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Abstract

High frequency financial data allows us to learn more about volatility, volatility of volatility
and jumps. One of the key techniques developed in the literature in recent years has been
bipower variation and its multipower extension, which estimates time-varying volatility robustly
to jumps. We improve the scope and efficiency of multipower variation by the use of a more
sophisticated exploitation of high frequency data. This suggests very significant improvements
in the power of jump tests. It also yields efficient estimates of the integrated variance of
the continuous part of a semimartingale. The paper also shows how to extend the theory to
the case where there is microstructure in the observations and derive the first nonparametric
high frequency estimator of the volatility of volatility. A fundamental device in the paper is a
new type of result showing path-by-path (strong) approximation between multipower and the
(unobserved) RV based on the continuous part of the process.

Keywords: bipower variation; jumps; market microstructure noise; multipower variation; non-
parametric analysis; quadratic variation; semimartingale; volatility; volatility of volatility.
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1 Introduction

High frequency data has been demonstrated to improve our ability to understand and forecast

financial volatility (e.g. Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen

and Shephard (2002)). Nonparametric estimators like realised volatility have also been shown,
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when combined with implied volatility, to powerfully explain variations in the cross sectional and

temporal behaviour of risk premia (e.g. Bollerslev, Tauchen, and Zhou (2009)). Further, multi-

power variation and threshold tests based on high frequency data have shown convincingly that

relatively frequent jumps play an important role in the evolution of price processes for commonly

held assets (e.g. Barndorff-Nielsen and Shephard (2006), Huang and Tauchen (2005), Andersen,

Bollerslev, and Diebold (2007) and Patton and Sheppard (2009)) while jumps play an important

role in determining extreme moves in financial markets (e.g. Bollerslev and Todorov (2011)).

All of the above methods are based on the following framework. Suppose there is an underlying

efficient price process X, which will be assumed to be a semimartingale due to the absence of

arbitrage (e.g. Delbaen and Schachermeyer (2006)). We observe n returns over some fixed interval

of time, say time 0 to time T , typically representing a day. Then a natural ex-post measure of

its variation is X’s quadratic variation (QV) (e.g. Andersen, Bollerslev, and Diebold (2009) and

Jacod and Shiryaev (2003)). Some of the literature on this topic has formally allowed for the effect

of market microstructure effects on the analysis (e.g. Zhang, Mykland, and Aı̈t-Sahalia (2005),

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) and Jacod, Li, Mykland, Podolskij, and

Vetter (2009)), others use moderate frequency data such as five minute returns in order to ameliorate

the effect (e.g. Andersen, Bollerslev, Diebold, and Labys (2000) and Bandi and Russell (2008)).

Surveys of the mathematical work include Podolskij and Vetter (2010), Mykland and Zhang (2012)

and Jacod and Protter (2012)

In this paper we focus on multipower type estimators and tests. Most of the time we will be

using these statistics to estimate and make inference on the quadratic variation of X, [X,X]T , and

the quadratic variation of the continuous part of X, [Xc,Xc]T . Multipower variation looks inside

quadratic variation, splitting up the variation into that due to continuous evolution of prices and

that due to jumps. It was introduced by Barndorff-Nielsen and Shephard (2004) and Barndorff-

Nielsen and Shephard (2006). The choice of which power K determines the configuration of the

statistic, with K = 1 being realised variance, K = 2 being bipower variation, etc.

The contribution of this paper is to extend multipower variation type estimators, allowing them

to be statistically efficient in the sense they achieve the non-parametrically efficiency bounds for

the problem. We call this new estimator “blocked multipower variation”.

An additional result from our work is the first non-parametric estimator of the volatility of

volatility, or more formally the quadratic variation of the volatility process [σ, σ]T . We also

generalise our blocked multipower variation statistic to the case where we use miniature realised

measures as the inputs into multipower variation rather than simple realised variances. This allows

the estimator to be applied in the important case of market microstructure noise.
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The ideas here echo Mykland and Zhang (2009) who show how to justify the use of blocks of

length M of high frequency returns. Econometrically we go much further however. Our results

generate a path-by-path analysis of the limiting behaviour of high frequency estimators. This is

new for the literature on high frequency financial econometrics and this type of novel analysis may

have very wide applicability outside the scope of this paper.

To put this in context suppose log-prices have two components

Xt = Xc
t + Jt, t ∈ R≥0,

where Xc
t is a continuous semimartingale Xc

t = X0 +
∫ t
0 µsds +

∫ t
0 σsdWs and J is a purely dis-

continuous finite activity jump process. Write RV ∗ as the infeasible realised variance of the Xc

process. So RV ∗ has the jumps stripped out of it and so, as long as σt > 0, we have that

n1/2


RV −RV ∗ −

∑

0<t≤T

|∆Jt|2

 Ls→ N


0, 4T

∑

0<t≤T

|∆Jt|2 σ2t


 , (1)

where
Ls→ denotes stable convergence as n → ∞.1 We will prove that the jump variation JV =

∑
0<t≤T |∆Jt|2 cannot be estimated with a lower normalised variance than the scaled asymptotic

variance of RV −RV ∗

4T
∑

0<t≤T

|∆Jt|2 σ2t , (2)

while it is well known that integrated variance IV =
∫ T
0 σ2tdt cannot be estimated with a lower

normalised variance than 2
∫ T
0 σ4tdt, a bound which is obtained by RV ∗ (e.g. Barndorff-Nielsen and

Shephard (2002)). Of course neither is immediately feasible as we do not know RV ∗. This will be

where blocked multipower variation comes in.

If the size of the block length M of our new multipower variation estimator MV
(K)
M increases

as M ≈ cn1−β then we report in Theorem 4 that

n1/2
(
MV

(K)
M −RV ∗

)
= Kc

K−1
K n

1
2
−βK−1

K

∑

0<t≤T

σ
2K−1

K
t ∆J

2/K
t (3)

− n−β+ 1
2
K − 1

3
c[σ, σ]T − n1/2Υn (4)

+Op(n
1
2
− 3

2
β + n

1
2
(β−1)) + op(n

1
2
−βK−1

K ),

where [σ, σ]T is the volatility of volatility and n1/2Υn is an edge effect which is Op(n
−β+ 1

2 ). Thus we

quantify the path-by-path difference between the multipower and RV ∗ statistics and the impact of

the jumps, edge effects and the quadratic variation of volatility. This is a significant strengthening

1For a discussion of stable convergence see Section 2 of Jacod and Protter (1998) and Section 2.2 of Mykland and
Zhang (2009), which draws on Rootzén (1980). The latter is relevant for our proofs, starting with that of Theorem 4.
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over a previous result in Barndorff-Nielsen, Shephard, and Winkel (2006) which showed that when

K ≥ 3 that n1/2
(
MV

(K)
1 −MV

(K)∗
1

)
= op(1), whereMV

(K)∗
1 is the infeasible multipower variation

statistic applied to the Xc
t process. Of course MV

(K)∗
1 is not asymptotically equivalent to RV ∗,

so the results are distinct.

The theory also shows that MV
(K)
M and RV ∗ are asymptotically equivalent under jumps if

β ∈ (1/2, 1) and βK−1
K > 1/2. This implies, as K is an integer, we must have at least K ≥ 3. A

combination which has an attractive optimality property is β = 6/7 (so the block size increases

slowly with the sample size) when K = 3. Asymptotically the jump term has the dominant larger

term, hence the rates of convergence to zero of the two terms in (3) become similar as K increases.

These results mean that under the presence of jumps

n1/2
(
MV

(K)
M −

∫ T

0
σ2tdt

)
Ls→ N

(
0, 2T

∫ T

0
σ4tdt

)
(5)

and

n1/2




(
RV −MV

(K)
M

)
−
∑

0<t≤T

|∆Jt|2




Ls→ N


0, 4T

∑

0<t≤T

|∆Jt|2 σ2t


 . (6)

We thus demonstrate that this feasible approach to estimating IV and JV is efficient, and is

helpful in generating narrow confidence intervals for the components of quadratic variation — for

we can consistently estimate the “integrated quarticity” IQ =
∫ T
0 σ4tdt and “squared jump times

vol” SJV =
∑

0<t≤T |∆Jt|2 σ2t using block multipower statistics.

One of the interesting features of (3) is that it indicates the squared jumps appear in the

asymptotics in a simple additive way, which means their effect depends roughly on the size of the

quadratic variation of the jumps rather than, for example, the size of the largest jumps. This makes

us speculate that this asymptotic equivalence result may also hold for infinite activity processes.

One indication in this direction are the results of Veraart (2010), who studies the estimation of JV

by looking at the difference between RV and classical MV (block size 1) also for infinite activity

processes, and obtains results that are similar to ours to the extent that our two setups coincide.

However, her single block size means that her inference does not obtain the nonparametric efficiency

bound.

One of the uses of multipower variation is to nonparametrically test for jumps over the interval

[0, T ]. Under the null of no jumps as M ≈ cn1−β, so long as β > 1/2, then we show that

J =
n1−β/2

(
RV −MV

(K)
M

)

√
T 3

4c

∫ T
0 σ4sds

Ls→ N (0, 1) .

The null is rejected when we see a large value of J . This result shows the asymptotic power of the

Barndorff-Nielsen and Shephard (2006) jump test can be asymptotically improved by an infinite

amount by using blocked multipower variation.
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Alternative methods for looking at jumps include the threshold type tests instigated by Mancini

(2004) and further developed by, for example, Mancini (2009), Jacod (2008), Jacod and Protter

(2012), Lee and Mykland (2008) and Jacod (2012). Christensen and Podolskij (2006) have looked

at bipower objects based upon ranges while Christensen, Oomen, and Podolskij (2010) focus on

quantiles and Andersen, Dobrev, and Schaumburg (2009) use a nearest neighbour method.

This paper has the following structure. In Section 2 we make our notation clear and review

the standard bipower variation. In Section 3 we extend bipower to allow for more efficiency and

discuss the properties of the resulting statistic. In Section 3.5 we provide the technically most

challenging section which allows the block size of the new efficient multipower power statistic to go

to infinity with the sample size.

In Section 4 we carry out a detailed Monte Carlo analysis of blocked multipower variation,

employing an empirically realistic data generating process, in order to understand the finite sample

performance of our approach. In Section 5 we apply our blocked multipower variation methods

to an exchange traded fund that tracks the S&P 500 Index. In Section 6 we collect extensions of

our analysis which formally deal with the impact of market microstructure effects and provides the

first non-parametric estimator of the volatility of volatility. In Section 7 we draw some conclusions

and the Appendix has the proofs of various results we give in the main text of the paper.

2 Framework

2.1 Model and measures of variation

We will work with a univariate Brownian semimartingale (Ito process) model for log-prices defined

on some filtered probability space (Ω,F , (Ft) , P ),

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs, (7)

where µ and σ are predictable locally bounded drift and volatility processes, and W is a standard

Brownian motion adapted to (Ft). See, for example, Ghysels, Harvey, and Renault (1996).

Our focus will be on econometric estimators based on returns. We assume prices are recorded

at times 0 = t0, t1, ..., tn = T , which we will assume are equally spaced

ti =
i

n
T, i = 0, 1, ..., n.

These returns will be written as

∆Xti = Xti −Xti−1 .

The standard realised variance (RV) is

RV =
∑

0<ti≤T

(∆Xti)
2 ,
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while its square root is usually labelled the realised volatility. The bipower variation statistic of

Barndorff-Nielsen and Shephard (2004) is based on

BV =
1

k21,1

∑

0<ti−1,ti≤T

|∆Xti |
∣∣∆Xti−1

∣∣ ,

where k21,1 =
2
π ≃ 0.63661, which is a special case of

kM,r = E {(χM )r} = 2r/2
Γ
(
M+r
2

)

Γ
(
M
2

) , where χM ∼
∣∣χ2

M

∣∣1/2 . (8)

Remark 2 in Section 3.2 will note some properties of kM,r as M increases.

This bipower statistic has been extensively used as it is robust to jumps so that if the Xt process

also has jumps (in addition to the dynamics given in (7)),

BV
p→
∫ T

0
σ2sds

under very weak conditions. This compares with the celebrated result

RV
p→
∫ T

0
σ2sds+

∑

0≤t≤T

(Xt −Xt−)
2 = IV + JV,

the sum of integrated variance and jump variation.

The idea of bipower variation has been generalised in a number of directions, which are collec-

tively now called multipower variation (e.g. Barndorff-Nielsen and Shephard (2006) and Barndorff-

Nielsen, Graversen, Jacod, and Shephard (2006)). Its target is the more general object
∫ T
0 σrtdt,

r > 0. Typically focus is on r = 2, which we have discussed before, and r = 4 which is useful

for carrying out inference as integrated quarticity appears in the standard error of a large number

of econometrically interesting quantities (e.g. Andersen, Dobrev, and Schaumburg (2012)). The

multipower extension of bipower variation is

MV (r,K) =
1

(
k1,r/K

)K
∑

0<ti−k≤1

K−1∏

k=0

∣∣∆Xti−k

∣∣r/K , kM,s = E {(χM )s} ,

noting that when r = 2 we have that K = 1 delivers RV,K = 2 being BV and K = 3 being tripower

variation. So long as K > 1 then this statistic is robust to jumps and MV (r,K) p→
∫ T
0 σrsds. In

the rest of this section we will focus on RV and BV, returning to the more general case later.

