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ABSTRACT

Duality techniques from convex geometry, extended by the recently-developed math-
ematics of tropical geometry, provide a powerful lens to study demand. Any consumer’s
preferences can be represented as a tropical hypersurface in price space. Examining the
hypersurface quickly reveals whether preferences represent substitutes, complements,
“strong substitutes”, etc. We propose a new framework for understanding demand
which both incorporates existing definitions, and permits additional distinctions. The
theory of tropical intersection multiplicities yields necessary and sufficient conditions for
the existence of a competitive equilibrium for indivisible goods–our theorem both en-
compasses and extends existing results. Similar analysis underpins Klemperer’s (2008)
Product-Mix Auction, introduced by the Bank of England in the financial crisis.
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1 Introduction

This paper introduces a new way to think about economic agents’ individual and
aggregate demands for indivisible goods,1 and provides a new set of geometric tools to
use for this.

Economists mostly think about agents’ demands by focusing on the direct utility
functions. We instead begin by focusing on the geometric structure of the regions of
price space in which an agent demands different bundles. Our crucial observation is
that dividing price space in this way creates precisely the geometric structure which is
studied in the recently-developed, non-Euclidean, branch of algebraic geometry called
“tropical geometry”.2 We can therefore use the tools of convex and tropical geometry,
such as the duality between the geometric structure of an agent’s demand in price space
and the same agent’s demand in quantity space, to obtain new insights about demand.
Moving backwards and forwards between the dual representations of demand in price
space and quantity space improves our understanding of both.

For example, it is much easier to aggregate individual demands in price space, but
translating aggregate demand back into quantity space allows us to prove a strong theo-
rem that encompasses and extends existing results about when a competitive equilibrium
exists.

On the other hand, if we start from the (direct) valuation function in quantity space,
our methods for translating to the dual in price space quickly reveal the key properties of
demand. Many existing results in demand theory can be understood more readily, and
developed more efficiently, using our tropical-geometric perspective than using existing
methods.

Examining the geometric structure of demands also suggests a natural way of classi-
fying them: we say two demand “types” are the same if certain sets of vectors associated
with their “tropical hypersurfaces” are the same. It is then elementary to check, us-
ing simple rules about the signs and magnitudes of the entries in these sets of vectors,
whether a demand type is, for example, substitutes, or complements, or “strong sub-
stitutes” (Milgrom and Strulovici, 2009), or “gross substitutes and complements” (Sun
and Yang, 2006), etc., etc. So our approach provides an easy test of the nature of prefer-
ences. Examining the vectors also reveals new results about categories of demands, and
clarifies relationships among them. For example, it makes clear why the conditions for
all of three or more indivisible goods to be (ordinary) substitutes are far more restrictive
than the conditions for all of them to be complements–although these conditions are of
course symmetric in the two-good case.

Understanding the aggregate demand of multiple agents entails intersecting their
“tropical hypersurfaces”, so the theory of “intersection multiplicities” yields a simple
necessary and sufficient condition on preferences that guarantees the existence of a com-
petitive equilibrium for indivisible goods. The condition can easily be checked from the
determinants of the vectors describing the demand, and shows new demand structures

1Baldwin and Klemperer (in preparation) show the relevance of our techniques to analysing divisible
goods also, in contexts such as the Product-Mix Auction.

2This assumes, as is standard in the indivisible-goods literature, that preferences are quasilinear.
Tropical geometry was developed by, among others, Mikhalkin (2004, 2005). We believe it has not
previously been applied to economics. Goeree and Kushnir (2011) have recently used techniques of
convex analysis (see, e.g., