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1 Introduction

We will review the econometrics of non-parametric estimation of the components of the variation

of asset prices. This very active literature has been stimulated by the recent advent of complete

records of transaction prices, quote data and order books. In our view the interaction of the

new data sources with new econometric methodology is leading to a paradigm shift in one of

the most important areas in econometrics: volatility measurement, modelling and forecasting.

We will describe this new paradigm which draws together econometrics with arbitrage free

financial economics theory. Perhaps the two most influential papers in this area have been

Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002),

but many other papers have made important contributions. This work is likely to have deep

impacts on the econometrics of asset allocation and risk management. One of our observations

will be that inferences based on these methods, computed from observed market prices and so

under the physical measure, are also valid as inferences under all equivalent measures. This puts

this subject also at the heart of the econometrics of derivative pricing.

∗Prepared for the invited symposium on Financial Econometrics, 9th World Congress of the Econometric
Society, London, 20th August 2005. We are grateful to Tim Bollerslev, Eric Ghysels, Peter Hansen, Jean Jacod,
Dmitry Kulikov, Jeremy Large, Asger Lunde, Andrew Patton, Mark Podolskij, Kevin Sheppard and Jun Yu for
comments on an earlier draft. Talks based on this paper were also given in 2005 as the Hiemstra Lecture at the
13th Annual conference of the Society of Non-linear Dynamics and Econometrics in London, the keynote address
at the 3rd Nordic Econometric Meeting in Helsinki and as a Special Invited Lecture at the 25th European Meeting
of Statisticians in Oslo. Ole Barndorff-Nielsen’s work is supported by CAF (www.caf.dk), which is funded by the
Danish Social Science Research Council. Neil Shephard’s research is supported by the UK’s ESRC through the
grant “High frequency financial econometrics based upon power variation.”
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One of the most challenging problems in this context is dealing with various forms of market

frictions, which obscure the efficient price from the econometrician. Here we will characterise four

types of statistical models of frictions and discuss how econometricians have been attempting

to overcome them.

In section 2 we will set out the basis of the econometrics of arbitrage-free price processes,

focusing on the centrality of quadratic variation. In section 3 we will discuss central limit

theorems for estimators of the QV process, while in section 4 the role of jumps in QV will be

highlighted, with bipower and multipower variation being used to identify them and to test

the hypothesis that there are no jumps in the price process. In section 5 we write about the

econometrics of market frictions, while in section 6 we conclude.

2 Arbitrage-free, frictionless price processes

2.1 Semimartingales and quadratic variation

Given a complete record of transaction or quote prices it is natural to model prices in contin-

uous time (e.g. Engle (2000)). This matches with the vast continuous time financial economic

arbitrage-free theory based on a frictionless market. In this section and the next, we will dis-

cuss how to make inferences on the degree of variation in such frictionless worlds. Section 5

will extend this by characterising the types of frictions seen in practice and discuss strategies

econometricians have been using to overcome these difficulties.

In its most general case the fundamental theory of asset prices says that a vector of log-prices

at time t,

Yt =
(
Y 1

t , ..., Y p
t

)′
,

must obey a semimartingale process (written Y ∈ SM) on some filtered probability space(
Ω,F , (Ft)t≥0 , P

)
in a frictionless market. The semimartingale is defined as being a process

which can be written as

Y = A + M, (1)

where A is a local finite variation process (A ∈ FV loc) and M is a local martingale (M ∈ Mloc).

Compact introductions to the economics and mathematics of semimartingales are given in Back

(1991) and Protter (2004), respectively.

The Y process can exhibit jumps. It is tempting to decompose Y = Y ct + Y d, where Y ct

and Y d are the purely continuous and discontinuous sample path components of Y . However,

technically this definition is not clear as the jumps of the Y process can be so active that they

2



cannot be summed up. Thus we will define

Y ct = Ac + M c,

where M c is the continuous part of the local martingale component of Y and Ac is A minus the

sum of its jumps1. Likewise, the continuous sample path subsets of classes of processes such as

SM and M, will be denoted by SMc and Mc.

Crucial to semimartingales, and to the economics of financial risk, is the quadratic variation

(QV) process of (Y ′, X ′)′ ∈ SM. This can be defined as

[Y,X]t = p− lim
n→∞

tj≤t∑

j=1

(
Ytj − Ytj−1

) (
Xtj − Xtj−1

)′
, (2)

(e.g. Protter (2004, p. 66–77)) for any deterministic sequence2 of partitions 0 = t0 < t1 < ... <

tn = T with supj{tj+1 − tj} → 0 for n → ∞. The convergence is also locally uniform in time.

It can be shown that this probability limit exists for all semimartingales.

Throughout we employ the notation that

[Y ]t = [Y, Y ]t,

while we will sometimes refer to
√

[Y l]t as the quadratic volatility (QVol) process for Y l. It is

well known that3

[Y ] = [Y ct] + [Y d], where [Y d]t =
∑

0≤u≤t

∆Yu∆Y ′
u (3)

with ∆Yt = Yt − Yt− are the jumps in Y and noting that [Act] = 0. In the probability literature

QV is usually defined in a different, but equivalent, manner (see, for example, Protter (2004, p.

66))

[Y ]t = YtY
′
t − 2

∫ t

0
Yu−dY ′

u. (4)

2.2 Brownian semimartingales

In economics the most familiar semimartingale is the Brownian semimartingale (Y ∈ BSM)

Yt =

∫ t

0
audu +

∫ t

0
σudWu, (5)

1It is tempting to use the notation Y c for Y ct, but in the probability literature if Y ∈ SM then Y c = Mc, so
Y c ignores Ac.

2The assumption that the times are deterministic can be relaxed to allow them to be any Riemann sequence
of adapted subdivisions. This is discussed in, for example, Jacod and Shiryaev (2003, p. 51). Economically this
is important for it means that we can also think of the limiting argument as the result of a joint process of Y and
a counting process N whose arrival times are the tj . So long as Y and N are adapted to at least their bivariate
natural filtration the limiting argument holds as the intensity of N increases off to infinity with n.

3Although the sum of jumps of Y does not exist in general when Y ∈ SM, the sum of outer products of the
jumps always does exist. Hence [Y d] can be properly defined.
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where a is a vector of predictable drifts, σ is a matrix volatility process whose elements are

càdlàg and W is a vector Brownian motion. The stochastic integral σ•Wt, where f •gt is generic

notation for the process
∫ t
0 fudgu, is said to be a stochastic volatility process (σ • W ∈ SV) —

e.g. the reviews in Ghysels, Harvey, and Renault (1996) and Shephard (2005). This vector

process has elements which are Mc
loc. Doob (1953) showed that all continuous local martingales

with absolutely continuous quadratic variation can be written in the form of a SV process (see

Karatzas and Shreve (1991, p. 170–172))4 . The drift
∫ t
0 audu has elements which are absolutely

continuous — an assumption which looks ad hoc, however arbitrage freeness plus the SV model

implies this property must hold (Karatzas and Shreve (1998, p. 3) and Andersen, Bollerslev,

Diebold, and Labys (2003, p. 583)). Hence Y ∈ BSM is a rather canonical model in the finance

theory of continuous sample path processes. Its use is bolstered by the facts that Ito calculus

for continuous sample path processes is relatively simple.

If Y ∈ BSM then

[Y ]t =

∫ t

0
Σudu

the integrated covariance process, while

dYt|Ft ∼ N (atdt,Σtdt) , where Σt = σtσ
′
t, (6)

where Ft is the natural filtration – that is the information from the entire sample path of Y up

to time t. Thus atdt and Σtdt have clear interpretations as the infinitesimal predictive mean

and covariance of asset returns. This implies that At =
∫ t
0 E (dYu|Fu) du while, centrally to our

interests,

d[Y ]t = Cov (dYt|Ft) and [Y ]t =

∫ t

0
Cov (dYu|Fu) du.

Thus A and [Y ] are the integrated infinitesimal predictive mean and covariance of the asset

prices, respectively.

2.3 Jump processes

There is no plausible economic theory which says that prices must follow continuous sample path

processes. Indeed we will see later that statistically it is rather easy to reject this hypothesis even

for price processes drawn from very thickly traded markets. In this paper we will add a finite

activity jump process (this means there are a finite number of jumps in a fixed time interval)

Jt =
∑Nt

j=1 Cj , adapted to the filtration generated by Y , to the Brownian semimartingale model.

4An example of a continuous local martingale which has no SV representation is a time-change Brownian
motion where the time-change takes the form of the so-called “devil’s staircase,” which is continuous and non-
decreasing but not absolutely continuous (see, for example, Munroe (1953, Section 27)). This relates to the work
of, for example, Calvet and Fisher (2002) on multifractals.
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This yields

Yt =

∫ t

0
audu +

∫ t

0
σudWu +

Nt∑

j=1

Cj . (7)

Here N is a simple counting process and the C are the associated non-zero jumps (which we

assume have a covariance) which happen at times 0 = τ 0 < τ1 < τ2 < ... . It is helpful to

decompose J into J = JA + JM , where, assuming J has an absolutely continuous intensity,

JA
t =

∫ t
0 cudu, and ct = E(dJt|Ft). Then JM is the compensated jump process, so JM ∈ M,

while JA ∈ FVct
loc. Thus Y has the decomposition as in (1), with At =

∫ t
0 (au + cu) du and

Mt =

∫ t

0
σudWu +

Nt∑

j=1

Cj −
∫ t

0
cudu.

It is easy to see that [Y d]t =
∑Nt

j=1 CjC
′
j and so

[Y ]t =

∫ t

0
Σudu +

Nt∑

j=1

CjC
′
j.

Again we note that E (dYt|Ft) = (at + ct) dt, but now,

Cov (σtdWt,dJt|Ft) = 0, (8)

so

Cov (dYt|Ft) = Σtdt + Cov (dJt|Ft) 6= d[Y ]t.

This means that the QV process aggregates the components of the variation of prices and so is

not sufficient to learn the integrated covariance process.

To identify the components of the QV process we can use the bipower variation (BPV)

process introduced by Barndorff-Nielsen and Shephard (2006). So long as it exists, the p × p

matrix BPV process {Y } has l, k-th element

{
Y l, Y k

}
=

1

4

({
Y l + Y k

}
−
{

Y l − Y k
})

, l, k,= 1, 2, ..., p, (9)

where, so long as the limit exists and the convergence is locally uniform in t,5

{
Y l
}

t
= p− lim

δ↓0

bt/δc∑

j=1

∣∣∣Y l
δ(j−1) − Y l

δ(j−2)

∣∣∣
∣∣∣Y l

δj − Y l
δ(j−1)

∣∣∣ . (10)

5In order to simplify some of the later results we consistently ignore end effects in variation statistics. This can
be justified in two ways, either by (a) setting Yt = 0 for t < 0, (b) letting Y start being a semimartingale at zero
at time C < 0 not at time 0. The latter seems realistic when dealing with markets open 24 hours a day, borrowing
returns from small periods of the previous day. It means that there is a modest degree of wash over from one
days variation statistics into the next day. There seems little econometric reasons why this should be a worry.
Assumption (b) can also be used in equity markets when combined with some form of stochastic imputation,
adding in artifical simulated returns for the missing period — see the related comments in Barndorff-Nielsen and
Shephard (2002).
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Here bxc is the floor function, which is the largest integer less than or equal to x. Combining

the results in Barndorff-Nielsen and Shephard (2006) and Barndorff-Nielsen, Graversen, Jacod,

Podolskij, and Shephard (2005) if Y is the form of (7) then, without any additional assumptions,

µ−2
1 {Y }t =

∫ t

0
Σudu,

where µr = E |U |r, U ∼ N(0, 1) and r > 0, which means that

[Y ]t − µ−2
1 {Y }t =

Nt∑

j=1

CjC
′
j .

At first sight the robustness of BPV looks rather magical, but it is a consequence of the fact

that only a finite number of terms in the sum (10) are affected by jumps, while each return

which does not have a jump goes to zero in probability. Therefore, since the probability of

jumps in contiguous time intervals goes to zero as δ ↓ 0, those terms which do include jumps do

not impact the probability limit. The extension of this result to the case where J is an infinite

activity jump process is discussed in Section 4.4.

2.4 Forecasting

Suppose Y obeys (7) and introduce the generic notation

yt+s,t = Yt+s − Yt

= at+s,t + mt+s,t, t, s > 0.

So long as the covariance exists,

Cov (yt+s,t|Ft) = Cov (at+s,t|Ft) + Cov (mt+s,t|Ft)

+Cov (at+s,t,mt+s,t|Ft) + Cov (mt+s,t, at+s,t, |Ft) .

Notice how complicated this expression is compared to the covariance in (6), which is due to the

fact that s is not necessarily dt and so at+s,t is no longer known given Ft — while
∫ t+dt
t audu was.

However, in all likelihood for small s, a makes a rather modest contribution to the predictive

covariance of Y .

This suggests using the approximation that

Cov (yt+s,t|Ft) ' Cov (mt+s,t|Ft) .

Now using (8) so

Cov (mt+s,t|Ft) = E ([Y ]t+s − [Y ]t|Ft) − E

{(∫ t+s

t
cudu

)(∫ t+s

t
cudu

)′

|Ft

}
.
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Hence if c or s is small then we might approximate

Cov (Yt+s − Yt|Ft) ' E ([Y ]t+s − [Y ]t|Ft)

= E ([σ • W ]t+s − [σ • W ]t|Ft) + E ([J ]t+s − [J ]t|Ft) .

Thus an interesting forecasting strategy for covariances is to forecast the increments of the QV

process or its components. As the QV process and its components are themselves estimable,

though with substantial possible error, this is feasible. This approach to forecasting has been

advocated in a series of influential papers by Andersen, Bollerslev, Diebold, and Labys (2001),

Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys

(2003), while the important earlier paper by Andersen and Bollerslev (1998a) was stimulating

in the context of measuring the forecast performance of GARCH models. The use of forecast-

ing using estimates of the increments of the components of QV was introduced by Andersen,

Bollerslev, and Diebold (2003). We will return to it in section 3.9 when we have developed an

asymptotic theory for estimating the QV process and its components.

