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Abstract

We distinguish two notions of substitutes for discrete inputs of a firm. Class

substitutes are defined assuming that units of a given input have the same price

while unitary substitutes treat each unit as a distinct input with its own price. Uni-

tary substitutes is necessary and sufficient for such results as the robust existence of

equilibrium, the robust inclusion of the Vickrey outcome in the core, and the law of

aggregate demand, while the class substitutes condition is necessary and sufficient

for robust monotonicity of certain auction/tâtonnement processes. We analyze the

concept of pseudo-equilibrium which extends, and in some sense approximates, the

concept of equilibrium when no equilibrium exists. We characterize unitary sub-

stitutes as class substitutes plus two other properties. We extend the analysis to

divisible inputs, with a particular focus on robustness of the concepts and their

relation to the generalized law of aggregate demand.
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1 Introduction

The notion of substitute inputs expresses the idea that when the price of one type of

input rises, the number of units demanded of the other inputs cannot fall. But what

are “types” of inputs? If electricity generated at locations A and B are perfectly sub-

stitutable in production, should we regard these as one class of input or two? It turns

out that important results of price theory and multi-unit auction theory hinge on the

way such questions are answered. When substitute comparisons only apply across dis-

tinct classes of goods, we will say that the firm has a class-substitute valuation. If even

units of the same class of good are substitutes when priced independently, we will say

that the firm has a unitary-substitute valuation. The biggest surprises in our analysis

are that even in very ordinary-looking problems, identical inputs may fail to be substi-

tutes for one another and that this failure is consequential for standard economic analysis.

We illustrate this point with simple examples. Suppose that the price of output is one

and that the amount f of output produced by a firm as a function of two types of discrete

inputs x ∈ {0, 1} and y ∈ {0, 1, 2} is:

f y = 0 y = 1 y = 2

x = 0 0 1
√

2

x = 1 1 1
√

2

f is submodular in its two arguments and has nonincreasing marginal returns.1 The firm

chooses x and y to maximize f(x, y)− rx− wy. Since the function f is submodular, the

inputs x and y are substitutes. Substitutes means that when comparing any two price

vectors p and p′ for which the firm’s optimum is unique, if p ≥ p′ and pi = p′i, then the

demand for good i is weakly higher at prices p.

Next, consider a formulation in which the two units of input y are treated as distinct.

Let y = y1 + y2 and suppose y1, y2 ∈ {0, 1}. In this formulation, the prices are also

1It is easy to see that functionally identical inputs can fail to be substitutes for one another in the

usual sense of price theory when there are increasing marginal returns to that type of input. In order to

be clear that this is not what underlies our example, we chose f with nonincreasing marginal returns.
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potentially distinct, so the firm maximizes f(x, y1 + y2) − rx − w1y1 − w2y2. It is as

if we had distinguished blue and red versions of the input, where the color is devoid

of any consequences for production. It is easy to check that if the input prices are

(r, w1, w2) = (0.2, 0.3, 0.2), then the firm’s unique profit-maximizing input vector is (0,1,1),

but if (r, w1, w2) = (0.2, 0.3, 0.7), then the profit-maximizing choice is (1,0,0). This demon-

strates that an increase in the price of input y2 reduces the demand for input y1: different

units of the same type of good may fail to be substitutes.

Examples of this sort are hardly rare. For instance, an airline that is acquiring landing

slots at a hub airport may wish to have some number N of slots, for illustration N=2,

within a particular period, say from 2:00pm to 2:15pm or from 3:00pm to 3:15pm. The

two periods define class substitutes: if slots at 2-2:15 are expensive, the airline may sub-

stitute slots at 3-3:15. Slots within a given time period, however, are not substitutes: the

airline wants both or neither.

One important distinction between class and unitary substitutes arises when studying the

question of whether market-clearing prices exist. Using models in which goods are priced

individually, Gul and Stacchetti (1999) and Milgrom (2000), establish that when goods

are substitutes, market-clearing prices always exist. Moreover, they display monotonic

auction processes that converge to these market-clearing prices. In those formulations,

substitutes means unitary substitutes: the results do not extend to the case of class sub-

stitutes. For suppose that good y is treated as a single class and that the available supply

for the two classes of goods is given by the vector (1, 2). Suppose that firm 1 has valuation

f as before, and that there is a second firm with unit valuation g(x, y) = 1y≥1. At the

efficient allocation, firm 2 uses one unit of y and firm 1 uses one unit of x. To induce

firm 1 to make this choice, the price of input y must be strictly positive, but then firm 1

will strictly prefer not to buy any units of input y and firm 2 will strictly prefer to buy

exactly one unit. Hence, there will be a strict excess supply of y: no market clearing

prices exist.

If the supply vector is anything else besides (1, 2) in this example with only class substi-

tutes, then not only does a market clearing price vector exist, but more is true. First,

the set of market clearing price vectors is a sublattice. Second, a continuous tâtonnement

or clock auction process beginning with low prices converges monotonically upward to

the minimum market clearing price vector. A similar process beginning with high prices

converges monotonically downward to the maximum market clearing price vector.
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How does the clock auction perform when there are no market clearing prices? Suppose

that firm 1 has valuation f as above, firm 2 has valuation v(x, y) = .05 × 1y≥1, supply

is (1, 1) and we initially set the input price vector to (0, 0). At that price there is strict

excess demand for good y but not for good x. The price of good y is gradually increased.

When py becomes greater than .05, firm 2’s demand drops to 0 units of good y. Even-

tually, the price reaches a level py at which the firm 1 is indifferent between buying one

unit of x or two units of y and firm 2 is indifferent between 0 and 1 unit of good x (since

px = 0). The indifference equation is 1 =
√

2− 2py, so py = (
√

2− 1)/2. When the clock

reaches py, firm 1 demands either 1 unit of x or two units of y. Consequently demand is

strictly less or strictly more than supply for good y. At price (0, py), aggregate demand

consists of the bundles (2, 1), (2, 0), (0, 1) and (0, 2), thus contains the supply (1, 1) in its

convex hull. We define2 such a situation where supply is in the convex hull of aggregate

demand as a pseudo-equilibrium. In this example, there is no equilibrium and the clock

auction terminates at the minimum pseudo-equilibrium price vector.

Examples of this sort are potentially significant for the design of activity rules in auctions.

At prices (px, p1, p2) = (.4, .4, .41), firm 1 demands (x, y1, y2) = (0, 1, 1) while at prices

(px, p1, p2) = (.4, .5, .41), firm 1 demands (x, y1, y2) = (1, 0, 0). Suppose these two price

vectors represent successive prices in an ascending auction and that the next price vector

is (.5, .5, .41). The firm’s demand now shifts to (0, 1, 1): its total demand rises from 1 unit

to 2 units. Hatfield and Milgrom (2004) had shown that the unitary substitutes property

implies that a profit-maximizing firm satisfies the law of aggregate demand: as prices rise,

total demand (i.e. the sum of quantities demanded across all goods) does not increase.

Activity rules for ascending auctions with or without clocks typically require that the

demand expressed during an auction must satisfy that property,3 and our example shows

that such rules can block straightforward bidding when goods are class substitutes (but

not when they are unitary substitutes).

These observations herald more general results, which are the subject of this paper.

The remainder of this paper is organized as follows. Section 2 defines class-substitute

valuations, based on a multi-unit formulation of the economy, and unitary-substitute

valuations, based on a binary formulation. Section 3 characterizes class-substitute and

2In fact, such property is equivalent to our definition of pseudo-equilibrium. See Definition 11.
3An exception is the revealed-preference activity rule of Ausubel and Milgrom (2002).
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unitary-substitute valuations in terms of the firm’s dual profit function. The dual charac-

terization adds transparency to some of our central results. Section 4 further analyzes the

concepts of substitutes and their relations. Gul and Stacchetti had shown that unitary

substitutes is equivalent to a certain single-improvement property defined using nonlin-

ear prices. We show that it is also equivalent to a similar property defined using only

linear prices. We demonstrate that unitary substitutes is equivalent to class substitutes

plus two additional conditions. We also show that, while the law of aggregate demand

may fail with class substitutes, it always holds when an additional assumption is made,

which we call the consecutive-integer property. Section 5 considers the implications of

class and unitary substitutes for aggregate demand. We show that the unitary substi-

tutes condition is sufficient and necessary (in a quantified sense) for the robust existence

of market-clearing prices. We show that the class substitutes condition implies that the

set of pseudo-equilibrium price vectors is a non-empty sublattice and that this set coin-

cides with the set of equilibrium prices whenever an equilibrium exists. We show that the

unitary-substitutes is a sufficient and, in a similar quantified sense, necessary condition

for Vickrey payoffs to be in the core.

Section 6 presents our analysis of clock auctions when bidders have class-substitute val-

uations. We introduce a continuous model to represent clock auctions with small bid

increments. We first show that class substitutes is necessary and sufficient for the mono-

tonicity of a certain tâtonnement-like clock auction and that continuous descending or

ascending clock auctions always terminate at a pseudo-equilibrium. In one version of the

clock auction model, the auction terminates at the smallest pseudo-equilibrium price.

Section 7 presents further properties of pseudo-equilibria, elaborating on the idea that

they are approximate equilibria when equilibria do not exist.

Section 8 extends the analysis to divisible goods. We show that for the case of divisible

goods and concave valuations, a natural extension of unitary substitutes coincides with

class substitutes. In that case, the law of aggregate demand and its unit-free extensions

generally fail. Thus, for concave valuations, the law of aggregate demand characterizes

the difference between the cases of discrete goods and divisible goods.

Section 9 concludes.
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2 Definitions

Consider an economy with K goods, in which good k is available in Nk units for k ∈ K =

{1, . . . , K}. Let

X = Πk∈K{0, 1, . . . , Nk}

and

X̃ = Πk∈K{0, 1}Nk

represent the space of possible bundles of the exchange economy in its multi-unit and bi-

nary formulations. The obvious correspondence between these formulations is represented

by the function φ : X̃ into X . Formally,

xk = ϕk(x̃) =

Nk∑
j=1

x̃kj.

Definition 1 (Multi-Unit Valuation) A multi-unit valuation v is a mapping from

X into R.

Definition 2 (Binary Valuation) A binary valuation ṽ is a mapping from X̃ into R.

The binary valuation ṽ corresponds to the multi-unit valuation v, if for every x̃, ṽ(x̃) =

v(ϕ(x̃)). We denote by V the space of multi-unit valuations and Ṽ the space of corre-

sponding binary valuations. Similarly, P = RK
+ and P̃ = Πk∈KRNk

+ denote the respective

price spaces of the multi-unit and binary economies. The first space formulation permits

only linear prices for each category of goods, while the second space effectively allows non-

linear prices for each type of good separately, with the marginal price for each good weakly

increasing. Throughout the paper, we assume that agents have quasi-linear utilities.

Assumption 1 (Quasi-linearity) The utility of an agent with multi-unit valuation v

acquiring a bundle x at price p is

u(x, p) = v(x)− px.

Similarly, the utility of an agent with binary valuation ṽ acquiring a bundle x̃ at price p̃

is

ũ(x̃, p̃) = ṽ(x̃)− p̃x̃.

Given a binary valuation ṽ and a price vector p̃ ∈ P̃ , define the demand function of the

agent at price p̃ by

D̃(p̃) = arg max
x̃∈X̃

{ṽ(x̃)− p̃x̃}.
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Similarly, we define the multi-unit demand D of an agent with valuation v as

D(p) = arg max
x∈X

{v(x)− px}.

With quasi-linear preferences, there is no distinction to be made between gross and net

substitutes, so we drop the modifier and make the following definitions.

Definition 3 (Unitary-Substitute Valuation) A multi-unit valuation v is a unitary-

substitute valuation if its binary form ṽ satisfies the binary substitutes property: for any

prices p̃ and q̃ in P̃ such that p̃ ≤ q̃, and x ∈ D̃(p̃), there exists a bundle x̃′ in D̃(q̃) such

that

x̃′kj ≥ x̃kj

for all (k, j) such that p̃kj = q̃kj.

Definition 4 (Class-Substitute Valuation) A multi-unit valuation v is a class-

substitute valuation if it satisfies the multi-unit substitutes property: for all prices p

and q such that p ≤ q and x ∈ D(p), there exists a bundle x′ in D(q) such that

x′k ≥ xk

for all k in K = {κ ∈ K : pκ = qκ}.

The unitary substitutes condition is at least weakly more restrictive than the class substi-

tutes condition, because the latter applies only for linear prices while the former applies

also for nonlinear prices. Moreover, the class substitutes condition only compares units

of distinct goods, while the unitary substitutes condition requires that units of the same

good be substitutes. Section 1 illustrates the limits of class-substitute valuations. In

particular, class-substitute valuations may violate the law of aggregate demand.

3 Duality Results

To any multi-unit valuation v we associate the dual profit function π : P → R such that

π(p) = max
x∈X

{u(x, p) = v(x)− px}.

Similarly, to any binary valuation ṽ we associate the dual profit function

π̃(p̃) = max
x̃∈X̃

{ũ(x̃, p̃) = ṽ(x̃)− p̃x̃}.

We will use the following result.
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Definition 5 (Multi-Unit Concavity) A multi-unit valuation is concave if it can be

extended to a concave function on RK.

Theorem 1 Let v be a multi-unit valuation and π be its dual profit function. Then, for

all x ∈ X ,

v(x) ≤ min
p∈P

{π(p) + px}.

Moreover, v is concave if and only if

v(x) = min
p∈P

{π(p) + px} (1)

for all x ∈ X .

Proof. The first claim follows from the definition of π. The second claim is proved by

applying the separating-hyperplane theorem. �

Ausubel’s and Milgrom’s dual characterization of unitary substitute valuations extends

straightforwardly to the cases treated here.

Theorem 2 (Ausubel and Milgrom (2002)) v is a class-substitute valuation if and

only if π is submodular, and these hold if and only if the dual profit function π̃ of its

binary form ṽ = φ(v) is submodular on the restricted domain where goods of the same

type have equal prices. In addition, v is a unitary-substitute valuation if and only if the

dual profit function π̃ of its binary form ṽ = φ(v) is submodular.

Proof. The proofs of the two statements follow the proof of Theorem 10 in Ausubel and

Milgrom (2002). �

One can alternatively characterize class substitutes using the larger price space P̃ of the

binary formulation. The relevant multi-unit prices are expressed in that formulation by

the subset PL of P̃ in which goods of the same type have the same price. This subset

is isomorphic to the set P of linear prices used in the multi-unit economy. The class-

substitute property then corresponds to the requirement that the dual profit function

is submodular on PL, while the unitary-substitute property requires submodularity on

the whole price space. An immediate consequence of this alternative formulation is the

following:

Theorem 3 Any unitary-substitute valuation is also a class-substitute valuation.
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The converse is not true. For example, suppose there is only one type of good, so that

every valuation v is a class-substitute valuation. Let v(0) = 0, v(1) = 1 and v(2) = 3

and suppose prices are (p1, p2) = (1.4, 1.4), at which both units are demanded. Increasing

p1 to 1.7 would reduce demand to 0, thus violating the unitary-substitute property. The

same example establishes that a multi-unit valuation can be submodular even when the

related binary valuation is not.

We have seen than class-substitute valuations need not be submodular. The following

result shows that adding the requirement that v is concave does yield submodularity.

Theorem 4 Any concave class-substitute valuation is submodular.

Proof. From Theorem 1, we have

v(x) = min
p∈P

{π(p) + px} = max
p
{−π(p)− px}.

From Theorem 2, π is submodular. Therefore, v is the maximum over p of a function that

is supermodular in p and −x, which implies that v is supermodular in −x or, equivalently,

submodular in x. �

Theorem 5 Let ṽ be a unitary-substitute valuation. Then,

ṽ(x̃) = min
p̃∈P̃

{π̃(p̃) + p̃x̃}

Proof. Given x̃, define p̃ as p̃a = 0 if x̃a = 1 and p̃a = ∞ if x̃a = 0. Clearly, x̃ ∈ D̃(p̃).

The rest of the proof is identical to the proof of Theorem 1. �

Underlying Theorem 4 is the fact that concavity allows v to be expressed by formula (1).

As Theorem 5 shows, concavity is not required in the binary form to obtain that equation,

which offers a way to understand why unitary substitutes implies submodularity.

4 Relations between Concepts of Substitutes

Gul and Stacchetti (1999) introduce the single-improvement property for binary valuations

and show that it is equivalent to the substitutes property, as follows.
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Definition 6 (Binary Single-Improvement Property) A binary valuation ṽ sat-

isfies the single-improvement property if for any price vector p̃ and x̃ /∈ D̃(p̃), there exists

ỹ such that u(ỹ, p̃) > u(x̃, p̃),

‖(ỹ − x̃)+‖1 ≤ 1,

and

‖(x̃− ỹ)+‖1 ≤ 1.

Theorem 6 (Gul and Stacchetti (1999)) A monotonic valuation is a unitary-substitute

valuation if and only if it satisfies the binary single-improvement property.

We now extend these results to multi-unit economies.

Definition 7 (Multi-Unit Single-Improvement Property) A valuation v satis-

fies the multi-unit single-improvement property if for any p and x /∈ D(p), there exists x′

such that u(x′, p) > u(x, p),

‖(x′ − x)+‖1 ≤ 1

and4

‖(x− x′)+‖1 ≤ 1.

The only difference in the definitions of binary and multi-unit single-improvement prop-

erties therefore resides in the price domain where the property has to hold.

Throughout the paper, we will denote by ek the vector of RK whose kth component equals

one and whose other components equal zero.

Theorem 7 If v satisfies the multi-unit single-improvement property then it is a class-

substitute valuation.

Proof. Suppose by contradiction that the class-substitute property is violated: there

exist p, k, a small positive constant ε, and a bundle x such that x ∈ D(p) and for all

y ∈ D(p + εek), there exists j 6= k such that yj < xj. Set p̂ = p + εek. We have x /∈ D(p̂)

and yk < xk for all y ∈ D(p̂) (since D(p) clearly contains bundles with strictly less than

xk units of good k). Therefore x is only dominated by bundles y that have strictly less

units of at least two goods, implying that ‖(x − y)+‖1 ≥ 2, which violates the single-

improvement property. �

The converse in not true, as we now illustrate.

4Here the norm is defined on RK , whereas it was defined on R
P

k Nk in the binary setting.
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Counter-Example 1 There exist class-substitute valuation that do not satisfy the multi-

unit single-improvement property.

Proof. In the first example of Section 1, the valuation is submodular in a two-good econ-

omy, thus satisfies the class substitutes property. However, for r = 0.2 and w = 0.3, the

bundle (1, 0) is only dominated by the bundle (0, 2), which violates the single-improvement

property. �

Definition 8 (Multi-Unit Submodularity) A multi-unit valuation v is submodular

if for any vectors x and x′ of X

v(x) + v(x′) ≥ v(x ∧ x′) + v(x ∨ x′)

For completeness, we record as a theorem that submodularity of a binary valuation implies

the same property in the corresponding multi-unit valuation. In fact, by an argument

similar to the one in the duality section, one can show that submodularity of the multi-

unit valuation is equivalent to submodularity of the binary valuation on a restricted

subspace of the valuation space.

Theorem 8 Let v be a multi-unit valuation. If the binary valuation ṽ = φ(v) is submod-

ular, then v is submodular.

We have seen earlier that the reverse implication is not true. It is well known that when

the economy only has two divisible goods and the valuation is concave, submodularity

of v is equivalent to the substitutes property. It is also well known that the extreme

points of a demand set are unchanged when one replaces v with its concave hull (i.e. the

smallest concave function above v). The following theorem takes these observations one

step farther.

Theorem 9 Suppose that v is a 2-good valuation and v̂ is its concave hull. Then v is a

class-substitute valuation if and only if v̂ is submodular.

Proof. We have

v̂(x) = min
p
{π(p) + px} = −max

p
g(p, x)

where g(p, x) = −π(p)−px. v is a class-substitute valuation if and only if π is submodular.

In that case, g is supermodular in (p1, p2,−x1,−x2). A theorem by Topkis (1998) then

implies that maxp g is supermodular in x so v̂ is submodular in x. For the reverse direction,

we have

π(p) = max
x
{v̂(x) + px} = max

x
h(x, p).
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If v̂ is submodular, h is supermodular in (x1,−x2, p1,−p2). The same theorem then im-

plies that π is supermodular in (p1,−p2) or, equivalently, submodular in (p1, p2). �

The next theorem contains a key result for the existence of Walrasian equilibria in multi-

unit economies. The proof, as well as other theorems whose conclusions involve concavity

of v, uses Gul and Stacchetti’s characterization theorem (Theorem 6) and thus requires

monotonicity of v. Throughout the rest of the paper, we assume that v is nondecreasing.

Assumption 2 Agent valuations are nondecreasing.

Theorem 10 If v is a unitary-substitute valuation, then any bundle x is optimal at some

linear price.

Proof. Let x be any bundle, and x̃ be a binary representation of this bundle. From5

Theorem 5, we have

v(x) = ṽ(x̃) = min
p̃
{π̃(p̃) + p̃x̃}. (2)

Moreover, from Theorem 17, the set M of minimizers of the right-hand side of (2) is a

complete lattice. In particular, it has a largest element p̃. We claim that this element is

a linear price on the support of x̃. That is, for any good k such that xk ≥ 1, p̃ki = p̃kj

whenever x̃ki = x̃kj = 1. Suppose by contradiction that p̃ki 6= p̃kj for some units i, j of

some good k such that x̃ki = x̃kj = 1. Then the price vector p̃′ equal to p̃ except for units

i and j of good k, where p̃ki and p̃kj are swapped, is also a minimizer of (2). Therefore

p̃ ∨ p̃′ > p̃ is also in M , which contradicts maximality of p̃. We have thus shown that p̃

is linear on the support of x̃: for each good k there exists a price pk such that p̃ki = pk

for all i such that x̃ki = 1. Obviously, p̃kl = +∞ whenever x̃kl = 0. For any good k

such that xk ∈ {1, Nk − 1}, the firm is indifferent, at p̃, between x and some bundle yk

such that yk
k < xk, otherwise it would be possible to increase pk, which would contradict

maximality of p̃. We can choose yk so that it is optimal if we slightly increase the price of

some particular unit of good k. Since ṽ is a unitary substitute valuation, we can choose

y such that yk
k = xk − 1, and yk

j ≥ xj for all j. Since p̃kl = +∞ outside of the support of

x̃, we necessarily have yk
j = xj for j 6= k. Therefore we exactly have

yk = x− ek.

Such indifference bundles exist for all goods k such that 1 ≤ xk ≤ Nk − 1.

5As the reader can easily verify, Theorems 5 and 17 are independent of this proof.

12



We now prove that x is optimal for the linear price vector p = (pk)k∈K, where pk = +∞
when xk = 0, pk = 0 when xk = Nk, and pk is defined as above when 1 ≤ xk ≤ Nk − 1.

That is, we can impose p̃kl = pk for all units, including those for which x̃kl = 0, and

preserve optimality of x. For all goods such that xk ∈ [1, Nk − 1], reset all unit prices

outside the support of x̃ from +∞ to pk. This change does not affect optimality of x

among bundles z such that z ≤ x, and it does not affect indifference between x and the

bundles yk. For any good k, consider the bundle zk = x + ek. Since ṽ is submodular,

Theorem 13 implies that v is component-wise concave (see p. 16). Therefore,

v(zk)− v(x) ≤ v(x)− v(yk) = pk,

which implies that zk is weakly dominated by x. Now for two goods k 6= j such that

xk ≥ 1 and xj < Nj, consider the bundle zkj = x − ek + ej. We claim that z is also

weakly dominated by x. To see this, we use the following Lemma, whose proof is in the

Appendix.6

Lemma 1 If v is a unitary-substitute valuation, k and j are two goods and x is a bundle

such that xk ≤ Nk − 1 and xj ≤ Nj − 2, then

v(x + ek + ej)− v(x + ek) ≥ v(x + 2ej)− v(x + ej).

Applying Lemma 1 to the bundle x− ej − ek yields

v(x)− v(yj) ≥ v(zkj)− v(yk),

which implies, since v(x) = v(yj) + pj = v(yk) + pk, that

v(x)− pk ≥ v(zkj)− pj,

and thus that x weakly dominates z. We have thus proved that x̃ has no single improve-

ment. From Theorem 6, ṽ satisfies the single-improvement property. Therefore, x̃ must

be optimal at the linear price p̃ such that p̃kl = pk for all l ∈ {1, . . . , Nk}. Equivalently,

the bundle x is optimal at price p = (pk), which concludes the proof. �

We can now state the properties of unitary-substitute valuations in linear-pricing economies.

Theorem 11 Suppose that v is a unitary-substitute valuation. Then it satisfies the fol-

lowing properties:

6As can be easily checked, the proof of Lemma 1 is independent of the proof of the present theorem.
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[Concavity] v is concave.

[Class-Substitute Property.] For any p ∈ P, k ∈ K, ε > 0, and x ∈ D(p), there exists

x′ ∈ D(p + εek) such that

x′j ≥ xj for all j 6= k.

[Law of Aggregate Demand.] For any p ∈ P, k ∈ K, ε > 0, and x ∈ D(p), there exists

x′ ∈ D(p + εek) such that

‖x′‖1 ≤ ‖x‖1.

[Consecutive-Integer Property.] For any p ∈ P and k ∈ K, the set

Dk(p) = {zk : z ∈ D(p)}

consists of consecutive integers.

Proof. Theorem 3 implies that v satisfies the class-substitute property, and Hatfield

and Milgrom (2004) show that v must satisfy the law of aggregate demand. Therefore, it

remains to show that v is concave and satisfies the consecutive-integer property.

We first show that v is concave. Theorem 10 implies that for any x there exists p such

that

π(p) = v(x)− px,

where π is the dual profit function defined in Section 3. From the first part of Theorem 1,

v(x) ≤ min
p

π(p) + px.

Combining the two equations above yields

v(x) = min
p

π(p) + px,

for all x. Applying the second part of Theorem 1 then proves that v is concave.7

Last, we show the consecutive-integer property. Suppose by contradiction that there exist

p, k, and two bundles x and y in D(p) such that xk ≥ yk +2 and z ∈ D(p) ⇒ zk /∈ (yk, xk).

Consider the binary price vector p̃ that is linear and equal to pj for all good j 6= k, and

that equals pk for the first xk units of good k and +∞ for the remaining units of good k.

Clearly, there exist binary forms x̃ and ỹ of x and y that belong to D̃(p̃), and there is

7As can be easily verified, the proof of Theorem 1 is independent of the present proof.
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no bundle z̃ in D̃(p̃) such that zk ∈ (yk, xk). If the price of one unit of good k is slightly

increased, the demand for good k thus falls directly below zk, implying that the demand

of another unit of good k, whose price had not increased, has strictly decreased, which

violates the unitary-substitute property for ṽ. �

The consecutive-integer property is not implied by concavity of v. For example, in a

(multi-unit) two-good economy, concavity is compatible with the demand set D(p) =

{(1, 0), (0, 2)}. However, this demand set violates the consecutive-integer property: the

set D2(p) = {0, 2} does not consist of consecutive integers. The consecutive-integer

property rules out valuations causing a sudden decrease in the consumption of a good

(independently of the consumption of other goods). For example, there are no prices at

which the firm is indifferent between bundles containing, say, 5 and 10 units of a good,

but strictly prefers these bundles to any bundle containing between 6 and 9 units of that

good. In that sense, there are no “holes” in the demand set with respect to any good. In

terms of demand, the property implies a progressive reaction to price movements: as the

price of a good increases, the optimal demand of that good decreases unit by unit.

By contrast, concavity is not required for the law of aggregate demand.

Theorem 12 If v is a class-substitute valuation that satisfies the consecutive-integer

property, then it satisfies the law of aggregate demand.

Proof. See the Appendix.

The class-substitute property and the law of aggregate demand do not imply the consecutive-

integer property. For example, in an economy with one good available in two units,

consider the non-concave valuation v(0) = 0, v(1) = 1, and v(2) = 4. v is trivially a

substitutes valuation, and satisfies the law of aggregate demand. However, at price p = 2,

the demand set is {0, 2}, which violates the consecutive-integer property. This is also an

example of a class-substitute valuation that is not concave.

To obtain sharp results, we consider the concept of component-wise concavity, which

is weaker than concavity and entails diminishing marginal returns in each component

separately.