2.2 Testing for jumps using bipower variation

It is now well known (Barndorff-Nielsen and Shephard (2006) and, e.g., Barndorff-Nielsen, Gra-

versen, Jacod, and Shephard (2006)) that under (7)

√
n

(
RV −

∫ T
0 σ2sds

BV −
∫ T
0 σ2sds

)
Ls→ N

(
0,

(
2 2
2 θ1

)
T

∫ T

0
σ4sds

)
,
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where Ls denotes convergence in law stably. Here θ1 ≃ 2.6090 and is given as a special case of

θM =
1

k4M,1

[
Var

(
χM,1χM,2

)
+ 2Cov

(
χM,1χM,2, χM,3χM,2

)]

=
1

k4M,1

[{
E
(
χ2
M

)}2 − k4M,1 + 2
(
k2M,1E

(
χ2
M

)
− k4M,1

)]

=
1

k4M,1

(
M2 + 2k2M,1M − 3k4M,1

)
, (9)

where
{
χM,i

}
are independent with law χM .

Barndorff-Nielsen and Shephard (2006) suggested using the difference of these statistics

√
n (RV −BV )

Ls→ N

(
0, T (θ1 − 2)

∫ T

0
σ4sds

)
,

as a basis for a Hausman-type test for jumps as BV is robust to jumps. The resulting test records

J =

√
n (RV −BV )√
T (θ1 − 2) ÎQ

Ls→ N(0, 1),

where ÎQ is a jump robust consistent estimator of integrated quarticity IQ =
∫ T
0 σ4sds. This method

has been used and extended extensively empirically, e.g. Huang and Tauchen (2005), Andersen,

Bollerslev, and Diebold (2007) and Lee and Mykland (2008).

The above results show that BV is not as efficient as RV when there are no jumps. It opens up

the question of whether there is a simple generalisation of BV which is significantly more efficient

and can this test be made more efficient as a result?

2.3 A different view of bipower variation

Before we introduce our generalisation of BV it is helpful to interpret BV in the following way.

Think of |∆Xti | as roughly in law χ1n
−1/2σtj−1 , while

∫ τ i
τ i−1

σ2tdt is roughly estimated by

RVi =
∑

τ i−1<tj≤τ i

(∆Xtj )
2, i = 1, ..., n.

That is the absolute value of returns is the square root of a very local realised variance estimator

— computing RVi over only a single observation. Then we can write

BV =
1

k21,1

n∑

i=2

|RVi|
1
2 |RVi−1|

1
2 .

There are then two natural questions: (i) Are there gains to be made by taking longer blocks to

compute a better RVi, before computing BV ? (ii) Would the block version still be robust to jumps?
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3 Improving the efficiency of multipower variation

3.1 Blocked bipower variation

Set temporal block boundaries as

τ i =M
i

n
T, i = 0, 1, ..., ⌊n/M⌋ = nM ,

where M , the number of high frequency returns within a block, is a positive integer so M ≤ n.

Then we define the (non-overlapping) i-th blocked realised variance as

RVi =
∑

τ i−1<tj≤τ i

(∆Xtj )
2, i = 1, 2, ..., nM . (10)

This computes the realised variance using all M high frequency observations inside the block

(τ i−1, τ i] and estimates
∫ τ i
τ i−1

σ2sds. Thus if M = 1 we get a single squared return, while if M = n

we get back to the full sample RV.

If we do this for all feasible i, then we have a time series, within the day, of non-overlapping

miniature realised variances RV1, RV2, ..., RVnM
. Each of these is quite noisy, but they can be

averaged. If they were summed we reproduce the realised variance RV =
∑nM

i=1RVi. Our focus is

on the block bipower variation, which we define as

BVM =
M

k2M,1

nM∑

i=2

(RVi−1RVi)
1/2, (11)

where kM,1 is given in (8).

In practice it is better to use an alternative definition

BVM =
n

(nM − 1) k2M,1

nM∑

i=2

(RVi−1RVi)
1/2. (12)

BVM is exactly unbiased for constant σt, see Remark 1 below. For most of the paper, we shall

not distinguish between (11) and (12) since n/ (nM − 1) = M + O(M/n). In particular, the two

statistics are asymptotically equivalent for fixed M .

Remark 1 If X is scaled Brownian motion σW , and with the definition (12), then E (BVM) =

σ2T , Var (BVM ) = T 2σ4d ∼ T 2 σ4

n MθM , where d = 1
M(nM−1)

(
MθM − 1

(nM−1)ψM

)
and ψM =

2M
(
M/k2M,1 − 1

)
= 1 + 1

4M +O(M−2).

Proof. Given in the Appendix.

3.2 Properties of BVM for fixed M

Under the more general Brownian semimartingale conditions set out in Appendix B.1, we produce:
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Theorem 1 Under Assumption 1-2 in Appendix B.1, for fixed M as n→ ∞:

n1/2
(
BVM −

∫ T

0
σ2tdt

)
Ls→ N

(
0, TMθM

∫ T

0
σ4sds

)
, (13)

n1/2 (RV −BVM )
Ls→ N

(
0, T (MθM − 2)

∫ T

0
σ4sds

)
. (14)

Proof. Given in the Appendix.

Remark 2 As M → ∞ then

kM,r

M r/2
∼ 1 +

r (r − 2)

4M
+
r (r − 2)

(
3r2 − 14r + 8

)

4× 24M2
= 1 +

ar
M

+
br
M2

,

M r/2

kM,r
∼ 1− ar

M
+
a2r − br
M2

= 1 +
cr
M

+
dr
M2

,

M r

k2M,r

∼ 1 +
2cr
M

+
c2r + 2dr
M2

,
k2M,r

M r
∼ 1 +

2ar
M

+
a2r + 2br
M2

.

Table 1 gives some useful special cases of these formula. These results mean that

kM,r

Mr/2 − 1 Mr/2

kM,r
− 1 Mr

k2M,r
− 1

k2M,r

Mr − 1

≃ ar
M + br

M2 ≃ cr
M + dr

M2 ≃ er
M + fr

M2 ≃ gr
M + hr

M2

ar br cr dr er fr gr hr
r = 8 12 44 -12 100 -24 344 24 232
r = 4 2 0 −2 4 −4 12 4 4

r = 8/3 4
9 − 4

27
r = 2 0 0 0 0 0 0 0 0

r = 4/3 −2
9

4
81

2
9 0 4

9
4
81 -49

4
27

r = 1 −1
4

1
32

1
4

1
32

1
2

1
8 −1

2
1
8

r = 2/3 −2
9 0 2

9
4
81

4
9

4
27 −4

9
4
81

r = 1/2 − 3
16 − 7

16×32
3
16

25
16×32

3
8

17
8×16 −3

8
1

16×8

Table 1: The terms in the Taylor expansion of the scaled kM,r function.

MθM =M

{(
M2

k4M,1

− 1

)
+ 2

(
M

k2M,1

− 1

)}
≃ 2 +

3

4M
.

This implies that BVM is roughly efficient if M is large but fixed and n1/2 (RV −BVM) has an

asymptotic variance which is roughly T 3
4M

∫ T
0 σ4sds if M is large but fixed. Table 2 shows the

relative efficiency of BVM as M varies. By the time M = 3 there is a modest reduction in the

asymptotic variance, but that this gain is two-thirds of all the potential gains from using the blocking.

It makes realised BV nearly as efficient as RV . Under the null of no jumps RV −BVM has a much

smaller variance which should improve JM ’s power as a test.

Proof. Is straightforward but given in the Appendix for completeness.
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M 1 2 3 5 10 25 50 ∞
MθM 2.609 2.335 2.232 2.143 2.073 2.029 2.014 2

MθM − 2 .609 .335 .232 .143 .073 .029 .014 0
3

4M .750 .375 .250 .150 .075 .030 .015 0

Table 2: Efficiency of the blocked bipower variation. The asymptotic efficiency is determined by
MθM , with the best number being 2. In testing for jumps the efficiency is determined byMθM −2.

Remark 3 If there are finitely many jumps in addition to the continuous part of X, this estimator

is unaffected by these, asymptotically. Hence it is similar to bipower. This is is because if there is

no jump then
√
RVi−1 = Op

(√
M
n

)
. Hence so long as M/n → 0 then under finite activity jumps

BVM
p→
∫ T
0 σ2sds. A more detailed analysis of jumps will appear in Section 3.5.

The implication of this is that the block bipower test takes the form, for fixed M , of

JM =
n1/2 (RV −BVM)√
T (MθM − 2) ÎQ

Ls→N(0, 1), (15)

as n→ ∞, rejecting the null of no jump if JM is significantly positive.

Remark 4 When M ∼ (c/T )n1−β with β > 1/2, then the asymptotic variance in (14) suggests

informally that n1/2(RV − BVM) has an asymptotic form T (MθM − 2) ≃ 3T 2/
{
4cn1−β

}
, and so

we might predict that n1−β/2(RV −BVM )
Ls→ N

(
0, 3

4cT
2
∫ T
0 σ4sds

)
. This prediction turns out to be

exactly correct when β > 1/2 where M increases with n. So BVM is essentially efficient for large

M . See Section 3.5 and Appendix B.2.6 for exactly matching results when M → ∞ as n→ ∞.

3.3 Blocked multipower variation

The above arguments extend to blocked multipower variation

MV
(r,K)
M =

(n
T

) r
2
−1 M
(
kM,r/K

)K
nM∑

i=K

K−1∏

k=0

(RVi−k)
r/2K , where (16)

kM,r = E {(χM )r} = 2r/2
Γ
(
M+r
2

)

Γ
(
M
2

) .

WhenK = 3 this is called a blocked tripower estimator, while whenK = 4 it is a blocked quadpower

estimator. Both are used frequently empirically whenM = 1. As with (12), whenM is moderately

large, one is better off using a finite sample exact constant:

MV
(r,K)
M =

n
r
2

T
r
2
−1

1

(nM −K + 1)(kM,r/K)K

nM∑

i=K

K−1∏

k=0

(RVi−k)
r/2K . (17)

The two versions are equivalent when M/n = Op(1), but (17) is preferred for moderate M .

We now look at relative efficiency as a function of M and K.
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Theorem 2 Assume that σ is constant. Then the RVi are i.i.d. χ2
Mσ

2T/n, and so

MV
(r,K)
M

L
= σrT

1

(nM −K + 1)(kM,r/K)K

nM∑

i=K

K−1∏

k=0

vi−k, where vi
iid∼ (χM )r/K .

Now the mean is σrT and the variance is

σ2rT 2dn,M,K ∼ σ2rT 2M

n
θ
(r,K)
M , (18)

as n→ ∞, where dn,M,K is given in (A.2) and

θ
(r,K)
M =M

[(
λKM,r/K − 1

)
+ 2

{(
λK−1
M,r/K − 1

)
+ ...+

(
λM,r/K − 1

)}]
,

with λM,r = (kM,2r) / (kM,r)
2 = Γ

(
M+2r

2

)
/Γ
(
M+r
2

)2 ≥ 1. Ignoring O(M−2) terms

θ
(r,K)
M ∼ ϑr/K,K,M=

{
jr/K +

kr/K

M

}
{K + 2(K − 1) + ...+ 2}

+
j2r/K

2M
{K(K − 1) + 2(K − 1)(K − 2) + ...+ 2} ,

where jr = a2r − 2ar, kr = b2r + (2ar)
2 − hr − 2a2rar.

Proof. Given in the Appendix.

The exact values of θ
(r,K)
M are presented in Table 3 for r = 2 and r = 4, the values most

important in empirical work. The Table also contains the expressions for ϑr/K,K,M .

r = 2 r = 4

M K = 1 K = 2 K = 3 K = 4 K = 1 K = 2 K = 3 K = 4
1 2.000 2.609 3.061 3.377 10.66 12.00 13.65 14.91
2 2.000 2.335 2.556 2.697 10.00 10.00 10.61 11.09
3 2.000 2.232 2.376 2.465 9.600 9.333 9.702 9.985
5 2.000 2.143 2.228 2.277 9.142 8.800 9.000 9.156
10 2.000 2.073 2.114 2.136 8.666 8.400 8.492 8.564
25 2.000 2.029 2.045 2.054 8.296 8.160 8.194 8.222
50 2.000 2.014 2.022 2.027 8.153 8.080 8.097 8.110
∞ 2.000 2.000 2.000 2.000 8.000 8.000 8.000 8.000

ϑr/K,K,M 2.000 2 + 3
4M 2 + 92

81M 2 + 43
32M 8+ 8

M 8+ 4
M 8+ 392

81M 8+ 11
2M

Table 3: Relative efficiency is determined by Mθ
(r,K)
M . When r = 2 the optimal value of Mθ

(r,K)
M is 2,

when r = 4 the best value of Mθ
(r,K)
M is 8. M is the degree of blocking, K is the degree of multipowering.

