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Abstract

This paper asks how well a general equilibrium agency cost model describes
the dynamic relationship between credit variables and the business cycle. A
Bayesian VAR is used to obtain probability intervals for empirical correla-
tions. The agency cost model is found to predict the leading, countercyclical
correlation of spreads with output when shocks arising from the credit market
contribute to output fluctuations. The contribution of technology shocks is
held at conventional RBC levels. Sensitivity analysis shows that moderate
prior calibration uncertainty leads to significant dispersion in predicted cor-
relations. Most predictive uncertainty arises from a single parameter.
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1 Introduction

The financial health of a corporation can be gauged in part by its credit spread,

namely the cost of its borrowing in excess of a safe alternative. Credit spreads are

understood to be caused by agency costs that arise when borrowers and lenders

have asymmetric information. These costs may vary in intensity with the state

of the business cycle, linking macroeconomic and corporate risk. This link was

formalised in the dynamic general equilibrium agency cost model of Bernanke and

Gertler (1989) and Carlstrom and Fuerst (1997), and is the main focus of the current

paper.

A stylised account of the mechanism working between macroeconomic risk and

credit spreads can be described as follows. Suppose a technology shock increases

the demand for capital goods. The entrepreneurs who supply new capital would like

to raise funds from households to finance increased production. Given information

asymmetries, the financial contract takes the form of risky debt, a standard feature

of which is fixed repayment to be made when solvent. When the entrepreneur is

bankrupt, the bond holder receives a fraction of the promised payment. The pos-

sibility of leaving lenders with the bill when bankrupt leads entrepreneurs to desire

excessive leverage, and intermediaries to demand a compensatory loan premium.

Macroeconomic fluctuations in response to a shock are propagated by this mech-

anism, and the dynamics of real aggregates are made more consistent with data

Carlstrom and Fuerst (1997).

Empirical studies show that macroeconomic risk is a significant factor for spreads

in credit markets, see for example Gertler and Lown (1999) and Koopman and Lu-

cas (2005). The consensus finding is that credit spreads are negatively correlated

with deviations from trend output, and lead at the one year horizon, see Kwark

(2002). The present paper motivates these empirical observations using the theo-

retical macroeconomic model of Carlstrom and Fuerst (1997). However, it is well

known that their setup has the implication that credit spreads widen following a pos-

itive technology shock, leading to a procyclical spread. For example, Gomes, Yaron,

and Zhang (2003) find that the model is superior to the standard adjustment cost

approach in matching a number of asset pricing facts, but highlight its counterfac-

tual implications for the cyclical movement of spreads. In a related contribution,

Kwark (2002) introduces costs to adjusting investment decisions made in advance
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of a technology shock in order to match the pattern of observed comovements.

The contributions of this paper are as follows. First, I do not condition on tech-

nology shocks in deriving theoretical predictions for unconditional moments of data.

Using a plausible set of macroeconomic risk factors, the agency cost model predicts

the observed negative leading behaviour of credit spreads over the business cycle.

As in Li and Sarte (2003) and Cooper and Ejarque (2000), shocks may arise directly

from the financial sector. These shocks are shown to be of central importance in

matching data. However, technology shocks remain the dominant source of out-

put fluctuations, consistent with the real business cycle hypothesis, indicating that

previous rejections of the agency cost model may have been premature.

Second, the consequences of global parameter uncertainty is formalised using

reasonable priors for calibrated parameters as in Canova (1995), Geweke (1999a) and

DeJong, Ingram, and Whiteman (1996). A significant degree of uncertainty around

the point predictions is found under the baseline specification. Local sensitivity

analysis identifies the persistence of credit shocks as the principal source of this

uncertainty.

Third, credit and output data are modelled in a Bayesian framework, and proba-

bility distributions for both the theoretical model and the data model are calculated.

Estimated Bayesian probability intervals are consistent with previous findings of

negative, leading credit spreads. However, point estimates are subject to significant

uncertainty in the case of the preferred measure of agency costs. In this paper, I

take the view that the theory is too stylised to directly describe observed data, mak-

ing estimation proceedures infeasible. Following DeJong et al. (1996) and Geweke

(1999a), the model is intended to match specified moments of the data only. Suc-

cess in this framework amounts to high overlap between the predictive and estimated

densities.

2 The model economy

This paper builds multiple sources of macroeconomic risk known to be useful for

matching theory to the data into the economy of Carlstrom and Fuerst (1997).

There are four actors: households, firms, intermediaries and entrepreneurs. Firms

are fully owned by households, and intermediaries are passive vehicles for the per-

fect diversification of idiosyncratic within-period risk. Household/firms operate in
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competitive markets to produce a final consumption good using capital and labour

as inputs. Entrepreneurs are a separate class, with a different preference struc-

ture and access to a different technology, which transforms final goods into capital

goods. There is an informational asymmetry between individual entrepreneurs and

household/intermediaries which creates incentive problems that are remedied by the

parties writing contracts that resemble standard debt. For further discussion, see

Carlstrom and Fuerst (1997).

2.1 Households and firms

Households own capital which they rent to firms, earning rental payments r, and

supply labour, which earns a competitive wage w. Household preferences over con-

sumption c and fraction of hours worked h are given by a CES utility function with

discount factor β:

U(c, h) = E0

∞
∑

t=0

βtat

(cχ
t [1 − ht]

1−χ)
1−σ

− 1

1 − σ
(1)

where the preference shock a will be assumed to follow an autoregressive process.

The coefficient σ is the reciprocal of the intertemporal elasticity of substitution,

and χ controls the substitutability of consumption and leisure in utility. Firms’

technology is given by:

yt = θtk
α
t h1−α

t (2)

where k is physical capital and θ is an autoregressive shock to total factor produc-

tivity. We take the overall labour input to comprise that from households and a

quantitatively trivial contribution from entrepreneurs he with output elasticity αe.

This will be needed by entrepreneurs who have zero net worth, in order to partici-

pate in the financial market. The cost of a unit of capital is q units of final goods.