Definition 9 (Component-wise Concavity) A multi-unit valuation v is component-
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wise concave if for all x and k,

v(xk + 1, x−k)− v(x) ≥ v(xk + 2, x−k)− v(xk + 1, x−k).

Theorem 13 A multi-unit valuation v is submodular and component-wise concave if and

only if its binary form ṽ = φ(v) is submodular.

Proof. By a theorem of Topkis (1998), it is sufficient to consider binary bundles x and y

that differ in just two components. If the two components represent the same good, then

submodularity of the binary form is the same as component-wise concavity. If the two

components represent different goods, then submodularity of the binary form is implied

by submodularity of the multi-unit form (and conversely). �

The last three properties listed in Theorem 11 describe the demands corresponding to a

unitary-substitute valuation in linear-pricing economies. Even though unitary-substitute

valuations are defined by their demands in response to nonlinear prices, the identified

properties turn out to be sufficient to characterize unitary substitutes. That is the essen-

tial content of Theorem 14 below.

Before proving this theorem, we state a new “minimax” result, in which one of the choice

set is a lattice and the other choice set consists of nonlinear prices. The proof of this

result is in the Appendix.

If x is a multi-unit bundle and p̃ is a nonlinear price vector, let (p̃, x) denote the cost of

acquiring bundle x under p̃. That is,

(p̃, x) =
∑
k∈K

xk∑
i=1

p̃k(i),

where p̃k(i) is the price of the ith cheapest unit of good k.

Proposition 1 (MiniMax) Suppose that v is a concave class-substitute valuation sat-

isfying the consecutive-integer property, and let p̃ be a nonlinear price vector. Then,

max
x

min
p
{π(p) + px− (p̃, x)} = min

p
max

x
{π(p) + px− (p̃, x)}

Theorem 14 Let v be a multi-unit valuation. The following properties are equivalent.

(i) v is a unitary-substitute valuation.
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(ii) v is a concave class-substitute valuation, and satisfies the consecutive-integer prop-

erty.

Proof. We know from Theorem 11 that (i) implies (ii). We now show that (ii) implies (i).

From Theorem 2, it is enough to show that π̃ is submodular. Consider any nonlinear price

vector p̃. We have

π̃(p̃) = max
x̃
{ṽ(x̃)− p̃x̃} = max

x
{v(x)− (p̃, x)}.

Since v is concave, Theorem 1 implies that

π̃(p̃) = max
x
{min

p
{π(p) + px} − (p̃, x)} = max

x
{min

p
{π(p) + px− (p̃, x)}}.

From Proposition 1, the max and min operators can be swapped:

π̃(p̃) = min
p
{max

x
{π(p) + px− (p̃, x)}} = min

p
{π(p) + max

x
{px− (p̃, x)}}.

As can be easily verified, the inner maximum equals

∑
k∈K

Nk∑
i=1

(pk − p̃ki)+.

Therefore,

π̃(p̃) = min
p

{
π(p) +

∑
k∈K

Nk∑
i=1

(pk − p̃ki)+

}
.

Since v is a class-substitute valuation, π is submodular by Theorem 2. Moreover, the

function (x, y) → (x − y)+ is submodular as a convex function of the difference x − y.

Therefore, π̃(p̃) is the minimum over p of an objective function that is submodular in p

and p̃, which shows that it is submodular in p̃.8 �

It turns out that, given concavity and the class-substitute property, the law of aggregate

demand is equivalent to the consecutive integer property. Some of the main results above

are combined and extended in the following theorem.

Theorem 15 (Equivalence of Substitute Concepts) Let v be a multi-unit valu-

ation. The following statements are equivalent.

(i) v satisfies the binary single-improvement property.

(ii) v is a unitary-substitute valuation.

8See Topkis (1968).
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(iii) v is a concave class-substitute valuation and satisfies the consecutive-integer prop-

erty.

(iv) v is a concave class-substitute valuation and satisfies the law of aggregate demand.

(v) v is concave and satisfies the multi-unit single-improvement property.

Proof. (i) ⇔ (ii) is Gul and Stacchetti’s theorem (see Theorem 6). (ii) ⇔ (iii) is a

restatement of Theorem 14. Theorem 12 shows that (iii) implies (iv). For the converse,

the class-substitute property implies9 for all p that any edge E of D(p) has direction ei or

ei−αej for some goods i, j. In the first case, concavity implies that all integral bundles on

the edge belong to the demand. In the second case, α = 1. Otherwise, slightly modifying

the price would reduce demand to that edge, and increasing pi if α > 1 or pj if α < 1

would violate the law of aggregate demand. This, along with concavity, implies that the

consecutive-integer property holds along all edges, and thus for D(p). (i)−(iv) implies (v):

(i) clearly implies the multi-unit single-improvement property, and (iii) implies concavity.

We conclude by showing that (v) implies (iii). We already know from Theorem 7 that

if v satisfies (v), then it is a class-substitute valuation. Therefore, there only remains to

show that v satisfies the consecutive-integer property. Suppose it doesn’t. There exists

a price vector p, a good k, and a unit number d such that Dk = {zk : z ∈ D(p)} is split

by d: the sets D−
k = Dk ∩ [0, d − 1] and D+

k = Dk ∩ [d + 1, Nk] are disjoint and cover

Dk. Now slightly increase pk. The new demand set D′ is such that D′
k ⊂ D−

k . Pick any

bundle y that is optimal under the new price within the set {x ∈ X : xk ≥ d}. Then

yk > d, because pk has only been slightly increased and any bundle with d units of good

k was strictly dominated by D+
k . At the new price, y is dominated but cannot be strictly

improved upon with reducing the amount of good k by at least two units, which violates

the single-improvement property. �

The multi-unit single-improvement property alone is not equivalent to unitary substitutes.

For example, in an economy with two goods available in two units, consider the valuation

v defined by v(x) = ‖x‖1 − .1r(x), where r(x) equals 1 if x contains exactly one unit

of each good, and 0 otherwise. The valuation is not concave, and therefore cannot be a

unitary-substitute valuation. However, one can easily verify that v satisfies the multi-unit

single-improvement property.

9See the proof of Proposition 1.
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We conclude this section with a property of concave, class-substitute valuations. For any

(multi-unit) bundle x, let P(x) denote the set of price vectors such that x ∈ D(p).

Theorem 16 If v is a class-substitute valuation, then for all x, P(x) is either the empty

set or the complete sublattice of P given by P(x) = arg min{π(p) + px}.

Proof. Fix x ∈ X . From Theorem 5,

v(x) ≤ min
p
{π(p) + px}.

Suppose that the inequality is strict. Then v(x) − px < π(p) for all p, so P(x) is the

empty set. Now suppose that

v(x) = min
p
{π(p) + px}.

Then, for all p ∈ arg min{π(p) + px},

v(x)− px = π(p),

so x ∈ D(p). Conversely, if x ∈ D(p̄) for some price p̄, we have

arg min{π(p) + px} = v(x) = π(p̄) + p̄x.

Therefore,

P(x) = arg min{π(p) + px}.

From Theorem 2, π(p) is submodular. Therefore P(x) is the set of minimizers of a sub-

modular function over a sublattice P ; hence, it is a sublattice of P . Completeness is

obtained by a standard limit argument. �

In the binary formulation, all bundles can be achieved through nonlinear pricing, by

setting some unit prices to zero and others to infinity. Therefore, Theorem 16 takes a

simpler form. For any binary bundle x̃, let P̃(x̃) denote the set of price vectors such that

x̃ ∈ D̃(p̃).

Theorem 17 If ṽ is a binary valuation satisfying the unitary substitutes, then P̃(x̃) is a

complete, non-empty lattice for all x̃ ∈ X̃ .

Proof. For any bundle x̃, there exists a price p̃ such that x̃ ∈ D̃(p̃). Therefore, P̃(x̃) is

nonempty. The rest of the proof is similar to the proof of Theorem 16. �
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5 Aggregate Demand and Equilibrium Analysis

The first theorem of this section extends results by Gul and Stacchetti and by Milgrom

asserting necessary conditions for the existence of Walrasian equilibrium in the binary

formulation. These theorems assume that individual valuations are drawn from a set that

includes all unit-demand valuations (Gul and Stacchetti), which are defined next, or all

additive valuations (Milgrom).10 They establish that if the set of valuations includes any

that are not unitary substitutes, then there is a profile of valuations to be drawn from

the set such that no competitive equilibrium exists.

These results are unsatisfactory for our multi-unit context, because they allow preferences

to vary among identical items and the constructions used in those papers hinge on that

freedom. The next theorem extends the earlier results by including the restriction that

firms’ binary valuations are consistent with some multi-unit valuation, that is, that firms

treat all units of the same good symmetrically.

Definition 10 A unit-demand valuation is such that for all price p and x ∈ D(p),

‖x‖1 ≤ 1.

Let N =
∑

k Nk denote the total number of units in the economy.

Theorem 18 Consider a multi-unit endowment X and a firm having a concave, class-

substitute valuation v1 on X that is not a unitary-substitute valuation. Then there ex-

ist I firms, I ≤ N , with unit-demand valuations {vi}i∈I , such that the economy E =

(X , v1, . . . , vI+1) has no Walrasian equilibrium.

Proof. See the Appendix.

Since preferences are assumed to be quasi-linear, one can conveniently analyze equilib-

rium prices and allocations in terms of the solutions to certain optimization problems.

With that objective in mind, consider an economy consisting of n firms with valuations

{vi}1≤i≤n. The valuations vi are defined for {x ∈ NK : xk ≤ Nk ∀k ∈ K}. It is convenient

to extend the domain of vi by setting v(x) = v(x∧ (N1, . . . NK)) for all x in NK . We now

define the market-valuation v of the economy by

v(x) = max
{∑

vi(xi) :
∑

xi = x and xi ∈ NK
}

.

10An additive valuation is a valuation with the property that the value of any set is equal to the sum

of the values of the singletons in the set.
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and the market dual profit function of the economy by

π(p) = max
x∈RK

{v(x)− px}.

The function π is convex, as can be checked easily.

Theorem 19 For all p ∈ P,

π(p) =
∑

1≤i≤n

πi(p).

Proof.

π(p) = maxx {max{
∑

i vi(xi) :
∑

i xi = x} − px}
= maxx1,...,xn

∑
i{vi(xi)− pxi}

=
∑

i πi(xi),

which concludes the proof. �

Theorem 19 cannot be extended to nonlinear prices. To see this we observe, for example,

that the cheapest unit of a given good can only be allocated to a single firm when com-

puting the market dual profit function, whereas it is included in all individual dual profit

functions involving at least one unit of this good. It is thus easy to construct examples

where the market dual profit function is strictly lower than the sum of individual dual

profit functions, the latter allowing each firm to use the cheapest units.

Corollary 1 If all firms have class-substitute valuations, then the market valuation v

is also a class-substitute valuation.

Proof. If individual firms have substitute valuations, Theorem 2 implies that individual

profit functions are submodular. By Theorem 19, the market dual profit function is there-

fore a sum of submodular functions, and so itself submodular. Theorem 2 then allows us

to conclude that v is a substitute valuation. �

Definition 11 A price vector p is a pseudo-equilibrium price of the economy with en-

dowment x̄ if

p ∈ arg min{π(p) + px̄}.

Sections 6 and 7 use the following characterization of pseudo-equilibrium prices.

Proposition 2 p is a pseudo-equilibrium price if and only if x̄ is in the convex hull of

D(p).
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Proof. By definition p minimizes the convex function f : p → π(p) + px̄. Therefore, 0

is in the subdifferential of f at p.11 That is, 0 ∈ ∂π(p) + x̄. The extreme points of ∂π(p)

are the opposite of bundles that are demanded at price p. Moreover, −D(p) ⊂ ∂π(p).

Therefore −Co(D(p)) = ∂π(p). Combining these results yields x̄ ∈ Co(D(p)). �

Let P(x̄) denote the set of pseudo-equilibrium prices.

Proposition 3 If all firms have class-substitute valuations, then P(x̄) is a complete

sublattice of P.

Proof. Individual class-substitute valuations imply that πi is submodular for all i by

Theorem 2. Therefore, π is submodular. The proof is then identical to the proof of The-

orem 16. �

Theorem 20 The economy with endowment x̄ has a Walrasian equilibrium if and only

if

v(x̄) = min
p
{π(p) + px̄}.

Moreover, if the economy with endowment x̄ has a Walrasian equilibrium, then the set of

Walrasian equilibrium prices is exactly the set P (x̄) of pseudo-equilibrium prices.

Proof. Theorem 1 implies that v(x̄) ≤ minp{π(x)+px̄}. Suppose that v(x̄) = π(p)+px for

some p. Let x̄i denote the bundle received by firm i for some fixed allocation maximizing

the objective in the definition of v. For all i we have

vi(x̄i)− px̄i ≤ πi(p).

Summing these inequalities yields v(x̄) ≤ π(p) − px̄. By assumption, the last inequality

holds as an equality, which can only occur if

vi(x̄i)− px̄i = π(p)

for all i, implying that (p, x̄1, ..., x̄n) is a Walrasian equilibrium.

To prove the second claim, suppose that ({x̄i}1≤i≤n, p) is a Walrasian equilibrium. Then,

vi(x̄i) = πi(p) + px̄i for all i. Summing these equalities yields v(x̄) = π(p) + px̄, which

implies that v(x̄) = minp{π(p)+px̄} (since the minimum is always above v(x̄)). It is clear

from the first part of the proof that if the economy has a Walrasian equilibrium, the set

11See for example Rockafellar (1970).
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of Walrasian prices is exactly the set of pseudo-equilibrium prices. �

Theorem 20 shows that whenever a Walrasian equilibrium exists, the concepts of pseudo-

equilibrium and equilibrium coincide. In binary economies, where nonlinear pricing is

available, the question of the existence of a Walrasian equilibrium have been solved by

Gul and Stacchetti (1999) and Milgrom (2000), who both show that equilibrium exists in

the binary formulation when goods are unitary substitutes and establish the two partial

converses described above.

For the multi-unit formulation, we have already established the partial converse in Theo-

rem 18. We now consider the other direction: we prove that unitary substitutes implies the

existence of a Walrasian equilibrium with linear pricing. This result is then used to prove

the stronger theorem that unitary-substitute valuations are closed under aggregation: if

all valuations satisfy unitary-substitutes, then so does the market valuation.