2.5 Realised QV & BPV

The QV process can be estimated in many different ways. The most immediate is the realised

QV estimator

[Yδ]t =

bt/δc∑

j=1

(
Yjδ − Y(j−1)δ

) (
Yjδ − Y(j−1)δ

)′
,

where δ > 0. This is the outer product of returns computed over a fixed interval of time of

length δ. By construction, as δ ↓ 0, [Yδ]t
p→ [Y ]t. Likewise

{
Y l

δ

}
t
=

bt/δc∑

j=1

∣∣∣Y l
δ(j−1) − Y l

δ(j−2)

∣∣∣
∣∣∣Y l

δj − Y l
δ(j−1)

∣∣∣ , l = 1, 2, ..., p, (11)

{
Y l

δ , Y k
δ

}
= 1

4

({
Y l

δ + Y k
δ

}
−
{
Y l

δ − Y k
δ

})
and {Yδ}

p→ {Y }.
In practice, the presence of market frictions can potentially mean that this limiting argument

is not really available as an accurate guide to the behaviour of these statistics for small δ. Such

difficulties with limiting arguments, which are present in almost all areas of econometrics and

statistics, do not invalidate the use of asymptotics, for it is used to provide predictions about

finite sample behaviour. Probability limits are, of course, coarse and we will respond to this by

refining our understanding by developing central limit theorems and hope they will make good

predictions when δ is moderately small. For very small δ these asymptotic predictions become

poor guides as frictions bite hard and this will be discussed in section 5.
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In financial econometrics the focus is often on the increments of the QV and realised QV

over set time intervals, like one day. Let us define the daily QV

Vi = [Y ]hi − [Y ]h(i−1) , i = 1, 2, ...

while it is estimated by the realised daily QV

V̂i = [Yδ]hi − [Yδ]h(i−1) , i = 1, 2, ....

Clearly V̂i
p→ Vi as δ ↓ 0. The l-th diagonal element of V̂i, written V̂ l,l

i is called the realised

variance6 of asset l, while its square root is its realised volatility. The latter estimates the

√
V l,l

i ,

the daily QVol process of asset l. The l, k-th element of V̂i, V̂ l,k
i , is called the realised covariance

between assets l and k. Off these objects we can define standard dependence measures, like

realised regression

β̂
l,k

i =
V̂ l,k

i

V̂ k,k
i

p→ βl,k
i =

V l,k
i

V k,k
i

,

which estimates the QV regression and the realised correlation

ρ̂l,k
i =

V̂ l,k
i√

V̂ l,l
i V̂ k,k

i

p→ ρl,k
i =

V l,k
i√

V l,l
i V k,k

i

,

which estimates the QV correlation. Similar daily objects can be calculated off the realised BPV

process

B̂i = µ−2
1

{
{Yδ}hi − {Yδ}h(i−1)

}
, i = 1, 2, ...

which estimates

Bi =
[
Y ct
]
hi
−
[
Y ct
]
h(i−1)

=

∫ hi

h(i−1)
σ2

udu, i = 1, 2, ...

Realised volatility has a very long history in financial economics. It appears in, for exam-

ple, Rosenberg (1972), Officer (1973), Merton (1980), French, Schwert, and Stambaugh (1987),

Schwert (1989) and Schwert (1998), with Merton (1980) making the implicit connection with the

case where δ ↓ 0 in the pure scaled Brownian motion plus drift case. Of course, in probability

theory QV was discussed as early as Wiener (1924) and Lévy (1937) and appears as a crucial

object in the development of the stochastic analysis of semimartingales which occurred in the

second half of the last century. For more general financial processes a closer connection between

realised QV and QV, and its use for econometric purposes, was made in a series of independent

and concurrent papers by Comte and Renault (1998), Barndorff-Nielsen and Shephard (2001)

and Andersen, Bollerslev, Diebold, and Labys (2001). The realised regressions and correlations

6Some authors call V̂
l,l

i the realised volatility, but throughout this paper we follow the tradition in finance of
using volatility to mean standard deviation type objects.
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were defined and studied in detail by Andersen, Bollerslev, Diebold, and Labys (2003) and

Barndorff-Nielsen and Shephard (2004).

A major motivation for Barndorff-Nielsen and Shephard (2002) and Andersen, Bollerslev,

Diebold, and Labys (2001) was the fact that volatility in financial markets is highly and unstably

diurnal within a day, responding to regularly timed macroeconomic news announcements, social

norms such as lunch times and sleeping or the opening of other markets. This makes estimating

lim
ε↓0

(
[Y ]t+ε − [Y ]t

)
/ε

extremely difficult. The very stimulating work of Genon-Catalot, Larédo, and Picard (1992),

Foster and Nelson (1996), Mykland and Zhang (2002) and Mykland and Zhang (2005) tries to

tackle this problem using a double asymptotics, as δ ↓ 0 and ε ↓ 0. However, in the last five years

many econometrics researchers have mostly focused on naturally diurnally robust quantities like

the daily or weekly QV.

2.6 Changes in probability law, QV and BPV

The observed price process Y ∈ SM, governed by its data generating process or measure P ,

is not uniquely interesting. In financial economics the stochastic behaviour of Y under risk

neutral versions P ∗ (i.e. so called equivalent martingale measures) are also important for they

determine the price of contingent assets based on Y . An interesting question is whether [Y ]

computed under P tells us anything about the behaviour of [Y ] under P ∗. To discuss this recall

that the notation P ∗ << P means that the probability law P ∗ is dominated by P . When

P ∗ << P and P << P ∗ then P and P ∗ are said to be equivalent measures7, which is more

general than P ∗ being an equivalent martingale measure for P .

Clearly under P , [Yδ]
p→ [Y ], so if P and P ∗ are equivalent measures then, as the region

where [Yδ] − [Y ] has got substantial probability away from zero narrows as δ ↓ 0, so it must

under P ∗ by equivalence. Consequently, in the limit we have that, almost surely,

[YP ] = [YP ∗] , (12)

where [YP ] is the QV of Y under P and [YP ∗ ] be the QV of Y under P ∗. Hence, potentially,

[Yδ] tells us a lot about [Y ] under P ∗.

This result appears in, for example, book length treatments of semimartingales such as Jacod

and Shiryaev (2003, p. 169) and Protter (2004, p. 95). However, its importance in econometrics

seems to have gone largely unnoticed. We believe it is powerful. It means that inference based

7For those who are unfamiliar with these terms, imagine P and P ∗ have discrete support. If this support
exactly coincides, then the measures are equivalent. This is crucial for it means we can rescale the measures of P

to produce P ∗ and vice versa. Similar ideas hold in the continuous case, see for example Billingsley (1995).
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on [Yδ] can be regarded as valid inference on [Y ] under each and every equivalent martingale

measure P ∗ (i.e. it holds for incomplete markets). Thus we have a way of making inferences

on derivative prices. This is the only result we know of which allows inference under P to be

transferred to make conclusions about P ∗. This, in our view, puts the concepts of realised QV

and realised BPV at the centre of financial econometrics. Of course, the dual properties of [YP ∗ ]

and that Y must be a martingale under P ∗ is not enough to identify P ∗ (e.g. it gives no hint at

the degree of leverage nor drift), but it does tell us a great deal about reasonable risk neutral

processes. To put this observation in context, Garcia, Ghysels, and Renault (2005) and Bates

(2003) reviews the econometric literature on pricing derivatives, while Bollerslev, Gibson, and

Zhou (2005) use realised volatility as inputs into estimating parameters of SV models used to

price options.

This result extends further for (e.g. Jacod and Shiryaev (2003, p. 169))

[Y ct
P ] = [Y ct

P ∗ ],

which implies that

[Y d
P ] = [Y d

P ∗ ], (13)

which means that BPV can be used to make inference on the continuous and discontinuous

components of Y under P ∗. Further, if there are jumps under P then there must be jumps, at

the same time and of the same variation, under P ∗.

2.7 Derivatives based on realised QV and QVol

In the last ten years an over the counter market in realised QV and QVol has been rapidly

developing. This has been stimulated by interests in hedging volatility risk — see Neuberger

(1990), Carr and Madan (1998), Demeterfi, Derman, Kamal, and Zou (1999) and Carr and

Lewis (2004). Examples of such options are where the payoffs are

max ([Yδ]t − K1, 0) , max

(√
[Yδ]t − K2, 0

)
. (14)

Interesting δ is typically taken as a day. Such options approximate, potentially poorly,

max ([Y ]t − K1, 0) , max

(√
[Y ]t − K2, 0

)
. (15)

The fair value of options of the type (15) has been studied by a number of authors, for

various volatility models. For example, Brockhaus and Long (1999) employs the Heston (1993)

SV model, Javaheri, Wilmott, and Haug (2002) GARCH diffusion, while Howison, Rafailidis,

and Rasmussen (2004) study log-Gaussian OU processes. Carr, Geman, Madan, and Yor (2005)
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look at the same problem based upon pure jump processes. Carr and Lee (2003a) have studied

how one might value such options based on replication without being specific about the volatility

model. See also the overview of Branger and Schlag (2005).

The common feature of these papers is that the calculations are based on replacing (14) by

(15). These authors do not take into account, to our knowledge, the potentially large difference

between using [Yδ]t and [Y ]t.

2.8 Empirical illustrations: measurement

To illustrate some of the empirical features of realised daily QV, and particularly their precision

as estimators of daily QV, we have used a series which records the log of the number of German

Deutsche Mark a single US Dollar buys (written Y 1) and the log of the Japanese Yen/Dollar rate

(written Y 2). It covers 1st December 1986 until 30th November 1996 and was kindly supplied to

us by Olsen and Associates in Zurich (see Dacorogna, Gencay, Müller, Olsen, and Pictet (2001)),

although we have made slightly different adjustments to deal with some missing data (described

in detail in Barndorff-Nielsen and Shephard (2002)). Capturing time stamped indicative bid

and ask quotes from a Reuters screen, they computed prices at each 5-minute period by linear

interpolation by averaging the log bid and log ask for the two closest ticks.

Figure 1 provides some descriptive statistics for the exchange rates starting on 4th February,

1991. Figure 1(a) shows the first four active days of the dataset, displaying the bivariate 10

minute returns8. Figure 1(b) details the daily realised volatilities for the DM
√

V̂ 1
i , together

with 95% confidence intervals. These confidence intervals are based on the log-version of the

limit theory for the realised variance we will develop in the next subsection. When the volatility

is high, the confidence intervals tend to be very large as well. In Figure 1(c) we have drawn

the realised covariance V̂ 1,2
i against i, together with the associated confidence intervals. These

terms move rather violently through this period. The corresponding realised correlations ρ̂1,2
i are

given in Figure 1(d). These are quite stable through time with only a single realised correlation

standing out from the others in the sample. The correlations are not particularly precisely

estimated, with the confidence intervals typically being around 0.2 wide.

Table 1 provides some additional daily summary statistics for 100 times the daily data (the

scaling is introduced to make the Tables easier to read). It shows the means of the squared

daily returns
(
Y 1

i − Y 1
i−1

)2
and the estimated daily QVs V̂ 1

i are in line, but that the realised

BPV B̂1
i is below them. The RV and BPV quantities are highly correlated, but the BPV has

a smaller standard deviation. A GARCH(1,1) model is also fitted to the daily return data and

its conditional, one-step ahead predicted variances hi, computed. These have similar means

8This time resolution was selected so that the results are not very sensitive to market frictions.
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Figure 1: DM and Yen against the Dollar. Data is 4th February 1991 onwards for 50 active
trading days. (a) 10 minute returns on the two exchange rates for the first 4 days of the dataset.
(b) Realised volatility for the DM series. This is marked with a cross, while the bars denote 95%
confidence intervals. (c) Realised covariance. (d) Realised correlation.

and lower standard deviations, but hi is less strongly correlated with squared returns than the

realised measures.

2.9 Empirical illustration: time series behaviour

Figure 2 shows summaries of the time series behaviour of daily raw and realised DM quantities.

They are computed using the whole run of 10 years of 10 minute return data. Figure 2(a) shows

the raw daily returns and 2(b) gives the corresponding correlogram of daily squared and absolute

returns. As usual absolute returns are moderately more autocorrelated than squared returns,

with the degree of autocorrelation in these plots being modest, while the memory lasts a large

number of lags.

Figure 2(c) shows a time series plot of the daily realised volatilities
√

V̂ 1
i for the DM series,

indicating bursts of high volatility and periods of rather tranquil activity. The correlogram for

12



Daily Mean Standard Dev/Cor

QV: V̂ 1
i 0.509 .50

BPV: B̂1
i 0.441 .95 .40

GARCH: hi 0.512 .55 .57 .22(
Y 1

i − Y 1
i−1

)2
0.504 .54 .48 .39 1.05

Table 1: Daily statistics for 100 times DM/Dollar return series: estimated QV, BPV, conditional
variance for GARCH and squared daily returns. Reported is the mean, standard deviation and
correlations.

this series is given in Figure 2(d). This shows lagged one correlations of around one half and

is around 0.25 at 10 lags. The correlogram then declines irregularly at larger lags. Figure 2(e)

shows

√
B̂1

i using the lagged two bipower variation measure. This series does not display the

peaks and troughs of the realised QVol statistics and its correlogram in Figure 2(d) is modestly

higher with its first lag being around 0.56 compared to 0.47. The corresponding estimated jump

QVol measure

√
max

(
0, V̂ 1

i − B̂1
i

)
is displayed in Figure 2(f), while its correlogram is given in

Figure 2(d), which shows a very small degree of autocorrelation.

2.10 Empirical illustration: a more subtle example

2.10.1 Interpolation, last price, quotes and trades

So far we have not focused on the details of how we compute the prices used in these calculations.

This is important if we wish to try to exploit information buried in returns recorded for very

small values of δ, such as a handful of seconds. Our discussion will be based on data taken from

the London Stock Exchange’s electronic order book, called SETS, in January 2004. The market

is open from 8am to 4.30pm, but we remove the first 15 minutes of each day following Engle and

Russell (1998). Times are accurate up to one second. We will use three pieces of the database:

transactions, best bid and best ask. Note the bid and ask are firm quotes, not indicative like

the exchange rate data previous studied. We average the bid and ask to produce a mid-quote,

which is taken to proxy the efficient price. We also give some results based on transaction prices.