Because households are able to diversify away idiosyncratic risk via intermediaries,

capital goods are received with certainty. It follows that the household’s capital

purchases must satisfy the Euler equation:

qt = Etβ

(

at+1

at

) (

ct+1

ct

)χ(1−σ)−1 (

1 − ht+1

1 − ht

)(1−χ)(1−σ)

{(1 − δ)qt+1 + rt+1} (3)

where r is the rate of return on capital, and δ is the rate of depreciation. The final

term on the right, in braces, is the total return (rental plus capital gain) to holding

a unit of capital from this period to the next.
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The labour supply decision is governed by the requirement that the returns to a

marginal hour devoted to market activity are equal to the return to devoting that

same hour to leisure:
1 − χ

χ

ct

1 − ht

= (1 − α)θtk
α
t h−α

t . (4)

Notice that the preference shock acts symmetrically on the marginal utility of con-

sumption and leisure, a positive shock acting to increase the demand for both,

without altering the intra-temporal margin between them.

2.2 Entrepreneurs and intermediaries

Intermediaries take deposits from households and make intra-period loans to the

mass of entrepreneurs. Each entrepreneur operates a production technology that

carries some idiosyncratic risk, so that for every i units of consumption goods that

are invested, ωi units of capital goods are produced, where the distribution function

of ω is denoted φ(ω), and Eωω = 1. The financial contract is obtained under the

assumption of risk neutrality on the part of the contracting parties, as the loan is

within-period and there is no aggregate risk over its life. Expected entrepreneurial

revenue is maximised subject to an expected break-even condition for the intermedi-

aries. Entrepreneurs capture the surplus, with intermediaries as residual claimants.

Formally:

max qtitf(̟t) subject to qtitgt(̟t) − (it − nt) ≥ 0 (5)

where i is total investment, n is net worth and:

f(̟t) =

∫ ∞

̟t

ωφ(ω)dω − [1 − Φ(̟t)]̟t (6)

and:

gt(̟t) =

∫ ̟t

0

ωφ(ω)dω − Φ(̟t)µt + [1 − Φ(̟t)]̟t (7)

are the expected shares of the project revenue going to the entrepreneur and in-

termediary respectively. Here ̟ is the breakeven level of ω, the smallest value of

the idiosyncratic shock consistent with an entrepreneur being able to repay his loan.

The integral in (6) is the expectation of the idiosyncratic shock, conditional upon the

entrepreneur being solvent, multiplied by the probability of being solvent. Likewise,

the integral in (7) is the expectation of the shock conditional upon the entrepreneur

being bankrupt, times the probability that he is bankrupt. The fraction of output
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lost in bankruptcy is µ, which is assumed to be an autocorrelated stochastic process

with mean µ∗. Innovations to µ will be termed ‘credit shocks’. Variations in µ can

be regarded as arising from shocks to intermediaries’ monitoring technology, with

µt > µ∗ being an adverse shock, in the sense that more product is destroyed during

the act of recovering the bankrupt firm’s assets (‘monitoring’).

The marginal addition to expected entrepreneurial revenue from an increase

in net worth is measured by the shadow price on the intermediary participation

constraint. From the first order condition for investment, this marginal benefit is

λt = qtf(̟t)/[1 − qtg(̟t)], which is seen to be the expected ‘return on internal

funds’, and is increasing in the price of capital. The optimal breakeven value ̟

satisfies:

qtitf
′(̟t) + λtqtitg

′(̟t) = 0, (8)

which upon substitution for the shadow price on net worth yields the efficiency

condition:

f ′(̟t) = −
qtf(̟t)

1 − qtg(̟t)
g′(̟t) (9)

The expected reduction in entrepreneurial revenue from reallocating a marginal unit

of funds from internal to external should match the expected increase in intermedi-

aries’ revenue times the return on internal funds.

As the constraint on intermediaries’ expected profits is binding, qig(̟) = i− n,

we can use the efficiency condition (9) to write the investment supply function:

it = −
ntf

′(̟t)

qtf(̟t)g′(̟t)
=

nt

1 − qtg(̟t)
. (10)

As individual investment is linear in individual net worth, aggregate investment is

linear in aggregate net worth, and thus (noting in particular that g(̟) is a constant

with respect to ω):

It =

∫ ∞

0

itφ(ω)dω −

∫ ̟t

0

µtiφ(ω)dω = i[1 − Φ(̟t)µt] (11)

Since some output of capital goods is destroyed by the monitoring process, expected

aggregate investment is less than the expected aggregate output of all entrepreneurs.

The aggregate law of motion for capital is thus:

kt+1 = (1 − δ)kt + it[1 − Φ(̟t)µt], (12)
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It is this investment ‘wedge’ that causes investment and consumption goods to differ

in price. A reduction in bankruptcy costs µ has a similar reduced form effect to an

increased marginal efficiency of investment (Greenwood et al., 1988), a correspon-

dence that was also exploited in the context of credit market shocks by Cooper and

Ejarque (2000). In the current model, the risk attaching to credit shocks is time-

varying, with shock of given magnitude having more effect when the probability of

bankruptcy Φ(̟t) is high. Households are insulated from the direct effects of such

fluctations, which here affect only entrepreneurs and intermediaries. However, they

must bear the resultant fluctuations in capital prices. Note that a standard real

business cycle model is a special case when agency costs shrink to zero.

It is optimal for the entrepreneur to put his entire net worth at stake, investing

all of his assets in the risky production process, since he is risk neutral and expected

returns are at least as great as the alternative. The entrepreneur’s net worth is given

by income earned from participating in the production of consumption goods we
th

e
t

and from the value this period of last periods undepreciated capital holdings zt plus

the rental income earned from capital this period. His net worth is therefore given

by:

nt = we
th

e
t + zt(rt + qt[1 − δ]); (13)

His income from production this period is expected to be qtitf(̟t). If the entrepre-

neur is solvent he makes a choice between consumption et and capital accumulation,

otherwise the terms of his contract give all output to the intermediary. His opti-

misation problem is now to maximise a linear utility function, which exhibits extra

‘impatience’ compared to households (an assumption which prevents the entrepre-

neur from becoming self-financing):

U = E0

∞
∑

t=0

(βγ)tet where γ ∈ (0, 1)

subject to the budget constraint:

et + qtzt+1 = {we
t + zt(rt + qt[1 − δ])}

qtf(̟t)

1 − qtg(̟t)
(14)

where the last term is seen to be the return on internal funds. The resulting optimum

depends only on the relative payoffs of capital today versus capital tomorrow:

βγEt(rt+1 + qt+1[1 − δ])
qt+1f(̟t+1)

1 − qt+1g(̟t+1)
= qt. (15)

7



The the expected market return and the expected return on internal funds must

therefore move reciprocally. Finally, entrepreneurs supply their entire time endow-

ment inelastically to market production. Bankrupt entrepreneurs carry zero capital

into the next period, and their net worth consists of the labour income they will

accrue during market activity.