Theorem 21 (Linear-Pricing Walrasian Equilibrium) In a multi-unit exchange

economy with individual unitary-substitute valuations, there exists a Walrasian equilibrium

with linear prices.

Proof. Considering the binary form of the economy, Gul and Stacchetti (1999, Corollary

1) have shown that the set of (nonlinear pricing) Walrasian equilibria is a complete lattice.

In particular, it has smallest and largest elements. We now prove that these two elements

consist of linear prices, which proves the result. Suppose by contradiction that the largest

element p̃ is such that p̃ki 6= p̃kj for some units i, j of some good k. Then the price vector

p̃′ equal to p̃ except for units i and j of good k, where p̃ki and p̃kj are swapped, is also

a Walrasian equilibrium. Therefore p̃ ∨ p̃′ > p̃ is also a Walrasian equilibrium, which

contradicts maximality of p̃. Linearity of the smallest element is proved similarly. �

Corollary 2 (Concavity of Aggregate Demand) In a multi-unit exchange econ-

omy with individual unitary-substitute valuations, the market valuation is concave.

Proof. Denote by x the total endowment of the economy, and n the number of firms.

We show that for all y such that 0 ≤ y ≤ x, there exists a linear price vector p such

that y is in the demand set of the market valuation. From Theorem 21, we already know

that the result is true if y = x. Thus suppose that y < x. Consider an additional firm

with valuation vn+1(z) = Kz ∧ (x − y), where K is a large constant, greater than the

total value of other firms for the whole endowment x. One can easily check that vn+1 is
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an assignment valuation, and therefore a unitary-substitute valuation (see Hatfield and

Milgrom (2004)). Applying Theorem 21 to the economy with (n + 1) firms, there exists a

Walrasian equilibrium with linear price vector p. At this price, the additional firm obtains

the bundle x−y since its marginal utility dominates all other firms’ for any unit up to this

bundle, and vanishes beyond this bundle. This implies that the remaining firms ask for y

at price p, or equivalently, that y belongs to the demand set of n firms’ market valuation

at price p. Concavity is then obtained as in the proof of Theorem 11. �

Theorem 22 (Aggregation) If individual firms have unitary-substitutes valuations,

then the market valuation v is a unitary-substitute valuation.

Proof. Let {vi}1≤i≤n denote the family of individual valuations and v denote the market

valuation, defined by

v(x) = max

{∑
i

vi(xi) :
∑

xi = x, xi ∈ N

}
.

From Theorem 14, we will prove the result if we show that v is a concave class-substitute

valuation that satisfies the consecutive-integer property. Corollary 2 states that v is

concave. From Corollary 1, v is a class-substitute valuation. It thus remains to show that

v satisfies the consecutive-integer property. For any price p, the demand set of v is the

solution of

max
x
{v(x)− px} = max

x

{
max

{∑
i

vi(xi) :
∑

i

xi = x

}
− px

}
=

∑
i

max
xi

vi(xi)− pxi.

Therefore, D(p) =
∑

i Di(p). In particular, the projection of D on the kth coordinate

satisfies Dk =
∑

i Di,k. The sets Di,k consist of consecutive integers by Theorem 11, im-

plying that Dk also consists of consecutive integers. �

Finally, we examine the connections between unitary-substitute valuations and the struc-

ture of the core of the associated cooperative game. The setting considered in this section

is the same as Ausubel and Milgrom (2002), but with the multi-unit formulation replacing

their binary formulation. We first recall the definitions of coalitional value functions, the

core, and Vickrey payoffs.

Suppose that, in addition to bidders, there exists a single owner (labeled “0”) of all units

of all goods, who has zero utility for her endowment.
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Definition 12 The coalitional value function of a set S of bidders is

w(S) = max

{∑
i∈S

vi(xi) :
∑

xi ∈ X

}

if 0 ∈ S, and w(S) = 0 otherwise.

Denote L the set consisting of all bidders and the owner of the good.

Definition 13 The core of the economy is the set

Core(L, w) =

{
π : w(L) =

∑
l∈L

πl, w(S) ≤
∑
l∈S

πl for all S ⊂ L

}
.

Definition 14 The Vickrey payoff vector (the payoff at the dominant-strategy equilib-

rium of the generalized Vickrey auction) is

π̄l = w(L)− w(L \ l)

for l ∈ L \ 0, and

π̄0 = w(L)−
∑
l∈L\0

π̄l.

Definition 15 The coalitional value function w is bidder-submodular if for all l ∈ L \ 0

and sets S and S ′ such that 0 ∈ S ⊂ S ′,

w(S)− w(S \ l) ≥ w(S ′)− w(S ′ \ l).

Theorem 23 Suppose that there are at least 2 + maxk Nk bidders. If any bidder has

a concave, class-substitute valuation that is not a unitary-substitute valuation, then there

exist linear or unit-demand valuations for remaining bidders such that the coalitional value

function is not bidder-submodular and the Vickrey payoff vector is not in the core.

Proof. See the Appendix.

6 Walrasian Tâtonnement and Clock Auctions

This section analyzes auctions where goods are available in multiple units and prices are

linear. The goods are summarized by a vector x̄ ∈ X = NK
++. We propose a class of

algorithms guaranteeing monotonic convergence of the auction to a pseudo-equilibrium

whenever bidders have class-substitute valuations. Combining that with the the results
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of Section 5 leads to the conclusion that if bidders have unitary-substitute valuations, the

auctions converge to a Walrasian equilibrium.

For the present analysis, we define a clock auction as a price adjustment process in which

the path of prices is monotonic—either increasing or decreasing. In practice this mono-

tonicity and other features, especially activity rules for bidders (see Milgrom (2000)),

differentiate clock auctions from a Walrasian tâtonnement. In order to understand the

relation between substitute valuations and clock auctions, it is useful to start the analysis

with Walrasian tâtonnement, and then draw implications of the corresponding results in

terms of clock auctions. We first derive general results for an idealized economy with

prices changing continuously through time and where bidders submit their entire demand

set. We then show how the results apply to economies with a discrete price and time, and

where bidders only ask for one bundle at each stage of the auction.

6.1 Continuous time and price

There are n bidders with valuations {v1, ..., vn} and a corresponding market valuation v.

At any time t, a price vector p(t) is posted. We limit attention to linear pricing. Each

bidder submits his demand set,12 resulting in an aggregate demand x(t) in the demand

set D(p(t)) of v.

The goal of this section is to construct algorithms that are monotonic and converge to a

pseudo-equilibrium. We focus on algorithms for which initial price is low, then increases

and converges to the smallest pseudo-equilibrium price p
¯
. Reverse algorithms, where price

decreases and converges to the largest pseudo-equilibrium price can be constructed in a

similar way.

We have seen that pseudo-equilibrium prices are the minimizers of the convex function

f : p → π(p) + x̄p. The most natural algorithms to find such minimizers are steepest-

descent algorithms. At any time, price changes are determined by the gradient of f

whenever f is differentiable, and by the vector of smallest norm of its subdifferential

otherwise.13 Such algorithms are particular Walrasian tâtonnement, as they adjust prices

12Later, we consider the case where the bidder only asks for a single bundle in his demand set.
13By definition, the subdifferential ∂f(p) at p of a convex function f is the set of vectors x such that

f(q)− f(p) ≥ x(q− p) for all q. The subdifferential is always a nonempty convex set, and coincides with
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so as to eliminate excess demand. Moreover, they follow the steepest descent and are

therefore particularly efficient. For any price vector p, we denote by z(p) the point of

smallest norm in the opposite of the differential of f at p. When f is differentiable, z

corresponds to the excess (aggregate) demand D(p) − x̄. In general, z is the vector of

smallest norm in the convex hull of the set of excess demand. Intuitively, an algorithm is

a procedure that determines the evolution of price through time as a function of excess

demand D(p) − x̄ and of time itself. In continuous time, an algorithm should thus be

defined by a function F such that

ṗ(t) = F (D − x̄, t).

However, this definition is not appropriate in our setting, because F need not be con-

tinuous. The steepest-descent algorithm, in particular, follows discontinuous changes of

direction. In general, we will say that an algorithm is well-defined if, from any initial

price, it generates a unique trajectory in the price space. The previous considerations

lead to the following definition.

Definition 16 A continuous, correspondence-based, steepest descent algorithm is defined

by

ṗr(t) = α(t, p(t))z(p(t)), (3)

where the subscript r denotes right derivative, the function α : (t, p) → α(t, p) is real-

valued and continuous, and takes values in [α
¯

, ᾱ] for some positive constants α
¯

< ᾱ.

Using right derivatives addresses discontinuities of z(p). The lower bound α
¯

ensures

that the algorithm does not stall at a suboptimal price, and the upper bound ensures

that that the equation is integrable. The following theorem states that, starting from any

sufficiently low price, the algorithm is well defined, monotonic and converges to the lowest

pseudo-equilibrium price, p
¯
. Let L = {p : p ≤ p

¯
and z(p) ≥ 0}.

Theorem 24 Any continuous, correspondence-based, steepest-descent algorithm is well

defined. Suppose that bidders have class-substitutes valuations. For any such algorithm,

if p(0) ∈ L, then p(t) ∈ L for all t, p(t) is increasing and converges to p
¯

in finite time.

The proof is in the Appendix. Theorem 24 implies that, when bidders have class-substitute

valuations, any steepest-descent algorithm starting from low prices is an ascending clock

auction and converges to the smallest pseudo-equilibrium price. This result is important

f ’s gradient whenever it is differentiable.
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in practice, and can be reformulated as follows. We define a continuous, correspondence-

based, ascending clock auction as a continuous, correspondence-based steepest-descent

algorithm, except that (3) is replaced by ṗr(t) = max{α(t, p(t))z(p(t)), 0}.

Corollary 3 If bidders have class-substitute valuations, any continuous, correspondence-

based clock auction starting from a price in L converges to the smallest pseudo-equilibrium

price.

In particular, if goods are class substitutes, ascending clock auctions will find an equilib-

rium whenever there exists one. By contrast, it is easy to build examples of valuations

violating class-substitutes such that a Walrasian equilibrium exists but ascending clock

auctions fail to find it.

Our result extends Ausubel (2005), which proposes a similar algorithm when goods are

only available in one unit each. When goods are available in multiple units, the strat-

egy in earlier research has typically been to consider each unit as a distinct good. This

implies that the price of each unit evolves separately, which increases the complexity of

the auction proportionally to the number of units, compared to our algorithm. Moreover,

previous auction algorithms assumed what we earlier defined as unitary-substitute val-

uations. Theorem 24 and its corollary show that class-substitute valuations are in fact

enough to guarantee monotonicity and convergence to a pseudo-equilibrium.

In theory, L depends on bidder valuations, which may see problematic, given that the

auctioneer does know them. In practice, the assumption p0 ∈ L means that the clock

auction can start at any price low enough to guarantee that there is excess demand in all

goods. This obviously includes zero initial prices, but also “reasonably low” reserve prices.

6.2 Discrete time and price

We now consider the case in which prices evolve on a grid. In such setting, it is natural

to consider discrete-time models, as nothing happens in any interval of time during which

prices remain constant. We thus consider a discrete time scale, where prices are adjusted

at each period.14 The first goal of this section is to show that the results derived in the

previous section are approximately true, in the sense that trajectories obtained with dis-

14The lapse between two periods has no importance, and in fact could in principle vary during the

auction, possibly stochastically.
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cretized algorithms are very close to those generated by continuous algorithms, provided

that the price grid is thin enough. The second goal of the section is to show that the

algorithm still works if bidders only announce one desired bundle at each period, rather

than their entire demand set, consistent with what is observed in practice.

A price grid is a lattice Pη = (ηN)K , where η is a small positive constant. A discrete

algorithm generates a sequence of prices {pt : t = 0, 1, . . .} in Pη, whose evolution is

determined by excess demand at any period. In a discrete setting, algorithms are always

well-defined. A new issue is that price changes, which are restricted to a grid, may not be

able to follow exactly the gradient z. In general, vector directions can be approximated

up to the thinness of the grid, which can be arbitrarily small. The following lemma goes

further by showing that, provided the grid is thin enough, even the exact direction is

feasible. Following the previous section, we let z(p) denote the vector of smallest norm in

the convex hull of the excess (aggregate) demand set D(p)− x̄. The proof of the lemma

is in the Appendix.

Lemma 2 (Feasible directions of descent) Suppose that the number of bidders is

less than some constant N > 0, and that no bidder can demand more than overall supply

x̄. Then, for any grid Pη, there exists α(η) > 0 such that α(η)z(p) ∈ Pη for all p and all

bidder valuations. Moreover, α can be chosen such that α(η) → 0 as η → 0.

In the rest of this section, we may therefore assume that the price grid is thin enough

for price changes to exactly follow steepest-descent directions and be arbitrarily small. In

order to stay exactly on the grid, we assume from now on that step sizes are integer mul-

tiples of α(η). Another issue is that discrete algorithms sometimes “overshoot”, meaning

that the discrete price sequence crosses a region boundary while the continuous algorithm

follows the boundary, causing the discrete algorithm to enter regions where some goods

are in excess supply, and where the algorithm gradient z, which is not continuous, takes

very different values from the gradient of the continuous algorithm. The purpose of the

following lemma is to show that such overshoots are not important, as nearby trajecto-

ries of any discrete steepest-descent algorithm stay close to each other. Let {p(t)}t∈N and

{q(t)}t∈N denote the trajectories generated by a given steepest-descent algorithm, starting

from respective initial prices p(0) and q(0).

Lemma 3 (Nearness Lemma) Suppose that the number of bidders is less than some

constant N > 0, that no bidder can demand more than aggregate supply x̄, and that there

exists a vector M ∈ RK
+ such that bidders demand none of good i whenever pi > Mi.

29



Then, for any ε > 0, there exists η > 0 and ᾱ > 0 such that for all grids thinner than η

and step size less than ᾱ, ‖p(0)− q(0)‖ < ε implies ‖p(t)− q(t)‖ < ε for all periods and

all bidder valuations.

Proof. See the Appendix.