We will focus on four high value stocks: Vodafone (telecoms), BP (hydrocarbons), AstraZeneca

(pharmaceuticals) and HSBC (banking).

The top row of Figure 3 shows the log of the mid-quotes, recorded every six seconds on the

2nd working day in January. The graphs indicate the striking discreteness of the price processes,

which is particularly important for the Vodafone series. Table 2 gives the tick size, the number

of mid-point updates and transactions for each asset. It shows the usual result that as the tick

size, as a percentage of the price increases, then the number of mid-quote price updates will

tend to fall as larger tick sizes mean that there is a larger cost to impatience, that is jumping

the queue in the order book by offering a better price than the best current and so updating the

13
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Figure 2: All graphs refer to the Olsen group’s five minute changes data DM/Dollar. Top left:

daily returns. Middle left: estimated daily QVol
√

V̂ 1
i , bottom left: estimated daily continuous

QVol
√

B̂1
i . Bottom right: estimated continuous QVol

√
max

(
0, V̂ 1

i − B̂1
i

)
. Top right: ACF

of squared and absolute returns. X-axis is marked off in days. Middle right: ACF of various
realised estimators.

best quotes.

The middle row of Figure 3 shows the corresponding daily realised QVol, computed using

0.015, 0.1, 1, 5 and 20 minute intervals based on mid-quotes. These are related to the signature

plots of Andersen, Bollerslev, Diebold, and Labys (2000). As the times of the mid-quotes fall

irregularly in time, there is the question of how to approximate the price at these time points.

The Olsen method uses linear interpolation between the prices at the nearest observations before

and after the correct time point. Another method is to use the last datapoint before the relevant

time — the last tick or raw method (e.g. Wasserfallen and Zimmermann (1985)). Typically, the

former leads to falls in realised QVol as δ falls, indeed in theory it converges to zero as δ ↓ 0

as its interpolated price process is of continuous bounded variation (Hansen and Lunde (2006)),
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Figure 3: LSE’s electronic order book on the 2nd working day in January 2004. Top graphs:
mid-quote log-price every 6 seconds, from 8.15am to 4.30pm. X-axis is in hours. Middle graphs:
realised daily QVol computed using 0.015, 0.1, 1, 5 and 20 minute midpoint returns. X-axis is in
minutes. Lower graphs: realised daily QVol computed using 0.1, 1, 5 and 20 minute transaction
returns. Middle and lower graphs are computed using interpolation and the last tick method.

while the latter increases modestly. The sensitivity to δ tends to be larger in cases where the

tick size is large as a percentage of price and this is the case here. Overall we have the conclusion

that the realised QVol does not change much when δ is 5 minutes or above and that it is more

stable for interpolation than for last price. When we use smaller time intervals there are large

dangers lurking. We will formally discuss the effect of market frictions in section 5.

The bottom row in Figure 3 shows the corresponding results for realised QVols computed

using the transactions database. This ignores some very large over the counter trades. Realised

QVol increases more strongly as δ falls when we use the last tick rather than mid-quote data.

This is particularly the case for Vodafone, where bid/ask bounce has a large impact. Even the

interpolation method has difficulties with transaction data. Overall, one gets the impression
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Vodafone BP AstraZeneca HSBC

Daily volatility
open-close 0.00968 0.00941 0.0143 0.00730
open-open 0.0159 0.0140 0.0140 0.00720
Correlation 0.861 0.851 0.912 0.731

Tick size 0.25 0.25 1.0 0.5

# of Mid-quotes per day 333 1,434 1,666 598

# of Transactions per day 3,018 2,995 2,233 2,264

Table 2: Top part of table: Average daily volatility. Open is the mid-price at 8.15am, close is
the mid-price at 4.30pm. Open-open looks at daily returns. Reported are the sample standard
deviations of the returns over 20 days and sample correlation between the open-close and open-
open daily returns. Bottom part of table: descriptive statistics about the size of the dataset.

from this study that basing the analysis on mid-quote data is sound for the LSE data9.

A fundamental difficulty with equity data is that the equity markets are only open for a

fraction of the whole day and so it is quite possible that a large degree of their variation is at

times when there is little data. This is certainly true for the U.K. equity markets which are

closed during a high percentage of the time when U.S. markets are open. Table 2 gives daily

volatility for open to close and open to open returns, as well as the correlation between the two

return measures. It shows the open to close measures account for a high degree of the volatility

in the prices, with high correlations between the two returns. The weakest relationship is for the

Vodafone series, with the strongest for AstraZeneca. Hansen and Lunde (2005c) have studied

how one can use high-frequency information to estimate the QV throughout the day, taking into

account closed periods.

2.10.2 Epps effects

Market frictions affect the estimation of realised QVol, but if the asset is highly active, the tick

size is small as a percentage of the price, δ is well above a minute and the mid-quote/interpolation

method is used, then the effects are modest. The situation is much less rosy when we look at

estimating quadratic covariations due to the so called Epps (1979) effect. This has been docu-

mented in very great detail by Sheppard (2005), who provides various theoretical explanations.

We will come back to them in sections 3.8.3 and 5. For the moment it suffices to look at Figure 4

which shows the average daily realised correlation computed in January 2004 for the four stocks

looked at above. Throughout prices are computed using mid-quotes and interpolation. The

graph shows how this average varies with respect to δ. It trends downwards to zero as δ ↓ 0,

with extremely low dependence measures for low values of δ. This is probably caused by the

9A good alternative would be to carry out the entire analysis on either all the best bids or all the best asks.
This approach is used by Hansen and Lunde (2005c) and Large (2005).
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Figure 4: LSE data during January 2004. Realised correlation computed daily, averaged over
the month. Realised quantities are computed using data at the frequency on the x-axis.

fact that asset prices tend not to simultaneously move due to non-synchronous trading and the

differential rate at which information of different types is absorbed into individual stock prices.

3 Measurement error when Y ∈ BSM
3.1 Infeasible asymptotics

Market frictions mean that it is not wise to use realised variation objects based on very small δ.

This suggests refining our convergence in probability arguments to give a central limit theorem

which may provide reasonable predictions about the behaviour of RV statistics for moderate

values of δ, such as 5 or 10 minutes, where frictions are less likely to bite hard. Such CLTs will

be the focus of attention in this section. At the end of the section, in addition, we will briefly

discuss various alternative measures of variation, such as realised range, subsampling and kernel,

which have recently been introduced to the literature. Finally we will also discuss how realised

objects can contribute to the practical forecasting of volatility.

We will derive the central limit theorem for [Yδ]t which can then be discretised to produce

the CLT for V̂i. Univariate results will be presented, since this has less notational clutter. The

generalised results were developed in a series of papers by Jacod (1994), Jacod and Protter

(1998), Barndorff-Nielsen and Shephard (2002) and Barndorff-Nielsen and Shephard (2004).

Theorem 1 Suppose that Y ∈ BSM is one-dimensional and that (for all t < ∞)
∫ t
0 a2

udu < ∞,

then as δ ↓ 0 so

δ−1/2 ([Yδ]t − [Y ]t) →
√

2

∫ t

0
σ2

udBu, (16)

where B is a Brownian motion which is independent from Y and the convergence is in law stable
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as a process.

Proof. By Ito’s lemma for continuous semimartingales

Y 2 = [Y ] + 2Y • Y,

then
(
Yjδ − Y(j−1)δ

)2
= [Y ]δj − [Y ]δ(j−1) + 2

∫ δj

δ(j−1)
(Yu − Y(j−1)δ)dYu.

This implies that

δ−1/2 ([Yδ]t − [Y ]t) = 2δ−1/2

bt/δc∑

j=1

∫ δj

δ(j−1)
(Yu − Y(j−1)δ)dYu

= 2δ−1/2

∫ δbt/δc

0
(Yu − Yδbu/δc)dYu.

Jacod and Protter (1998, Theorem 5.5) show that for Y satisfying the conditions in Theorem 1

then10

δ−1/2

∫ t

0
(Yu − Yδbs/δc)dYu → 1√

2

∫ t

0
σ2

udBu,

where B ⊥⊥ Y and the convergence is in law stable as a process. This implies

δ−1/2 ([Yδ] − [Y ]) →
√

2
(
σ2 • B

)
.

�

The most important point of this Theorem is that B ⊥⊥ Y . The appearance of the additional

Brownian motion B is striking. This means that Theorem 1 implies, for a single t,

δ−1/2 ([Yδ]t − [Y ]t)
L→ MN

(
0, 2

∫ t

0
σ4

udu

)
, (17)

where MN denotes a mixed Gaussian distribution. This result implies in particular that, for

i 6= j,

δ−1/2

(
V̂i − Vi

V̂j − Vj

)
L→ MN

((
0
0

)
, 2

( ∫ hi
h(i−1) σ4

udu 0

0
∫ hj
h(j−1) σ4

udu

))
,

so V̂i − Vi are asymptotically uncorrelated, so long as Var
(
V̂i − Vi

)
< ∞, through time.

10At an intuitive level, if we ignore the drift then

∫ δj

δ(j−1)

(Yu − Y(j−1)δ)dYu ' σ
2
δ(j−1)

∫ δj

δ(j−1)

(Wu − W(j−1)δ)dWu,

which is a martingale difference sequence in j with zero mean and conditional variance of 1
2
σ2

δ(j−1). Applying a
triangular martingale CLT one would expect this result, although formalising it requires a considerable number
of additional steps.
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Barndorff-Nielsen and Shephard (2002) showed that Theorem 1 can be used in practice as

the integrated quarticity
∫ t
0 σ4

udu can be consistently estimated using (1/3) {Yδ}[4]
t where

{Yδ}[4]
t = δ−1

bt/δc∑

j=1

(
Yjδ − Y(j−1)δ

)4
. (18)

In particular then

δ−1/2 ([Yδ]t − [Y ]t)√
2

3
{Yδ}[4]

t

L→ N(0, 1). (19)

This is a nonparametric result as it does not require us to specify the form of a or σ.

The multivariate version of (16) has that as δ ↓ 0 so

δ−1/2
(
[Yδ](kl) − [Y ](kl)

)
→ 1√

2

q∑

b=1

q∑

c=1

{(
σ(kb)σ(cl) + σ(lb)σ(ck)

)
• B(bc)

}
, k, l = 1, ..., q, (20)

where B is a q × q matrix of independent Brownian motions, independent of Y and the conver-

gence is in law stable as a process. In the mixed normal version of this result, the asymptotic

covariance is a q × q × q × q array with elements

{∫ t

0
{Σ(kk′)uΣ(ll′)u + Σ(kl′)uΣ(lk′)u + Σ(kl)uΣ(k′l′)u}du

}

k,k′,l,l′=1,...,q

. (21)

Barndorff-Nielsen and Shephard (2004) showed how to use high frequency data to estimate this

array of processes. We refer the reader to that paper, and also Mykland and Zhang (2005), for

details.

3.2 Finite sample performance & the bootstrap

Our analysis of [Yδ]t − [Y ]t has been asymptotic as δ ↓ 0. Of course it is crucial to know if this

analysis is informative for the kind of moderate values of δ we see in practice. A number of

authors have studied the finite sample behaviour of the feasible limit theory given in (19) and a

log-version, derived using the delta-rule

δ−1/2 (log[Yδ]t − log[Y ]t)√
2
3

{Yδ}[4]
t

([Yδ]t)
2

L→ N(0, 1). (22)

We refer readers to Barndorff-Nielsen and Shephard (2005a), Meddahi (2002), Goncalves and

Meddahi (2004), and Nielsen and Frederiksen (2005). The overall conclusion is that (19) is quite

poorly sized, but that (22) performs pretty well. The asymptotic theory is challenged in cases

where there are components in volatility which are very quickly mean reverting. In the multivari-

ate case, Barndorff-Nielsen and Shephard (2004) studied the finite sample behaviour of realised

regression and correlation statistics. They suggest various transformations which improve the
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finite sample behaviour of these statistics, including the use of the Fisher transformation for the

realised correlation.

Goncalves and Meddahi (2004) have studied how one might try to bootstrap the realised

daily QV estimator. Their overall conclusions are that the usual Edgeworth expansions, which

justify the order improvement associated with the bootstrap, are not reliable guides to the finite

sample behaviour of the statistics. However, it is possible to design bootstraps which provide

very significant improvements over the limiting theory in (19). This seems an interesting avenue

to follow up, particularly in the multivariate case.

3.3 Irregularly spaced data

Mykland and Zhang (2005) have recently generalised (16) to cover the case where prices are

recorded at irregular time intervals. See also the related work of Barndorff-Nielsen and Shephard

(2005c). Mykland and Zhang (2005) define a random sequence of times, independent of Y ,11

over the interval t ∈ [0, T ],

Gn = {0 = t0 < t1 < ... < tn = T} ,

then continue to have δ = T/n, and define the estimated QV process

[YGn ]t =

tj≤t∑

j=1

(
Ytj − Ytj−1

)2 p→ [Y ]t.

They show that as n → ∞ so12

δ−1/2 ([YGn ]t − [Y ]t) = 2δ−1/2

tj≤t∑

j=1

∫ tj

tj−1

(Yu − Ytj−1)dYu

L→ MN

(
0, 2

∫ t

0

(
∂HG

u

∂u

)
σ4

udu

)
,

where

HG
t = lim

n→∞
HGn

t , where HGn
t = δ−1

tj≤t∑

j=0

(tj − tj−1)
2 ,

and we have assumed that σ follows a diffusion and HG , which is a bit like a QV process but

is scaled by δ−1, is differentiable with respect to time. The HG function is non-decreasing and

11It is tempting to think of the tj as the time of the j-th trade or quote. However, it is well know that the
process generating the times of trades and price movements in tick time are not statistically independent (e.g.
Engle and Russell (2005) and Rydberg and Shephard (2000)). This would seem to rule out the direct application
of the methods we use here in tick time, suggesting care is needed in that case.

12At an intuitive level, if we ignore the drift then
∫ tj

tj−1

(Yu − Ytj−1
)dYu ' σ

2
tj−1

∫ tj

tj−1

(Wu − Wtj−1
)dWu,

which is a martingale difference sequence in j with zero mean and conditional variance of 1
2
σ2

tj−1
(tj − tj−1).