K = 2 is a bipower variation statistic, K = 4 is quadpower.

The r = 4 case is interesting. The delta method implies that the efficiency bound for this is

8. When there are no jumps using sums of fourth power of returns is the most efficient of these

estimators, but all of them are pretty inefficient. By the timeM reaches 5 they are all substantially

improved. This is particularly the case for the K = 3 and K = 4 statistics, which are attractive as

they are robust to jumps and are roughly as efficient as the K = 1 case as long as M is 5 or more.

11



The r = 2 case is also important: the results are in Table 3. This shows the substantial efficiency

loss of using higher values of K and that increasing M ameliorates the worst of these effects. By

the time M = 5 the difference in efficiency between the different estimators is very modest.

3.4 Properties of MV
(r,K)
M for fixed M

In the general case when σ is nonconstant, we can proceed as in the proof of Theorem 1, to obtain

Theorem 3 Under Assumptions 1-2 in Appendix B.1, for fixed M as n→ ∞:

n1/2
(
MV

(r,K)
M −

∫ T

0
σrtdt

)
Ls→ N

(
0, TMθ

(r,K)
M

∫ T

0
σ2rs ds

)
. (19)

Proof. Follows exactly the same lines as the proof of Theorem 1, so is omitted here.

Also, by the same development, we obtain for fixed M ,

n1/2
(
MV

(2,K)
M −RV

)
Ls→ N

(
0, T

(
Mθ

(2,K)
M − 2

) ∫ T

0
σ4sds

)
, (20)

which can be used for testing.

3.5 Properties of MV
(2,K)
M for M increasing with n

We now make the assumption that

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs + Jt, (21)

where Jt is a finite activity jump process. We allow, as n→ ∞,

nβ
M

n
→ c

T
,

that is, more informally, M ≈ c
T n

1−β, where β ∈ (0, 1). The scaling by T means the block size is

smaller when T is bigger, keeping n constant. This also means the number of blocks n/M ≈ T
c n

β

grows proportionally with T and less than proportionally with n. The boundary case β = 1

corresponds to M being finite.

Theorem 4 Define the infeasible realised variance as

RV ∗ =
∑

0<ti≤T

(
∆Xtj −∆Jtj

)2
, (22)

and let MV
(K)
M = MV

(2,K)
M be given as in (17). Assume that σt is a continuous semimartingale.

Then, under the Assumptions 1-4 given in the Appendix B.1,

n1/2
(
MV

(K)
M −RV ∗

)
= Kc

K−1
K n

1
2
−βK−1

K

∑

0<t≤T

σ
2K−1

K
t ∆J

2/K
t − n−β+ 1

2
K − 1

3
c[σ, σ]T

12



− n1/2Υn +Op(n
1
2
− 3

2
β + n

1
2
(β−1)) + op(n

1
2
−βK−1

K ).

The term op(n
1
2
−βK−1

K ) only appears when there are jumps. Υn is an edge effect which is described

exactly in Section 6.1.2. Note that n1/2Υn = Op(n
−β+ 1

2 ).

Proof. From Theorem 13 but then add the impact of jumps and edge effects.

In other words: for multipower variation of order K ≥ 3, there is a range of β for which the

integrated volatility (IV ) is estimated efficiently. The asymptotically equivalence of MV
(K)
M and

RV ∗ is remarkable and theoretically extremely helpful. On the other hand, bipower variation is a

boundary case which is consistent, but converges to IV only at rate n−β/2. Hence bipower is not

quite asymptotically equivalent to RV ∗. This result is due to the presence of jumps.

This asymptotic equivalence result immediately implies a number of properties.

Theorem 5 Assume the condition of Theorem 4. Also assume that M ≈ c
T n

1−β, K ≥ 3 and

1

2

K

K − 1
< β < 1. (23)

Then

n1/2
(
MV

(K)
M −

∫ T

0
σ2tdt

)
Ls→ N

(
0, 2T

∫ T

0
σ4tdt

)
, (24)

n1/2




(
RV −MV

(K)
M

)
−
∑

0<t≤T

|∆Jt|2




Ls→ N


0, 4T

∑

0<t≤T

|∆Jt|2 σ2t


 . (25)

When there are no jumps when K = 2 and β > 1/2

JM =
n1−β/2

(
RV −MV

(2,K)
M

)

√
3
4cT

2
∫ T
0 σ4sds

Ls→ N (0, 1) . (26)

Proof. The result (24) follows from Theorem 4. The second result (25) follows from (24) and from

(1) in the Introduction. Equation (26) is a special case of Theorem 7.

When there are jumps the average value of JM should be n1−β/2
∑

0<t≤T |∆Jt|2 /
√

3
4cT

∫ T
0 σ4sds.

So the power of the test should increase with the size of JV and n as long as K ≥ 3 and K
K−1 < 2β.

However, when
∫ T
0 σ4sds is high the power of the test will be low, keeping constant

∑
0<t≤T |∆Jt|2.

Remark 5 (Optimal choice of β for IV). When both jumps and volatility of volatility is present,

it follows from Theorem 4 that the jumps part will always dominate the [σ, σ]T part. Thus there is

no trade-off between the two biases. The bias due to jumps can, however, be traded off against the

Op(n
1
2
(β−1)) stochastic term. A bias-variance trade-off to minimize the error in MV

(K)
M −RV ∗ will

thus seek to set these two orders to be equal. This yields the optimal choice of β

β∗ =
2K

3K − 2
, (27)

13



which means that as K increases so β∗ converges from above to 2/3. This choice of β satisfies

condition (23) in Theorem 5. For tripower, β∗ = 6/7.

3.6 Optimality for jump estimation of RV −MV
(2,K)
M

In addition to estimating IV efficiently, we also obtain an efficient estimate of JV .

Theorem 6 Assume that ĴV n is an estimator of JV , and that n1/2(ĴV n−JV )
Ls→ N

(
0, γ2

)
, where

γ2 is measurable with respect to the underlying filtration. Also assume that Jt is compound Poisson,

independent of Xc
t , with jump sizes that are independent of the jump times and of each other, and

that the distributions of jumps are absolutely continuous with respect to Lebesgue measure. Then,

under Assumptions 1-2 of Appendix B.1, with probability one

γ2 ≥ 4T
∑

0<t≤T

|∆Jt|2 σ2t . (28)

Proof. Given in the Appendix.

The additional assumptions on Jt are made to invoke results on superefficiency, see LeCam

(1953) and Lehmann (1983, Ch. 6). There is no minimal set of conditions, and for other relevant

results on superefficiency, see Bahadur (1964) and Bahadur (1980), as well as the literature on

Hájek-LeCam convolution, as in Hájek (1969). There are circumstances where the bound (28) can

be improved on, in particular when the jump sizes are known in advance.

3.7 Estimating the asymptotic variance

To carry out inference robustly to jumps we need to consistently estimate the “integrated quarticity”

IQ =
∫ T
0 σ4tdt and the “squared jump times vol” SJV =

∑
0<t≤T |∆Jt|2 σ2t . Barndorff-Nielsen and

Shephard (2006) solved the former using multipower variation. We have already improved upon this

by using a blocked version to estimate IQ. Here our focus will be on estimating
∑

0<t≤T |∆Jt|2 σ2t .
Using a blocked approach this problem is simple. Rearranging terms

RV −BVM =

nM∑

i=1

[
RVi −

M

kM
(RViRVi−1)

1/2

]
p→
∑

0<t≤T

|∆Jt|2 ,

as n→ ∞ if M is fixed or slowly increasing. We now extend this using multipower ideas

nM∑

i=1

{
RVi −

M

kM
(RViRVi−1)

1/2

}{
1

kM
(RVi−2RVi−3)

1/2

}
p→
∑

0<t≤T

|∆Jt|2 σ2t .

Hence all our new distribution theory is feasible. Veraart (2010) provided an alternative estimator

of SJV , which is somewhat more complicated.
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3.8 Finite sample improvement via transformation

The jump test (15) can be transformed using the delta method so we look at

JM =
n1/2 (logRV − logBVM )√

T (MθM − 2) ÎQ

(BVM )2

Ls→ N(0, 1). (29)

This log-transform was used by Barndorff-Nielsen and Shephard (2002) to produce better size

properties. Further noting that by Jensen’s inequality R =
∫ T
0 σ4sds/

(∫ T
0 σ2sds

)2
≥ 1

T , it makes

sense to replace (29) by

JM =
logRV − logBVM√

Tdn,M,K max
(

ÎQ

(BVM )2
, 1
T

)
Ls→ N(0, 1), (30)

where dn,M,K is the exact constant in Theorem 1. This makes a large difference if M is large. Of

course further refinements are possible, such as the bootstrap of Goncalves and Meddahi (2004).

3.9 Finite sample improvement via time-change and diurnality

Quite a substantial amount of the variation of the volatility process within a day is caused by the

average diurnal pattern playing out. This is one of the causes of R > 1/T in practice. Can we

perform a time-change to bring it down closer to one, making the test more efficient?

Consider the absolutely continuous time-change, and the T = 1 case for ease of exposition. Then

assume and define h2t > 0,
∫ 1
0 h

2
tdt = 1, Ht =

∫ t
0 h

2
sds then XHt is a Brownian semimartingale with

spot variance at time t of σ̃2t = σ2Ht
h2t , while [X ◦H]1 = [X]1. Hence if we know the path σt then we

can design the time-change ht so that σ̃2t is time-invariant and so R = 1. Of course in general this is

impossible, but we can time-change to take out the expected diurnal pattern. We can do this safely

in our model, for if the expected diurnality is modelled incorrectly then our inference procedure will

still be valid, for the time-change process is always a Brownian semimartingale whatever absolutely

continuous time-change we use.

Consider the diurnal model σ2t = ψtdt then σ̃
2
t = ψ2

Ht
dHth

2
t = ψ2

Ht
if we design h−2

t = d◦
∫ t
0 h

2
udu.

How do we implement this idea? Here we estimate the diurnal shape non-parametrically using

block bipower-type statistics. Define the n−2M+1 overlapping unnormalised “bipower blocks” as

B̃VM,i =
√
RVM,iRVM,i+M , i = 1, 2, . . . , n−2M+1. The diurnal pattern can the be estimated using

S days of historical data, δ̂
2
i = S−1

∑t−1
t=t−S

(
1

ui−li

∑ui
i=li

B̃VM,i,t

)
, where ui = min (n− 2M + 1, i)

and li = max (1, i− 2M + 1). This estimator uses all M -sample blocks which contain return i

to estimate the diurnal pattern in the data. Except for the period near the beginning or end of

the day, the diurnal effect is estimated by averaging the 2M bipower blocks that contain return i.

Periods at the beginning or end use between 1 and 2M − 1 blocks.
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Parameter µ β0 β1 αv ρ

Value 0.030 0 0.125 -0.100 -0.620

Table 4: Parameters which index the single factor SV simulation model.

4 Monte Carlo study of efficient bipower variation

For purposes of simulation, we take T = 1 and always use 50,000 replications, representing 50,000

independent days. When constructing estimators and t tests we use versions which are exactly

unbiased in the Brownian motion case, rather than the simpler asymptotic equivalent versions.

This does make a great deal of difference in terms of Monte Carlo performance.

4.1 Single factor SV model

To assess the usefulness of the asymptotic results we have conducted two Monte Carlo experiments.

The first, and simplest, uses a single factor SV model. It has the following log-normal structure

dXt = µdt+exp (β0 + β1vt) dWp,t+dJt, where dvt = αvvtdt+dWv,t. HereWp andWv are correlated

standard Brownian motions, writing ρ to denote the correlation. This process was implemented

using the values given in Table 4, which follow from the experiments reported in Huang and Tauchen

(2005). This was designed to have relatively fast mean reversion with a half-life of 10 days, and so

there is some variation in the volatility during each day.

4.1.1 Finite activity jumps

Within each day the high frequency data was simulated using 23, 400 steps per day, and then

“1-minute” returns were sampled by skipping 60 steps. The result is n = 390. Jumps, when

present, have a random location uniformly distributed on 1,. . ., 23, 400 and were a deterministic

percentage of the day’s integrated variance (e.g. a jump, when squared, represents 10% of IV, or

JV/IV = 0.1). Throughout our simulations a single jump occurred on each day.