The nearness lemma states that overshooting is not going to affect the trajectory by

more than some arbitrarily small constant. This leads to the following theorem, which

states that the discrete algorithm essentially follows the continuous one. For any price

p0, denote by T (p0) = {p(t) : t ∈ R+, p(0) = p0} the trajectory generated by the con-

tinuous, correspondence-based steepest-descent algorithm of the previous section, and let

T (p0, ε) = ∪p∈T (p0)B(p, ε) denote the tube15 of radius ε around T (p0).

Theorem 25 (Discrete Steepest-Descent Algorithm) For any ε > 0, there ex-

ists η > 0 and ᾱ > 0 such that for any grid thinner than η, step size less than ᾱ, and initial

price p0, the trajectory generated by the discrete steepest descent algorithm is contained in

T (p0, ε).

Proof. Starting in the same region, trajectories of both algorithms are undistinguishable,

since they follow the same direction. Let t0 denote the first time that the trajectory T

of the discrete algorithm overshoots, causing the two paths to have distinct vectors. Let

ε > 0 be a positive constant (to be chosen later), and denote by pt0 the price of the discrete

algorithm, and by qt0 a price on T (p0) such that ‖pt0 − qt0‖ < ε. Such a price exists if the

step size ᾱ(ε), which gives an upper bound on the overshoot, is small enough. Let T1 de-

note the trajectory that the discretized algorithm would generate if it were starting from

qt0 . By construction T1 coincides with T (p0) until there is a second overshoot. By the

nearness lemma, T and T1 are within ε from each other. Therefore, when T1 overshoots,

at time t1, there is a price qt1 of T (p0) such that ‖p(t1)− qt1‖ < 2ε. Iterating the process,

we thus prove that, up to the kth overshoot, we have T ⊂ T (p0, kε) when T is truncated

at t = tk. The number of overshoots is bounded above by the number R of regions (since

any region is visited at most once by the continuous algorithm, see proof of Theorem 24).

Therefore, the result obtains by setting ε = ε/R. �

As a by-product of Theorem 25, we can get rid at little cost of the assumption that bidders

submit their entire demand set. Bidder valuations can be seen as vectors of the finite-

dimensional space V = Rx̄. A property of an algorithm holds “for almost all economies”

15B(p, ε) is the open ball centered at p and radius ε.
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if it holds for all bidder valuations, except for a subset of Lebesgue measure zero of Vn,

where n is the number of bidders. A singleton-based steepest-descent algorithm, is the

same as the discrete steepest-descent algorithm, except that bidders ask only one bundle

at each period. Concretely, this means that instead of using the vector of smallest norm

of the excess demand set, the algorithm may follow any vector of that set. The following

result shows that this information loss does not affect Theorem 25 except possibly on a

set of economies with Lebesgue measure zero.

Theorem 26 (Singleton-Based Algorithm) Under the assumptions of Theorem 25,

let p0 be any initial price of the algorithm. The trajectory of a singleton-based steepest-

descent algorithm is contained in T (p0, ε) for almost all economies.

The proof is based on the following proposition.

Proposition 4 For all (v1, . . . , vn) ∈ Vn, the demand correspondence p → D(p) is

single-valued almost everywhere in P with respect to the Lebesgue measure on this set.

Proof. We suppose first that there is a unique bidder. For any two bundles x and x′, the

subset P (x, x′) of P defined by P (x, x′) = {p : p(x−x′) = v(x)−v(x′)}, is the intersection

of a hyperplane with the positive orthant P , and has therefore zero Lebesgue measure.

Since the number of possible bundles is finite, the set

Q =
⋃

x 6=x′

P (x, x′),

which contains all prices at which the bidder’s demand is multi-valued, also has zero

Lebesgue measure. For a countable (in particular, finite) number of bidders, the set of

prices where aggregate demand is multi-valued is contained in Qa = ∪Qi, which has zero

Lebesgue measure. �

Proposition 4 implies that the set of economies such that Qa ∩Pη 6= ∅ has Lebesgue mea-

sure zero. Therefore, singleton-based and correspondence-based algorithms are identical

in almost all economies.

In practice, the auctioneer does not know bidder valuations. Theorem 26 implies that

for any belief that is absolutely continuous with respect to the Lebesgue measure, the

algorithm is arbitrarily close to the continuous, correspondence-based steepest descent

algorithm of the ideal economy. In particular, the algorithm completely ignores bidders’

indifference sets. This feature contrasts with Gul and Stacchetti (2000), whose algorithm

gives much importance to indifference sets.
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7 Pseudo-equilibrium as Approximate Equilibrium

In this section we derive some key properties of pseudo-equilibria, showing the importance

of the concept as an approximation of Walrasian equilibrium. For any good, bidder and

price, define

gi,k(p) = max{d : ∃(x, y) ∈ Di(p)2 and yk − xk = d and @z ∈ Di(p) : zk ∈ (xk, yk)}.

Thus, gi,k(p) is the maximal gap in the bidder i’s demand for good k at price p. The

maximal gap in aggregate demand for good k at price p is defined similarly and denoted

by gk(p). Finally, denote by γk(p) = maxi gi,k(p) the largest gap for good k for any bidder

i.

Lemma 4 For all k and p,

gk(p) ≤ γk(p).

Proof. Let Dk(p) denote the projection of aggregate demand on good k, and d̄k(p) denote

its maximum. We need to show that for all d ∈ Dk(p), such that d < d̄k(p) there exists

d′ ∈ Dk(p) such that 0 < d′ − d ≤ γk(p). By construction, there exists x and y in D(p)

such that xk =
∑

i xi,k = d and yk =
∑

i yi,k > d. This implies that there exists a firm i

such that yi,k > xi,k. By assumption, this implies that there exists a bundle zi in Di(p)

such that xi,k < zi,k ≤ xi,k + gi,k(p) ≤ xi,k + γk(p). The bundle z =
∑

j 6=i xj + zi is also in

D(p), and satisfies 0 < zk − xk ≤ γk(p). �

Now let γk = maxp{γk(p)}. This the maximum gap in demand for good k, over all bidders

and prices.

Theorem 27 For any pseudo-equilibrium price p and good k, there exists a bundle y ∈
D(p) such that

|yk − x̄k| ≤ γk.

Proof. By definition, a pseudo-equilibrium price p is such that x̄ is in the convex hull of

D(p). In particular, there exist bundles x, y in D(p) such that xk ≤ x̄k ≤ yk. The result

then follows from Lemma 4. �

Thus we have a bound on excess demand or supply for good k. The next result uses

the following definition. For any positive, K-dimensional vector g and any bundle x, let

R(x, g) = {z : ∀k |zk − xk| ≤ gk} denote the hyperrectangle centered at x and with span

2gk along the kth coordinate.
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Theorem 28 If K = 2 and bidder i has a concave valuation, then

Co(Di(p)) ⊂
⋃

x∈Di(p)

R(x, gi(p))

Proof. Let m ∈ Q = Co(Di(p)). If m has integer coordinates, valuation concavity implies

that it belongs to Di(p). Suppose otherwise. There exists an integral vector (a, b) ∈ N2

such that m ∈ S = [a, a+1]×[b, b+1]. If any of the 4 integral vectors defining S is in Di(p),

the claim is true. Otherwise, Q must cross S on two sides. This, along with convexity of

Q, implies that Q ∩ L is nonempty and contained in a slab of thickness strictly less than

1, where L is one of the four hyperspaces tangent to S. Suppose without loss of generality

that L = {x : x2 ≤ b}. Consider the set Λ = Di(p) ∩ L. If m /∈
⋃

x∈Λ R(x, gi(p)), this

implies that projection of Di(p) on one of the two goods (depending on the orientation

of the slab) does not contain any element between mk and mk + εgi,k(p) where |ε| = 1,

which contradicts the definition of gi,k(p). �

Conjecture: the result may be true for all K if bidders have class substitute valuations.

Our goal is to show that, with enough control on individual demand functions, one can

bound the excess demand (or supply), over all goods at the same time, at any pseudo-

equilibrium. Thus, consider a positive vector g ∈ RK such that

Co(Di(p)) ⊂
⋃

x∈Di(p)

R(x, g)

for all i and p. g represents some notion of coarseness of individual demands. The case in

which g is a vector of ones implies the consecutive-integer property, for which there is no

“hole” in the demand sets, and pseudo-equilibrium prices clear the market.16 The general

case is covered by the following theorem.

Theorem 29 If p is a pseudo-equilibrium price, there exists a bundle y ∈ D(p) such that

|yk − x̄k| ≤ min{K, n}gk

for all k.

Proof. First suppose that n ≤ K. By definition of a pseudo-equilibrium, x̄ ∈ Co(D(p)) =

Co(
∑

i Di(p)) =
∑

i Co(Di(p)). There exist zi ∈ Co(Di(p)) such that x̄ =
∑

zi. By as-

sumption, there exists yi ∈ Di(p) such that |yi,k−zi,k| ≤ gk for all k. Letting y =
∑

yi, we

have y ∈ D(p) and |x̄k − yk| ≤ ngk. Now suppose that K < n. Since x̄ ∈
∑

i Co(Di(p)),

16In that case, the result is actually sharper than the statement of Theorem 29.
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the Shapley-Folkman theorem implies that there exist bundles zi ∈ Co(Di(p)) such that

x̄ =
∑

zi and zi ∈ Di(p) except for i in some index subset J of cardinal weakly less than

K. For i ∈ J , there exists, by assumption, a bundle yi ∈ Di(p) such that |yi,k − zi,k| ≤ gk

for all k. Letting yi = zi for i /∈ J , and letting y =
∑

i yi, we have y ∈ D(p) and

|yk − x̄k| ≤ Kgk for all k. �

We conclude this section with two additional properties of pseudo-equilibria.

Proposition 5 Either the economy has a Walrasian equilibrium, or the set of pseudo-

equilibrium price vectors has measure zero.

Proof. If there does not exist any Walrasian equilibrium, the subdifferential of f : p →
π(p)−px̄ must be multi-valued at any pseudo-equilibrium price vector. Since f is convex,

the set of singular points has measure zero, which proves the result. �

Proposition 6 Suppose that bidders have concave valuations. If p is a pseudo-equilibrium

price vector at which at most one bidder has a multi-valued demand, then p is an equilib-

rium.

Proof. The aggregate excess demand set at p is a translation of the singled-out bidder’s

optimal demand at p. By concavity of that bidder’s valuation, the set must contain all

integer bundles in its convex hull, including zero. Thus, the supply vector is in the aggre-

gated demand set. �

8 Divisible Goods

For the case of divisible goods, the notions of unitary and class substitutes need to be

replaced. We instead use the concepts of linear and nonlinear substitutes. As the name

suggests, linear substitutes only considers linear price vectors and thus constitutes the nat-

ural extension of class substitutes to economies with divisible goods. Concave nonlinear-

substitute valuations possess many properties than one would expect from the extension

of the unitary substitutes concept, as shown in this section.

Definition 17 v is a linear-substitute valuation if whenever pj ≤ p′j, pk = p′k for all

k 6= j, and x ∈ D(p), there exists x′ ∈ D(p′) such that x′k ≥ xk for all k 6= j.
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In the discrete case with individual item pricing, a rational consumer who buys k units

of some type of good always buys the cheapest k units. Therefore, one way to describe

individual item pricing is to specify that the cost of acquiring goods is a convex function

of the number of goods acquired from each class and is additive across classes of goods.

Higher prices mean that the marginal cost of acquiring additional units is higher. This

characterization of the cost of acquiring goods and the corresponding representation of

higher prices can be applied directly to the continuous case. That is the approach we

adopt in this section.

Let C1 denote the space of continuously differentiable, convex functions from R+ to R
which vanish at 0, and C = CK

1 . We endow C with the following partial order: C � Ĉ if

for all k, ck ≤ ĉk, where ck and ĉk are the derivatives of Ck and Ĉk, respectively. With

this order, C is a lattice, where for any C and Ĉ, the meet and the join satisfy, for all k

and xk ≥ 0, (C ∨ Ĉ)′k(xk) = max{ck(xk), ĉk(xk} and (C ∧ Ĉ)′k(xk) = min{ck(xk), ĉk(xk)},
respectively.17 We extend the domain of any dual profit function π from linear prices to

C and denote π̄ its extension:

π̄(C) = max
x
{v(x)− C(x)},

where C(x) =
∑

k Ck(xk).

Definition 18 v is nonlinear-substitute valuation if whenever Cj ≤ C ′
j, Ck = Ĉk for all

k 6= j, and x ∈ D(C), there exists x′ ∈ D(Ĉ) such that x′k ≥ xk for all k 6= j.

For the discrete case, we have seen that there are several properties distinguishing class

substitutes and unitary substitutes, so there is scope for judgment in creating the ana-

logue of unitary substitutes in the continuous case. For example, one could impose that

the extended concept satisfy the law of aggregate demand. That would require that a

dominant diagonal property hold for the matrix [∂xi/∂pj] of partial derivatives of demand.

The concept that we study below does not satisfy the law of aggregate demand.

In place of unitary substitutes, we study the concept of concave, nonlinear-substitute val-

uations. This definition preserves properties distinguishing unitary substitutes from class

substitutes in the discrete setting, including robustness of the substitutes property with

respect to nonlinear price changes and existence of Walrasian equilibria. Moreover, we

find below that these valuations are characterized by dual submodularity on the domain of

17As can be easily checked, the marginal costs of (C∧Ĉ)k and (C∨Ĉ)k are continuous and nondecreasing

for all k, and constructed cost functions both vanish at 0, so that C ∧ Ĉ and C ∨ Ĉ belong to C.
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nonlinear prices, which was also the characterization of unitary substitutes in the discrete

case. We find further that, given concavity, the linear-substitute and nonlinear-substitute

properties are equivalent. Therefore, our divisible-good extensions of the two concepts

coincide in the case of concave valuations. The next two theorems develop all of these

relationships.

Theorem 30 (Dual Submodularity) If v is a concave linear-substitute valuation,

then π̄ is submodular on C.

Proof. We replicate the proof of Theorem 14. We use a modified version of Proposition 1,

whose proof is in the Appendix.

Proposition 7 Suppose that v is a concave linear-substitute valuation and let C ∈ C.
Then,

max
x

min
p
{π(p) + px− C(x)} = min

p
max

x
{π(p) + px− C(x)}.

Given this result, we have18

π̄(C) = min
p

{
π(p) + max

x
{px− C(x)}

}
.