3 Analysis

We will now quantify the predictions that the Carlstrom and Fuerst agency cost

model has for the credit cycle, and compare them to the data on the US economy

from 1961-2005. Three functions are examined that diagnose the descriptive capa-

bility of the agency cost model for the behaviour of credit in the cycle: the cross

correlation functions between the external funds premium and output, between cor-

porate leverage and output, and between the external funds premium and leverage.

3.1 Theory-based predictions

Our first task is to find distributions for the statistics of interest predicted by the

theoretical model. The procedure I follow is essentially the one recommended by

Canova (1995). Calibration uncertainty is represented by specifying independent

prior distributions over the parameters. I take 2,500 draws from the joint prior,

specified in Table 1; for each draw solve for the recursive equilibrium; calculate the

cross correlation function based on the resulting theoretical law of motion; finally,

apply a kernel smoothing algorithm to approximate the density function at each

point of the cross correlation function and find quantiles.

Prior distributions must be assigned to fifteen parameters, falling into two groups.

The first group are those parameters standard in the RBC literature, which deter-

mine the income shares of labour and capital, the desireability of intertemporal

consumption smoothing, and so on. The second group comprises the additional

parameters required for the agency cost part of the model. Here, there is less di-

rect guidance from current simulation practice or from estimation studies, and so

indirect evidence is sought.

A great deal of attention in the business cycle literature has focussed on σ,

the coefficient of household risk aversion, with a wide range of values entertained.

Households in our economy do not bear extra risk compared to a model with no
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Table 1: Prior distribution of parameters

Quantile
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

σ 1.147 1.240 1.317 1.394 1.473 1.564 1.675 1.828 2.0909
β 0.986 0.987 0.988 0.989 0.990 0.991 0.992 0.993 0.994
α 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380
δ 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.023 0.024

µ∗† 0.170 0.228 0.275 0.316 0.357 0.399 0.443 0.493 0.558
σω† 0.252 0.326 0.391 0.455 0.516 0.576 0.634 0.692 0.758
ρθ 0.915 0.925 0.933 0.940 0.946 0.953 0.959 0.967 0.978
ρa 0.862 0.877 0.887 0.896 0.903 0.911 0.919 0.928 0.941
ρµ 0.933 0.940 0.945 0.949 0.954 0.958 0.962 0.967 0.974
σθ 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.004 0.005
σa 0.002 0.003 0.004 0.005 0.005 0.006 0.006 0.007 0.008
σµ 0.008 0.009 0.010 0.011 0.012 0.012 0.013 0.014 0.016

Note: Quantiles are estimated from simulated independent marginal prior distributions.
† Joint distribution is partially restricted by feasible range of γ.

agency problem, so a range of variation that reflects current practice in the literature

is chosen. Values at or close to unity are common, and values greater than three are

rare. The household discount rate β is pinned down to a narrow range by estimates

of the real interest rate. Not having a particular stand on what this number should

be, a flat prior on a narrow range centered on a baseline value of 4% per annum is

chosen. The production function parameter α represents the share of income going

to all capital, public and private. I allow it to take values uniformly on the interval

[.335, .385]. The depreciation rate of installed capital δ has a mean of 8% per annum,

and may is uniform on an interval between 6 and 10%.

The parameter µ∗ is the mean fraction of assets destroyed by monitoring, or

the costs of bankruptcy, including indirect costs such as business reorganisation.

The variance of idiosyncratic risk is σ2
ω, and the steady state breakeven point ̟∗.

Together, µ∗, σω and Φ(̟∗) determine the steady state return on internal funds,

and its reciprocal the entrepreneurial discount factor γ. As γ < 1, an indirect

restriction is placed on their feasible range. To calibrate, take the density function

for entrepreneurial technology φ(ω) to be log-normal with mean one, so if we define

τ = log(1 + σ2
ω), then ω ∼ LN(−τ 2/2, τ 2). This information is translated into
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observables by noting that the premium on external finance is in the steady state

q∗(1+r∗)−1, and given µ∗, the price of capital q∗ is a function of ̟∗ and σω, via the

distribution function Φ(̟∗). For tractability, Φ(̟∗) will be fixed so the quarterly

bankruptcy rate is 0.974%, whilst µ∗ and σω will be permitted to take values in a

range that keeps the return on internal funds positive (and thus γ < 1). Carlstrom

and Fuerst quote bounds for the cost of bankruptcy of between 20% and 36% of

assets, on the basis of a comparison of the value of the firm as a going concern with

its liquidation value. The implied finance premium ranges from 1.6% to 8% per

annum.

The persistence of the forcing processes ρθ, ρa and ρµ are known to be important

for model dynamics (see Canova, 1995 for evidence in the RBC setting), so some

care must be exercised in setting reasonable ranges of variation. This study adopts

values based on the direct estimates found in Ireland (2003) and DeJong et al.

(2000) (the latter being Bayesian estimates), for which estimated standard errors

are also available1. Technology shocks are estimated to be highly persistent AR(1)

processes, with an autoregressive coefficient in a narrow range around ρθ = .95.

Evidence on the persistence of demand shocks from Ireland’s study is weaker, as he

reports subsample instabilities in its estimated value. Nevertheless, they are likely

to have been reasonably persistent over our sample period, and consequently I chose

ρa = .90. The persistence of credit market shocks may be established indirectly from

estimated investment shock processes, due to the correspondence between these and

credit market shocks in (12). Both studies estimate a value in the region of ρµ = .95,

with a small standard error of 1.6% in the case of DeJong et al., but with considerably

less accuracy in the case of Ireland.