4.1.2 One factor SV model with diurnal effects

The simulated model was augmented to include a diurnal effect δt which produces variances which

differ deterministically by a factor of 3 between the middle of the day and the beginning or end.

dXt = µdt+ exp (β0 + β1vt)
√
δtdWp,t + dJt, dvt = αvvtdt+ dWv,t, δt = 0.6 + 4.8 (t− 0.5)2, where

the average effect
∫ 1
0 δtdt = 1 and the start and the end of the day δ0 = δ1 = 3δ0.5. This choice is

motivated by our empirical results in Section 5.3.
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4.2 Bias, variance, size and power of jump tests

Size was computed by setting the jump size to 0. The test statistics we study are

JM =
RV −BVM√
dn,M,K ÎQ

, and JM,log =
logRV − logBVM√

dn,M,K max
(

ÎQ

(BVM )2
, 1
) ,

where dn,M,K is given by (18). We estimate integrated quarticity using the unbiased blocked

tripower quarticity estimator (17) with r = 4, K = 3 and the same value of M as used for BVM .

All tests were conducted using 1-sided upper tailed critical values. We also carried out the Monte

Carlo using a unblocked tripower variation statistic to estimate IQ and there was little difference

in the corresponding size.

Table 5 reports the empirical size both the standard 1-factor model and the model that includes

deterministic diurnal effects. We only report the size of a 5% one-sided test since both 10% and

1% sized tests performed analogously.

In the Table we use the following important notation. FS. This reports results using the finite

sample variance for a standard Brownian motion, using equation (A.1). The results using the

large sample values for MθM were poor and so we do not recommend their use and so we are not

reporting them here. The distortions to the size of the test statistics computed using the large

sample MθM is caused by the overconfidence in the precision, and block sizes larger than 5 lead

to unacceptable large deviations from 1. FS-DC. This results using the finite sample variance

and applying the diurnal correction developed in Section 3.9. Throughout this uses the previous

S = 100 days of simulated data. The test statistics were computed by first constructing a modified

set of returns, ∆Xi/δ̂i, where δ̂i is the diurnal correction for the relevant block. This is exactly the

same as having standardised the local realised variance estimator by the estimated diurnal feature

of the data. We then compute RV , BVM and TPQ using the transformed data.

In the non-diurnal simulation results, using the large sample variance of the jump test leads to

large distortions when the block size is moderately large. The finite sample results show little size

distortion for any block size. When the deterministic diurnality is introduced a large distortion,

driven by the difference in volatility across blocks, appears which increases with the block length.

Table 6 reports the empirical size-adjusted power of the of the test statistics when using a 5%

test. The power peaks with a block size of 5 which is consistent with the minimum of finite sample

variance for n = 390. The size-adjusted power falls off for large blocks due to both the increase in

variance, and in the simulations with the diurnal component, the substantial size distortions.

Table 5 contains size results for the jump test using the finite sample variance and the diurnality

correction (FS-DC). When there is no diurnality present the modification has no effect on size.

When the diurnality is present the transformation produces an empirical size which is virtually
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No Diurnality Diurnality
FS FS-DC FS FS-DC

M JM JM,log JM JM,log JM JM,log JM JM,log

1 6.4 5.5 6.5 5.6 7.3 6.5 6.7 5.7
2 6.1 5.5 6.2 5.6 8.8 8.3 6.7 6.0
3 6.4 5.9 6.4 5.8 10.9 10.5 6.1 5.6
5 7.0 6.6 6.4 6.0 14.7 14.2 6.4 5.8

10 6.7 6.4 6.9 6.5 33.6 33.0 7.0 6.8
15 7.3 7.0 6.9 6.5 56.1 55.4 7.5 7.1
30 8.1 7.6 8.3 7.9 90.2 89.5 8.6 8.1

Table 5: Empirical size of SV1F with and without (left panel) deterministic diurnality using one minute

simulated returns. Values under JM correspond to the standard version of BVM and JM,log correspond to

the log version of the jump test statistic. Values under FS use the finite sample version of dn,M,K in (A.1).

Values below FS-DC use finite sample variance and an estimated diurnality correction.

10% Jump Size
No Diurnality Diurnality

FS FS-DC FS FS-DC
M JM JM,log JM JM,log JM JM,log JM JM,log

1 41.4 41.9 41.4 41.9 37.7 37.7 48.2 48.7
2 50.6 50.7 50.6 50.7 46.9 46.9 56.9 57.0
3 54.9 55.4 54.9 55.4 50.8 50.7 60.3 60.5
5 57.9 58.1 57.9 58.1 52.3 52.5 63.4 63.6

10 52.9 53.0 52.9 53.0 41.1 41.3 59.1 59.3
15 44.1 44.2 44.1 44.2 31.4 31.3 51.7 51.9
30 26.4 26.2 26.4 26.2 15.7 15.6 29.0 29.0

20% Jump Size
1 85.8 86.0 85.8 86.0 82.3 82.2 83.5 83.9
2 93.4 93.6 93.4 93.6 91.0 91.0 90.1 90.2
3 95.9 96.1 95.9 96.1 93.4 93.4 92.3 92.4
5 96.8 96.9 96.8 96.9 93.9 93.9 93.4 93.5

10 95.8 95.8 95.8 95.8 89.6 89.7 92.7 92.8
15 91.8 92.0 91.8 92.0 80.5 80.5 90.0 90.1
30 68.5 68.4 68.5 68.4 43.5 43.2 75.4 75.3

Table 6: Empirical size-adjusted power for jump sizes representing 10% (top panel) and 20% (bottom panel)

of the integrated variance. The left 4 columns correspond to the SV1F model and the right columns add a

deterministic diurnal effect. FS indicates that the finite sample variance was used and FS-DC indicates that

both the finite sample variance and the diurnal correction were used to compute the statistic.

identical to the size of the FS estimator in the simulation without the diurnality. Finally, Table 6

shows that the use of the diurnal correction has no effect on size-adjusted power when the data are

not diurnal, and improves the size-adjusted power when the data is diurnal.

4.3 MV
(2,K)
M for M increasing with n

We will now repeat the above experiments but allow n to vary, driving some movements in M .

Throughout this subsection we will take K = 3 and the corresponding optimal β = 6/7 following

Remark 5, where M = cn1−β. As cn1−β will not be an integer we take it to be the nearest integer

but requiring it also to be greater than or equal to one. We do not have a theory driven value

for c, so we take it from the above Monte Carlos which suggest for n = 390 then M = 3 provides
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No Diurnality Diurnality
FS FS-DC FS FS-DC

n M JM JM,log JM JM,log JM JM,log JM JM,log

Empirical size
780 3 6.1 5.8 6.1 5.8 8.7 8.3 6.1 5.8

1,560 3 5.5 5.3 5.5 5.3 7.4 7.1 5.5 5.3
1,560 4 5.6 5.5 5.6 5.5 7.9 7.7 5.6 5.5

Power: 10% Jump Size
780 3 87.3 87.4 87.3 87.4 85.2 85.2 85.2 85.3

1,560 3 99.6 99.7 99.6 99.7 99.0 99.0 97.2 97.3
1,560 4 99.8 99.8 99.8 99.8 99.3 99.3 98.0 98.0

Table 7: Impact of increasingM with n. Empirical size and size-adjusted power for jump sizes representing

10% of the integrated variance. The left 4 columns correspond to the SV1F model and the right columns add

a deterministic diurnal effect. FS indicates that the finite sample variance was used and FS-DC indicates

that both the finite sample variance and the diurnal correction were used to compute the statistic.

satisfactory results. This suggests taking c =M/n1/7 ≃ 1.28 as we vary n.

In our Monte Carlo we will double n to 780 and double it again to 1, 560. The first change

leaves M unaltered at 3, the second change drives M up to 4. Throughout we use the finite M

form of the t-statistic in implementing the test.

The results are in Table 7. They suggest an improving size performance as n and M increase

together, while the power naturally increases very significantly with an increase in the sample size.

Hence these results are encouraging for the blocking and its asymptotic analysis. The Table also

shows the results from having M is fixed as n increases in the n = 1, 560 and M = 3 case (the

theory suggests M should have nudged up to 4 due to the increase in n). The results suggest a loss

in power in that case, although the differences are mild.

5 Empirical results

5.1 Database

Our application will be based around trade data for the SPDR S&P 500 ETF (SPY), which is

a exchange traded fund (ETF) that tracks the S&P 500 Index. This is the most liquid equity

in U.S. markets and typically has a spread of 0.01 which represents approximately 0.01% of the

price of the instrument. The small spread allows for frequent sampling without substantial market

microstructure noise, and so we employ returns computed every 60 seconds. As a result n = 390.

Our database contains transactions from January 3, 2005 until December 31, 2009. We will

not compute statistics on days which are short (i.e. open or close early) or days where there are

sequences of no trades for more than 60 consecutive seconds. These rules leaves us with 1,226 full

days of high frequency data. Prices were cleaned to remove outliers in a similar way to Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2009). The top panel of Figure 1 contains a plot of the
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Figure 1: The top panel contains the annualized realised volatility for the S&P500 SPDR computed using

one-minute returns from January 2005 to December 2009. The bottom panel contains the volatility signature

plot for realized variance using sample frequencies from 5-seconds to 10-minutes, the average value of realized

kernels computed daily, and the variance of daily open-to-close returns.

annualized volatility (%) computed from the daily realised variance estimates, and the bottom panel

contains the volatility signature plot for sampling times between 5 seconds and 10 minutes, as well

as the average value of daily realized kernels and the open-to-close return variance.2 Sampling

using 1-minute prices does not appear to be affected by market microstructure noise.

5.2 Empirical rejection rates

Both the jump test and the log-version FS-DC were computed daily with n = 390. All tests were

implemented as one-sided upper-tail tests, rejecting for large values of the test statistic. Throughout

we estimate integrated quarticity using blocked TPQ. The empirical rejection rates are given in

2Realized Kernels computed using all returns following the method detailed in Barndorff-Nielsen, Hansen, Lunde,
and Shephard (2009).
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JM JM,log

M 5% 1% .1% 5% 1% .1%

1 48.2 31.2 19.9 49.3 33.6 21.4
2 58.0 41.3 24.5 68.3 56.2 43.4
3 59.7 42.7 26.0 74.5 65.0 53.4
5 60.2 44.0 30.0 79.6 72.6 63.1

10 63.1 46.6 30.8 85.4 80.8 74.6
15 68.2 52.2 36.9 88.7 84.4 79.7

Table 8: Empirical size using the blocked bipower jump tests for different levels of blocking M .

10:00 11:00 12:00 13:00 14:00 15:00
0

0.5

1

1.5

2

Figure 2: Full sample estimated dirunal pattern of volatility (δ̂
2
) for the S&P500 SPDR.

Table 8. The table contains results from the test statistics applied directly to returns, and show

that the rejection rate is monotonically increasing with the block size for both test statistics.

5.3 Diurnality Correction

The top panel of figure 2 shows an estimated averaged diurnality in volatility. This figure was

computed using the estimator described in the Monte Carlo with two changes: (i) High frequency

returns are standardized by the daily
√
BV5 prior to estimating the diurnality. This mitigates the

effect of changing volatility throughout the sample, and is similar to weighting in a generalised least

squares regression. (ii) The entire sample was used to compute the diurnal volatility pattern.

The Figure indicates that volatility is substantially higher at the start of the day, even when
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No Correction Diurnal Correction
JM JM,log JM JM,log

M 5% 1% .1% 5% 1% .1% 5% 1% .1% 5% 1% .1%

1 48.2 31.2 19.9 49.3 33.6 21.4 55.4 38.7 25.4 58.9 42.3 28.4
2 58.0 41.3 24.5 68.3 56.2 43.4 62.9 46.1 31.1 73.6 63.5 51.1
3 59.7 42.7 26.0 74.5 65.0 53.4 63.1 47.1 30.4 78.4 69.1 59.2
5 60.2 44.0 30.0 79.6 72.6 63.1 59.6 44.9 30.7 78.0 72.8 64.3

10 63.1 46.6 30.8 85.4 80.8 74.6 51.3 35.6 23.1 75.4 69.7 63.9
15 68.2 52.2 36.9 88.7 84.4 79.7 44.9 32.7 20.6 70.2 65.1 58.8

Table 9: Empirical size using the blocked bipower jump tests for different levels of blocking M .
The left two panels contains rejection rates for the usual version of the test statistic. The right
panels contains rejection rates for the test statistic based on returns with a dirunal correction.

M 1 2 3 5 6 10 13 15
Calendar Time 11.7 2.0 0.5 0.0 0.0 0.0 0.0 0.0

Table 10: Percentage of “bipower blocks” which are 0 for each block size.

controlling for the transaction rate, and that volatility rises at the end of the day.

Table 9 contains test statistics computed using returns transformed by an estimate of the diurnal

effect. This diurnal correction was estimated using the previous returns from the previous 100 days.