The inner maximum equals ∑
k

∫ ∞

0

(pk − ck(zk))+dzk.

Thus

π̄(C) = min
p

{
π(p) +

∑
k

∫ ∞

0

(pk − c(zk))+dzk.

}
We now show that the function h : (p, C) → h(p, C) =

∫∞
0

(p− c(z))+dz is submodular on

R+×C1. For q < r, h(r, C)−h(q, C) is the area of the region {(z, p) : p ∈ [q, r] and C(z) ≤
p}, which is also equal to

∫ r

q
z(p, C)dp, where z(p, C) = sup{z : c(z) ≤ p}. Since z(p, C)

is nonincreasing in C for all p, so is h(r, C) − h(q, C), which proves submodularity of h.

Linear substitutes implies that π is submodular in p. Therefore, π̄ is the minimum over

p ∈ P = RK
+ of an objective function that is submodular on P × C. A Topkis theorem

then implies that π is submodular on C. �

Theorem 30 allows us to prove the equivalence of three candidate definitions for the

divisible-good extension of unitary substitutes.

18See the proof of Theorem 14 for intermediary steps.
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Theorem 31 Suppose that v is concave. Then the three following statements are equiv-

alent.

(i) v is a linear-substitute valuation.

(ii) v is a nonlinear-substitute valuation.

(iii) π is submodular on C.

Proof. Clearly, (ii) implies (i). From Theorem 30, (i) implies (iii). To conclude the

proof, we show that (iii) implies (ii). We adapt the proof of Ausubel and Milgrom (2002),

Theorem 10. We fix a direction of price increase for some good, and show that along

this direction, the demand for any other good is nondecreasing. Fix goods j 6= k and

a direction of increase δ (i.e. δ is nondecreasing convex and vanishes at 0) for good j.

Consider the function

π|2(λ, µ) = max
x
{v(x)− C(x)− λxk − µδ(xj)}

defined on R2
+. Since π is submodular, so is π|2. π|2 is convex as the pointwise max-

imum of a family of functions that are affine in (λ, µ). In particular, ∂π|2/∂λ exists

almost everywhere. By an envelope theorem19 ∂π|2/∂λ exists everywhere that xk(λ, µ) is

a singleton and at those prices, ∂π|2/∂λ = −xk(λ, µ). Submodularity of π|2 implies that

∂π|2/∂λ(λ, µ) is nonincreasing in µ or, equivalently, that xk is nondecreasing in µ. �

Theorems 30 and 31 have an important consequence: concave nonlinear-substitute valua-

tions are stable under perturbation by any concave modular function. Thus comparative

statics results are robust with respect to such perturbations, as stated in the following

theorem.

Theorem 32 If v is a concave nonlinear-substitute valuation, then v + f is a concave

nonlinear-substitute valuation for all f modular and concave.

Proof. Suppose that v is a concave nonlinear-substitute valuation. Then, v+f is concave

whenever f is concave. By Theorem 31, it remains to show that v+f is a linear-substitute

valuation. Let

xf (p) = arg max
x
{v(x) + f(x)− px}.

Without loss of generality, we can assume that fi(0) = 0 for all terms of f . Let C(x, p) =

px− f(x). Since f is modular and concave, C is modular and for each i, Ci is convex and

19Milgrom and Segal (2002), Corollary 4.
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vanishes at 0. Therefore, C belongs to C. Moreover, increasing pk implies increasing Ck.

Since v is a nonlinear-substitute valuation and

xf (p) = arg max
x
{v(x)− C(x, p)},

xf
j (p) is nondecreasing in Ck, thus in pk. �

We now turn to the consequences of the substitutes properties in settings with multiple

firms.

Repeating our previous analysis, we can show that the dual profit function of a valuation

v is submodular over linear prices if and only if v is a linear-substitute valuation, and that

linear-substitute valuations are closed under aggregation. With divisible goods, concavity

is also closed under aggregation: the maximization

v(x) = max
x

∑
i

vi(xi)

subject to
∑

xi ≤ x has a concave objective function and a convex constraint function, so

v is concave20 in the constraint bound x. This shows the following result, which extends

Theorem 22.

Theorem 33 Concave nonlinear-substitute valuations are closed under aggregation.

Proof. The above discussion shows that concave linear-substitute valuations are closed

under aggregation. This, along with Theorem 31, implies that the same is true of concave

nonlinear-substitute valuations. �

With divisible goods, concavity is a sufficient condition for the existence of a Walrasian

equilibrium. If, in addition, firms have nonlinear-substitute valuations, then the Vickrey

outcome is in the core.

Theorem 34 If all bidders have concave nonlinear-substitute valuations, the Vickrey out-

come is in the core.

Proof. From Theorem 7 of Ausubel and Milgrom (2002), it is enough to show that

the coalitional value function is bidder submodular. Therefore, we need to show that

w(S ∪ {l}) − w(S) is nonincreasing in S. Let x denote the quantity of goods available.

We have

w(S ∪ {l})− w(S) = max
y≤x

{vl(x− y) + vS(y)− vS(x)},

20See for example Luenberger (1969, p.216).
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where vT (z) denote the optimal value of bundle z for coalition T . Therefore, it is enough

to show that vS(y) − vS(x) is non increasing in S or simply that vS(z) is submodular in

(−z, S). Concavity of vS
21 implies that

vS(z) = min
p
{πS(p) + pz}, (4)

where πS is the dual profit function of vS and is equal to
∑

i∈S πi(p). Since π is submod-

ular in p, the objective in (4) is submodular in (−z, S, p). Hence, vS(z) is submodular in

(−z, S), as required. �

We have focused so far on monotone comparative statics of the demand function. In the

discrete case, we saw that unitary substitutes not only implied that xj is nondecreasing

in the (possibly nonlinear) price of other goods, but also that
∑

j xj(p̃) was nonincreasing

in p̃, which is the discrete law of aggregate demand. This property is no longer required

for several of the theorems pertaining to divisible goods, as Theorems 30 and 34 illustrate.

Might there be some analogue of the law of aggregate demand for divisible substitute

goods? One problem is to determine the units in which such a law might be expressed.

For example, if one unit of good i represents a 10-ride train pass between two cities,

while one unit of good j is a one-way bus ticket between the same cities. One expects

that, starting from prices where a consumer chooses the train pass, a large price increase

in the train pass results in the consumer buying several bus tickets to replace the train

pass, implying that the sum xi + xj increases as pi increases, which violates the law of

aggregate demand. One way to pose the problem without units is to ask whether there

exist constants ai such that
∑

i aixi be nondecreasing in prices? In the previous example,

a natural choice would be ai = 1 and aj = 10, given the relative similarity of a train trip

and a bus trip. More generally, we say that a valuation v satisfies the generalized law of

aggregate demand (GLoAD) if there exist increasing functions fi such that∑
i

fi(xi(C))

is nonincreasing in C. It satisfies the law of aggregate demand if one can take fi(xi) = xi

for all i. The GLoAD seems so much more flexible than the law of aggregate demand

that one is led to wonder whether it is satisfied by linear-substitute valuations, or at least

concave nonlinear-substitute valuations. However, the following theorem and its corollary

show that the GLoAD is equivalent to the law of aggregate demand up to a mere convex

21See discussion preceding Theorem 33.
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re-scaling of goods. For the remaining of this section we assume that the cost functions are

nondecreasing.22 To simplify the exposition, let ◦ denote the component-wise composition

of any function with any modular function: (f ◦ g)(x) = f(g1(x1), . . . , gK(xK)), for any

function f and modular function g. Clearly, f◦g is modular if f is also modular. Restricted

to the class of increasing modular functions, denote f−1 the component-wise inverse for

the composition: f−1(x) =
∑

k f−1
k (xk). For functions of one variable, these definitions

coincide with the usual ones.

Theorem 35 Let v be a concave nonlinear-substitute valuation satisfying the generalized

law of aggregate demand for some function f , and g be an increasing, concave, modu-

lar function. Then ṽ = v ◦ g is a concave nonlinear-substitute valuation satisfying the

generalized law of aggregate demand for the modular function f̃ = f ◦ g.

Proof. Since v and g are nondecreasing concave, so is ṽ. Let C̃ be a convex price

schedule, and y(C̃) = arg max ṽ(y)− C̃(y). We wish to show that yj is nondecreasing in

C̃k for j 6= k, and that there exists an increasing modular function f̃ such that f̃(y(C̃))

is nonincreasing in C̃. The function γ = g−1 is increasing, convex, and modular. By

assumption, there exists a modular function f such that f(x(C)) is nondecreasing in C,

where x(C) is the demand of v at the convex price schedule C. Let C = C̃ ◦ γ. Since

all components of γ and C̃ are nondecreasing convex, so are the components of C. In-

creasing C̃k to C̃ ′
k is equivalent to increasing Ck to C ′

k = C̃ ′
k ◦ γk. Therefore, if j 6= k,

yj(C̃) = γj(xj(C)) is nondecreasing when C̃k increases. Moreover, letting f̃ = f ◦ g, we

have f̃(y(C̃)) = f(x(C̃ ◦ γ)), which is nonincreasing in C̃. �

Corollary 4 Suppose that v is a concave nonlinear-substitute valuation satisfying the

generalized law of aggregate demand for some convex function f . Then, ṽ = v ◦ f−1

satisfies the law of aggregate demand.

Thus, the generalized law of aggregate demand corresponds to a quantitative rather than

a qualitative relaxation of the law of aggregate demand. In fact, it is possible to construct

a concave nonlinear-substitute valuation that does not satisfy any generalized law of

aggregate demand. We provide a sketch of this counter-example below, which establishes

a fundamental difference between the cases of discrete and divisible goods.

22This assumption if used in the proof of Theorem 35. We did not make this assumption earlier in

order to prove Theorem 32, where we consider C(x) = px− f(x) and f may be increasing.
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Counter-Example 2 There exist concave nonlinear-substitute valuations that do not

satisfy the generalized law of aggregate demand.

Proof. [Sketch] We consider the case of two goods. Let x < x′ and y < y′ be pos-

itive numbers, and consider the bundles A = (x, y), B = (x′, y), C = (x, y′), and

D = (x′, y′). If GLoAD held, there would exist some increasing functions f and g such

that f(x(p, q)) + g(y(p, q)) is nonincreasing in (p, q), where (p, q) is the price vector of

the two goods, and (x(p, q), y(p, q)) is the demand in the goods at that price. Suppose

that at B and C, a small increase in price p reduces x(p, q) by a very small amount

and increases y(p, q) by a very large amount (as in the ticket/pass example above). For

GLoAD to hold, this means that we must have f ′(x′) much larger than g′(y) (looking at

B), and f ′(x) much larger than g′(y′) (looking at C). Now suppose that A and D, a small

increase in price q reduces y(q) by a very small amount, and increases x(q) by a very large

amount. For GLoAD to hold, this means that we must have23 g′(y) much larger than

f ′(x) (looking at A) and g′(y′) much larger than f ′(x′) (looking at D). These two sets of

conditions are clearly incompatible, which shows that GLoAD cannot hold. To conclude

our counter-example, it remains to show that there exist concave nonlinear-substitute val-

uations satisfying the demand behavior described at points A,B,C,D. Demand variations

is determined by the Hessian of the valuation at these points. It is easy to choose Hes-

sian matrices that are negative definite, with negative cross derivatives and that satisfy

the requirements. We show that it is possible to extend these Hessian matrices over the

whole bundle space while keeping negative definiteness and negative cross derivatives, by

superposition of several concave submodular functions. This defines a valuation (up to an

affine term) that is submodular and concave. In two dimensions, submodularity implies

the linear-substitute property. By Theorem 31, the constructed valuation is therefore a

concave nonlinear-substitute valuation. �

9 Conclusion

The substitutes concepts play a critical role in equilibrium theory, particularly for discrete

economies. For discrete economies, the unitary substitutes conditions gives a necessary

and sufficient conditions for the robust existence of equilibrium and class substitutes drive

the monotonicity that is exploited by current auction algorithms. Unitary (respectively,

nonlinear) substitutes is also the condition that determines whether the Vickrey out-

23The proof is easily adapted if f and g are not differentiable at these points.
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come is in the core for economies with discrete (respectively, divisible) goods. A related

concept–the law of aggregate demand–has been the informal justification for the wide

adoption of activity rules in practical auctions. Among our findings is that the law of

aggregate demand is precisely the additional property that converts a concave class sub-

stitute valuation to a unitary-substitute valuation when goods are discrete, but that this

difference vanishes when goods are divisible.

Our findings are also related to the literature on comparative statics in optimization.

Prior to our paper, “robust comparative statics” analysis has focused mainly on models

with complementarities, understood roughly as supermodularity of the objective. We

have shown that there are also robust comparative statics results for the case of nonlin-

ear substitutes, because that property is preserved by the addition of concave, modular

functions.

10 Appendix: Proofs

10.1 Section 4

Proof of Lemma 1. Consider a bundle x such that xk ≤ Nk−1 and xj ≤ Nj −2. Take

any binary representant x̃ of x, and call l and m two units of good j not in x̃, and s a

unit of good k not in x̃. Since ṽ satisfies the gross-substitute property, the set

{ṽ(x̃+el+em)−ṽ(x+el)−ṽ(x̃+em), ṽ(x̃+el+es)−ṽ(x̃+el)−ṽ(x̃+es), ṽ(x̃+em+es)−ṽ(x̃+em)−ṽ(x̃+es)}

has two or more maximizers. Symmetry of ṽ implies that the last two arguments of that

quantity are equal, and therefore greater than or equal to the first one. That is, written

in multi-unit form,

v(x + ek + ej)− v(x + ek)− v(x + ej) ≥ v(x + 2ej)− 2v(x + ej),

which, after simplification, concludes the proof of Lemma 1. �

Proof of Theorem 12. Suppose by contradiction that the law of aggregate demand is

violated: there exist k, p and x such that for all ε small enough, we have (i) x ∈ D(p−εek),

and (ii) for all y ∈ D(p + εek), ‖y‖1 > ‖x‖1. Clearly, for any such y, we have yk < xk.

Let Dk = Dk(p), d
¯

= min Dk and d̄ = xk = max Dk. By continuity, we have (i) x ∈ D(p),

(ii) there exists some y ∈ D(p) such that yk < xk, and (iii) for all y ∈ D such that yk = d
¯
,
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‖y‖1 > ‖x‖1.