Although this suggests the stated result, formalising it requires a considerable number of additional steps.
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runs quickly when the sampling is slower than normal. For regularly space data, tj = δj and so

HG
t = t, which reproduces (17).

It is clear that

[YGn ]
[4]
t = δ−1

tj≤t∑

j=1

(
Ytj − Ytj−1

)4 p→ 3

∫ t

0

(
∂HG

u

∂u

)
σ4

udu,

which implies the feasible distributional result in (19) and (22) also holds for irregularly spaced

data, which was one of the results in Barndorff-Nielsen and Shephard (2005c).

3.4 Multiple grids

Zhang (2004) extended the above analysis to the simultaneous use of multiple grids. In our

exposition we will work with Gn(i) =
{
0 = ti0 < ti1 < ... < tin = T

}
for i = 0, 1, 2, ..., I and δi =

T/ni. Then define the i-th estimated QV process [YGn(i)]t =
∑tij≤t

j=1

(
Ytij

− Ytij−1

)2
. Additionally

we need a new cross term for the covariation between the time scales. The appropriate term is

H
G(i)∪G(k)
t = lim

n→∞
H

Gn(i)∪Gn(k)
t , where H

Gn(i)∪Gn(k)
t = (δiδk)

−1/2

ti,kj ≤t∑

j=1

(
ti,kj − ti,kj−1

)2
,

where ti,kj comes from

Gn(i) ∪ Gn(k) =
{

0 = ti,k0 < ti,k1 < ... < ti,k2n = T
}

, i, k = 0, 1, 2, ..., I.

Clearly, for all i,

δ
−1/2
i

(
[YGn(i)]t − [Y ]t

)
= 2δ

−1/2
i

tij≤t∑

j=1

∫ tij

tij−1

(Yu − Yti
j−1

)dYu

so the scaled (by δ
−1/2
i and δ

−1/2
k , respectively) asymptotic covariance matrix of [YGn(i)]t and

[YGn(k)]t is

2




∫ t

0

(
∂H

G(i)
u

∂u

)
σ4

udu •
∫ t

0

(
∂H

G(i)∪G(k)
u

∂u

)
σ4

udu

∫ t

0

(
∂H

G(k)
u

∂u

)
σ4

udu




.

Example 1 Let t0j = δ (j + ε), t1j = δ (j + η) where |ε − η| ∈ [0, 1] are temporal offsets, then

H
G(0)
t = H

G(1)
t = t,

H
G(0)∪G(1)
t = t

(
(η − ε)2 + (1 − |η − ε|)2

)
.

Thus

δ−1/2

(
[YGn(0)]t − [Y ]t
[YGn(1)]t − [Y ]t

)
L→ MN

(
0, 2

(
1 •

(η − ε)2 + (1 − |η − ε|)2 1

)∫ t

0
σ4

udu

)

The correlation between the two measures is minimised at 1/2 by setting |η − ε| = 1/2.
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Example 1 extends naturally to when tk
j = δ

(
j + k

K+1

)
, k = 0, 1, 2, ...,K, which allows

many equally spaced realised QV like estimators to be defined based on returns measured over

δ periods. The scaled asymptotic covariance of [YGn(i)]t and [YGn(k)]t is

2

{(
k − i

K + 1

)2

+

(
1 −

∣∣∣∣
k − i

K + 1

∣∣∣∣
)2
}∫ t

0
σ4

udu.

If K = 1 or K = 2 then the correlation between the estimates is 1/2 and 5/9, respectively. As

the sampling points become more dense the correlation quickly escalates which means that each

new realised QV estimator brings out less and less additional information.

3.5 Subsampling

The multiple grid allows us to create a pooled grid estimator of QV — which is a special case of

subsampling a statistic based on a random field, see for example the review of Politis, Romano,

and Wolf (1999, Ch. 5). A simple example of this is

[YG+
n (K)]t =

1

K + 1

K∑

i=0

[YGn(i)]t, (23)

which was mentioned in this context by Müller (1993) and Zhou (1996, p. 48). Clearly

[YG+
n (K)]t

p→ [Y ]t as δ ↓ 0, while the properties of this estimator were first studied when

Y ∈ BSM by Zhang, Mykland, and Aı̈t-Sahalia (2005). Zhang (2004) also studies the properties

of unequally weighted pooled estimators, while additional insights are provided by Aı̈t-Sahalia,

Mykland, and Zhang (2005b).

Example 2 Let tkj = δ
(
j + k

K+1

)
, k = 0, 1, 2, ...,K. Then, for fixed K as δ ↓ 0 so

δ−1/2

(
[YGn(0)]t − [Y ]t
[YGn(1)]t − [Y ]t

)

L→ MN

(
0,

2

(K + 1)2

K∑

i=0

K∑

k=0

{(
k − i

K + 1

)2

+

(
1 −

∣∣∣∣
k − i

K + 1

∣∣∣∣
)2
}∫ t

0
σ4

udu

)

This subsampler is based on a sample size K+1 times the usual one but returns are still recorded

over intervals of length δ. When K = 1 then the constant in front of integrated quarticity is

1.5 while when K = 2 it drops to 1.4074. The next terms in the sequence are 1.3750, 1.3600,

1.3519 and 1.3469 while it asymptotes to 1.333, a result due to Zhang, Mykland, and Aı̈t-Sahalia

(2005). Hence the gain from using the entire sample path of Y via multiple grids is modest and

almost all the available gains occur by the time K reaches 2. However, we will see later that this

subsampler has virtues when there are market frictions.
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3.6 Serial covariances

Suppose we define the notation Gδ(ε, η) = {δ(ε + η), δ(2ε + η), ...}, then the above theory implies

that



δ−1/2
(
[YGn(2,0)]t −

∫ t
0 σ2

udu
)

δ−1/2
(
[YGn(2,−1)]t −

∫ t
0 σ2

udu
)

δ−1/2
(
[YGn(1,0)]t −

∫ t
0 σ2

udu
)




L→ MN






0
0
0


 ,




4 2 2
2 4 2
2 2 2



∫ t

0
σ4

udu


 .

Define the realised serial covariance as

γ̂s(Yδ, Xδ) =

bt/δc∑

j=1

(
Yδj − Yδ(j−1)

) (
Xδ(j−s) − Xδ(j−s−1)

)
, s = 0, 1, 2, ..., S,

and say γ̂−s(Y,X) = γ̂s(Y,X) while γ̂s(Yδ) = γ̂s(Yδ, Yδ). Derivatives on such objects have

recently been studied by Carr and Lee (2003b). We have that

2γ̂1(Yδ) = [YGn(2,0)]t + [YGn(2,−1)]t − 2[YGn(1,0)]t + op(δ
1/2).

Note that γ̂0(Yδ) = [YGn(1,0)]t. Then, clearly

δ−1/2




γ̂0(Yδ) −
∫ t
0 σ2

udu
γ̂1(Yδ)

...
γ̂S(Yδ)




L→ MN







0
0
...
0


 ,




2 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




∫ t

0
σ4

udu


 , (24)

see Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004, Theorem 2). Consequently

δ−1/2




γ̂1(Yδ)/γ̂0(Yδ)
...

γ̂S(Yδ)/γ̂0(Yδ)


 L→ MN


0, I

∫ t
0 σ4

udu
(∫ t

0 σ2
udu

)2


 ,

which differs from the result of Bartlett (1946), inflating the usual standard errors as well as

making inference multivariate mixed Gaussian. There is some shared characteristics with the

familiar Eicker (1967) robust standard errors but the details are, of course, rather different.

3.7 Kernels

Following Bartlett (1950) and Eicker (1967), long run estimates of variances are often computed

using kernels. We will see this idea may be helpful when there are market frictions and so

we take some time discussing this here. It was introduced in this context by Zhou (1996) and

Hansen and Lunde (2006), while a thorough discussion was given by Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2004, Theorem 2). A kernel takes on the form of

RVw(Y ) = w0[Yδ] + 2

q∑

i=1

wiγ̂i(Yδ), (25)
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where the weights wi are non-stochastic. It is clear from (24) that if the estimator is based on

δ/K returns, so that it is compatible with (23), then

{
δ

K

(
w2

0 + 2

q∑

i=1

w2
i

)}−1/2 (
RVw(Y δ

K
) − w0

∫ t

0
σ2

udu

)
L→ MN

(
0, 2

∫ t

0
σ4

udu

)
. (26)

In order for this method to be consistent for integrated variance as q → ∞ we need that

w0 = 1 + o(1) and
∑q

i=1 w2
i /K = O(1) as a function of q.

Example 3 The Bartlett kernel puts w0 = 1 and wi = (q + 1 − i) / (q + 1). When q = 1 then

w1 = 1/2 and the constant in front of integrated quarticity is 3, while when q = 2 then w1 = 2/3,

w2 = 1/3 and the constant becomes 4 + 2/9. For moderately large q this is well approximated

by 4 (q + 1) /3. This means that we need q/K → 0 for this method to be consistent. This result

appears in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004, Theorem 2).

3.8 Other measures

3.8.1 Realised range

Suppose Y = σW , a scaled Brownian motion, then

E

(
sup

0≤s≤t
Y 2

s

)
= ϕ2σ

2t, where ϕr = E

(
sup

0≤s≤1
|Ws|r

)
,

noting that ϕ2 = 4 log 2 and ϕ4 = 9ζ(3), where ζ is the Riemann function. This observation

led Parkinson (1980) to provide a simple estimator of σ2 based on the highs and lows of asset

prices. See also the work of Rogers and Satchell (1991), Alizadeh, Brandt, and Diebold (2002),

Ghysels, Santa-Clara, and Valkanov (2004) and Brandt and Diebold (2004). One reason for the

interest in ranges is the belief that they are quite informative and somewhat robust to market

frictions. The problem with this analysis is that it does not extend readily when Y ∈ BSM.

In independent work, Christensen and Podolskij (2005) and Martens and van Dijk (2005)

have studied the realised range process. Christensen and Podolskij (2005) define the process as

\Y \t = p− lim
δ↓0

bt/δc∑

j=1

sup
s∈[(j−1)δ,jδ]

(Ys − Y(j−1)δ)
2 , (27)

which is estimated by the obvious realised version, written \Yδ\t. Christensen and Podolskij

(2005) have proved that if Y ∈ BSM, then ϕ−1
2 \Y \t =

∫ t
0 σ2

udu. Christensen and Podolskij

(2005) also shows that under rather weak conditions

δ−1/2
(
ϕ−1

2 \Yδ\t − [Y ]t
) L→ MN

(
0,

ϕ4 − ϕ2
2

ϕ2
2

∫ t

0
σ4

udu

)
,
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where ϕ′ =
(
ϕ4 − ϕ2

2

)
/ϕ2

2 ' 0.4. This shows that it is around five time as efficient as the

usual realised QV estimator. Christensen and Podolskij (2005) suggest estimating integrated

quarticity using

δ−1ϕ−1
4

bt/δc∑

j=1

sup
s∈[(j−1)δ,jδ]

(Ys − Y(j−1)δ)
4 ,

which means this limit theorem is feasible. Martens and van Dijk (2005) have also studied the

properties of \Yδ\t using simulation and empirical work.

As far as we know no results are known about estimating [Y ] using ranges when there are

jumps in Y , although it is relatively easy to see that a bipower type estimator could be defined

using contiguous ranges which would robustly estimate [Y ct].

3.8.2 Discrete sine transformation

Curci and Corsi (2003) have argued that before computing realised QV we should prefilter the

data using a discrete sine transformation to the returns in order to reduce the impact of market

frictions. This is efficient when the data X is a Gaussian random walk Y plus independent

Gaussian noise ε model, where we think of the noise as market frictions. The Curci and Corsi

(2003) method is equivalent to calculating the realised QV process on the smoother E (Y |X; θ),

where θ are the estimated parameters indexing the Gaussian model. This type of approach was

also advocated in Zhou (1996, p. 112).

3.8.3 Fourier approach

Motivated by the problem of irregularly spaced data, where the spacing is independent of Y ,

Malliavin and Mancino (2002) showed that if Y ∈ BSM then

[
Y l

J , Y k
J

]
2π

= π2


 1

J

J∑

j=1

(
al

ja
k
j + bl

jb
k
j

)

 p→

[
Y l, Y k

]
2π

, (28)

as J → ∞, where the Fourier coefficients of Y are

al
j =

1

π

∫ 2π

0
cos(ju)dY l

u, bl
j =

1

π

∫ 2π

0
sin(ju)dY l

u.

The Fourier coefficients are computed by, for example, integration by parts

al
j =

1

π

(
Y l

2π − Y l
0

)
+

j

π

∫ 2π

0
sin(ju)Y l

udu

' 1

π

(
Y l

2π − Y l
0

)
+

1

π

n−1∑

i=0

{cos (jti) − cos (jti+1)} Y l
ti ,

bl
j ' 1

π

n−1∑

i=0

{sin (jti) − sin (jti+1)}Y l
ti .
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This means that, in principle, one can use all the available data for all the series, even though

prices for different assets appear at different points in time. Indeed each series has its Fourier

coefficients computed separately, only performing the multivariate aspect of the analysis at step

(28). A similar type of analysis could be based on wavelets, see Hog and Lunde (2003).

The performance of this Fourier estimator of QV is discussed by, for example, Barucci and

Reno (2002b), Barucci and Reno (2002a), Kanatani (2004b), Precup and Iori (2005), Nielsen

and Frederiksen (2005) and Kanatani (2004a) who carry out some extensive simulation and

empirical studies of the procedure. Reno (2003) has used a multivariate version of this method

to study the Epps effects, while Mancino and Reno (2005) use it to look at dynamic principle

components. Kanatani (2004a, p. 22) has shown that in the univariate case the finite J Fourier

estimator can be written as a kernel estimator (25). For regularly spaced data he derived the

weight function, noting that as J increases, so each of these weights declined and so for fixed

δ so [YJ ]2π → [Yδ]2π. An important missing component in this analysis is any CLT for this

estimator.