This correction removes the increase in the rejection rate as the block size grows, and the rejection

rate peaks with M = 3 or 5, consistent with the Monte Carlo study. In both panels the log version

of the test rejects substantially more often than the standard version.

5.4 Validation

Various methods were used to provide a check on these results. Here we detail two. (i) We computed

the time-series average of BVM divided by the time-series average of RV. If the bias is important

one would expect this to decline sharply as M increases. Figure 3 shows this ratio for all three

versions of the test statistics. The diurnality correction appear to reverse the decline in the average

BV as the block size decreases. (ii) Table 10 contains the percentage of the “bipower blocks” which

are 0. In a BSM 0 returns should not occur, although due to market microstructure noise they do

arise approximately 10% of the time when sampling using 1 minute returns. Larger blocks have

substantially fewer zeros which may be an additional advantage.

6 Some additional points

6.1 A general theory for realised measures

6.1.1 Background

The same kind of theory for blocked multipower variation can be established using miniature re-

alised measures, rather than only miniature realised variances. The virtue of using this approach

is that it provides a unified theory to dealing with the asymptotics when M increases with n. Ex-
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1

 

 

Calendar Time
Diurnal Correction

Figure 3: Full sample estimated ratio of average BMM to average RV for prices sampled in calendar
time (solid), diurnally corrected returns (dashed) and prices sampled in business time (dashed).

amples of potential miniature measures include using noise robust measures such as the multiscale

estimators, realised kernels and preaveraging estimators (e.g. Zhang, Mykland, and Aı̈t-Sahalia

(2005), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) and Jacod, Li, Mykland, Podol-

skij, and Vetter (2009)). But the scope of realised measures is wider than that, it includes for

example multipower variation and realised range statistics (e.g. Martens and van Dijk (2007) and

Christensen and Podolskij (2007)).

6.1.2 Edge corrected definitions

Denote RMi the miniature realised measure which estimates
∫ τ i
τ i−1

σ2tdt, computed using the i-th

block of data. The “edge corrected RV” based on miniature realised measures is

ECRV (K)
n =

1

K

K∑

m=1

RV (K,m)
n = RVn −Υn, RV (K,m)

n =

m−1+K⌊(nM−m+1)/K⌋∑

i=m

RMi.

The leading case of this is whereK = 2, then this estimator is ECRV
(2)
n = 1

2RM1 +
∑nM−1

i=2 RMi+

1
2RMnM

. The corresponding “edge corrected MV” based on miniature realised measures is

UMV (K)
n =

1

K

K∑

m=1

SMV (K,m)
n , SMV (K,m)

n = K
∑

1≤i;Ki+m−1≤nM

(RMKi−K+m...RMKi+m−1)
1/K .

The impact of edge effects is sometimes important and sometimes it does not. The following

characterise the differences and will drive the application of some of the results below.
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Remark 6 ECRV
(K)
n −RVn = Υn = Op(n

−β).

Proof. Special case of Remark 8 in the Appendix.

Remark 7 UMV
(k)
n =MV

(2,K)
M

{
1 +Op(n

−β)
}
.

Proof. Follows from (B.20).

6.1.3 Core result

The following result drives all the paper’s analysis of the case where M increases with n.

Theorem 7 Assume that under the statistical risk neutral distribution (Mykland and Zhang (2009,

Sect 2.2)), there is a sequence of continuous martingales (M
(n)
t )0≤t≤T so that

RMi =

∫ τ i

τ i−1

σ2tdt+M (n)
τ i −M (n)

τ i−1
=

∫ τ i

τ i−1

σ2tdt+∆M (n)
τ i .

Suppose that as n → ∞, n2α[M (n),M (n)]t
p→
∫ t
0 f

2
s ds and nα[M (n),W ]t

p→ 0. Also assume the

conditions of Appendix B.1, except that J ≡ 0. In the case when β = α, set b1 = 1
4c

−1
∫ T
0 σ−2

t f2t dt

and b2 =
1
3c [σ, σ]T , while define a2 = 3

16

∫ T
0 c−1

(
σ−2
t f2t + c2[σ, σ]′t

)2
dt. Then

n
3
2
α
(
ECRV (2)

n − UMV (2)
n − (n−2α+βb1 + n−βb2)

)
Ls→ a× Z (31)

where Z is standard normal and independent of the underlying filtration. When β > α, only keep

the first term inside the brackets in a2, and replace n
3
2
α by n2α−

1
2
β in (31). When β < α, only keep

the second term inside the brackets in a2, and replace n
3
2
α by n

3
2
β in (31).

Proof. Given in the Appendix.

Theorem 11 extends the result to the general multipower case3 with

ECRV (2)
n − UMV (K)

n = n−2α+βb1 + n−βb2 +Op(n
−2α+ 1

2
β + n−

3
2
β).

Theorem 14 specialises the result to the case of no microstructure effects.

The following Corollary thus holds, containing most of the cases of practical importance.

3Using the same method of proof as Theorem 7 in the case where β > α then

n2α−
1

2
β
(

ECRV (2)
n − UMV (K)

n − (n−2α+βb1 + n−βb2)
)

Ls
→

√

ϑK

4

∫ T

0

c−1
(

σ−2
t f2

t

)2
dt× Z.

Here, using the constants in Table 3,

ϑK = k2/K {K + 2(K − 1) + ...+ 2}+
j22/K
2

{K(K − 1) + 2(K − 1)(K − 2) + ...+ 2} .

In particular, ϑ2 = 4/3, ϑ3 = 92/81 and ϑ3 = 43/32.
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Corollary 1 Assume 0 < α < β, 2α > β and f2t = dTσ4t where d > 0 is a constant, then

n2α−β/2

(
RVn −

{
1 + nβ−2αTd

4c

}
UMV

(K)
M

)
Ls→

√
d2T 2

2c

∫ T

0
σ4tdt× Z.

Example 1 In the realised variance case then α = 1/2, d = 2. This result drives Theorem 5.

Example 2 The realised kernels of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008, equa-

tion 19) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) obey this structure when

the bandwidth parameter H = bM2/3 and the weight function is very smooth. In the Parzen case,

d = 4bk0,0• , where k0,0• = 0.269, so within a fixed block

M1/6

(
RMi −

∫ τ i

τ i−1

σ2tdt

)
Ls→N

(
0, 4bk0,0• (τ i − τ i−1)

∫ τ i

τ i−1

σ4tdt

)
.

This implies α = 1/6 so we must have β < 1/3, which means M = (c/T )n1−β must grow quite

quickly with n, indicating very large blocks are needed. In this case f2t = 4bk0,0• Tσ4t . Most noise

robust estimators do not apply as they do not have the feature that f2t = dTσ4t , instead usually

the variance of the noise complicates the distribution. The Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2011) kernel has the virtue in this context of being non-negative.

6.1.4 A two scale estimator

In order to produce more efficient results we can use two multipower variations UMV
(K,c1)
M and

UMV
(K,c2)
M , taking c1 > c2. Define a “two scale” estimator

UMV
(K,c1,c2)
M = (c1 − c2)

−1(c1UMV
(K,c1)
M − c2UMV

(K,c2)
M ).

Again following Section B.2.3, we obtain

nα
(
UMV

(K,c1,c2)
M −RVn

)
= K

c
−1
K
1 − c

−1
K
2

c1 − c2
nα−βK−1

K

∑

0<t≤T

σ
2K−1

K
t ∆J

2/K
t

+ n−β+αK − 1

3

1

c1c2
[σ, σ]T + differential edge effect

+Op(n
−α+ 1

2
β + nα−

3
2
β) + op(n

1
2
−βK−1

K ).

With this expression, the orders become analogous to those in Theorem 4, with α replacing 1/2.

In particular, the other bias terms disappear to order op(1) provided

α
K

K − 1
< β < 1, (32)

generalising (23). Notice that as α ≤ 1/4, the permissible range for β is much bigger. The reason

for this is that the bias terms scale with n as nα−β so low values of α allow β to be lower.

A version of Theorem 5 for microstructure thus follows.
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Theorem 8 Assume the setting of this section, that K ≥ 2 and that (32) holds. Then

nα
(
UMV

(K)
M −

∫ T

0
σ2tdt

)
Ls→ N

(
0,

∫ T

0
f2s ds

)
, (33)

and

n1/2




(
RVn − UMV

(K)
M

)
−
∑

0<t≤T

|∆Jt|2




Ls→ N


0, 4T

∑

0<t≤T

|∆Jt|2 σ2t


 . (34)

The optimal β is for estimating IV and JV is, similarly to (27), given by

β∗ = 2α
2K

3K − 2
. (35)

If K = 3 and α = 1/4, then β∗ = 3/7. Hence, when there is microstructure it makes sense to have

much bigger blocks due to the slow rate of convergence.

6.2 Estimating the integrated variance of volatility

How quickly volatility moves is importantly economically. Mathematically this is measured by

the quadratic variation of the volatility process, [σ, σ]T . We call this the integrated variance of

volatility [σ, σ]T =
∫ T
0 [σ, σ]′tdt. It would be helpful to estimate [σ, σ]T nonparametrically.

Now following Theorem 4 we set β = 1/2 and define an estimator of [σ, σ]T of the form

[̂σ, σ]
(K,n)

T = c−1 3

K − 1
n1/2

(
ECRV (K) − UMV

(K)
M

)
. (36)

This suggests [̂σ, σ]
(K,n)

T = [σ, σ]T +Op(n
− 1

4 ) where the error is conjectured to be mixed normal.

We now provide the precise result for the case of bipower variation, as follows.

Corollary 2 Let a2 = 27
16

∫ T
0 c−3

(
2Tσ2t + c2[σ, σ]′t

)2
dt, the conditions of Theorem 4 hold, and X

have no jumps. As n→ ∞ when β = 1/2 then

n
1
4

(
[̂σ, σ]

(2,n)

T − [σ, σ]T

)
Ls→ a× Z,

where Z is standard normal and independent of the underlying filtration.

Proof. This is a direct implication of Theorem 7.

7 Conclusion

Jumps are important in financial economics. Recent development of econometric methods to analyse

jumps using high frequency data has quantified the importance of jumps. The recent empirical

work has suggested they are quite common empirically.
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One of the leading methods for detecting jumps is bi- and multi-power power variation. In this

paper we have suggested ways of improving the efficiency of these estimators, making them efficient,

and increasing the power of jump tests. We also show how to robustify multipower variation to

noise and develop a central limit theory for the resulting estimator. Our results are extended to

allow the first nonparametric estimator of the volatility of volatility.

We carry out detailed Monte Carlo studies of the finite sample behaviour of our blocked version

of MPV and apply it to data from U.S. equity markets.
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APPENDIX

The results to prove from the main text are list, together with the sections of this appendix

where they are given.

• Section A: Remarks 1 and 2; Theorems 2, 6 and 1.

• Section B: Theorems 4 and 7.

A Proof of Theorems 2, 6 and 1 and Remarks 1 and 2

A.1 Proof of Remark 1

For simplicity, take T = 1. Now

BVM
L
=
σ2

n

n

(nM − 1) k2M,1

nM∑

i=2

χM,i−1χM,i
L
=

σ2

(nM − 1) k2M,1

nM∑

i=2

χM,i−1χM,i,

which has a expectation and variance of

σ2

(nM − 1) {E(χM )}2
(nM − 1) {E(χM )}2 = σ2

and noting that

Var
(
χM,1χM,2

)
= E

(
χ2
M,1χ

2
M,2

)
−
{
E
(
χM,1

)}4
=M2 − k4M,1

Cov
(
χM,1χM,2, χM,3χM,2

)
= Mk2M,1 − k4M,1

we have

σ4

(nM − 1)2 k4M,1

[
(nM − 1)Var

(
χM,1χM,2

)
+ 2(nM − 2)Cov

(
χM,1χM,2, χM,3χM,2

)]
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=
σ4

(nM − 1)2 k4M,1

{
(nM − 1)

(
M2 − k4M,1

)
+ 2(nM − 2)

(
Mk2M,1 − k4M,1

)}

=
σ4

(nM − 1)2



(nM − 1)

(
M2 + 2Mk2M,1 − 3k4M,1

)

k4M,1

−
2
(
Mk2M,1 − k4M,1

)

k4M,1





=
σ4

M (nM − 1)2
{(nM − 1)MθM − ψM} , ψM = 2M

(
M/k2M,1 − 1

)
= 1 + o(1),

=
σ4

M (nM − 1)

(
MθM − 1

(nM − 1)
ψM

)
∼ σ4

n
(MθM ) , (A.1)

the latter transition for large n so long as M/n = o(1). In practice it makes sense to use the finite

sample constant

d =
1

M (nM − 1)

(
MθM − 1

(nM − 1)
ψM

)
.