For each d ∈ Dk, define g(d) = min{‖y−k‖1 : yk = d and y ∈ D(p)}. Let γ : R+ → R
denote the largest convex function such that γ(d) ≤ g(d) for all d ∈ Dk. As can be easily

verified, γ is well defined, and is piecewise affine: there exists a partition ∆ = {δl}l∈Λ of

R+ such that γ is affine on [δl, δl+1]. Moreover, d̄ and d
¯

are elements of ∆: there exist

l
¯

and l̄ such that d
¯

= δl
¯

and d̄ = δl̄. For l ∈ {l
¯

+ 1, l̄}, denote H(l) the hyperplane

containing the two (K − 2)-dimensional affine varieties

{z ∈ RK : ‖z−k‖1 = γ(δl) and zk = δl}

and

{z ∈ RK : ‖z−k‖1 = γ(δl−1) and zk = δl−1}.

As the reader can verify, there exists a unique hyperplane containing these two affine

varieties, so H(l) is well defined. Moreover, H(l) lies below D(p) and contains at least

two elements z and y of D(p) such that zk = δl and yk = δl−1.

We claim that there exists l ∈ {l
¯
+1, l̄} such that γ(δl−1)−γ(δl) > δl−δl−1. Suppose that

the contrary holds. Then, γ(d
¯
)− γ(d̄) ≤ d̄− d

¯
= xk − d

¯
. But then, there exists y in D(p)

such that yk = d
¯

and ‖y−k‖1 = γ(d
¯
), implying that ‖x‖1 = xk + γ(d̄) ≥ d

¯
+ γ(d

¯
) = ‖y‖1,

which contradicts the hypothesized violation of the law of aggregate demand.

Consider an index l as in the previous paragraph, and modify p slightly so that the demand

set becomes D(p)∩H(l). As can be easily verified, the price vector can be further modified

so that the remaining bundles in the demand set are aligned on a unique straight line and,

for the new price p̄, there still exist z and y in D(p̄) such that zk > yk and ‖z‖1 < ‖y‖1.

There are two cases: either there are two indices i and j such that yi > zi and yj > zj,

or there exists an index i such that yi − xi > xk − yk. Since optimal bundles are aligned,

the same properties hold for the extremities bundles of the segment containing D(p̄), so

we assume without loss of generality that z and y are these extreme bundles. In the first

case, increasing pi slightly violates the class-substitute property, as the optimal quantity

of good j also decreases. In the second case, the convex-demand property is violated: the

set Di(p̄) contains a hole between zi and yi. �

Proof of Proposition 1 Trivially,

max
x

min
p
{π(p) + px− (p̃, x)} ≤ min

p
max

x
{π(p) + px− (p̃, x)}. (5)
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We need to prove that the reverse inequality also holds. We fix p̃ throughout the proof.

Consider a price p solving minp maxx{π(p)+px−(p̃, x)}. Let N(p) = arg maxx{px−(p̃, x)}.
By inspection, N(p) is a hyper-rectangle: there exist two bundles r and R with r ≤ R

such that N(p) = {z ∈ ZK : r ≤ z ≤ R}.

Suppose that there exists a bundle x in N(p) ∩ D(p). Then, the right-hand side of (5)

equals

π(p) + px− (p̃, x) = v(x)− (p̃, x),

where the last equality comes from the fact that x belongs to D(p). Now consider any

linear price vector q. We have π(q)+qx−(p̃, x) ≥ v(x)−(p̃, x), by definition of π(q). This

last inequality implies that the left-hand side of (5) is actually greater than or equal to its

right-hand side. Therefore, we will have concluded the proof if we show that N(p)∩D(p)

is nonempty, which we now turn to.

Let Co(D(p)) and Co(N(p)) denote the convex hulls of D(p) and N(p). We first show

that Co(D(p)) ∩ Co(N(p)) has a nonempty intersection. Suppose by contradiction that

Co(D(p)) ∩ Co(N(p)) = ∅. Then, since these two sets are closed and convex, the

separating-hyperplane theorem implies that there exists a direction δ and a number a

such that yδ < a for y ∈ N(p) and xδ > a for x ∈ D(p). Now modify p by an

infinitesimal amount along the direction δ, yielding a new level q = p + εδ. The ob-

jective function π(p) + maxz{pz − (p̃, z)} is affected by this change in two ways. First,

through the sensitivity of π with respect to p. Taking any x ∈ D(q) ⊂ D(p), we have

π(p) = v(x) − px and π(q) = v(x) − qx. Therefore, the change of π is −εxδ. Second,

through the sensitivity of maxz{pz− (p̃, z)} with respect to p. There exists y ∈ N(p) such

that maxz{pz− (p̃, z)} = py− (p̃, y) throughout the price change. Therefore, the effect on

this term equals εyδ. The overall change of the objective function is then ε(y − x)δ < 0,

implying that q leads to a strictly lower objective function than p, which contradicts op-

timality of p.

We have proved that the sets Co(D(p)) and Co(N(p)) have a non empty intersection. We

now prove that this intersection contains a point with integer coordinates. Consider any

polytope of RK . We say that an edge (i.e. a segment joining two vertices of the polytope)

is simply oriented if either (i) it is parallel to one coordinate axis {λei : λ ∈ R} of the

space or (ii) there exist two coordinates i and j such that the edge is parallel to ei−ej. We

say that a polytope is simply oriented if all its edges are simply oriented. Last, we recall
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that a polytope all of whose vertices have integer coordinates is called a lattice polytope.

Lemma 5 If a lattice polytope P is simply oriented, and H is the half space {x : xk ≥ q},
where k ∈ {1, . . . , K} and q is an integer, then P ∩H is either the empty set, or a simply

oriented, lattice polytope.

Proof. Suppose that Q = P ∩ H is nonempty. Then, it is a polytope. Its vertices are

either vertices of P , in which case they are integral, or new vertices belonging to H. We

prove that any such vertex also has integer coordinates. Any new vertex x is the inter-

section of H with an edge E of P that is not parallel to H. In particular, there exists an

integral vertex y of P such that x − y is parallel to E. Moreover, yk 6= q, since the edge

is not parallel to H. The edge is either parallel to ek or to ek − ei for some i 6= k. In the

first case, we have xj = yj ∈ Z for all j 6= k and xk = q ∈ Z, so x has integer coordinates.

In the second case, xj = yj ∈ Z for all j /∈ {i, k}, xk = q ∈ Z, and xi = yi +(yk−xk) ∈ Z,

so x also has integer coordinates. We now prove that the edges of Q are simply oriented.

Thus consider an edge E of Q, joining vertices x and y. If either x or y are vertices

of P , then E is either an edge of P , or the result of such an edge being cut by H. In

either case, it is simply oriented because P is simply oriented. If both x and y are new

vertices, E is the intersection of a two-dimensional face F of P with H, where F is not

parallel to H. F is defined by two linearly independent edges E ′ and E ′′ of P which are

simply oriented, and at least one of which contains ek. Suppose first that either E ′ or E ′′,

say E ′, is orthogonal to ek. Then it is easy to show that E is parallel to E ′′ and there-

fore simply oriented. Now suppose that both E ′ and E ′′ have a nonzero kth component.

Because they are linearly independent, there exist i and j such that F is generated by

ek − ei and ek − ej (where the signs come from the fact that P is simply oriented). In

that case, as can be easily verified, E is parallel to ei−ej, and therefore simply oriented.�

We observe that Lemma 5 still holds if the inequality sign is reversed in the definition of H.

Co(D(p)) is a lattice polytope since D(p) consists of integral vectors. We now prove that

Co(D(p)) is simply oriented. Thus consider any edge E of Co(D(p)). There exists a

vector δ of RK such that E is included in some straight line ∆ = {x0 + λδ}λ∈R. We first

show that δ has at most two nonzero components. Suppose on the contrary that δ has at

least three components, say i, j, and k. Without loss of generality assume that δi and δj

are positive. Since E is a face of Co(D(p)), there exists an infinitesimal modification of

the price vector p, such that D(p) = E. Moreover, E contains two vectors x and y such

that x− y = λδ for some λ > 0. If we slightly increase pi, x becomes suboptimal, so the
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optimal quantity of good j decreases, which violates the class-substitute property. Thus,

δ has at most two nonzero components. We now prove that E is simply oriented. If δ

has only one nonzero component, the claim is trivial. Suppose that δ has two positive

components, say i and j. We show that δi = −δj. Since E has integer vertices, we can

assume that δi and δj are integers.24 If δiδj > 0, slightly increasing pi reduces the optimal

quantity of good j which violates the class-substitute property. Thus, δi and δj have

opposite signs. Now suppose that |δi| < |δj|. This implies that for all integral vectors x

and y in E, we have |xj − yj| ≥ 2, which violates the consecutive-integer property. Thus,

δi = −δj, which concludes the proof.

We have shown that Co(D(p)) is a simply oriented lattice polytope. Since Co(N(p)) is a

hyperrectangle of the form {x ∈ RK : a ≤ x ≤ b} for some integral vectors a and b, we

have, denoting H(k, q)+ = {x : xk ≥ q} and H(k, q)− = {x : xk ≤ q},

Co(D(p)) ∩ Co(N(p)) = Co(D(p))
⋂

1≤k≤K

(H+(k, ak) ∩H−(k, bk)) .

Iterating Lemma 5 2K times implies that Co(D(p)) ∩ Co(N(p)) is either the empty set

or a lattice polytope. Since we have already shown that this intersection is nonempty, it

must contain an integral point, which concludes the proof of Proposition 1. �

10.2 Section 5

Proof of Theorem 18. We extend part of the proof of Theorem 2 in Gul and Stacchetti

(1999) to a multi-unit context. By assumption, there exist a price vector p̄, a good k, and

bundles x and x′ such that (i) {x, x′} ∈ D(p̄), (ii) x′k − xk ≥ 2, and (iii) for all z in D(p̄),

zk /∈ (xk, x
′
k). This implies that at the price p = p̄− ηek, x is only dominated by bundles

z such that zk ≥ xk + 2. In particular, the single-improvement property is violated by x

at price p. Therefore, any bundle y such that

y ∈ arg min
z

∑
k

|xk − zk|

subject to

u1(z, p) > u1(x, p)

satisfies yk ≥ xk + 2.

24See for example Korte and Vygen (2000).
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Let ρ =
∑

j(yj−xj)+. By hypothesis, ρ ≥ 2. Let ε = u1(y,p)−u1(x,p)
2ρ

. Let I+ = {j : xj < yj},
I− = {j : xj > yj}, and I0 = {j : xj = yj}. If j ∈ I+, introduce Nj − yj firms, call them

“Cj”, with unit-demand valuation v1(X ) + 2 for a single unit of good j. If j ∈ I+ \ {k},
introduce yj−xj firms, call them “cj”, with unit-demand valuation pj +ε for a single unit

of good j. If j = k, introduce yk − xk − 1 firms (“ck”) with unit-demand valuation pk + ε

for a single unit of good k. If j ∈ I−, introduce Nj − xj firms (Cj) with unit-demand

valuation v1(X ) + 1 for a single unit of good j, and xj − yj firms (cj) with unit-demand

valuation pj for a single unit of good j. If j ∈ I0, introduce Nj−xj firms with unit-demand

v1(X ) + 1. Last, introduce a special firm, “firm 2”, with unit-demand pk + v1(X ) + 1 for

a single unit of good k.

Now suppose that there exists a Walrasian equilibrium with price vector t, and let Xi

denote the bundle of the equilibrium received by firm i. Necessarily, (X1)j ≥ min{xj, yj}
for all j, since even if all unit-demand firms get one unit, there remain min{xj, yj} units

of good j. Define a new price vector as follows: qj = tj for j /∈ I− and qj = pj for j ∈ I−.

For j ∈ I−, Nj − xj units go to firms Cj. The remaining xj units are shared between

firm 1 and firms cj, with at least yj units for firm 1. Now, if firm 1 has none of the

remaining xj − yj units, it means that tj ≤ pj, and this share remains optimal when tj is

increased to pj. If firm 1 has all of the remaining units, it means that tj ≥ pj, and this

share remains optimal when tj is decreased pj. If firm 1 has only a part of these remaining

units, it means that tj is already equal to pj. Thus (X, q) is also a Walrasian equilibrium,

such that X1 ≥ x ∧ y. Moreover, all Cj get their units, so that X1 ≤ x ∨ y. Therefore

x ∧ y ≤ X1 ≤ x ∨ y. (6)

Firm 2 necessarily gets a unit of good k ∈ I+. Therefore, X1k < yk. This, together

with (6), implies that
∑

k |xk −X1k| <
∑

k |xk − yk|, and thus

u(X1, p) ≤ u(x, p). (7)

Suppose that there exist some goods j in I+ such that X1j > xj. This implies that

qj ≥ pj + ε, since firms cj would otherwise want to get all the units. Combining these

price inequalities with (7) yields u1(X1, q) < u1(x, q), which contradicts optimality of X1

for firm 1.

Suppose instead that X1j ≤ xj for all j. Then, all units between xj and yj for j ∈ I+ are

consumed by firms cj and by firm 2. For j 6= k, this implies that cj have a positive value

for the good: qj ≤ pj + ε. For j = k, even though firm 2 takes one units of the yk − xk
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available units of k, the fact that yk ≥ xk + 2 implies that there is also a firm ck taking

one unit of good k, which implies that qk ≤ pk + ε. Since X1 = x on I+ and pj = qj for

j /∈ I+, (7) implies

u1(X1, q) ≤ u1(x, q).

Since qj ≤ pj + ε for all j ∈ I+, the value initially chosen for ε implies that u1(x, q) <

u1(y, q), and thus u1(X1, q) < u1(y, q), which contradicts optimality of the bundle X1 for

firm 1. �

Proof of Theorem 23 From A&M Theorem 7 (which allows for multiple units of

goods), we know that the vector of Vickrey payoff vector is in the core if and only if the

coalitional value function is bidder-submodular. We show that under the assumptions of

Theorem 23, there always exist bidder valuations such that the coalitional value function is

not bidder-submodular. Suppose that bidder 1’s valuation violates the consecutive-integer

property. There exist p̂ and k such that Dk(p̂) does not consist of consecutive integers.