3.8.4 Generalised bipower variation

The realised bipower variation process suggests studying generic statistics of the form introduced

by Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005) and Barndorff-Nielsen,

Graversen, Jacod, and Shephard (2005)

Yδ(g, h)t = δ

bt/δc∑

j=1

g
(
δ−1/2

(
Yδ(j−1) − Yδ(j−2)

))
h
(
δ−1/2

(
Yδj − Yδ(j−1)

))
, (29)

where the multivariate Y ∈ BSM and g, h are conformable matrices with elements which are

continuous with at most polynomial growth in their arguments. Both QV and multivariate BPV

can be cast in this form by the appropriate choice of g, h. Some of the choices of g, h will deliver

statistics which will be robust to jumps.

Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005) have shown that as

δ ↓ 0 the probability limit of this process is always the generalised BPV process
∫ t

0
ρσu

(g)ρσu
(h)du,

where the convergence is locally uniform, ρσ(g) = Eg(X) and X ∼ N(0, σσ′). They also provide

a central limit theorem for the generalised power variation estimator.

An example of the above framework which we have not covered yet is achieved by selecting

h(y) =
∣∣yl
∣∣r for r > 0 and g(y) = 1, then (29) becomes

δ1−r/2

bntc∑

j=1

∣∣∣Y l
δ(j−1) − Y l

δ(j−2)

∣∣∣
r
, (30)
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which is called the realised r-th order power variation. When r is an integer it has been studied

from a probabilistic viewpoint by Jacod (1994) while Barndorff-Nielsen and Shephard (2003)

look at the econometrics of the case where r > 0. The increments of these types of high fre-

quency volatility measures have been informally used in the financial econometrics literature for

some time when r = 1, but until recently without a strong understanding of their properties.

Examples of their use include Schwert (1990), Andersen and Bollerslev (1998b) and Ander-

sen and Bollerslev (1997), while they have also been abstractly discussed by Shiryaev (1999, pp.

349–350) and Maheswaran and Sims (1993). Following the work by Barndorff-Nielsen and Shep-

hard (2003), Ghysels, Santa-Clara, and Valkanov (2004) and Forsberg and Ghysels (2004) have

successfully used realised power variation as an input into volatility forecasting competitions.

It is unclear how the greater flexibility over the choice of g, h will help econometricians in the

future to learn about new features of volatility and jumps, perhaps robustly to market frictions.

It would also be attractive if one could generalise (29) to allow g and h to be functions of the

path of the prices, not just returns.

3.9 Non-parametric forecasting

3.9.1 Background

We saw in section 2.4 that if s is small then

Cov (Yt+s − Yt|Ft) ' E ([Y ]t+s − [Y ]t|Ft) .

This suggests:

1. estimating components of the increments of QV;

2. projecting these terms forward using a time series model.

This separates out the task of historical measurement of past volatility (step 1) from the

problem of forecasting (step 2).

Suppose we wish to make a sequence of one-step or multi-step ahead predictions of Vi =

[Y ]hi − [Y ]h(i−1) using their proxies V̂i = [Yδ]hi − [Yδ]h(i−1), raw returns yi = Yhi −Yh(i−1) (to try

to deal with leverage effects) and components B̂i = {Yδ}hi−{Yδ}h(i−1), where i = 1, 2, ..., T . For

simplicity of exposition we set h = 1. This setup exploits the high frequency information set,

but is somewhat robust to the presence of complicated intraday effects. Clearly if Y ∈ BSM
then the CLT for realised QV implies that as δ ↓ 0, so long as the moments exist,

E (Vi|Fi−1) ' E
(
V̂i|Fi−1

)
+ o(δ1/2).
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It is compelling to choose to use the coarser information set, so

Cov
(
Yi − Yi−1|V̂i−1, V̂i−2, ..., V̂1, B̂i−1, B̂i−2, ..., B̂1, yi−1, ..., y1

)

' E
(
Vi|V̂i−1, V̂i−2, ..., V̂1, B̂i−1, B̂i−2, ..., B̂1, yi−1, ..., y1

)

' E
(
V̂i|V̂i−1, V̂i−2, ..., V̂1, B̂i−1, B̂i−2, ..., B̂1, yi−1, ..., y1

)
.

Forecasting can be carried out using structural or reduced form models. The simplest reduced

form approach is to forecast V̂i using the past history V̂i−1, V̂i−2, ..., V̂1, yi−1, yi−2, ..., y1 and

B̂i−1, B̂i−2, ..., B̂1 based on standard forecasting methods such as autoregressions. The earliest

modelling of this type that we know of was carried out by Rosenberg (1972) who regressed

V̂i on V̂i−1 to show, for the first time in the academic literature, that volatility was partially

forecastable.

This approach to forecasting is convenient but potentially inefficient for it fails to use all the

available high frequency data. In particular, for example, if Y ∈ SV then accurately modelled

high frequency data may allow us to accurately estimate the spot covariance Σ(i−1)h, which

would be a more informative indicator than V̂i−1. However, the results in Andersen, Bollerslev,

and Meddahi (2004) are reassuring on that front. They indicate that if Y ∈ SV there is only

a small loss in efficiency by forgoing Σ(i−1)h and using V̂i−1 instead. Further, Ghysels, Santa-

Clara, and Valkanov (2004) and Forsberg and Ghysels (2004) have forcefully argued that by

additionally conditioning on low power variation statistics (30) very significant forecast gains

can be achieved.

3.9.2 Univariate illustration

In this subsection we will briefly illustrate some of these suggestions in the univariate case.

Much more sophisticated studies are given in, for example, Andersen, Bollerslev, Diebold, and

Labys (2001), Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold,

and Labys (2003), Bollerslev, Kretschmer, Pigorsch, and Tauchen (2005) and Andersen, Boller-

slev, and Meddahi (2004), who look at various functional forms, differing asset types and more

involved dynamics. Ghysels, Santa-Clara, and Valkanov (2004) suggest an alternative method,

using high frequency data but exploiting more sophisticated dynamics through so-called MIDAS

regressions.

Table 3 gives a simple example of this approach for 100 times the returns on the DM/Dollar

series. It shows the result of regressing V̂i on a constant, and simple lagged versions of V̂i and B̂i.

We dropped a priori the use of yi as regressors for this exchange rate, where leverage effects are

usually not thought to be important. The unusual spacing, using 1, 5, 20 and 40 lags, mimics

the approach used by Corsi (2003) and Andersen, Bollerslev, and Diebold (2003). The results
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Realised QV terms Realised BPV terms Summary measures

Const V̂i−1 V̂i−5 V̂i−20 V̂i−40 B̂i−1 B̂i−5 B̂i−20 B̂i−40 log L Port49
0.503 -1751.42 4660

(0.010)
0.170 0.413 0.153 0.061 0.030 -1393.41 199

(0.016) (0.018) (0.018) (0.018) (0.017)
0.139 -0.137 -0.076 -0.017 0.116 0.713 0.270 0.091 -0.110 -1336.81 108

(0.017) (0.059) (0.059) (0.058) (0.058) (0.075) (0.074) (0.074) (0.073)
0.139 0.551 0.180 0.071 0.027 -1342.03 122

(0.017) (0.023) (0.023) (0.022) (0.021)

Table 3: Prediction for 100 times returns on the DM/Dollar series. Dynamic regression, pre-
dicting future daily RV V̂i using lagged values and lagged values of estimated realised BPV
terms B̂i. Software used was PcGive. Subscripts denote the lag length in this table. Every-
thing is computed using 10 minute returns. Figures in brackets are asymptotic standard errors.
Port49 denotes the Box-Ljung portmantau statistic computed with 49 lags, while log-L denotes
the Gaussian likelihood.

are quite striking. None of the models have satisfactory Box-Ljung portmanteau tests (this can

be fixed by including a moving average error term in the model), but the inclusion of lagged

information is massively significant. The lagged realised volatilities seem to do a reasonable job

at soaking up the dependence in the data, but the effect of bipower variation is more important.

This is in line with the results in Andersen, Bollerslev, and Diebold (2003) who first noted this

effect. See also the work of Forsberg and Ghysels (2004) on the effect of inclusion of other power

variation statistics in forecasting.

Table 4 shows some rather more sophisticated results. Here we model returns directly using

a GARCH type model, but also include lagged explanatory variables in the conditional variance.

This is in the spirit of the work of Engle and Gallo (2005). The results above the line show the

homoskedastic fit and the improvement resulting from the standard GARCH(1,1) model. Below

the line we include a variety of realised variables as explanatory variables; including longer lags

of realised variables does not improve the fit. The best combination has a large coefficient on

realised BPV and a negative coefficient on realised QV. This means when there is evidence for

a jump then the impact of realised volatility is tempered, while when there is no sign of jump

the realised variables are seen with full force. What is interesting from these results is that

the realised effects are very much more important than the lagged daily returns. In effect the

realised quantities have basically tested out the traditional GARCH model.

Overall this tiny empirical study confirms the results in the literature about the predictability

of realised volatility, but that it is quite easy to outperform a simple autoregressive model for

RV. We can see how useful bipower variation is and that taken together the realised quantities

do provide a coherent way of empirically forecasting future volatility.
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Realised terms Standard GARCH terms

Const V̂i−1 B̂i−1 (Yi−1 − Yi−2)
2 hi−1 log L

0.504 -2636.59
(0.021)
0.008 0.053 0.930 -2552.10

(0.003) (0.010) (0.013)

0.017 -0.115 0.253 0.019 0.842 -2533.89
(0.009) (0.039) (0.076) (0.019) (0.052)
0.011 0.085 0.015 0.876 -2537.49

(0.008) (0.042) (0.017) (0.049)
0.014 0.120 0.013 0.853 -2535.10

(0.009) (0.058) (0.019) (0.055)
0.019 -0.104 0.282 0.822 -2534.89

(0.010) (0.074) (0.116) (0.062)

Table 4: Prediction for 100 times returns Yi−Yi−1 on the DM/Dollar series. GARCH type model
of the conditional variance hi of daily returns, using lagged squared returns (Yi−1 − Yi−2)

2, re-
alised QV V̂i−1, realised BPV B̂i−1 and lagged conditional variance hi−1. Throughout a Gaus-
sian quasi-likelihood is used. Robust standard errors are reported. Carried out using PcGive.

3.9.3 Multivariate illustration

TO BE ADDED

3.10 Parametric inference and forecasting

Throughout we have emphasised the non-parametric nature of the analysis. This is helpful due

to the strong and complicated diurnal patterns we see in volatility. These effects tend also

to be unstable through time and so are difficult to model parametrically. A literature which

mostly avoids this problem is that on estimating parametric SV models from low frequency data.

Much of this is reviewed in Shephard (2005, Ch. 1). Examples include the use of Markov chain

Monte Carlo methods (e.g. Kim, Shephard, and Chib (1998)) and efficient method of moments

(e.g. Chernov, Gallant, Ghysels, and Tauchen (2003)). Both approaches are computationally

intensive and intricate to code. Simpler method of moment procedures (e.g. Andersen and

Sørensen (1996)) have the difficulty that they are sensitive to the choice of moments and can be

rather inefficient.

Recently various researchers have used the time series of realised daily QV to estimate para-

metric SV models. These models ignore the intraday effects and so are theoretically misspecified.

Typically the researchers use various simple types of method of moments estimators, relying on

the great increase in information available from realised statistics to overcome the inefficiency

caused by the use of relatively crude statistical methods. The first papers to do this were

Barndorff-Nielsen and Shephard (2002) and Bollerslev and Zhou (2002), who studied the first

two dynamic moments of the time series V̂1, V̂2, ..., V̂T implied by various common volatility

models and used these to estimate the parameters embedded within the SV models. More so-
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phisticated approaches have been developed by Corradi and Distaso (2004) and Phillips and Yu

(2005). Barndorff-Nielsen and Shephard (2002) also studied the use of these second order prop-

erties of the realised quantities to estimate V1, V2, ..., VT from the time series of V̂1, V̂2, ..., V̂T

using the Kalman filter. This exploited the asymptotic theory for the measurement error (17).

See also the work of Meddahi (2002), Andersen, Bollerslev, and Meddahi (2004) and Andersen,

Bollerslev, and Meddahi (2005).

3.11 Forecast evaluation

One of the main early uses of realised volatility was to provide a instrument for measuring the

success for various volatility forecasting methods. Andersen and Bollerslev (1998a) studied the

correlation between Vi or V̂i and hi, the conditional variance from a GARCH model based on

daily returns from time 1 up to time i − 1. They used these results to argue that GARCH

models were more successful than had been previously understood in the empirical finance

literature. Hansen and Lunde (2005b) study a similar type of problem, but look at a wider class

of forecasting models and carry out formal testing of the superiority of one modelling approach

over another.

Hansen and Lunde (2005a) and Patton (2005) have focused on the delicate implications of

the use of different loss functions to discriminate between competing forecasting models, where

the object of the forecasting is Cov (Yi − Yi−1|Fi−1). They use V̂i to proxy this unobserved

covariance. See also the related work of Koopman, Jungbacker, and Hol (2005).

4 Jumps

4.1 Bipower variation

In this short section we will review some material which non-parametrically identifies the contri-

bution of jumps to the variation of asset prices. A focus will be on using this method for testing

for jumps from discrete data. We will also discuss some work by Cecilia Mancini which provides

an alternative to BPV for splitting up QV into its continuous and discontinuous components.

Recall µ−2
1 {Y }t =

∫ t
0 Σudu when Y is a BSM plus jump process given in (7). The BPV

process is consistently estimated by the p × p matrix realised BPV process {Yδ}, defined in

(10). This means that we can, in theory, consistently estimate [Y ct] and [Y d] by µ−2
1 {Yδ} and

[Yδ] − µ−2
1 {Yδ}, respectively.

One potential use of {Yδ} is to test for the hypothesis that a set of data is consistent with

a null hypothesis of continuous sample paths. We can do this by asking if [Yδ]t − µ−2
1 {Yδ}t is

statistically significantly bigger than zero — an approach introduced by Barndorff-Nielsen and
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Shephard (2006). This demands a distribution theory for realised BPV objects, calculated under

the null that Y ∈ BSM with σ > 0.

Building on the earlier CLT of Barndorff-Nielsen and Shephard (2006), Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard (2005) have established a CLT which covers this

situation when Y ∈ BSM. We will only present the univariate result, which has that as δ ↓ 0

so

δ−1/2 ({Yδ}t − {Y }t) → µ2
1

√
(2 + ϑ)

∫ t

0
σ2

udBu, (31)

where B ⊥⊥ Y , the convergence is in law stable as a process and

ϑ =
(
π2/4

)
+ π − 5 ' 0.6090.