A.2 Proof of Theorem 2

Here

dn,M,K =
1

M(nM −K + 1)2
1

(
kM,r/K

)2K (A.2)

×
{
(nM −K + 1)Var

(
K∏

i=1

vi

)
+ 2

K−1∑

k=1

(nM −K + 1− k)Cov

(
K∏

i=1

vi,

K∏

i=1

vi−k

)}
,

where

Cov

(
K∏

i=1

vi,
K∏

i=1

vi−k

)
=

[
K∏

i=k+1

E
(
v2i
)
−
{

K∏

i=k+1

E (vi)
2

}]
k∏

i=1

E (vi)
2

=
{(
kM,2r/K

)K−k −
(
kM,r/K

)2(K−k)
} (
kM,r/K

)2k

=
(
λK−k
M,r,K − 1

) (
kM,r/K

)2K
.

Now

θ
(r,K)
M =

1
(
kM,r/K

)2K

{
Var

(
K∏

i=1

vi

)
+ 2

K−1∑

k=1

Cov

(
K∏

i=1

vi,

K∏

i=1

vi−k

)}
.

This means that

θ
(r,K)
M =

(
λKM,r,K − 1

)
+ 2

K−1∑

k=1

(
λK−k
M,r,K − 1

)
= 2λM,r,K

K−1∑

k=0

λkM,r,K − λKM,r,K − 2K + 1.

Returning to the notation in Remark 2, we have

λr =
(kM,2r)

(kM,r)
2 =

(kM,2r/M
r)

(kM,r)
2 /M r

≃
1 + a2r

M + b2r
M2

1 + gr
M + hr

M2

∼
(
1 +

a2r
M

+
b2r
M2

)(
1− gr

M
+
g2r − hr
M2

)
∼ 1 +

a2r − gr
M

+
b2r + g2r − hr − a2rgr

M2
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= 1 +
jr
M

+
kr
M2

.

Of course, by Taylor expansion,

λKr − 1 ∼ K
jr
M

+
1

2

K(K − 1)j2r + 2Kkr
M2

.

Now

M
{(
λKM,r/K − 1

)
+ 2

(
λK−1
M,r/K − 1

)
+ 2

(
λK−2
M,r/K − 1

)
+ ...+ 2

(
λM,r/K − 1

)}

∼ jr/K {K + 2(K − 1) + ...+ 2}+
j2r/K

2M
{K(K − 1) + 2(K − 1)(K − 2) + ...+ 2}

+
kr/K

M
{K + 2(K − 1) + ...+ 2} ,

= ϑr/K,K,M

jr = a2r − 2ar,

kr = b2r + (2ar)
2 − hr − 2a2rar

The important cases are given in Tables 11 and 12.

r 4 2 4
3 1 2

3
1
2

jr 8 2 8
9

1
2

2
9

1
8

kr 8 0 8
81

1
8

8
81

9
16×8

Table 11: Coefficients jr and kr as a function of r.

K
K + 2(K − 1)

+...+ 2
K(K − 1) + 2(K − 1)(K − 2)

+...+ 2
ϑ2/K,K,M ϑ4/K,K,M

1 1 0 2 8 + 8 1
M

2 4 2 2+3
4

1
M 8 + 4 1

M
3 9 10 2+92

81
1
M 8 + 392

81
1
M

4 16 28 2+43
32

1
M 8 + 11

2
1
M

Table 12: Coefficients ϑ2/K,K,M and ϑ4/K,K,M as a function of K.

A.3 Proof of Remark 2

Note that (e.g. Abramowitz and Stegun (1970, 6.1.47) and Qi (2010, equation (1.11))) for large z

zb−aΓ(z + a)

Γ(z + b)
∼ 1 +

(a− b) (a+ b− 1)

2z
+

(a− b) (a+ b− 1)

24z2

{
3 (a+ b− 1)2 − a+ b− 1

}
...

Thus as M → ∞ then

kM,r

M r/2
=

(
M

2

)−r/2 Γ
(
M+r
2

)

Γ
(
M
2

)

31



∼ 1 +
r
2

(
r
2 − 1

)

2
(
M
2

) +
r
2

(
r
2 − 1

)

24
(
M
2

)2
{
3
(r
2
− 1
)2

− r

2
− 1

}

= 1 +
r (r − 2)

4M
+
r (r − 2)

24M2

{
3

4
(r − 2)2 − r

2
− 1

}

= 1 +
r (r − 2)

4M
+
r (r − 2)

24M2

{
3r2

4
− 7r

2
+ 2

}

= 1 +
r (r − 2)

4M
+
r (r − 2)

(
3r2 − 14r + 8

)

4× 24M2

An important special case is when r = 1, then

kM,1

M1/2
∼ 1− 1

4M
+

3

4

1

24M2
...

Of course as x ↓ 0 so

g(x) = (1 + ax+ bx2)−1 = g(0) + xg′(0) +
x2

2
g′′(0) +O(x3) = 1− ax+ x2(a2 − b) + ...

So

M1/2

kM,1
∼ 1 +

1

4M
+

(
1

16
− 3

4

1

24

)
1

M2
= 1 +

1

4M
+

1

32

1

M2
.

More generally

M r/2

kM,r
∼ 1− r (r − 2)

4M
+

{
r2 (r − 2)2

16
− r (r − 2)

(
3r2 − 14r + 8

)

4× 24

}
1

M2
.

A.4 Proof of Theorem 6

Since J is independent of Xc, we can condition on the J process. Also, it is enough to show

the result when it is known that the jumps are in intervals (ti1 , ti1+1], ..., (tiν , tiν+1 ], where ν is

nonrandom (this adds information, and so can only reduce any lower bound). By the absolute

continuity condition in the statement of the theorem, we thus only need to show the result when

the jumps are of nonrandom size almost everywhere (with respect to Lebesgue measure). The

problem then reduces to estimating the jump sizes (as parameters) when the observations are

Xti1+1 − Xti1
, ...,Xtiν+1

− Xtiν . If these increments had normal distributions around jumps, the

result would follow from the superefficiency results in LeCam (1953). The generalization to the

non-normal case follows from Mykland and Zhang (2009, Thm 1, p. 1411), since the contiguity

correction does not alter the asymptotic variance.

A.5 Proof of Theorem 1

For compactness of notation, set θ =
∫ T
0 σ2t dt, and let θ̂n be BVM based on n observations. (Not

to be confused with θM in (9).) RVi is based on blocks of size M . Let M be a large integer.
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Decompose

θ̂n = θ̂
(1)
n + θ̂

(2)
n , where

θ̂
(1)
n =

M

kM

∑

k

(k+1)M−1∑

i=kM+1

(RViRVi+1)
1/2, and θ̂

(2)
n =

M

kM

∑

k

(RVkMRVkM+1)
1/2.

For the first term, note that,

n1/2
∑

k


M

kM

(k+1)M−1∑

i=kM+1

(RViRVi+1)
1/2 − M− 1

M σ2τn,k
∆τ




is a sum of (Yn,k, Qn) martingale increments in the sense of the definitions in Mykland and Zhang

(2009, p. 1417 & p. 1421). The block size is MM in lieu of M . τn,k is also as defined in this paper.

The martingale has quadratic variation

n
∑

k

VarQn


M

kM

(k+1)M−1∑

i=kM+1

(RViRVi+1)
1/2 − M− 1

M σ2τn,k
∆τ | Yn,k




= n
∑

k

σ4τn,k

(
M

kM

)2

∆t2nVar

(
M−1∑

i=1

χM,iχMi+1

)

→ T

MM

(
M

kM

)2

Var

(
M−1∑

i=1

χM,iχM,i+1

)∫ T

0
σ4tdt, (A.3)

in probability as n→ ∞, where the χM,i are i.i.d. χM .

The same arguments as Mykland and Zhang (2009) imply n1/2(θ̂
(1)
n − θ(M− 1)/M) converges

stably under Qn to a mixed normal distribution with mean 0 and variance (A.3). It is easy to see

that there is no adjustment to P ∗
n , P

∗, or P , as these measures are defined in the referenced paper.

Similar arguments, using a first block of size M, and then blocks of size MM, yield that

n1/2(θ̂
(2)
n −θ/M) converges stably, to a variance which is of op(1) as M → ∞ (M is sent to ∞ after

n). Standard weak convergence arguments involving tightness and subsequences of subsequences

thus yield that n1/2(θ̂n − θ) converges stably under P to a mixed normal limit with mean zero and

a random variance which is the limit of (A.3) as M → ∞, in other words, TMθM
∫ T
0 σ4tdt, where

this θM is (9). This shows the first part of the theorem. The second part follows similarly.

B Multipower variation as M → ∞ and n → ∞
B.1 Assumptions

Assumption 1 . The continuous part of the process Xt is adapted to a filtration (Ft) which is

generated by Brownian motions Wt. That

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs + Jt, (B.4)
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where µ is a predictable locally bounded drift, W is a standard Brownian motion and J is a fi-

nite activity jump process. σt is also locally bounded away from zero, and is itself a continuous

semimartingale (Itô process).

Assumption 2 . Observations ti = i
n , i = 0, 1, 2, ..., n. With blocks of size M we have block

boundaries τ i =
Mi
n , i = 0, 1, ..., ⌊n/M⌋ = nM .

Assumption 3 . As n→ ∞ with β ∈ (0, 1),

nβ
M

n
→ c

T
. (B.5)

Assumption 4

0 < β < 1. (B.6)

In the following section, the observed process is assumed continuous, i.e., Jt ≡ 0. The task is to

prove the Theorems 4 and 7 given in the main text. To obtain those results we go through various

preliminary results and definitions. Proofs of each of the stated theorems are given at the end of

this section.

B.2 Some building blocks

B.2.1 Exact representation of multipower variation

To transparently study the case where M → ∞ as n → ∞, we use the simplified estimator “semi-

multipower variation” for the exponent r = 2:

SMV (K)
n = K

∑

1≤i;KiM≤n

(RVKi−K+1 × ...×RVKi)
1/K , (B.7)

with “semi-bipower variation” given by:

SBVn = SMV (2)
n = 2

∑

1≤i;2iM≤n

(RV2i−1RV2i)
1/2. (B.8)

We have here used the limiting value 1 of (kM,2/K)K/M (for K = 2, this is the same as kM/M).

For simplicity we avoid overlapping intervals. They are studied in Appendix B.2.4 and beyond.

To avoid edge effects, we modify the realised volatility as follows:

RV (K)
n =

K⌊n/KM⌋∑

i=1

RVi. (B.9)

Now set

f(x1, ..., xK) =
K∑

k=1

xk −K
K∏

k=1

x
1/K
k . (B.10)
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The key exact representation is now the following:

RV (K)
n − SMV (K)

n =
∑

1≤i;KiM≤n

f(RVKi−K+1, ..., RVKi)

=
∑

1≤i;KiM≤n

f(RVKi−K+1/∆τ , ..., RVKi/∆τ)∆τ (B.11)

with ∆τ =M∆t =MT/n. In the bipower case, f(x, y) = (y1/2 − x1/2)2, which is non-negative.

B.2.2 An approximation theorem for bipower variation

The results here and the next subsection are stronger than those of Theorem 4 in that they provide

stable convergence to a normal limit in place of an Op term. This gives reasonable certainty that a

similar stable convergence holds in the earlier theorem, and thus that the Op term cited there does

not vanish. We show in Appendix B.2.6 that the stronger result holds for bipower variation.

Based on the representation (B.11), we obtain the following result under model (7).

Theorem 9 Under the assumptions of Theorem 4, setting a2 = 1
2

∫ T
0 c−1

(
2Tσ2t +

1
3c

2[σ, σ]′t
)2

dt,

and if X has no jumps, b1 = c−1 1
2T
∫ T
0 σ2tdt and b2 =

1
3c [σ, σ]T . Then if β = 1/2,

n
3
4

{
RV (2)

n − SBVn − (n−1+βb1 + n−βb2)
}

Ls→ a× Z, (B.12)

where Z is standard normal and independent of the underlying filtration. When β > 1/2, only keep

the first term inside the brackets in a2, and replace n
3
4 by n1−

1
2
β in (B.12). When β < 1/2, only

keep the second term inside the brackets in a2, and replace n
3
4 by n

3
2
β .

Proof. Given in the Appendix.

B.2.3 Microstructure and multipower

To show that it is possible to pursue a similar theory in the more general case of estimation under

microstructure, we provide a theorem where “RVi” is a general estimator of the integrated volatility

in interval # i.