Conditional volatilities of the forcing processes σθ, σa and σµ are set using indirect

evidence from variance decompositions. Li and Sarte (2003) find the contribution of

credit shocks to the forecast variance decomposition of US manufacturing output to

be 18% after ten years. Ireland finds a wide range of possible shares for investment

shocks in the variance decomposition of aggregate output. Given this uncertainty, a

wide range of variation in σµ is allowed for. Under the baseline calibration, shocks

to credit markets account for roughly a fifth of output variance, and technology

shocks account for roughly two thirds, fractionally below that claimed in the RBC

1Estimates are taken the flexible price version of Ireland’s model. Additional shocks in his
model are seen to be quantitatively unimportant. I assume the consistency of his estimates.
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Table 2: Output variance decomposition bounds

Variance share
Parameter range tech demand credit σy

base - .68 .09 .24 .020
ρθ [.90, .99] [.53, .94] [.13, .02] [.35, .05] [.017, .046]
ρa [.84, .96] [.70, .64] [.06, .14] [.24, .22] [.020, .021]
ρ†

µ [.90, .99] [.74, .43] [.09, .05] [.17, .52] [.020, .026]
σθ [.001, .005] [.31, .84] [.18, .04] [.51, .12] [.014, .028]
σa [.002, .008] [.73, .61] [.02, .18] [.25, .21] [.020, .022]
σµ [.007, .016] [.79, .57] [.10, .07] [.11, .36] [.019, .022]

† Upper tail truncated. The table shows the effect of setting the named parameter at each bound,
whilst other parameters are held at the mid-points of their bounds. Totals may not sum to 1 due
to rounding. σµ scaled by 102.

literature. Household preference (‘demand’) shocks are set to account for residual

variability, making output volatility equal to that in our data sample, 2% per annum.

To verify that the priors on the forcing processes have reasonable implications,

Table 2 reports bounds for the decomposition of output variance, when persistence

and conditional volatility parameters are at the extremes of their range2. In all

cases, the share of output variation due to technology shocks remains within a range

that contains a consensus figure of 70%. Technology shocks dominate, and output

becomes excessively volatile, when their persistance is high. Output volatility is

otherwise reasonable. Demand shocks are never more than a fifth of output variance,

and credit shocks are on average less than one quarter of output variance. The

predictive cross correlation distributions are therefore based on a set of empirically

supported priors that have sensible consequences for aggregate fluctuations. Given

the modest deviation from the technology-driven business cycle assumption of used

in previous tests of the model, we will see below that the model delivers a much

improved description of commonly examined features of the data.

2It is necessary to rescale the estimated standard deviation of credit shocks by coefficient Φ(̟)
which is approximately 102, due to the different units attaching to the shock under the current
specification.
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3.2 Empirical analysis

In this section, estimation of empirical cross correlation functions for ouput growth,

leverage growth, credit spreads, and other macroeconomic variables is described. I

follow DeJong et al. (1996) and estimate a Bayesian vector autoregression (BVAR)

to derive probability intervals for these statistics. Denote by y = vec(yT
p+1) the

m(T − p) vector of observations from time p + 1 through T . Then the pth order, m

dimensional VAR is written as:

y = ZβV + e where e|(βV ,ΣV ,Z) ∼ N(0, ΣV ⊗ IT−p)

Z = Im ⊗ [1 yT−1
p yT−2

p−1 . . . yT−p
1 ]

Priors: βV ∼ N(βV , H−1
β ) H ∼ Wi(S−1, ν) (16)

where βV is a m(1+mp)×1 vector of parameters and ΣV is an m×m inverse precision

matrix for the disturbance vector E = [ε1 . . . εm]′. The prior mean β
V

is set to zero

in all cases except the first autocorrelation of output and leverage growth, which

is set to 0.8. Prior precision H is controlled using two hyperparameters, denoted

tightness w1 and symmetry w2. The former shrinks all elements of βV closer to

their prior mean, the latter leaves precision for the lagged dependent variable of an

equation unchanged, but symmetrically shrinks lags of other variables to their prior

mean. Precision also increases with lag length, geometrically weighting long lags to

be closer to their prior means. Prior precision S is assumed diagonal in squared OLS

regression standard errors from a third order autoregression. The density function

for cross correlations is constructed from the BVAR, subject to stationarity, by

drawing from the posterior using a Gibbs sampler, and using a kernel smoothing

algorithm to obtain an estimate. For details of the posterior sampling algorithm,

see Geweke (1999b).

The data is as follows. Aggregate output, consumption and investment are mea-

sured by the annual change in the logarithm of real GDP, non-durable consump-

tion plus services and private domestic investment respectively. Aggregate leverage

growth is the annual change in the logarithm of the ratio of financial liabilities to

financial assets taken from the Flow of Funds data. Financial liabilities include cor-

porate paper (short term debt issued by companies) and bank loans. This measure

tracks total liabilities closely. Financial assets include bank deposits, mortgages and
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the paper of other firms3. The majority of past studies use a corporate bond spread

to proxy the external finance premium. They differ in whether the spread is taken

over T-Bills, a longer dated Treasury issue, or a safe corporate bond. I use two dif-

ferent spreads over a safe corporate issue, to avoid maturity mismatch and periods

of excessive volatility in T-Bill yields. The first is a bond rated Baa by Moody’s,

which are in the middle category of investment grade bonds, described by them as

‘subject to moderate credit risk ... and may possess certain speculative character-

istics’. The second is a below investment grade, or ‘junk’, corporate bond. Gertler

and Lown (1999, p. 135) argue that this spread is likely to be ‘closely correlated

with the premium on external funds that...purely bank-dependent borrowers face’.

Although this measure is preferred, the relatively recent inception of the market for

high yield debt means that data is available only from 1980 onwards4. In the other

case observations run from 1961:4 through 2005:4.

4 Results

Table 3 compares mean cross correlation functions predicted from the agency cost

model with estimated quantities from observed data. The blocks contain information

on four different cross correlation functions. In each case, expected values for the

theory-based prediction under the base prior and the technology-shock driven prior

are followed by empirical means using two alternative measures of the credit spread.