This result, unlike Theorem 1, has some quite technical conditions associated with it in order to

control the degree to which the volatility process can jump; however we will not discuss those

issues here. Extending the result to cover the joint distribution of the estimators of the QV and

the BPV processes, they showed that

δ−1/2

(
µ−2

1 {Yδ}t − µ−2
1 {Y }t

[Yδ]t − [Y ]t

)
L→ MN

((
0
0

)
,

(
(2 + ϑ) 2

2 2

)∫ t

0
σ4

udu

)
,

a Hausman (1978) type result as the estimator of the QV process is, of course, fully asymptoti-

cally efficient when Y ∈ BSM. Consequently

δ−1/2
(
[Yδ]t − µ−2

1 {Yδ}t

)
√

ϑ

∫ t

0
σ4

udu

L→ N (0, 1) , (32)

which can be used as the basis of a test of the null of no jumps.

4.2 Multipower variation

The “standard” estimator of integrated quarticity, given in (18), is not robust to jumps. One

way of overcoming this problem is to use a multipower variation (MPV) measure — introduced

by Barndorff-Nielsen and Shephard (2006). This is defined as

{Y }[r]
t = p− lim

δ↓0
δ(1−r+/2)

bt/δc∑

j=1

{
I∏

i=1

∣∣Yδ(j−i) − Yδ(j−1−i)

∣∣ri

}
,

where ri > 0, r = (r1, r2, ..., rI)
′ for all i and r+ =

∑I
i=1 ri. The usual BPV process is the special

case {Y }t = {Y }[1,1]
t .

If Y obeys (7) and ri < 2 then

{Y }[r]
t =

(
I∏

i=1

µri

)∫ t

0
σr+

u du,
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This process is approximated by the estimated MPV process

{Yδ}[r]
t = δ(1−r+/2)

bt/δc∑

j=1

{
I∏

i=1

∣∣Yδ(j−i) − Yδ(j−1−i)

∣∣ri

}
.

In particular the scaled realised tri and quadpower variation,

µ−4
1 {Yδ}[1,1,1,1]

t and µ−3
4/3 {Yδ}[4/3,4/3,4/3]

t ,

respectively, both estimate
∫ t
0 σ4

udu consistently in the presence of jumps. Hence either of these

objects can be used to replace the integrated quarticity in (32), so producing a non-parametric

test for the presence of jumps in the interval [0, t]. The test is conditionally consistent, meaning

if there is a jump, it will detected and has asymptotically the correct size. Extensive small

sample studies are reported in Huang and Tauchen (2005), who favour ratio versions of the

statistic like

δ−1/2

(
µ−2

1 {Yδ}t

[Yδ]t
− 1

)

√√√√ϑ
{Yδ}[1,1,1,1]

t

({Yδ}t)
2

L→ N (0, 1) ,

which has pretty reasonable finite sample properties. They also show that this test tends to

under reject the null of no jumps in the presence of some forms of market frictions.

It is clearly possible to carry out jump testing on separate days or weeks. Such tests are

asymptotically independent over these non-overlapping periods under the null hypothesis.

To illustrate this methodology we will apply the jump test to the DM/Dollar rate, asking

if the hypothesis of a continuous sample path is consistent with the data we have. Our focus

will mostly be on Friday January 15th 1988, although we will also give results for neighbouring

days to provide some context. In Figure 5 we plot 100 times the change during the week of the

discretised Yδ, so a one unit uptick represents a 1% change, for a variety of values of n = 1/δ,

as well as giving the ratio jump statistics B̂i/V̂i with their corresponding 99% critical values.

In Figure 5 there is a large uptick in the D-mark against the Dollar, with a movement of

nearly two percent in a five minute period. This occurred on the Friday and was a response to

the news of a large fall in the U.S. balance of payment deficit, which led to a large strengthening

of the Dollar. The data for January 15th had a large V̂i but a much smaller B̂i. Hence the

statistics are attributing a large component of V̂i to the jump, with the adjusted ratio statistic

being larger than the corresponding 99% critical value. When δ is large the statistic is on the

borderline of being significant, while the situation becomes much clearer as δ becomes small.

This illustration is typical of results presented in Barndorff-Nielsen and Shephard (2006) which

showed that many of the large jumps in this exchange rate correspond to macroeconomic news
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Figure 5: Left hand side: change in Yδ during a week, centred at 0 on Monday 11th January
and running until Friday of that week. Drawn every 20 and 5 minutes. An up tick of 1 indicates
strengthening of the Dollar by 1%. Right hand side shows an index plot of B̂i/V̂i, which should
be around 1 if there are no jumps. Test is one sided, with criticial values also drawn as a line.

announcements. This is consistent with the recent economics literature documenting significant

intraday announcement effects, e.g. Andersen, Bollerslev, Diebold, and Vega (2003).

4.3 Grids

It is clear that the martingale based CLT for irregularly spaced data for the estimator of the

QV process can be extended to cover the BPV case. We define

{YGn}t =

tj≤t∑

j=1

∣∣Ytj−1 − Ytj−2

∣∣ ∣∣Ytj − Ytj−1

∣∣ p→ {Y }t.

Using the same notation as before, we would expect the following result to hold, due to the fact

that HG is assumed to be continuous,

δ−1/2

(
µ−2

1 {YGn}t − µ−2
1 {Y }t

[Yδ]t − [Y ]t

)
L→ MN

((
0
0

)(
(2 + ϑ) 2

2 2

)∫ t

0

(
∂HG

u

∂u

)
σ4

udu

)
.
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The integrated moderated quarticity can be estimated using µ−4
1 {Yδ}[1,1,1,1]

t , or a grid version,

which again implies that the usual feasible CLT continues to hold for irregularly spaced data.

This is the expected result from the analysis of power variation provided by Barndorff-Nielsen

and Shephard (2005c).

Potentially there are modest efficiency gains to be had by computing the estimators of BPV

on multiple grids and then averaging them. The extension along these lines is straightforward

and will not be detailed here.

4.4 Infinite activity jumps

The probability limit of realised BPV is robust to finite activity jumps. A natural question to

ask is: (i) is the CLT also robust to jumps, (ii) is the probability limit also unaffected by infinite

activity jumps, that is jump processes with an infinite number of jumps in any finite period of

time. Both issues are studied by Barndorff-Nielsen, Shephard, and Winkel (2004) in the case

where the jumps are of Lévy type, while Woerner (2004) looks at the probability limit for more

general jump processes.

Barndorff-Nielsen, Shephard, and Winkel (2004) find that the CLT for BPV is affected by

finite activity jumps, but this is not true of tripower and high order measures of variation. The

reason for the robustness of tripower results is quite technical and we will not discuss it here.

However, it potentially means that inference under the assumption of jumps can be carried out

using tripower variation, which seems an exciting possibility. Both Barndorff-Nielsen, Shephard,

and Winkel (2004) and Woerner (2004) give results which prove that the probability limit of

realised BPV is unaffected by some types of infinite activity jump processes. More work is

needed on this topic to make these result definitive. It is somewhat related to the parametric

study of Aı̈t-Sahalia (2004). He shows that maximum likelihood estimation can disentangle a

homoskedastic diffusive component from a purely discontinuous infinite activity Lévy component

of prices. Outside the likelihood framework, the paper also studies the optimal combinations

of moment functions for the generalized method of moment estimation of homoskedastic jump-

diffusions. Further insights can be found by looking at likelihood inference for Lévy processes,

which is studied by Aı̈t-Sahalia and Jacod (2005a) and Aı̈t-Sahalia and Jacod (2005b).

4.5 Testing the null of no continuous component

In some stimulating recent papers, Carr, Geman, Madan, and Yor (2003) and Carr and Wu

(2004), have argued that it is attractive to build SV models out of pure jump processes, with

no Brownian aspect. This is somewhat related to the material we discuss in section 5.6. It is

clearly important to be able to test this hypothesis, seeing if pure discreteness is consistent with
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observed prices.

Barndorff-Nielsen, Shephard, and Winkel (2004) showed that

δ−1/2
(
{Yδ}[2/3,2/3,2/3]

t − [Y ct]t

)

has a mixed Gaussian limit and is robust to jumps. But this result is only valid if σ > 0, which

rules out its use for testing for pure discreteness. However, we can artificially add a scaled

Brownian motion, U = σB, to the observed price process and then test if

δ−1/2
(
{Yδ + Uδ}[2/3,2/3,2/3]

t − σ2t
)

is statistically significantly greater than zero. In principle this would be a consistent non-

parametric test of the maintained hypothesis of Peter Carr and his coauthors.

4.6 Alternative methods for identifying jumps

Mancini (2001), Mancini (2004) and Mancini (2003) has developed robust estimators of
[
Y ct
]

in the presence of finite activity jumps. Her approach is to use truncation

bt/δc∑

j=1

(
Yjδ − Y(j−1)δ

)2
I(
∣∣Yjδ − Y(j−1)δ

∣∣ < rδ), (33)

where I (.) is an indicator function. The crucial function rδ has to have the property that
√

δ log δ−1r−1
δ ↓ 0. It is motivated by the modulus of continuity of Brownian motion paths that

almost surely

lim
δ↓0

sup
0≤s,t≤T
|t−s|<δ

|Ws − Wt|√
2δ log δ−1

= 1.

This is an elegant theory, which works when Y ∈ BSM. It is not prescriptive about the tuning

function rδ, which is an advantage and a drawback. Given the threshold in (33) is universal,

this method will throw out more returns as jumps during a high volatility period than during a

low volatility period.

Aı̈t-Sahalia and Jacod (2005b, Section 7 onwards) provides additional insights into these

types of truncation estimators in the case where Y is scaled Brownian motion plus a homogeneous

pure jump process. They develop a two-step procedure, which automatically selects the level of

truncation. Their analysis is broader still, providing additional insights into a range of power

variation type objects.

5 Mitigating market frictions

5.1 Background

The semimartingale model of the frictionless, arbitrage free market is a fiction. When we use

high frequency data to perform inference on either transaction or quote data then various market
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frictions can become important. O’Hara (1995), Engle (2000), Hasbrouck (2003) and Engle and

Russell (2005) review the detailed modelling of these effects. Inevitably such modelling is quite

complicated.

With the exception of subsection 2.10, we have so far mostly ignored frictions by thinking of

δ as being only moderately small. This is ad hoc and it is wise to try to more formally identify

the impact of frictions. In this context the first econometric work was carried out by Fang(96)

(1996) and Andersen, Bollerslev, Diebold, and Labys (2000) who used so-called signature plots

to assess the degree of bias caused by frictions using a variety of values of δ. The signature

plots we draw show the square root of the time series average of estimators of Vi computed

over many days, plotting this against δ. If the log-price process was a pure martingale then we

would expect the plot to have roughly horizontal lines. Figure 6 shows the signature plot for the

Vodafone series, discussed in section 2.10, calculated over 20 days in January 2004. Included in

this plot is the standard deviation of daily returns Yi − Yi−1, which is around 0.01.

The signature plot for realised volatility for Vodafone reinforces the results from section

2.10. The daily RV is most reliable in the case of interpolated mid-quote data, where the bias

is rather moderate even with δ well below 5 minutes13. Much larger biases appear when we

base the statistics on transaction data, with raw transaction data being particularly vulnerable.

The Figure also reports corresponding results for estimators we will discuss in this section: the

kernel, two scale and alternation estimators. Potentially these statistics may be less influenced

by frictions and have the potential to exhibit less bias.

In order to deepen our understanding we will characterise different types of frictions: (i)

liquidity effects, (ii) bid/ask bounce, (iii) discreteness, (iv) Epps effects. We will not discuss

other important frictions such as market closures. We will review some of the literature which

has tried to mitigate the effects of market frictions on the estimation of the QV of the efficient

semimartingale price. This is a very active area of research and some of the answers are less

clear cut than in previous sections as there is less agreement on the way to model the frictions.

5.2 Four statistical models of frictions

The economics of market frictions involve a large number of traders competing against one

another to maximise their expected utility. The econometrics literature on the effect of frictions

on realised quantities almost entirely ignores the details of this economics and employs reduced

form statistical models of the frictions. This is rather unsatisfactory but is typical of how

13The reasonably flat signature plot for interpolated mid-quote data masks at least two offsetting effects: (i) an
upward bias of RV for small δ that we will discuss in a moment, (ii) a downward bias caused by the interpolation
which induces positive correlation amongst returns. In other datasets this offsetting may well not work. A more
through empirical study is provided by Hansen and Lunde (2006).
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Figure 6: Signature plot for various estimators for the Vodafone stock during January 2004.
Shows the square root of the long term average of estimators of Vi based on data calculated over
intervals of length δ recorded in minutes. Estimators are squared daily returns (which does not
depend on δ), realised variance and the two scale, kernel and L (again does not depend upon δ)
estimators. Note that the 2 scale estimator could only be computed for δ ≥ 0.1, the results for
δ < 0.1 repeats the value recorded for δ = 0.1. code: lse RV.ox.

econometricians deal with measurement error in other areas of economics, reflecting the fact

that frictions are nuisances to us as our scientific focus is on estimating [Y ].

Suppose Y ∈ BSM is some latent efficient price obscured by frictions. Our desire is to

estimate [Y ] from the distorted sample path X. Four basic statistical assumptions about the

frictions seem worthy of study. Two use the notation U = X − Y , with ρδ,j = Cor(Uδi, Uδ(i+j))

assuming this correlation does not depend upon i.

Assumption F1: stationary in observation time. For all δ, Uδi has a zero mean, variance

of κ
2 and is a covariance stationary process with Cor(Uδi, Uδ(i+j)) = ρδ,j = ρj. For simplicity

of exposition we will also assume U is Gaussian.

Here the autocovariance function does not depend upon δ or i14. This is not plausible

14This assumptions has some empirical attractions if it is applied to ρi−j = Cor(Uti
, Utj

), the autocorrelation
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empirically, as we can see from Figure 3. In particular it is strong to assume that the temporal

behaviour of Uδ, U2δ , U3δ,... does not vary with δ. However, it is a simple structure where we

can give a relatively complete analysis.