Theorem 10 Assume that under the statistical risk neutral distribution (Mykland and Zhang

(2009, Sect 2.2)), there is a sequence of continuous martingales (M
(n)
t )0≤t≤T so that

RVi =

∫ τ i

τ i−1

σ2tdt+M (n)
τ i −M (n)

τ i−1
=

∫ τ i

τ i−1

σ2tdt+∆M (n)
τ i . (B.13)

Suppose that as n→ ∞,

n2α[M (n),M (n)]t
p→
∫ t

0
f2s ds and nα[M (n),W (i)]t

p→ 0 for i = 1, ..., p. (B.14)
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Also assume the conditions of Appendix B.1, except that J ≡ 0. In the case when β = α, set

a2 =
1

2

∫ T

0
c−1(σ−2

t f2t +
1

3
c2[σ, σ]′t)

2dt and b1 =
1

4
c−1

∫ T

0
σ−2
t f2t dt and b2 =

1

3
c [σ, σ]T . (B.15)

Then, under Assumption 1,

n
3
2
α
{
RVn − SBVn − (n−2α+βb1 + n−βb2)

}
Ls→ a× Z (B.16)

where Z is standard normal and independent of the underlying filtration. When β > α, only keep

the first term inside the brackets in a2, and replace n
3
2
α by n2α−

1
2
β in (B.16). When β < α, only

keep the second term inside the brackets in a2, and replace n
3
2
α by n

3
2
β.

Proof. Given in the Appendix.

Likewise, for multipower variation, we have

Theorem 11 Assume the conditions of Theorem 10. Set

b1 =
1

2
c−1K − 1

K

∫ T

0
σ−2
t f2t dt and b2 =

K − 1

3
c [σ, σ]T . (B.17)

Then

RV (K)
n − SMV (K)

n = n−2α+βb1 + n−βb2 +Op(n
−2α+ 1

2
β + n−

3
2
β). (B.18)

B.2.4 Passage to overlapping blocks, and the edge effect

Define unnormalised multipower variation:

UMV (K)
n =

nM∑

i=K

K−1∏

k=0

(RVi−k)
1/K . (B.19)

As in the previous section, we ignore (for the purposes of notation only) the difference between

R̂V i and RVi (microstructure and no microstructure). For comparison, for r = 2,

MV
(2,K)
M in eq.(16) =

M
(
kM,2/K

)KUMV (K)
n and

MV
(2,K)
M in eq.(17) =

n

(nM −K + 1)(kM,2/K)K
UMV

(K)
M .

For these normalizations, note for later reference that

1−
(kM,2/K)K

M
=

1

M

K − 1

K
+O(M−2)) and

{
(nM −K + 1)

n
− 1

M

}
(kM,2/K)K = O(M/n) = O(n−β), so that

1−
(nM −K + 1)(kM,2/K)K

n
=

1

M

K − 1

K
+O(M−2) +O(M/n). (B.20)
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Replace (B.7)-(B.9) by

SMV (K,m)
n = K

∑

1≤i;Ki+m−1≤nM

(RVKi−K+m × ...×RVKi+m−1)
1/K and

RV (K,m)
n =

m−1+K⌊(nM−m+1)/K⌋∑

i=m

RVi, (B.21)

where 1 ≤ m ≤ K. The same representation (B.11), and theorems, will apply. Now observe that

UMV (K)
n =

1

K

K∑

m=1

SMV (K,m)
n . (B.22)

To verify this note that no term in UMV
(K)
n occurs in more than once SMV

(K,m)
n for 1 ≤ m ≤ K.

The comparable exact representation is therefore based on an edge effect adjusted RV, and on

using equation (B.11) on each component of an average of RV
(K,m)
n − SMV

(K,m)
n :

ECRV (K)
n − UMV (K)

n =
1

K

K∑

m=1

(
RV (K,m)

n − SMV (K,m)
n

)
, (B.23)

where the Edge Effect Corrected RV is given by

ECRV (K)
n =

1

K

K∑

m=1

RV (K,m)
n . (B.24)

Remark 8 (Largest common index.) The index m = nM − K + 1 is the largest one appearing

in all the terms of the above sum (B.24). This motivates (B.28) below. To see this, set m0 =

nM −K⌊nM/K⌋ and u = m0 −m+ 1, and note that the largest common index has value

min
1≤m≤K

(m− 1 +K⌊(nM −m+ 1)/K⌋) = K⌊nM/K⌋+ min
1≤m≤K

(m− 1 +K⌊(m0 −m+ 1)/K⌋)

= K⌊nM/K⌋+ min
m0−K+1≤u≤m0

(m0 − u+K⌊u/K⌋)

= nM + min
m0−K+1≤u≤m0

(−u+K⌊u/K⌋)

= nM −K + 1, since 0 = m0 < K.

By averaging and with very minor modifications in the proof, Theorem 11 applies identically:

Theorem 12 (Extension of Theorem 11). Under the assumptions of Theorem 11,

ECRV (K)
n − UMV (K)

n = n−2α+βb1 + n−βb2 +Op(n
−2α+ 1

2
β + n−

3
2
β), (B.25)

RVn − UMV (K)
n = n−2α+βb1 + n−βb2 +Υn +Op(n

−2α+ 1
2
β + n−

3
2
β). (B.26)

Remark 9 First consider the ordinary RV up to observation MnM . Denote this by R̃V :

R̃V n =

mn∑

i=1

RVi. (B.27)
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The difference between ECRV and ordinary RV is given by

R̃V n − ECRV (K)
n =

K∑

m=1

(
1− m

K

)
RVm + a corresponding term on the right edge

=

{
K∑

m=1

(
1− m

K

)
σ20∆τ +

K∑

m=1

(
1− m

K

)
σ2T∆τ

}
{
1 +Op(n

−α)
}

=
1

2
∆τ(K − 1)(σ20 + σ2T )∆τ

{
1 +Op(n

−α) +Op(∆τ
1/2)

}

= n−β 1

2
c(K − 1)(σ20 + σ2T )

{
1 +Op(n

−α) +Op(n
− 1

2
β)
}
. (B.28)

On the other hand, if RVn denotes the estimator based on all observations,

RVn = R̃V n = T
n−MnM

n
σ2T

{
1 +Op(n

−α) +Op(n
− 1

2
β)
}
. (B.29)

The full edge effect in Theorems 4 is thus given by the sum of these two:

Υn = RVn − ECRV (K)
n = Op(n

−β).

B.2.5 The case with no microstructure

Theorem 13 Under the assumptions of Theorem 4, and if X has no jumps,

n1/2
(
MV

(K)
M − ECRV (K)

)
= −n−β+ 1

2
K − 1

3
c[σ, σ]T +Op(n

− 1
2
+ 1

2
β + n

1
2
− 3

2
β). (B.30)

Proof. Given below.

B.2.6 Overlapping blocks: [σ, σ], and reconciling the fixed M case

A similar result to Theorem 9 covers overlapping blocks. This is declared as Theorem 7 in the main

text. In the no microstructure special case, we obtain.

Theorem 14 (Bipower, overlapping, no noise). Under the assumptions of Theorem 4, if X has

no jumps, let b1 & b2 be from Theorem 9, while a2 = 3
16

∫ T
0 c−1

(
2Tσ2t + c2[σ, σ]′t

)2
dt. Then

n
3
4

(
ECRV (2)

n − UMV (2)
n − (n−1+βb1 + n−βb2))

)
Ls→ a× Z and

n
3
4

(
ECRV (2)

n −MV (2)
n − n−βb2

)
Ls→ a× Z, (B.31)

where Z is standard normal & independent of the underlying filtration. When β > 1/2, only keep

the first term inside the brackets in a2, and replace n
3
4 by n1−

1
2
β in (B.31). When β < 1/2, only

keep the second term inside the brackets in a2, and replace n
3
4 by n

3
2
β in (B.31).
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B.3 Proofs

B.3.1 Proof of Theorem 10

We Taylor expand f(RV2i−1/∆τ ,RV2i/∆τ) around f(σ
2
τ2i−2

, σ2τ2i−2
). Note that f(z, z) = fx(z, z) =

fy(z, z) = 0, while fx,x(z, z) = fy,y(z, z) = −fx,y(z, z) = 1/2z. Hence, up to second order,

RV (2) − SBV ≈ 1

2
∆τ

∑

1≤i;2iM≤n

{(
RV2i−1

∆τ
− σ2τ2i−2

)2

fx,x(σ
2
τ2i−2

, σ2τ2i−2
)

+

(
RV2i
∆τ

− σ2τ2i−2

)2

fy,y(σ
2
τ2i−2

, σ2τ2i−2
)

+2

(
RV2i−1

∆τ
− σ2τ2i−2

)(
RV2i
∆τ

− σ2τ2i−2

)
fx,y(σ

2
τ2i−2

, σ2τ2i−2
)

}

=
1

4
∆τ

∑

1≤i;2iM≤n

σ−2
τ2i−2

(
RV2i
∆τ

− RV2i−1

∆τ

)2

=
1

4

1

∆τ

∑

1≤i;2iM≤n

σ−2
τ2i−2

(RV2i −RV2i−1)
2 . (B.32)

The remainder term in the above is of order op(n
− 3

2
α), as explained at the end of the proof. Since

both the bias and stochastic terms are of order Op(n
− 3

2
α), the remainder can be ignored.

To get a further handle on this quantity recall (B.13). By Itô’s formula,

∫ τ2i

τ2i−1

σ2tdt = σ2τ2i−1
∆τ +

∫ τ2i

τ2i−1

(τ2i− t)dσ2t and

∫ τ2i−1

τ2i−2

σ2tdt = σ2τ2i−1
∆τ −

∫ τ2i−1

τ2i−2

(t−τ2i−2)dσ
2
t .

(B.33)

Thus, RV2i−RV2i−1 = L
(n)
τ2i −L

(n)
τ2i−2 , where dL

(n)
t = −dM

(n)
t − (t−τ 2i−2)dσ

2
t for τ2i−2 < t < τ2i−1,

and dL
(n)
t = dM

(n)
t + (τ2i − t)dσ2t for τ2i−1 < t < τ2i. In particular,

d[L(n), L(n)]t=

{
d[M (n),M (n)]t+(t− τ2i−2)

2d[σ2, σ2]t+2(t− τ2i−2)d[M
(n), σ2]t, τ2i−2< t < τ2i−1,

d[M (n),M (n)]t+(τ2i−t)
2d[σ2, σ2]t+2(τ2i−t)d[M

(n), σ2]t, τ2i−1< t < τ2i.

The cross term involving [M (n), σ2]t will disappear to relevant order, from Condition (B.14).

Recall that nαM
(n)
t converges in law to Mt as a process, so that in particular, n2α[M (n),M (n)]t

converges to [M,M ]t. Note that

[L(n), L(n)]τ2i − [L(n), L(n)]τ2i−2
≈ n−2α([M,M ]τ2i − [M,M ]τ2i−2

)

+

∫ τ2i−1

τ2i−2

(t− τ2i−2)
2d[σ2, σ2]t +

∫ τ2i

τ2i−1

(τ2i − t)2d[σ2, σ2]t

≈ n−2α([M,M ]τ2i − [M,M ]τ2i−2
) +

2

3
(∆τ)3[σ2, σ2]′τ2i−2

,

(B.34)

where “prime” denotes differentiation with respect to time.
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We therefore get

r.h.s. of (B.32)

≈ 1

4

1

∆τ

∑

1≤i;2iM≤n

σ−2
τ2i−2

(
[M (n),M (n)]τ2i − [M (n),M (n)]τ2i−2

+
2

3
(∆τ)3[σ2, σ2]′τ2i−2

)
(B.35)

≈ 1

4

1

∆τ

∫ T

0
σ−2
t d[M (n),M (n)]t +

1

12
(∆τ)

∫ T

0
σ−2
t d[σ2, σ2]t

≈ 1

4

1

n2α∆τ

∫ T

0
σ−2
t d[M,M ]t +

1

12
∆τ

∫ T

0
σ−2
t d[σ2, σ2]t. (B.36)

From (B.6) we obtain

r.h.s. of (B.32) ≈ n−2α+β 1

4
c−1

∫ T

0
σ−2
t d[M,M ]t + n−β 1

12
c

∫ T

0
σ−2
t d[σ2, σ2]t

= n−2α+β 1

4
c−1

∫ T

0
σ−2
t d[M,M ]t + n−β 1

3
c [σ, σ]T (B.37)

since dσ2t = 2σtdσt + d[σ, σ]t.