The first row of Table 3 shows the multiple-shock version of the theory model

to predict a negative unconditional correlation between credit spreads and output

growth across the cycle. Spreads lead the output cycle with a mean correlation of

-.317 at one year, indicating that wide spreads are predicted to correlate with low

future output growth. The correlation function has a minimum of -.428, indicating

that strong current economic conditions are predicted to correlate with narrow cur-

rent borrowing spreads. For comparison, mean correlations under the technology

driven credit cycle hypothesis are also shown in Table 3. The mean prediction for

3Stationarity inducing transformations of the data are required for consistency with the theory
model. For both leverage and output, HP filtering was tried as an alternative to differencing, in
order to capture the relevant fluctations about trend. The resulting pattern of cross correlations
was similar throughout.

4Because of the short data sample, I experimented with tighter and more informative priors.
However, results were not sensitive within reasonable bounds.
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the credit spread is a positive correlation with economic growth at leads, with a

close to zero correlation at lags.

The picture for the multiple-shock theory model is similar to that seen in the

Baa-spread data, where the mean correlation is also negative, and also falls to a

trough around s = 1 at -.497. The junk spread has a stronger negative lead at

one year with a correlation of -.517, but is close to uncorrelated contemporaneously

and with lags of output. The finding of negative co-cyclicality is in line with the

estimates reported by Koopman and Lucas (2005).

Table 3: Cross correlations: mean credit cycle

spread/output
s -4 -3 -2 -1 0 1 2 3 4
Model (Base) -.317 -.324 -.335 -.360 -.428 -.280 -.214 -.186 -.171
Model (Tech) .316 .326 .334 .331 .304 .103 .029 .003 -.003
Data Baa-Aaa -.116 -.223 -.332 -.424 -.483 -.497 -.487 -.455 -.405
Data Junk-Aaa -.517 -.506 -.458 -.374 -.276 -.184 -.099 -.029 .021

leverage/output
s -4 -3 -2 -1 0 1 2 3 4
Model (Base) -.417 -.419 -.413 -.391 -.327 -.262 -.231 -.214 -.202
Model (Tech) -.730 -.758 -.786 -.816 -.846 -.891 -.864 -.813 -.755
Data Baa-Aaa -.110 -.196 -.222 -.194 -.145 -.099 -.061 -.032 -.013
Data Junk-Aaa -.168 -.267 -.280 -.211 -.125 -.064 -.021 .005 .016

spread/leverage
s -4 -3 -2 -1 0 1 2 3 4
Model (Base) .691 .725 .763 .812 .888 .930 .912 .891 .855
Model (Tech) -.401 -.412 -.392 -.290 .034 .040 .042 .039 .034
Data Baa-Aaa .021 .040 .067 .103 .145 .203 .207 .172 .136
Data Junk-Aaa .041 .076 .121 .168 .211 .195 .149 .095 .044

Note: Means of the theory-based predictive distribution under the base (multiple-shock) prior
(‘base’), the technology-driven prior (‘tech’) and the means of the posterior distribution implied
by a 4th order vector autoregression. See text for details. s < 0 leads; s > 0 lags; e.g. spread at
time t has theory-predicted correlation with output at time t − s of –.317 for s = −4.

The two dominant effects underlying the pattern of comovements seen in the

theory-based predictions are technology and intermediation cost shocks. A positive

technology shock has the conventional effect of increasing the demand for invest-

ment. Supply from entrepreneurs (10) is limited by a sharp rise in the cost of
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borrowing, as their net worth is predetermined. High capital prices increase their

return on internal funds, and thus their desire to accumulate capital and reduce

leverage. As investment supply shifts outward, capital prices and premia fall, and

the return on internal funds returns to normal levels. A positive demand shock

has the conventional effect of causing substitution towards consumption and leisure,

reducing investment demand and the finance premium.

The effects of a credit shock are as follows. When intermediation becomes more

expensive, the burden of extra cost falls on intermediaries themselves, as the contract

has them as residual claimants (5). If we think only of the intra-temporal problem for

a moment, ignoring the general equilibrium component of the model, we can identify

two effects. First, the investment supply curve shifts outwards. Holding net worth

n and capital prices q constant, ∂i/∂µ = qnΦ/(1 − qg)2 > 0. Second, the return on

internal funds is raised, as own net worth is relatively more valuable, and market

returns are lowered by (15). Entrepreneurs are induced to accumulate capital, which

causes their net worth to rise, reducing leverage. As every unit of resource put into

the investment good technology is now expected to yield fewer units of capital,

so the price of capital must rise to cover these costs. From the household side,

investment becomes less attractive relative to consumption. Households therefore

prefer to wait until agency costs fall before investing. A boom in consumption,

which reduces hours and so output follows. The immediate increase in credit premia

is reversed as entrepreneurial net worth increases, and agency costs are ameliorated.

The correlation pattern in the base model is more similar to that seen in the data

than that of the technology model because credit shocks raise default premia even

as investment demand falls. As a relatively small contribution from credit shocks is

required, negative diagnostics based on an assumption of technology-driven credit

cycles were overly pessimistic.

The cross correlation of leverage and output growth in the data shows a mild

negative leading relationship, stable and similar in mean across specifications, see

the second block of Table 3. High future output is therefore correlated with both a

narrow spread and low leverage this quarter. On aggregate, the value of firm bor-

rowing rises more slowly than the value of firm assets in the upswing of an economic

cycle, in spite of easier borrowing conditions. This hints that firms meet a good deal

of their short term investment needs from internal funds. Given that cashflows are

procyclical, demand for short-term finance is likely to be countercyclical. If firms
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mainly borrowed to finance higher future output, leverage would be a positive and

leading correlate with GDP. The agency cost model does predict that lower leverage

correlates with cyclical upswings, albeit more strongly than seen in the data.

The third block of Table 3 shows the correlation between spreads and aggregate

leverage. The base agency cost model predicts a strong positive correlation at all

leads and lags. In the agency cost view, wide spreads correlate with high leverage.

In the aggregate data, there is close to a zero correlation between leverage and

either measure of the spread. This finding suggests that agency costs are not the

sole source of aggregate risk driving credit spreads, and may not be the main one.

Table 4 shows mean correlations between consumption, investment and output for

comparison with other business cycle models. Notice that the demand shocks help

bring the mean cross correlations for macroeconomic variables closer to the mean of

the data.