The leading case of F1 is where Uδi ∼ NID(0, κ2) over i — the white noise assumption. We

will write this as F1W. In this context it has been discussed by, for example, Zhou (1996), Bandi

and Russell (2003), Hansen and Lunde (2006), Zhang, Mykland, and Aı̈t-Sahalia (2005) and

Zhang (2004). Bandi and Russell (2003), Hansen and Lunde (2006) and Aı̈t-Sahalia, Mykland,

and Zhang (2005b) have studied the more general case which allows autocorrelation in the

errors. Note Gloter and Jacod (2001a) and Gloter and Jacod (2001b) also study what happens

if Var(Uδi) varies with δ.

F1 implies, for example, that [U ]t = ∞ which is inconvenient mathematically. Further, it

means that we can very precisely estimate Yδi by simply repeatedly recording Xδi (or versions

of it very close in time to δi) and averaging it, for as δ ↓ 0 the dependence pattern in the data

peters out increasingly quickly in calendar time. This is most easily seen in the F1W case, but

it holds more generally. In this setup we would expect to eventually be able to estimate [Y ]

given enough data. This is indeed the case.

Assumption F2: diffusion and stationary in calendar time. U ∈ BSM, E(Ut) =

0. Throughout this discussion, for simplicity of exposition, we will assume U is a Gaussian

process.

F2 is very different from F1 for [U ]t < ∞ and Y cannot be perfectly recovered by local

averaging of Z. Aı̈t-Sahalia, Mykland, and Zhang (2005a) have studied this case when Y is

Brownian motion and U is a Gaussian OU process which solves

dUt = −λUtdt + κ

√
2λdBt, (34)

where B ⊥⊥ Y and is Brownian motion. Even if the full sample path of U from time 0 to time

t is available it is not possible to consistently estimate λ as the log-likelihood for the path as

a function of λ, given by the Radon-Nikodym derivative, is not degenerate. Of course, on the

other hand, the value of κ
2λ can be deduced from [U ]. Thus Var(Ut) cannot be estimated just

from the sample path of U unless one a priori knows either κ or λ. This means it is impossible

to consistently estimate [Y ] just from the sample path of X if one allows F2. Hansen and Lunde

(2006) have studied the properties of realised QV under more general conditions, which are

closer to the full spirit of F2.

function in tick time. But we have already noted that this would require limit theorems for estimators of QV to
hold for arbitrary stochastic tj . Existing results for irregularly spaced data, such as Mykland and Zhang (2005),
are proved under the assumption that the tj are independent of Y . The independence assumption is well known
not be innocuous.
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Assumption F3: purely discontinuous prices. X is a pure point process and X − Y is

strictly stationary in business or transaction time.

Oomens (2004) studies the properties of realised QV and Large (2005) provides a new type

of estimator of [Y ] based on X.

Assumption F4: scrambled. (i) non-synchronously trading or quote updating, (ii) delays

caused by reaction times, as information is absorbed into markets differentially quickly.

F4(i) was the motivation for the work of Malliavin and Mancino (2002) discussed in Section

3.8.3. It also appears in the work of Hayashi and Yoshida (2005), which we will discuss at the

end of this section.

Typically F1-F2 are strengthened by

Assumption IND. U ⊥⊥ Y .

IND is a strong assumption, which is studied in some length by Hansen and Lunde (2006)

who argue it is not empirically reasonable for a number of empirical examples.

F1-F3 are all capable of impacting on univariate realised analysis, Assumption F4 can only

possibly help in the multivariate case for it hardly impacts univariate quadratic variations over

moderately long stretches of time such as a day. Assumptions F1-F2 are purely statistical

abstractions for measurement error, somewhat convenient for carrying out calculations. They

are attempts to deal with some of the effects of liquidity and bid/ask bounce. F2 has the problem

that it implies X ∈ BSM and so needs additional assumptions in order to identify [Y ], such as

Y ∈ Mloc. F3 is motivated by the discreteness seen in most asset markets — see for example

Figure 3. F4 tries to capture a feature of Epps (1979) effects, which was discussed in section

2.10.2.

5.3 Properties of [Uδ] in univariate case under F1W and F2

Trivially under F1 and F2

[Xδ] = [Yδ] + [Uδ] + 2[Uδ , Yδ].

It is useful to think of the conditional moments EU |Y ([Xδ ] − [Yδ]) and VarU |Y ([Xδ] − [Yδ]), for

they give an impression of the effect of frictions.

Given space constraints we will specialise the results for F1 to F1W — there is little technical

loss in doing this as the results under the more general conditions of F1 are very similar. Write

n = bt/δc, then under IND we have that

EU [Uδ] = n2κ
2, EU |Y [Uδ, Yδ] = 0, VarU |Y [Uδ, Yδ ] = 2κ

2[Yδ], (35)

CovU |Y ([Yδ], [Uδ , Yδ]) = 0, CovU |Y ([Uδ], [Uδ , Yδ]) = 0, [Yδ] ⊥⊥ [Uδ ].
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To calculate Var[Uδ], write ua,b = Ua − Ub and use the normality of U ,

Cov(u2
a,b, u

2
c,d) = 2Cov2 (ua,b, uc,d) .

Taken together with the fact that [Uδ] =
∑n

i=1 u2
δi,δ(i−1) then under F1W Var[Uδ] ' 12κ

4n, so

EU |Y ([Xδ] − [Yδ]) = 2nκ
2 and VarU |Y ([Xδ] − [Yδ]) ' 12κ

4n + 8κ
2[Yδ]. (36)

This was reported by Fang(96) (1996), Bandi and Russell (2003), Hansen and Lunde (2006) and

Zhang, Mykland, and Aı̈t-Sahalia (2005). Notice that as δ ↓ 0 both the bias and variance goes

to infinity. This formalises the well known result that [Xδ ] is an inaccurate estimator of [Y ]

under F1 when δ is very small. The generalisation of these results to F1 appears also in the

above papers and Aı̈t-Sahalia, Mykland, and Zhang (2005b) — the key result being that the

orders in n do not change as we move to F1.

For mid-quotes data κ
2 tends to be quite small and so the impact of terms which contain

κ
4 tend to be tiny unless n is massive. For transaction data this is not typically the case for

then we would expect κ
2 to be much bigger due to bid/ask bounce.

Hansen and Lunde (2006) have studied the empirically important case of where [Uδ, Yδ] is

negative, which can happen when the IND assumption is dropped.

Under F2, if U is a Gaussian OU process (34) then E(Ut) = 0, Var(Ut) = κ
2. Clearly for

small δ under IND

EU |Y ([Xδ ] − [Yδ]) = n2κ
2 (1 − exp(−λδ)) ' 2tλκ

2 = [U ]t, (37)

while from (17) the corresponding variance is approximately 2δ
∫ t
0

(
σ2

u + κ
22λ
)2

du. Notice that

for large δ, [U ]t provides a poor approximation to the bias. As δ decreases, at first the bias

increases but the variance falls, but eventually as δ gets very small the variance becomes small

and the bias remains constant at [U ]t. Hence the results are materially different from the F1

case.

The bias can be very large as λ is likely to be very large in practice, in order for the half life

of U to be very brief. This type of result appears in the parametric case where Y is Brownian

motion plus drift in Aı̈t-Sahalia, Mykland, and Zhang (2005b, Section 9.2). Related work

includes Gloter and Jacod (2001a) and Gloter and Jacod (2001b). The bias (37) continues to

hold for non-Gaussian OU processes of the type discussed by Barndorff-Nielsen and Shephard

(2001).

Under F1, Bandi and Russell (2003) and Hansen and Lunde (2006) have studied the problem

of minimising the E ([Xδ ] − [Y ])2 by choosing δ. A key is the problem of estimating κ
2, but

under F1 this is consistently estimated by
∑(

Xδi − Xδ(i−1)

)4
/2n. For thickly traded assets
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they typically select δ to be between 1 and 15 minutes, but the results are sensitive to the choice

of mid-quotes or transaction data and the use of interpolation or raw transforms. In recent work

Bandi and Russell (2005) have extended their analysis to the multivariate case. See also the

work of Martens (2003).

5.4 Subsampling

5.4.1 Raw subsampling

Recalling the definition of (23), we have that when tk
j = δ

(
j + k

K+1

)
then

[XG+
n (K)] =

1

K + 1

K∑

i=0

[XGn(i)]t, where [XGn(i)] = [YGn(i)] + [UGn(i)] + 2[UGn(i), YGn(i)],

and so we can use (35) to calculate EU |Y [XG+
n (K)]. In particular under F1W

EU |Y [XG+
n (K)] = [YG+

n (K)] + n2κ
2, (38)

so subsampling does not reduce the bias of the estimator. However, and crucially, under F1W

we trivially have

VarU |Y [UG+
n (K)] =

1

K + 1
Var[UGn(i)], VarU |Y [UG+

n (K), YG+
n (K)] = 2κ

2 1

K + 1
[YG+

n (K)].

Which means that, for fixed δ as K → ∞ so

[XG+
n (K)]

p→ p lim
K→∞

[YG+
n (K)] + n2κ

2.

This is a marked improvement over the realised QV, for in that case both the mean and variance

explode as δ ↓ 0. This important point was first made in the F1W context by Zhang, Mykland,

and Aı̈t-Sahalia (2005). Aı̈t-Sahalia, Mykland, and Zhang (2005b) extend this argument to the

case of dependence in observation time.

Under F2, if U is a Gaussian OU process (34) then for small δ, as before,

EU |Y

(
[XG+

n (K)] − [YG+
n (K)]

)
= n2κ

2 (1 − exp(−λδ)) ' [U ]t, (39)

while from (17) the corresponding variance is approximately (see Example 2),

2

(K + 1)2

K∑

i=0

K∑

k=0

{(
k − i

K + 1

)2

+

(
1 −

∣∣∣∣
k − i

K + 1

∣∣∣∣
)2
}∫ t

0

(
σ2

u + κ
22λ
)2

du.

Hence under F2 subsampling has broadly the same properties as the raw realised QV estimator

studied in the previous subsection, but with a slightly smaller variance when K is large.
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5.4.2 Bias correction

Subsampling has the great virtue that under F1 or F2 its variance gets smaller as δ ↓ 0. This

means that if we can bias correct these estimators then they will be consistent for [Y ].

Under F1W Zhang, Mykland, and Aı̈t-Sahalia (2005) argued one should estimate [Y ] by

/Xδ,K/ = [XG+
n (K)] −

1

K + 1
[X δ

K+1
],

which they termed a “two scaled estimator”, one based on returns computed over intervals of

length δ, the other on intervals of length δ/(K + 1). Clearly under F1W

EU (/Xδ,K/) = [YG+
n (K)] −

1

K + 1
[Y δ

K+1
] + n2κ

2 − K + 1

K + 1
n2κ

2

' [YG+
n (K)] −

1

K + 1
[Y δ

K+1
],

with the second term becoming negligible as K increases. Hence the two scale estimator is con-

sistent under F1W and IND. Zhang, Mykland, and Aı̈t-Sahalia (2005) calculate the asymptotic

distribution of /Xδ,K/− [Y ] and show it is mixed Gaussian, but with a slow rate of convergence.

Zhang (2004) provides a multiscale estimator which has a faster rate of convergence, but exploits

similar ideas. It is clear this argument also holds under F1 with time dependent errors which

are stationary in observation time — for in calendar time the dependence in the data weakens

as δ ↓ 0. A clear analysis of that setup is provided by Aı̈t-Sahalia, Mykland, and Zhang (2005b).

Unfortunately this estimator falls over when we move to the F2 assumption, concording with

the above comments that this is a much more difficult problem. In particular for finite δ,K

EU (/Xδ,K/) = [YG+
n (K)] −

1

K + 1
[Y δ

K+1
]

+n2κ
2

{
(1 − exp(−λδ)) − K + 1

K + 1

(
1 − exp

(
−λ

δ

K + 1

))}

' [YG+
n (K)] −

1

K + 1
[Y δ

K+1
] + 2κ

2tn.

Thus, in this case, the two scale estimator does not really help. The problem here is that the

bias correction is of the wrong form.

Figure 7, repeats Figure 6 but now plots the results for the two scale estimators for Vodafone

on 2nd January 2004. Throughout the subsampling was based on a time series of 2 second returns

and setting K = δ/0.02. It is important to understand that the choice of K is important and

the empirical properties of the two scale estimator may change quite significantly with this

tuning parameter15. We have little experience of how to select K well. The results in the top

15When δ is small we would like to use a lot of subsampling as the theory of Zhang, Mykland, and Äıt-Sahalia
(2005) suggests, but we cannot take K to be very large as we run out of data. Our dataset is recorded only up
to one second. At the moment we cannot see how to overcome this problem. More empirical studies into the
performance of the two scale estimator are given in Hansen and Lunde (2006).
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row, which are made on mid-quotes, show the 2 scale estimator does well for interpolated data

and moderates the bias of the RV estimator for small δ. The 2 scale estimator is much more

challenged (as all the estimators are!) by the transaction data, but it does have a positive impact

in the case of the raw data. The signature plot for the two scale estimator for the Vodafone

series is given in Figure 6 and produces qualitatively very similar results.

0.1 0.2 1 2 3 4 10 20

0.01

0.02

0.03

0.04 Mid−quote returns: interpolated
RVol 
Kernel 
2 scale 
Alternation 

0.1 0.2 1 2 3 4 10 20

0.01

0.02
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0.04 Mid−quote returns: raw
RVol 
Kernel 
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Alternation 
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Figure 7: LSE’s electronic order book on the 2nd working day in January 2004. Top 2 rows
graphs: subsampled realised daily QVol computed using 0.1, 1, 5 and 20 minute midpoint re-
turns. X-axis is in minutes. First row corresponds to mid-points, the second row corresponds to
transactions. Bottom 2 rows of graphs: 2 scale estimator of the QVol computed using 0.1, 1, 5
and 20 minute transaction returns.

5.5 Kernel

An alternative way of trying to remove frictions is by using kernels, discussed in this context

by, for example, French, Schwert, and Stambaugh (1987) and Zhou (1996), and formalised by

Hansen and Lunde (2006) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004). We will
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study

RVw(Xδ) = w0[Xδ] + 2

q∑

i=1

wiγ̂i(Xδ)

= RVw(Yδ) + RVw(Uδ) + RVw(Yδ, Uδ) + RVw(Uδ, Yδ).