Meanwhile, the error in approximation in (B.36) has quadratic variation

stoch term qv

=

(
1

4

1

∆τ

)2 ∑

1≤i;2iM≤n

σ−4
τ2i−2

4

∫ τ2i

τ2i−2

([L(n), L(n)]t − [L(n), L(n)]τ2i−2
)d[L(n), L(n)]t (B.38)

=

(
1

4

1

∆τ

)2 ∑

1≤i;2iM≤n

σ−4
τ2i−2

2([L(n), L(n)]τ2i − [L(n), L(n)]τ2i−2
)2

≈
(
1

4

1

∆τ

)2 ∑

1≤i;2iM≤n

σ−4
τ2i−2

2(n−2α([M,M ]τ2i − [M,M ]τ2i−2
) +

2

3
(∆τ)3[σ2, σ2]′τ2i−2

)2

≈
(
1

4

1

∆τ

)2 ∑

1≤i;2i)M≤n

σ−4
τ2i−2

2(n−2α2∆τ [M,M ]′τ2i−2
+

2

3
(∆τ)3[σ2, σ2]′τ2i−2

)2, (B.39)

where the relative error is of smaller order in probability, from (B.34). Under (B.6), consider first

the case where β = α. Then

stoch term qv =
1

16

∑

1≤i;2iM≤n

σ−4
τ2i−2

2n−3αc−1∆τ(2[M,M ]′τ2i−2
+

2

3
c2[σ2, σ2]′τ2i−2

)2 + op(n
−3α)

= n−3α 1

8

∫ T

0
c−1σ−4

t (2[M,M ]′t +
2

3
c2[σ2, σ2]′t)

2dt+ op(n
−3α)

= n−3α 1

2

∫ T

0
c−1(σ−2

t [M,M ]′t +
1

3
c2[σ, σ]′t)

2dt+ op(n
−3α). (B.40)

Meanwhile, by similar arguments, it is easy to see that the covariation of the stochastic term with

underlying processes is of order op(n
− 3α

2 ). Since these derivations remain valid over intervals [0, t]

(replacing T with t), we have shown that the right hand side of (B.32) converges as specified in

Theorem 10. This follows from Theorem 6 in Mykland and Zhang (2010).
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Consider separately the case where β > α and β < α. In the former case, the first term inside

the brackets in (B.39)-(B.40) dominate, and you replace c−1n−3α by n−4α∆τ−1 = c−1n−4α+β. In

the latter case, the second term dominates, and you replace c3n−3α by ∆τ3 = c3n−3β.

To complete the proof, we need to show that the remainder terms in (B.32) are of lower order.

For simplicity of exposition, we just show that when β = α, the remainder is of order op(n
− 3

2
α).

For this, note that for p + q ≥ 2, ∂p+qf(x, y)/∂xp∂yq = −2apaqx
1
2
−py

1
2
−q, where a0 = 1, and

ak = 1
2 ...
(
1
2 − k + 1

)
(k factors) for k ≥ 1. Thus, if we truncate at the forth derivative, by the

usual truncation and stopping arguments, the expectation of this term is of order proportional to

∆τE





∑

1≤i;2iM≤n

(
RV2i
∆τ

− RV2i−1

∆τ

)4


≤ c∆τ−3

∑

1≤i;2iM≤n

E([M (n),M (n)]τ2i−[M (n),M (n)]τ2i−2
)2

= O(∆τ−4(n−3α)2) = O(n−2α)

from the Burkholder-Davis-Gundy inequality (see Dellacherie and Meyer (1982, Sect 3 of Ch. VII),

or Protter (2004, p. 193 & 222)) from (B.6) and (B.34). This leaves the third order term, which is

− 1

3!
∆τ

∑

1≤i;2iM≤n

σ−4
τ2i−2

(
RV2i
∆τ

− RV2i−1

∆τ

)3

.

The Burkholder-Davis-Gundy bound is in this case of exact order O(n−
3α
2 ). A long but tedious

calculation shows, however, that the term goes away at this order. (Heuristically, this is because the

third cumulant of an asymptotically normal sequence will vanish to first order. An exact derivation

involves the Bartlett-type identities for martingales (Mykland (1994)).

B.3.2 Proof of Theorem 9

To verify Theorem 9 from Theorem 10, we note that in this case, α = 1/2. M
(n)
t is the usual

martingale associated with realised volatility, and stable convergence follows from Jacod and Protter

(1998), Barndorff-Nielsen and Shephard (2002), and Mykland and Zhang (2006). The conditions

(B.14) is one path to verifying the stable convergence, and otherwise (B.14) follows from the stable

convergence via Jacod and Shiryaev (2003, Corollary VI.6.30, p. 385). From the same literature,

f2t = 2Tσ4t .

B.3.3 Proof of Theorem 11

We use the representation (B.11). As in the bipower case, note that f(z, ..., z) = fxi(z, ..., z) = 0,

while fxixi(z, ..., z) = z−1(K − 1)/K and fxixj(z, ..., z) = z−1(−1)/K for i 6= j. It follows that

f(x1, ..., xK) =
1

2
z−1

(
K∑

k=1

(xk − z)2 − 1

K
(

K∑

k=1

(xk − z))2

)
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+ terms involving derivatives of order greater than two .

Now set xk = RVKi−k+1/∆τ and z = σ2τK(i−1)
. For the same reasons as those discussed in detail in

the proof of Theorem 10, we thus obtain that up to error of order Op(n
−2α+ 1

2
β + n−

3
2
β),

RV (K)
n − SMV (K)

n ≈
1

2∆τ

∑

1≤i;KiM≤n

σ−2
τK(i−1)

(
K∑

k=1

(RV Ki−k+1−σ2τK(i−1)
∆τ)2 − 1

K
(

K∑

k=1

(RV Ki−k+1−σ2τK(i−1)
∆τ))2

)
.

(B.41)

As in equation (B.33), we note that
∫ τb

τa

σ2tdt = σ2τa∆τ +

∫ τb

τa

(τ b − t)dσ2t .

Thus, to sufficient approximation (when aggregated in (B.41))

K∑

k=1

(RVKi−k+1 − σ2τK(i−1)
∆τ)2

=

K∑

k=1

(
∆M (n)

τKi−k+1
+

∫ τKi−k+1

τKi−k

(τKi−k − t)dσ2t + σ2τKi−k
∆τ − σ2τK(i−1)

∆τ

)2

≈
K∑

k=1

(
∆[M (n),M (n)]τKi−k+1

+

∫ τKi−k+1

τKi−k

(τKi−k+1 − t)2d[σ2, σ2]t

+([σ2, σ2]τKi−k
− [σ2, σ2]τK(i−1)

)∆τ2
)

≈ ([M (n),M (n)]τKi
− [M (n),M (n)]τK(i−1)

) +
1

3
∆τ2([σ2, σ2]τKi

− [σ2, σ2]τK(i−1)
)

+
K − 1

2
∆τ2([σ2, σ2]τKi

− [σ2, σ2]τK(i−1)
)

≈ ([M (n),M (n)]τKi
− [M (n),M (n)]τK(i−1)

) +

(
K

2
− 1

6

)
∆τ2([σ2, σ2]τKi

− [σ2, σ2]τK(i−1)
),

(B.42)

while

− 1

K

(
K∑

k=1

(RVKi−k+1 − σ2τK(i−1)
∆τ)

)2

= − 1

K

(
M (n)

τKi
−M (n)

τK(i−1)
+

∫ τKi

τK(i−1)

(τKi − t)dσ2t

)2

≈ − 1

K

(
[M (n),M (n)]τKi

− [M (n),M (n)]τK(i−1)
+

∫ τKi

τK(i−1)

(τKi − t)2d[σ2, σ2]t

)

− 1

K

(
[M (n),M (n)]τKi

− [M (n),M (n)]τK(i−1)

)
− 1

3
K∆τ2

(
[σ2, σ2]τKi

− [σ2, σ2]τK(i−1)

)
.

(B.43)

Combining (B.42)-(B.43) in (B.41), we obtain, again up to error of order Op(n
−2α+ 1

2
β + n−

3
2
β),

RV (K)
n − SMV (K)

n
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≈ 1

2∆τ

∑

1≤i;KiM≤n

σ−2
τK(i−1)

K − 1

K

(
[M (n),M (n)]τKi

− [M (n),M (n)]τK(i−1)

)

+
1

2∆τ

∑

1≤i;KiM≤n

σ−2
τK(i−1)

1

6
(K − 1)∆τ2

(
[σ2, σ2]τKi

− [σ2, σ2]τK(i−1)

)

≈ 1

2

K − 1

K
∆τ−1n−2α

∫ T

0
σ−2
t f2t dt+

K − 1

3
∆τ [σ, σ]T . (B.44)

Substituting by (B.6) gives the result of the theorem.

B.3.4 Proof of Theorem 13

Under no noise f2t = 2Tσ4t and α = 1/2, so that b1 = c−1K−1
K T

∫ T
0 σ2tdt and Theorem 12 yields

n1/2
(
UMV

(K)
M − ECRV (K)

)
= −n−β+ 1

2
K − 1

3
c[σ, σ]T + n−

1
2
+βb1 +Op(n

− 1
2
+ 1

2
β + n

1
2
− 3

2
β).

Meanwhile, from the discussion in Remark 9, ECRV
(K)
n = RVn +Op(n

−β) =
∫ T
0 σ2tdt+Op(n

−β +

n−1/2). Since also n1/2 v
M ∼ nβ−

1
2

(
c
T

)−1
v, it follows that

n1/2
v

M
ECRV (K)

n = nβ−
1
2

( c
T

)−1
v

∫ T

0
σ2tdt+Op(n

−1/2 + nβ−1)

= nβ−
1
2 b1 +Op(n

−1/2 + nβ−1) (B.45)

if v = (K − 1)/K. Thus

n1/2
(
UMV

(K)
M − (1 +

v

M
)ECRV (K)

)
= −n−β+ 1

2
K − 1

3
c−1[σ, σ]T +Op(n

− 1
2
+ 1

2
β + n

1
2
− 3

2
β).

Divide this expression by (1 + v
M ), and use equation (B.20), to finish the result.

B.3.5 Proof of Theorem 7

Refer to the proof of Theorem 10 in Section B.3.1. The only change (apart from notational com-

plexity) when passing from RV
(2)
n − SBVn to ECRV

(2)
n − UMV

(2)
n is that the right hand side of

equation B.32 gets replaced by

1

8

1

∆τ

∑

2≤i≤n

σ−2
τ i−1

(RVi −RVi−1)
2 . (B.46)

The bias term arising from this is unchanged from Theorem 10, by the same argument as in

the proof of Theorem 4. For the variance term, we note that

RVi −RVi−1 = ∆M (n)
τ i+1

−∆M (n)
τ i +

∫ τ i+1

τ i

σ2tdt−
∫ τ i

τ i−1

σ2tdt = ∆Vτ i+1 −∆Vτ i +∆σ2τ i+1
∆τ

where

∆Vτ i+1 = ∆M (n)
τ i+1

+

∫ τ i+1

τ i

(t− τ i)dσ
2
t . (B.47)
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Extending Mykland and Zhang (2009, Sect 2.2), we can without much loss of generality take both

X and σ2t to be martingales.4 To sufficient approximation, we can thus write (B.46) as

1

8

1

∆τ

∑

2≤i≤n

σ−2
τ i−1

(
2(∆Vτ i+1)

2 − 2∆Vτ i+1∆Vτ i + (∆σ2τ i+1
)2∆τ2 + 2∆Vτ i+1∆σ

2
τ i+1

∆τ − 2∆Vτ i∆σ
2
τ i+1

∆τ
)
.

(B.48)

To get rid of the terms arising from ∆σ2τ i+1
∆τ , note that taking quadratic variation,

(∆τ)−1
∑

2≤i≤n

{(∆σ2τ i+1
)2 −∆[σ2, σ2])∆τ2} = Op(τ

−3/2).

Similarly,

(∆τ)−1
∑

2≤i≤n

{∆Vτ i+1∆σ
2
τ i+1

−∆[V, σ2]τ i+1}∆τ

and (∆τ)−1
∑

2≤i≤n∆Vτ i∆σ
2
τ i+1

∆τ are of order Op(n
−α∆τ−1/2) +Op(∆τ

−3/2). Thus (B.46) is

1

4

1

∆τ

∑

2≤i≤n

σ−2
τ i−1

(
(∆Vτ i+1)

2 −∆[V, V ]τ i+1 −∆Vτ i+1∆Vτ i
)

+ stochastic drift +Op(n
−α∆τ−1/2) +Op(∆τ

−3/2). (B.49)

The quadratic variation is thus, up to relative error of 1 + op(1),

3

16

1

∆τ2

∑

2≤i≤n

σ−4
τ i−1

(∆[V, V ]τ i+1)
2

∼ 3

16

1

∆τ2

∑

2≤i≤n

σ−4
τ i−1

(n−2α∆[M,M ]τ i+1 +
1

3
∆τ3[σ2, σ2]′τ i)

2

∼ 3

16

1∑
2≤i≤n

σ−4
τ i−1

(n−2α[M,M ]′τ i
+

1

3
∆τ2[σ2, σ2]′τ i)

2

∼ 3

16

∫ T

0
σ−4
t (n−2α∆τ−1/2[M,M ]′t +

1

3
∆τ3/2[σ2, σ2]′t)

2dt

∼ 3

∫ T

0
(
1

4
c−

1
2n−2α+ 1

2
βσ−2[M,M ]′t +

1

3
c
3
2n−

3
2
β[σ, σ]′t)

2dt, (B.50)

since ∆τ ∼ cn−β. The result then follows in the same way as in Appendix B.3.1.

4Tedious exact calculation will give the same result without the regularity conditions.
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