Let p = p̂+ εek for ε small enough. Then there exists x and z such that xk ≥ zk +2, and

v(z)− pz > v(x)− px > v(y)− py (8)

for all y such that yk ∈ (zk, xk). Introduce a second bidder with linear valuation v2(x) =

p−kx−k, and xk − zk unit-demand bidders who only value good k. The total number of

bidders is xk − zk + 2 ≤ Nk + 2 ≤ maxk Nk + 2. From (8), we have

v(x) + p−k(x̄− x)−k ≥ v(y) + p−k(x̄− y)−k + pk(xk − yk)

whenever xk − yk ≤ xk − zk − 1, and

v(z) + p−k(x̄− z)−kpk(xk − zk) > v(x) + p−k(x̄− x)−k.

Therefore, denoting S the set consisting of bidders 1, 2 and the xk − zk − 2 unit-demand

firms, and s and t the last two unit-demand bidders, we have

w(S ∪ {s}) = w(S)

and

w(S ∪ {s, t}) > w(S ∪ {t}),

which implies that w is not bidder-submodular. �
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10.3 Section 6

Proof of Theorem 24. The proof is based on three lemmas, proving respectively

well-definedness, monotonicity, and confinement in L.

Lemma 6 (Well-definedness) The continuous SDA algorithm is well defined.

Proof. On any region of the price space where excess demand is constant, the algorithm

defines a straight trajectory of direction z, and is thus well-defined.25 The only possible

problem, thus, is to rule out the possibility that there are infinitely many region changes

in an arbitrarily small amount of time. With the steepest-descent algorithm, the norm of

z is nondecreasing in time. Since z is constant over any region where aggregate demand

is constant, and the norm of z strictly decreases each time it changes, any region that is

left is never visited again. �

Lemma 7 (Monotonicity) When bidders have class-substitute valuations and z(0) ≥
0, p(·) is nondecreasing.

Proof. Suppose by contradiction that z(t) fails to be nonnegative at some time t, and

take the smallest such time. Since z(0) ≥ 0, t > 0. By construction, z(s) ≥ 0 on a

left neighborhood of t. Let m = z(t), x = z(t−), and P be the opposite of the subdif-

ferential of f at p(t). P is a convex polytope, whose vertices are elements of the excess

demand at p(t), and m is the element of P with smallest norm. By assumption, x is

nonnegative. By continuity of demand, x must also belong to P . Let J = {k : mk < 0}.
By assumption, J 6= ∅. Let H be the affine hyperplane going through (the point) m

and orthogonal to (the vector) m. By assumption, P is on one side of H and touches

H at m. Let F be the largest face of P contained in H, y be any vertex of F , and

Cy = {z :
∑

J mkzk ≥ ‖m‖2 −
∑

Jc msys}. Since y −m is orthogonal to m, Cy is a cone

with vertex y. We will show that Cy contains P but not x, a contradiction.

Since y−m is orthogonal to m, we have ‖m‖2−
∑

Jc msys =
∑

J mkyk = mJyJ , where the

components of mJ are equal to those of m on J and vanish on J c, and a similar definition

for yJ . By convexity of F , m = y +
∑

l αlEl, where {El} is the family of direction vectors

of the edges of F emanating from y. Taking the scalar product of the previous equality

with mJ yields mmJ = yJmJ +
∑

l αlElmJ . We now prove that ElmJ = 0 for all l. By

25The scalar function α is immaterial, as long as it is bounded away from 0 and +∞.
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construction of F ,

m.El = 0. (9)

Moreover the class substitute property implies that El has at most two nonzero compo-

nents, and any two nonzero components are of opposite sign (see the proof of Propo-

sition 1). If El has one nonzero component, it must be in J c, otherwise it would vio-

late (9). If it has two nonzero components, then either they are both in J or both in

J c, for otherwise (9) would be violated. In any case, this implies that El.mJ = 0. Thus,

mJvJ = m2
J > 0. In particular Cy = {z :

∑
J mkzk ≥ m2

J}. Since the components of x

are nonnegative by construction, x cannot belong to Cy.

To conclude the proof, we show that Cy contains P . By convexity of P , it is enough to

show that all edges of P emanating from y are going in the cone Cy. This will be the case

if we show that for any such edge with direction δ (away from y), we have

δmJ ≥ 0. (10)

By definition of F , we have δm ≥ 0 (i.e. any edge from y must point outwards from H).

Since bidders have class-substitute valuations, δ has at most two nonzero components.

Suppose first that it has exactly two components, δi and δj. If i, j are in J , then (10)

trivially holds. If i, j are in J c, then (10) is an equality. If i ∈ J and j ∈ J c, then δm ≥ 0

and the fact that δiδj < 0 (by class-substitutes) implies that δi < 0, and thus that (10)

holds. If there is only one nonzero component, (10) holds trivially. �

Lemma 8 (Confinement) If bidders have class-substitute valuations, p(0) ≤ p
¯

and

z(0) ≥ 0, then p(t) ≤ p
¯

for all t ≥ 0.

Proof. Suppose not: there exists a time t such that p(t) crosses the hyperrectangle

R = {z : z ≤ p
¯
} from inside out. In particular, the index subset I = {j : pj(t) = p

¯j
}

is nonempty, and we have pj(t) < p
¯j

for j /∈ I. Moreover, p(s) � p
¯

for s in a right

neighborhood of t: there exists a nonempty subset J ⊂ I such that ps,j > p
¯j

for j ∈ J

and s ∈ (t, t + ε). By construction of the algorithm, this means that the vector n of

smallest norm in the opposite of the subdifferential of p(t) satisfies nj > 0 for j ∈ J .

We will contradict this statement by showing that the vector m defined by mj = nj for

j /∈ J and mj = 0 for j ∈ J is in the opposite of the subdifferential. m’s norm is strictly

smaller than n’s, contradicting the assumption that n is of smallest norm in the opposite

of the subdifferential. By definition of the subdifferential, we need to show that, letting
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p = p(t),

m(q − p) ≥ f(p)− f(q) (11)

for all q. We first show this inequality in a neighborhood of p. By construction of n,

n(q − p) ≥ f(p)− f(q)

for all q. Therefore, (11) is automatically satisfied for q such that qj ≤ pj for j ∈ J .

Now consider the case where qj > pj for a subset J(q) of J . Consider the vector q′ such

that q′j = qj for j /∈ J(q) and q′j = pj for j ∈ J(q). Since we are in a neighborhood of

p, qj ≤ p
¯j

for all j /∈ J(q). This implies that q′ ≤ p
¯

and, therefore, that q′ = q ∧ p
¯
. By

submodularity of f , we have

f(p
¯
∧ q) + f(p

¯
∨ q) ≤ f(p

¯
) + f(q).

The inequality, combined with the fact that p
¯

is a minimum of f , implies that f(q′) ≤ f(q).

By construction of q′, we have

m(q − p) = m(q′ − p) ≥ n(q′ − p) ≥ f(p)− f(q′) ≥ f(p)− f(q),

which concludes the proof on a neighborhood of p. To prove the result globally, consider

any vector q and let qλ = λq + (1− λ)p where λ ∈ (0, 1). From the previous analysis we

have, for λ small enough,

m(qλ − p) ≥ f(p)− f(qλ).

By convexity of f ,

f(qλ) ≤ λf(q) + (1− λ)f(p).

Combining the previous two inequalities and dividing by λ yields the result. �

We now conclude the proof of the theorem. Since p(t) is nondecreasing and bounded, it

must converge to some limit in L. Since α is bounded away from zero, the rate of change

of p is bounded away from zero on any closed subset of the price space that does not

contain any pseudo-equilibrium price. Since the only pseudo-equilibrium price contained

in L is p
¯
, this has to be the limit.

Proof of Lemma 2. By assumption, the excess demand set is an integer polytope

of RK , bounded by the rectangle [−x̄, Nx̄]. Therefore, z can only take finitely many

values. Since any such z is the vector of minimum norm of an integral polytope, it has

rational coordinates. Therefore, its direction can always be achieved on regular lattice.
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That is, there exists a positive number α(z) such that α(z)z is a feasible direction of the

lattice. Moreover, α(z) gets arbitrarily small as the grid gets arbitrarily thin. Since there

are finitely many values of z, maxz{α(z)} goes to zero as the grid thinness η goes to zero.�

Proof of Lemma 3. Without loss of generality, we can restrict attention to price

vectors less than M . Since the number of bidders is finite, the function f : p → π(p) + x̄p

is piecewise affine, with finitely many regions. Moreover, directions of the hyperplanes

supporting f are determined by excess demand vectors, which take finitely many values

(cf. proof of Lemma 2). Since z is in the opposite of the differential of f , we have

f(q)− f(p) ≥ z(p)(p− q)

for all q, with strict inequality if p and q are in distinct regions. The fact that p is

bounded by M and that there are finitely many possible slopes for f implies the existence

of a constant ρ > 0 such that

f(q)− f(p) ≥ ρ + z(p)(p− q) (12)

whenever p and q are not in the same region. We now consider paths of the discrete

steepest-descent algorithm starting from respective initial price vectors p0 and q0, with

‖p0 − q0‖ < ε. Trajectories are parallel until the two prices reach different regions, and

thus leave the vector pt − qt unchange until that time. Let s ≥ 0 denote the first time

that the two paths hit distinct regions. From (12), we have,

f(qs)− f(ps) ≥ ρ + z(ps)(ps − qs)

and

f(ps)− f(qs) ≥ ρ + z(qs)(qs)− ps).

Summing these inequalities yields26

(z(ps)− z(qs))(ps − qs) ≤ −2ρ

Let α be the step size27 of the steepest-descent algorithm: ps+1 = ps + αz(ps), and

qs+1 = qs + αz(qs)

‖ps+1 − qs+1‖2 = ‖ps − qs‖2 + ‖α(z(ps)− z(qs))‖2 + 2α(z(ps)− z(qs)) · (ps − qs).

26This proof strategy introduces a strict version of the theory of maximally monotone mapping. See

Rockafellar (1970).
27The result holds if α depends on t and p, as long as it is continuous in p.
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Therefore,

‖ps+1 − qs+1‖2 − ‖ps − qs‖2 ≤ −4ρα + O(α2),

which is negative for α small enough, which we impose by appropriately setting ᾱ. Thus,

we have proved that ‖pt − qt‖ remains constant when prices are in the same region, and

decreases otherwise. �

10.4 Section 8

Proof of Proposition 7.

We adapt the proof of Proposition 1. Let p denote any solution of minp maxx{π(p)+px−
C(x)}. With divisible goods and concave demand, Co(D(p)) = D(p) (closedness of D(p)

is guaranteed by continuity of the objective function v(x) − px) and Co(N(p)) = N(p)

where N(p) = arg maxx{px − C(x)} (closedness of N(p) is guaranteed by continuity

of the cost function). Therefore, it is enough to show that Co(D(p))
⋂

Co(N(p)) 6= ∅.
Suppose otherwise. Since these two sets are closed and convex, the separating-hyperplane

theorem then implies the existence of a direction δ and a number a such that yδ < a

for y ∈ N(p) and xδ > a for x ∈ D(p). Now modify p by an infinitesimal amount

along the direction δ, yielding a new level q = p + εδ. For pλ = (1 − λ)p + λq, let

g(pλ) = π(pλ) + maxz{pλz − (p̃, z)}. By the integral form of the envelope theorem (see

Milgrom and Segal (2002)),

g(q)− g(p) =

∫ 1

0

−εδx(λ) +

∫ 1

0

εδy(λ),

where x(λ) is any element of D(pλ) and y(λ) is any element of N(pλ). Since objec-

tive functions are continuous, Berge’s theorem implies that for ε small enough, x(λ)δ

is uniformly strictly above a and y(λ)δ is uniformly strictly below a. This implies that

g(q) < g(p), which contradicts optimality of p. Therefore, D(p)∩N(p) has a nonempty in-

tersection. The rest of the proof is identical to the first part of the proof of Proposition 1.�

References

Ausubel, L. (2005) “An Efficient Dynamic Auction for Heterogeneous Commodities,”

American Economic Review, forthcoming.

53



Ausubel, L., Milgrom, P.R. (2002) “Ascending Auctions with Package Bidding,”

Frontiers of Theoretical Economics, Vol. 1, No. 1.

Gul, F., Stacchetti, E. (1999) “Walrasian Equilibrium with Gross Substitutes,” Jour-

nal of Economic Theory, Vol. 87, No. 1, pp. 95–124.

Gul, F., Stacchetti, E. (2000) “The English Auction with Differentiated Commodi-

ties,” Journal of Economic Theory, Vol. 92, No. 1, pp. 66–95.

Hatfield, J., Milgrom, P. (2005) “Matching with Contracts,” American Economic

Review, Vol. 95, No. 4, pp. 913–935.

Korte, B., Vygen, J. (2000) Combinatorial Optimization, Theory and Algorithms,

Springer-Verlag, Heidelberg.

Luenberger, D.G. (1969) Optimization by Vector Space Methods, Wiley, New York.

Milgrom, P. (2000) “Putting Auction Theory to Work: The Simultaneous Ascending

Auction,” Journal of Political Economy, Vol. 108, No. 2, pp. 245–272.

Milgrom, P. (2004) Putting Auction Theory to Work, Cambridge University Press,

Cambridge, UK.

Milgrom, P., Segal, I. (2002) “Envelope Theorems for Arbitrary Choice Sets,” Econo-

metrica, Vol. 70, No. 2, pp. 583–601.

Rockafellar, R.T. (1970) Convex Analysis, Princeton University Press, Princeton,

New Jersey.

Topkis, D.M. (1968) Ordered Optimal Solutions, Doctoral Dissertation, Stanford Uni-

versity, Stanford, CA.

Topkis, D.M. (1998) Supermodularity and Complementarity, Princeton University Press,

Princeton, New Jersey.

54


	Introduction
	Definitions
	Duality Results
	Relations between Concepts of Substitutes
	Aggregate Demand and Equilibrium Analysis
	Walrasian Tâtonnement and Clock Auctions
	Continuous time and price
	Discrete time and price

	Pseudo-equilibrium as Approximate Equilibrium
	Divisible Goods
	Conclusion
	Appendix: Proofs
	Section ??
	Section ??
	Section ??
	Section ??