We already know from section 3.7 the properties of RVw(Yδ) when δ is small, while under the

IND assumption

RVw(Yδ) ⊥ RVw(Yδ, Uδ), RVw(Uδ, Yδ),

RVw(Uδ) ⊥ RVw(Yδ, Uδ), RVw(Yδ) ⊥⊥ RVw(Uδ).

the first two terms have zero mean and so, writing ρ◦
s = Cor(Ut, Ut−s),

EU (RVw(Xδ)) = w0[Yδ] + 2nκ
2

(
w0 (1 − ρ◦δ) +

q∑

i=1

wi

(
2ρ◦iδ − ρ◦(i−1)δ − ρ◦(i+1)δ

))
.

Under F1W Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004, Theorem 2) note that

EU




[Uδ]
2γ̂1(Uδ)
2γ̂2(Uδ)

...
2γ̂q(Uδ)




=




2κ
2n

−2κ
2n

0
...
0




, CovU




[Uδ]
2γ̂1(Uδ)
2γ̂2(Uδ)

...
2γ̂q(Uδ)




= nκ
4




12
−16 28
4 −16 24
0 4 −16 24
...

. . .
. . .

. . .
. . .




,

while EU |Y [Uδ , Yδ] = EU |Y γ̂1(Uδ, Yδ) = 0 and

CovU |Y




[Uδ, Yδ]
γ̂1(Uδ, Yδ)
γ̂1(Yδ, Uδ)




= nκ
4




2[Yδ] − 2γ̂1(Yδ)
2γ̂1(Yδ) − γ̂2(Yδ) − [Yδ] 2[Yδ ] − 2γ̂1(Yδ)
2γ̂1(Yδ) − γ̂2(Yδ) − [Yδ] 2γ̂2(Yδ) − γ̂1(Yδ) − γ̂3(Yδ) 2[Yδ] − 2γ̂1(Yδ)




which implies

EU {RVw(Xδ)} = w0[Yδ] + 2nκ
2 (w0 − w1) ,

which is unbiased iff w0 = w1 = 1. The simplest unbiased estimator is thus

RV1,1(Xδ) = [Xδ] + 2γ̂1(Xδ). (40)

This was proposed by Zhou (1996) and studied in detail by Hansen and Lunde (2006). Table

5 summarises the properties of various estimators under F1 and IND using these results. As

lags are added, the middle term in the variance considerably falls, while the first term increases.

This means that when δ is small then RV1,1,0.5(Xδ) could be more precise than [Xδ] in the

presence of market friction. Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004, Theorem
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Estimator Bias Variance

[Xδ ] 2nκ
2 2δ

∫ t
0 σ4

udu + 12nκ
4 + 8κ

2
∫ t
0 σ2

udu

RV1,1(Xδ) = [Xδ ] + 2γ̂1(Xδ) 0 6δ
∫ t
0 σ4

udu + 8nκ
4 + 8κ

2
∫ t
0 σ2

udu

RV1,1,0.5(Xδ) = [Xδ] + 2γ̂1(Xδ) + γ̂2(Xδ) 0 7δ
∫ t
0 σ4

udu + 2nκ
4 + 4κ

2
∫ t
0 σ2

udu

Table 5: Bias and variance of various kernel estimators under the F1 and IND assumptions

2) show that by adding more lags and choosing the weights appropriately they can produce a

consistent estimator, when small adjustments are made to deal with the intricate end effects we

have ignored in this survey. An alternative would be to subsample (40), which will transform

the unbiased statistic into a consistent one under the F1 assumption — although, as we have

seen in the previous subsection, such an argument fails under F2. Under F2, the kernel approach

will continue to produce an unbiased estimator of [Y ], but typically it will be inconsistent.

Consider the simple kernel weights wi = (q + 1 − i) /q, where q is set to cover 5 minutes,

whatever the value of δ. Then the bias is 0 under F1 and IND. When q = 1 then w1 = 1, if

q = 2 then w1 = 1, w2 = 1/2, while q = 3 implies w1 = 1, w2 = 2/3, w3 = 1/2. When q = 4, then

w1 = 1, w2 = 3/4, w3 = 2/4, w4 = 1/4. Figure 7, repeats Figure 3 but now plots the results for

the kernel estimator. These seem pretty strong results, with the estimator being reasonably in

line with the alternation estimator we will discuss in the moment. The results are pretty stable

with respect to δ, although the problem of dealing with frictions is clearly harder in the case

where we use transaction as opposed to mid-quote data. These results are confirmed by looking

at the signature plots in Figure 6, which shows the kernel still has bias in the transactions

case, but the biases are rather modest. Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004,

Theorem 2) discuss more sophisticated choices of kernels.

5.6 F3 — pure point process

This is attractive as there is a great deal of literature which moves econometricians towards

modelling prices as point processes (e.g. Engle and Russell (1998), Engle (2000) and Bowsher

(2003)). It appears in a number of guises. There is a literature on continuous sample path

processes which are rounded to yield a point process. Work on this includes Gottlieb and Kalay

(1985), Jacod (1996) and Delattre and Jacod (1997). Another strand has started out with a

model for a point process for X, which has been introduced in this context by Oomens (2004)

and Large (2005).

Oomens (2004) has studied the sampling properties of realised QV estimators in the case

where the data generating process is purely made up of jumps. Hasbrouck (1999) studies the

problem where they have an underlying time series which is rounded so that the prices live on
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discrete lattice points, whose width is a tick. His analysis is fully parametric.

Closer to the content of this paper, Barndorff-Nielsen and Shephard (2005b) study the first

two moments of realised QV when Yt = Zτ t ,where τ is the integral of a non-negative covariance

stationary process, that is a process with non-decreasing sample paths, and Z is a Lévy process.

Throughout they assume that Z ⊥⊥ τ . Such models have received some attention recently in

mathematical finance due to the papers by, for example, Carr, Geman, Madan, and Yor (2003)

and Carr and Wu (2004). Of course Lévy processes, outside the Brownian motion case, are pure

jump processes and can be made to obey lattice structures if desired. ?) show that the realised

QV estimator is an inconsistent estimator of τ , but are able to characterise the bias and variance

and so the realised QV estimator can be used to provide inference on underlying parameters if

the time-change model is parametric.

A radical departure is provided by Large (2005) who introduced the alternation estimator.

He looks at markets where prices move almost always by one tick. An example of this is Vodafone

in Figure 3. He uses solely one side of the quotes, say the best bid, and assumes that the pure

jump process Xt always jumps towards Yt when it moves. He then estimates the [Y ]t as

L̂t = [X]t
Nt − At

At
,

where Nt are the number of price movements in the single side of the market up to time t. We

call this the alternation estimator. Here At are the number of alternations or immediate price

reversals. Under various assumptions he then shows that L̂t
p→ [Y ]t as Nt → ∞ and establishes

a CLT for the estimator. This approach is an elegant combination of a market microstructure

model which is cointegrated with a BSM efficient price.

For the Vodafone share price, we computed the alternation estimator separately on the

bid and ask sides of the markets and averaged the values to compute the estimator of [Y ].

Figure 6 shows its value averaged over the 20 days in January 2004. It is in line with the

estimated unconditional standard deviation of the open to close daily returns. Figure 7 shows

the corresponding result for the 2nd of January, 2004. Again it suggests the alternation estimator

produces plausible values in practice. Of course the Vodafone example is a nice case for the

alternation estimator for it has a large tick size as a percentage of price and almost all of its

moves are by one tick. It is potentially challenged by stocks with more frequently updated

quotes.
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5.7 F4 — scrambled multivariate process

There is very little work on the effect of market frictions in the multivariate case. At a trivial

level, all the univariate results apply to the multivariate case through the use of polarisation

[Y l, Y m]t =
1

4

(
[Y l + Y m]t − [Y l − Y m]t

)
,

and so frictionally robust estimators can be applied to the two components. Although this

approach has significant merits, and is used in the paper by Bandi and Russell (2005) to select

δ for daily realised QV calculations, it misses out on adequately dealing with Epps type effects.

In the multivariate case there are potentially two new problems: (i) non-synchronous trading

or quote updating, (ii) delays caused by reaction times, as information is absorbed into markets

differentially quickly. The first of these has been studied for quite a long time in empirical finance

by, for example, Scholes and Williams (1977) and Lo and MacKinlay (1990). Martens (2003)

provides a review of some of this work and more modern papers as well as making contributions

of his own.

If Y ∈ BSM and the times of observations, tj, are independent from Y then this is a

precisely specified statistical problem and a number of solutions are available. We discussed the

Fourier method in section 3.8.3, but there is also the work of Hayashi and Yoshida (2005) which

characterises the bias caused by random sampling and suggests methods for trying to overcome

it. Hayashi and Yoshida (2005, Definition 3.1) introduced the estimator

}
Y l, Y m

{
t
=

ti≤t∑

i=1

tj≤t∑

j=1

(
Y l

ti − Y l
ti−1

)(
Y m

tj − Y m
tj−1

)
I {(ti−1, ti) ∩ (tj−1, tj) 6= �} . (41)

This multiplies returns together whenever time intervals of the returns have any component

which are overlapping. This artificially includes terms with components which are approximately

uncorrelated (inflating the variance of the estimator), but it does not exclude any terms and

so does not miss any of the contributions to quadratic covariation. They show under various

assumptions that as the times of observations become denser over the interval from time 0 to

time t, this estimator converges to the desired quadratic covariation quantity.

Table 6 illustrates the effect of using estimator (41), estimating the average realised corre-

lation during January 2004 for the London stock exchange data discussed earlier. These results

are comparable with Figure 4 and shows that it goes a modest way towards tackling this issue.

This suggests that other types of frictions are additionally important.
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Vodafone BP AstraZeneca HSBC

Vodafone -
BP .0681 -

AstraZeneca .0456 .0430 -
HSBC .0776 .0602 .0495 -

Table 6: The average of the daily Hayashi-Yoshida estimator of the correlation amoungst the
returns in these asset prices. These statistics are based on mid-quotes.

6 Conclusions

This paper has reviewed the literature on the measurement and forecasting of uncertainty

through quadratic variation type objects. The econometrics of this has focused on realised

objects, estimating QV and its components. Such an approach has been shown to provide a

leap forward in our understanding of time varying volatility and jumps, which are crucial in asset

allocation, derivative pricing and risk assessment. A drawback with these types of methods is

the potential for market frictions to complicate the analysis. Recent research has been trying to

address this issue and has introduced various innovative methods. There is still much work to

be carried through in that area.

7 Software

The calculations made for this paper were carried out using PcGive of Doornik and Hendry

(2005) and software written by the authors using the Ox language of Doornik (2001).
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Carr, P. and L. Wu (2004). Time-changed Lévy processes and option pricing. Journal of Financial
Economics , 113–141.

Chernov, M., A. R. Gallant, E. Ghysels, and G. Tauchen (2003). Alternative models of stock price
dynamics. Journal of Econometrics 116, 225–257.

Christensen, K. and M. Podolskij (2005). Asymptotic theory for range-based estimation of integrated
volatility of a continuous semi-martingale. Unpublished paper: Aarhus School of Business.

Comte, F. and E. Renault (1998). Long memory in continuous-time stochastic volatility models. Math-
ematical Finance 8, 291–323.

Corradi, V. and W. Distaso (2004). Specification tests for daily integrated volatility, in the presence
of possible jumps. Unpublished paper: Queen Mary College, London.

51



Corsi, F. (2003). A simple long memory model of realized volatility. Unpublished paper: University of
Southern Switzerland.

Curci, G. and F. Corsi (2003). A discrete sine transformation approach to realized volatility measure-
ment. Unpublished paper.

Dacorogna, M. M., R. Gencay, U. A. Müller, R. B. Olsen, and O. V. Pictet (2001). An Introduction to
High-Frequency Finance. San Diego: Academic Press.

Delattre, S. and J. Jacod (1997). A central limit theorem for normalized functions of the increments
of a diffusion process in the presence of round off errors. Bernoulli 3, 1–28.

Demeterfi, K., E. Derman, M. Kamal, and J. Zou (1999). A guide to volatility and variance swaps.
Journal of Derivatives 6, 9–32.

Doob, J. L. (1953). Stochastic Processes. New York: John Wiley and Sons.

Doornik, J. A. (2001). Ox: Object Oriented Matrix Programming, 3.0. London: Timberlake Consultants
Press.

Doornik, J. A. and D. F. Hendry (2005). PC Give, Version 10.4. London: Timberlake Consultants
Press.

Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. In Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1, pp. 59–82.
Berkeley: University of California.

Engle, R. F. (2000). The econometrics of ultra-high frequency data. Econometrica 68, 1–22.

Engle, R. F. and J. P. Gallo (2005). A multiple indicator model for volatility using intra daily data.
Journal of Econometrics . Forthcoming.

Engle, R. F. and J. R. Russell (1998). Forecasting transaction rates: the autoregressive conditional
duration model. Econometrica 66, 1127–1162.

Engle, R. F. and J. R. Russell (2005). Analysis of high frequency data. In Y. Ait-Sahalia and L. P.
Hansen (Eds.), Handbook of Financial Econometrics. Amsterdam: North Holland. Forthcoming.

Epps, T. W. (1979). Comovements in stock prices in the very short run. Journal of the American
Statistical Association 74, 291–296.

Fang(96) (1996). Volatility modeling and estimation of high-frequency data with Gaussian noise. Un-
published Ph.D. thesis, Sloan School of Management, MIT.

Forsberg, L. and E. Ghysels (2004). Why do absolute returns predict volatility so well. Unpublished
paper: Economics Department, UNC, Chapel Hill.

Foster, D. P. and D. B. Nelson (1996). Continuous record asymptotics for rolling sample variance
estimators. Econometrica 64, 139–174.

French, K. R., G. W. Schwert, and R. F. Stambaugh (1987). Expected stock returns and volatility.
Journal of Financial Economics 19, 3–29.

Garcia, R., E. Ghysels, and E. Renault (2005). The econometrics of option pricing. In Y. Ait-Sahalia
and L. P. Hansen (Eds.), Handbook of Financial Econometrics. North Holland. Forthcoming.
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