Table 4: Cross correlations: Macroeconomic variables

consumption/output
s -4 -3 -2 -1 0 1 2 3 4
Model (Base) .494 .505 .510 .498 .442 .581 .642 .671 .686
Model (SD) .502 .517 .533 .553 .583 .609 .640 .669 .695
Model (Tech) .818 .847 .877 .906 .929 .913 .906 .900 .895
Data Baa-Aaa .221 .295 .386 .488 .596 .556 .443 .299 .186

investment/output
s -4 -3 -2 -1 0 1 2 3 4
Model (Base) .528 .555 .597 .674 .841 .608 .493 .426 .380
Model (SD) .727 .756 .784 .805 .806 .757 .696 .634 .575
Model (Tech) .809 .839 .869 .897 .916 .881 .828 .771 .715
Data Baa-Aaa .163 .272 .449 .628 .767 .607 .419 .246 .109

Note: Means of the theory-based predictive distribution from the multiple-shock prior (‘base’), from
the technology and demand-shock driven prior (supply and demand ‘SD’), from the technology-
driven prior (‘tech’); the mean of the posterior distribution implied by a 4th order vector autore-
gression using Baa-Aaa spread to measure the funds premium. See text for details; s < 0 leads;
s > 0 lags.

Figure 1 shows two dimensional contour plots of cross correlation probability

distributions. Contours represent probability quantiles of the distributions at 0.5,

2.5, 97.5 and 99.5%. For example, the 99% probability interval can be read off as the
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Figure 1: Probability intervals for cross correlation functions
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D1: Baa-spread data; D2: Junk-spread data; P1: base prior (multiple shocks); P2: technology
shock prior. Contours represent probability intervals at 99% and 95%; the central line is the mean.
These quantiles were obtained by simulation from the posterior distribution of each BVAR or from
theory predictive distributions. See the main text for details.
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area within the top and bottom contours. The central line traces the posterior mean

of the distributions. The figure has four rows: rows one and two (labeled D for data)

correspond to the empirical model using Baa data, and the model using Junk data.

In the Baa data, the correlation between the spread and output is less than zero with

at least 90% probability between s = −2 and s = 4. In the Junk data, probability

intervals are wider, and closer to the prior of uncorrelatedness, due to the shorter

data sample. For the remaining correlations, which are between identical variables

in each specification but different samples, the pictures are predictably similiar.

The third and fourth rows of Figure 1 gives distributions for the theory model.

There are two alternative priors. The first is our baseline multiple shock model (P1),

and the second turns off both credit and demand shocks (P3), leaving a technology-

driven credit cycle. Demand shocks of the magnitude I consider have little relevance

for the credit cycle, although they are relevant for other business cycle moments

(Table 4). The baseline theory model has wide probability bands for the credit

spread-output correlation. The 90% probability interval runs from zero correlation

to a high negative correlation. The predictions of the technology driven model for

all correlations are concentrated in a narrower 99% probability interval than under

the base prior. In one sense, these predictions are therefore more robust to prior

uncertainty.

An informal judgement on the performance of the model under the baseline

multiple-shock prior (P1) relative to the technology-based prior (P2) can be reached

by assessing the overlap between their respective density functions, and those es-

timated using the BVAR. This is the basis of the diagnostic criterion proposed by

DeJong et al. (1996), and the formal odds ratio of Geweke (1999a). Agreement

between the multiple-shock model and Baa data on the credit-output cycle is high,

especially at leads. The leverage-ouput correlation also appears to show some over-

lap, in spite of its lower mean. A drawback of the technology-shock prior is that

high probability is often assigned to regions of the sample space that are assigned

a low probability by the data. That is, intervals overlap either very little, or are

narrow at points where the data is more diffuse. The spread-leverage correlation is

not well described under either prior, with little overlap in the probability intervals.

A prominent feature of the credit shock model (P1) compared to the technology

shock model (P2) is the wide probability interval seen particularly in the tails of the

cross correlation function. To determine which parameters are responsible for this
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dispersion, denote the cross covariance as function of the calibrated model parame-

ters γ(p). To gauge the sensitivity of γ(.) to p in the neighbourhood of the baseline

calibration, I compute the elasticity of the function with respect to each parameter.

Table 5 details these elasticities for the cross correlation between the premium on ex-

ternal finance and output, for one year lead and lag. The rows of Table 5 show that

Table 5: Sensitivity elasticities

Cross correlation between credit spread and output
s -4 -3 -2 -1 0 1 2 3 4
σ -.388 -.393 -.388 -.356 -.285 -.256 -.229 -.215 -.210
β -2.44 -1.29 1.10 6.49 15.6 6.33 -1.37 -4.91 -5.96
α 1.06 1.12 1.20 1.34 1.53 1.38 1.26 1.21 1.21
δ -.003 -.022 -.047 -.084 -.134 -.097 -.071 -.065 -.067

µ∗ .818 .810 .794 .760 .711 .869 1.02 1.11 1.15
Φ .860 .855 .841 .818 .811 .992 1.20 1.33 1.39

σω 3.12 3.01 2.58 1.30 -1.25 -.193 .485 .752 .838
ρθ -6.64 -6.53 -6.44 -6.42 -6.54 -6.64 -6.73 -6.79 -6.83
ρa -.208 -.176 -.147 -.140 -.177 -.232 -.281 -.309 -0.322
ρµ 27.3 26.0 23.2 16.9 6.10 22.6 37.8 46.3 50.3
σθ -1.01 -1.01 -.997 -.956 -.875 -.812 -.763 -.748 -.751
σa -.146 -.148 -.145 -.130 -.100 -.091 -.084 -.083 -.084
σµ 1.15 1.16 1.14 1.09 .974 .902 .848 .831 .835

Rows give the sensitivity elasticity for the cross correlation of the credit spread at t with output
at t − s with respect to the named parameter. For example, a one percent increase in the CRRA
coefficient σ would reduce Corr(sprt, yt+4) by 0.388 per cent.

the most informative parameters are those that control the unconditional variance of

the technology and intermediation cost processes, the household rate of time prefer-

ence and the capital share, followed by the parameters controlling idiosyncratic risk

and agency costs. The variance terms matter because they determine which shocks

dominate, on average, and therefore which pattern of comovements dominate, on

average. The discount factor matters because it a central determinant of the optimal

capital stock in the neoclassical growth model, and therefore variation in it shifts

the steady state up and down a concave production function. The correlations are

locally robust to variations in a majority of parameters, in particular some of the

harder to calibrate finance-related parameters such as the bankruptcy probability

19



Φ. However, the main risk to the model’s predictions attaches to the tails of the

cross covariance function as ρµ varies, as locally its sensitivity elasticity is large.

