appealing for its simplicity, but it can also
be given compelling theoretical foundations. Binmore and Samuelson (1997)
justify the “one-step” dynamic on the basis of a continuous-time framework
in which individual players revise periodically according to an underlying
Poisson process. They note that, in this case, at most one revision will be
observed with high probability during any small period of time.39 However,
it does seem an unsatisfactory feature of the single-revisions model that the
reviewing player is randomly selected, particularly given that under consider-
ation is the very phenomenon of players choosing not to review under certain
conditions - i.e., inertia. The simultaneous-revisions model solves this prob-
lem by allowing the review rate to be endogenised, with a player reviewing
his strategy only when his switching cost draw is exceeded by the expected
payoff gain from a strategy switch. This overcomes the weakness in models
(like those using the single-revisions dynamic) that assume an exogenous
review rate, by instead having it determined as part of the model.

These considerations do not matter for the coordination games of Nor-
man (2003a), where the rate of review is irrelevant for long-run selection
results: the deterministic dynamic in a given state only points in the di-
rection of one absorbing state (0 or N), and so however quickly or slowly
players review, they are only going to end up at one equilibrium. In Hawk-
Dove games, however, the speed of adjustment has been seen in section
3 to be crucial for long-run selection; fast review led play to the extreme
recurrent class {0, N}, whilst slower review (as delivered by the “contrac-
tion” conditions) was required for selection of the mixed-strategy equilib-
rium. As discussed, the “contraction” conditions essentially require that a
sufficiently small fraction of those players whose current best-response is to
switch strategies actually do so, and that this fraction shrink the closer is
the current state to the mixed-strategy equilibrium. It was seen in section 3
that this either implied a requirement of very slow review, or left one with
the project of trying to provide a theoretical foundation for a dynamic which

38Assuming, without loss of generality, that z∗ > N
2

.
39This is also the approach of Myatt and Wallace (1998) and Blume (1999).
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Figure 7: Probability Pr(∆(z)) of a randomly selected player switching strategies

sees the fraction of adjusting players fall (sufficiently quickly) as the system
approaches the mixed-strategy equilibrium.

But this is precisely what is accomplished by the simultaneous-revisions
stochastic switching costs model of subsection 4.2.2. Essentially, Proposi-
tion 8’s threshold mean switching cost for long-run selection of the mixed-
strategy equilibrium captures the requirement that evolution be sufficiently
slow; the endogenous review rate is lower the higher is the mean switch-
ing cost, as illustrated in figure 7.40 Moreover, the review rate falls as
the system approaches the mixed-strategy equilibrium, since lower expected
payoff gains are at stake. Under stochastic switching costs and simultane-
ous revisions then, convergence to the mixed-strategy equilibrium has more
satisfactory theoretical foundations.

A closer look at figure 7 yields some intuition for the selection results.
40The diagram assumes normally distributed switching costs C ∼ N(c̄, 1) for the par-

ticular Hawk-Dove game

ΛHD =

� −4 0
0 −6

�
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The probability that a randomly selected player switches strategies,

Pr(∆(z)) =
( z

N

)
F ($2(z − 1)) +

(
N − z

N

)
F ($1(z))

tends to zero at (z∗/N) as c̄ →∞. Meanwhile, it tends to 1 in the extreme
states (z/N) = 0 and (z/N) = 1 as c̄ → 0. Since the values Pr(∆(0)) =
Pr(∆(N)) = 1 would make {0, N} a recurrent class (of the perturbed model),
whilst Pr(∆(z∗)) = 0 would make z∗ an absorbing state, one should expect
there to exist a threshold level of the mean switching cost c̄ below which
{0, N} is selected in the long run, and above which z∗ is selected. This has
of course been demonstrated to be the case.

It is also worth noting that the selection results could be strengthened
in one obvious way. The best-response dynamic was employed for simplicity
and in order to focus attention on the significance of switching costs for the
rate of review, but there is no reason why more boundedly rational response
mechanisms could not be admitted. Indeed, a truly realistic model would
require inertia to be present with various other forms of bounded rationality,
such as simple rules of thumb, imitation and so on. Such a retreat from best-
response would serve further to slow the pace of evolution, further reducing
the attractiveness of the extreme states, with fewer players likely to make the
optimal strategy switch in any given period. As a result, a lower threshold ĉ
would be required for long-run selection of the mixed-strategy equilibrium.

5 Conclusion

This paper is motivated by the belief that player inertia is an important
phenomenon in repeated game contexts, and that it is driven in large part
by the presence of switching costs to changes in behaviour. Such switching
costs are introduced within a stochastically adaptive population repeatedly
playing a Hawk-Dove game. The mixed-strategy equilibrium of such games
is appealing by virtue of being the unique symmetric Nash equilibrium,
and yet its long-run selection in stochastic evolutionary models has proved
problematic; the required conditions on the deterministic dynamic generally
dictate extremely slow evolution, or a review rate that falls as the system
approaches the mixed-strategy equilibrium. The presence of switching costs
emerges as unhelpful in this regard in a uniform-mutations setting, serv-
ing further to illustrate the limitations of this modelling framework. By
contrast, the (simultaneous-revisions) state-dependent mutations model of
section 4 overcomes the difficulties. By allowing the mutation (or review)
rate to be endogenously determined by stochastic switching costs, a mech-
anism for slower, payoff-sensitive evolution is built into the model. Indeed,
since the expected payoff gains at stake fall the closer is the system to the
mixed-strategy equilibrium, so does the endogenous review rate, in precisely
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the manner required for selection of the mixed-strategy equilibrium. This is
duly delivered for sufficiently high mean switching costs.

And so, unusually, the mixed-strategy equilibrium has a satisfactory the-
oretical foundation as the long-run equilibrium of a stochastic evolutionary
model. Happily, it is clearly superior in terms of expected payoffs to the al-
ternative equilibrium - the miserable extreme state cycle {0, N} where play-
ers are constantly coordinating their actions. Nonetheless, this inefficient
cycle remains the long-run equilibrium if the mean switching cost is below
the threshold required for selection of the mixed-strategy equilibrium. In
this case, one might anticipate that players would attempt to condition their
behaviour on their roles in the game (i.e., Row player or Column player),
which in any case is likely to deliver outcomes superior to the mixed-strategy
equilibrium.41 Relatedly, they might attempt to condition their strategies
on some other information (e.g., race, gender, income, eye colour), leading
to the decentralised emergence of “discriminatory norms” and even classes,
as in Axtell, Epstein, and Young (2001). When such conditioning is not
possible, however, the results of this paper suggest an appealing foundation
for the selection of the mixed-strategy equilibrium, and the avoidance of the
worst-case scenario of the extreme state cycle.
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