5 Conclusion

This paper has assessed how well a macroeconomic model incorporating agency

costs describes the cyclical movement of credit spreads and corporate financial data.

Previous research shows that macroeconomic risk is a significant factor for credit

spreads, and new evidence from a Bayesian VAR supports the finding that spreads

lead the cycle with a negative correlation. It was shown that multiple plausible

sources of macro risk, including in particular shocks arising in the credit market,

improve the descriptive power of the model for unconditional correlations seen in

the data. Technology shocks remained the dominant source of output fluctuations,

as in previous studies.

Not all aspects of the credit cycle were well described. In particular, spreads

appear close to uncorrelated with aggregate leverage in the data. Also, in focusing

upon the credit cycle, detailed consideration of other important aspects of the busi-

ness cycle were left aside. However, the model does predict positive cross correlations

between consumption, investment and output, as in the data.

The analysis in this paper points to some further issues that were not the fore-

most concerns of papers such as Canova (1995), which first proposed the kind of

global sensitivity analysis performed here. It is nowadays routine to specify prior dis-

tributions for parameters of theoretical macroeconomic models as part of a Bayesian

estimation. For example, it is straightforward to check the predictive distribution

of moments required in estimation, and this could aid in diagnosing low marginal

likelihood values. Also, local sensitivity analysis may aid in the specification of

priors by identifying the most important parameters. In particular, researchers of-

ten choose to fix certain parameters and to estimate others. Presumably the data

will be most informative for those parameters with a high elasticity with respect to

moments used in estimation.
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Appendices (Not for Publication)

A Linearisation

In order to obtain a numerical solution for the law of motion, I log-linearise around

the steady state. As a reminder, table 6 lists the variables. The full set of lin-

earised relations, defining the constant Υ = αkα−1
∗ h1−α−αe

∗ as the steady state real

interest rate, follow (recall that entrepreneurs supply their entire time endowment

inelastically).

0 = −ŷt + θ̂t + αk̂t + (1 − α − αe)ĥt (17)

0 = −r̂t + θ̂t + (1 − α − αe)ĥt − (1 − α)k̂t (18)

0 = Rd
∗(I∗ − n∗)R̂

d
t + I∗(R

d
∗ − ̟∗q∗)Ît − Rd

∗n∗n̂t − I∗̟∗q∗( ˆ̟ t + q̂t) (19)

0 = −c∗ĉt − e∗êt − I∗Ît + y∗ŷt (20)

These are respectively the production function, definition of the capital rental rate,

definition of the premium on external funds, and the aggregate budget constraint.

The law of motion for aggregate capital is given by

k∗k̂t+1 = (1 − δ)k∗k̂t + I∗(1 − Φ(̟∗)µ∗)Ît − I∗µφ(̟∗)̟∗ ˆ̟ t − I∗Φ(̟∗)µ∗µ̂t (21)

Notice that as µ → 0 in (21), the expression collapses to the standard log-linear

accumulation equation. Notice also that this is similar to the Greenwood et al. (1988)

shock to the marginal efficiency of capital when agency costs are held constant.

The central Euler equations governing household and entrepreneurial capital

accumulation are

Etβ(q∗[1 − δ] + Υ){(χ[1 − σ] − 1)ĉt+1 + at+1}

− β(q∗[1 − δ] + Υ)(1 − χ)(1 − σ)
h∗

1 − h∗

ĥt+1 + βq∗(1 − δ)q̂t+1 + βΥr̂t+1 =

q∗q̂t + β(q∗[1 − δ] + Υ){(χ[1 − σ] − 1)ĉt + at}

− β(q∗[1 − δ] + Υ)(1 − χ)(1 − σ)
h∗

1 − h∗

ĥt (22)
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Table 6: Model variables

Variable Description
y output
c household consumption
k aggregate capital
h household hours worked
q price of capital goods
I investment
r return on capital (equity)
Rd excess return on debt (external funds premium)
̟ break-even profitability
e entrepreneurial consumption
n entrepreneurial net worth
z entrepreneurial capital
θ technology shock
a household preference shock
µ intermediation cost shock

and

[βγ{q∗f(̟∗)(1 − δ) + [q∗(1 − δ) + Υ]f(̟∗)} + q∗g(̟∗)] q̂t+1

[βγ{q∗(1 − δ) + Υ}f ′(̟∗) + q∗g
′(̟∗)] ̟∗ ˆ̟ t+1 + βγΥf(̟∗)r̂t+1

[1 − q∗g∗(̟∗)]̂bt+1 + Φ(̟∗)µ∗µ̂t+1 = [1 − q∗g(̟∗)]{q̂t + b̂t}. (23)

where b is a shock to entrepreneurial preferences not used in the main paper. These

Euler equations are the only places where the two preference shocks impact. The

shocks have the effect of raising the demand for consumption and leisure, in the case

of the household, and of consumption rather than capital accumulation in the case

of the entrepreneur.

The efficiency condition for the financing contract (or alternatively, the link

between bankruptcies in the capital goods sector and capital prices) is

0 = q̂t − q∗

[

(

φ(̟∗)

1 − Φ(̟∗)

)2

µ∗f(̟∗) +
φ(̟∗)µ∗f

′(̟∗)

1 − Φ(̟∗)
+

φ(̟∗)µ∗f(̟∗)

1 − Φ(̟∗)
+ µ∗φ(̟∗)

]

̟∗ ˆ̟ t − q∗

[

Φ(̟∗)µ∗ +
φ(̟∗)µ∗f(̟∗)

1 − Φ(̟∗)

]

µ̂t. (24)
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Table 7: Timing assumptions

Stage Description
1 All aggregate shocks to preferences and technologies are realised.
2 Household and entrepreneurial labour supply decisions; firm capital

rental and hours decisions; production of consumption good.
3 If household wishes to add to its capital stock, it must give

consumption goods to the intermediary for investment in entrepreneurs’
capital good production technology.

4 Entrepreneurs invest all of their own funds plus borrowings in the
capital good technology; an idiosyncratic shock is realised, and each
entrepreneur observes his own output.

5 If solvent, the entrepreneur repays his loan; if bankrupt, the
intermediary captures the residual output after some fraction of the
investment is lost via monitoring.

6 Solvent entrepreneurs make their choice between consumption and
capital accumulation.

Notice that an implication of this expression is that as agency costs shrink (µ → 0),

capital prices approach a constant, and steady state capital prices approach unity, in

which case the household Euler equation (22) collapses to the standard RBC Euler

equation.

Finally, the investment ‘supply curve’, the evolution of entrepreneurial net worth

and entrepreneurs’ budget constraint are respectively

0 = I∗[1 − q∗g(̟∗)]Ît − I∗q∗g(̟∗)q̂t − I∗q∗g
′(̟∗)̟∗ ˆ̟ t − n∗n̂t

+I∗q∗Φ(̟∗)µ∗µ̂t (25)

0 = −n∗n̂t + z∗(q∗[1 − δ] + Υ)ẑt + z∗q∗(1 − δ)q̂t + z∗Υr̂t (26)

z∗q∗ẑt+1 = q∗(I∗f(̟∗) − z∗)q̂t + I∗q∗f(̟∗)Ît + I∗q∗f
′(̟∗)̟∗ ˆ̟ t − e∗êt. (27)

To summarise, I have detailed the locally valid log-linear approximation to the

behavioural relations of the model which may be solved numerically, once values

have been assigned to parameters.
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B Analytic cross correlation functions

This section details a computationally simple method for calculating the cross cor-

relation function for the theory model. Traditionally, moment calculation was per-

formed by simulating a large data set using draws from the assumed model distrib-

ution. This is computationally expensive and introduces sampling variation which

we want to avoid when, for example, calculating numerical derivatives.

A solution to the model is a set of paths for the n endogenous variables y and

m states x that satisfy all behavioural relations and constraints for any realisation

of the k exogenous variables z, such that all markets clear. As the model is non-

linear, we study behaviour in the neighbourhood of the steady state. I use the MSV

procedure to obtain a law of motion of the form:

xt+1 = Pxt + Qzt (28)

yt = Mxt + Nzt (29)

zt+1 = Rzt + ǫt where Eǫt = 0 and Eǫtǫ
′
t = Σ. (30)

Once this law is in hand, any desired moments can be calculated analytically. The

log-linearised version of the model is given in Appendix A.

We start by rewriting the state space model (28)–(30) in VAR form, by stacking

the relevant matrices as follows:






yt

xt

zt






=







0n×k MP MQ + NR

0m×n P Q

0k×n 0k×m R













yt−1

xt−1

zt−1






+







N

0m×k

Ik






ǫt

If we define ξ, Λ and u in the obvious way, then we can write this as

(I − ΛL)ξt = ut where Euu′ = Ω.

Inverting the polynomial in the lag operator and expanding yields the MA repre-

sentation

ξt = (I + ΛL + Λ2L2 + Λ3L3 + ...)ut.

This corresponds to the absolutely summable sequence of MA coefficients given in

Hamilton (1994, §10.2) whereupon the sth autocovariance is

Γs =
∞

∑

v=0

Λs+vΩ(Λv)′
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and the sth and s − 1th autocovariance are related by the simple recursion

Γs = ΛΓs−1,

with the relationship between leads and lags being

Γ−s = Γ′
s.

Once we have calculated Γ0, it is therefore computationally cheap to obtain any

other autocovariance desired. Using the sparse matrix structure in Matlab saves

computer memory. I found that terms in ΛJ were numerically less than 1e-15 for

an expansion of J =1.5e3.

C BVAR setup

We briefly describe the construction a model of an observed vector time series Yo

of dimension T × m using a BVAR. We will formulate the model as a special case

of the SUR model described in the BACC manual. The notation YT
τ will refer to

observations on Yo in rows τ up to T . The calligraphic script is to remind us that

this is observed sample data, rather than data simulated from our theory model.

We will henceforth consider the specification of a VAR of dimension m and order

p. Define the T − p × 1 + mp matrix X as

X = [1 YT−1
p YT−2

p−1 . . . YT−p
1 ] (31)

where 1 is a T −p vector of 1s. The m(T −p)×m(1+mp) matrix Z is then defined

as

Z = Im ⊗X (32)

=













X 0 . . . 0

0 X . . . 0
...

...
. . .

...

0 0 . . . X













(33)

Finally, vectorise the data matrix, defining Y = vec(YT
p+1). We may then write the

system as

Y = ZβV + E where E|(βV ,ΣV ,Z) ∼ N(0, ΣV ⊗ IT−p) (34)
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where βV is a m(1 + mp) × 1 vector of parameters and ΣV is an m × m inverse

precision matrix for the disturbance vector E = [ε1 . . . εm]′. The posterior density

over βV and ΣV is calculated using the methods described in Geweke (1999b).

The empirical cross correlation function is calculated in the manner described

in Appendix 5.A, which requires only that the VAR(p) of order m be rewritten in

VAR(1) form. Supposing that

Yt = B1Yt−1 + B2Yt−2 + . . . + BpYt−p + Et,

then the system in VAR(1) form becomes

















Yt

Yt−1

...

Yt−p+2

Yt−p+1

















=

















B1 B2 . . . Bp−1 Bp

Im 0 . . . 0 0
...

...
...

...

0 0 . . . 0 0

0 . . . Im 0
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Setting Λ to be the coefficient matrix on the right of this equation, we may then

proceed as before, subject to the restriction that no root lies outside the unit circle.

Prior precision of variable j in equation i at lag l is given by:

S(i, j, l) =
w1g(l)f(i, j)si

sj

(35)

where w1 is overall tightness, g(l) is a scalar polynomial in l with geometric coef-

ficients, f(i, i) = 1 and f(i, j) = w2 for i 6= j and si is the inverse precision of an

autoregression in the ith variable.

D Data sources

Leverage - FRB Release Z1, March 2006, Table B102.

Junk bond spread - Salamon Smith Barney (Courtesy of Cara Lown).

Moody’s Aaa bond yield - Datastream.

Output, Consumption, Investment - BEA, 1st Quarter 2006.
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Figure 2: Data plots
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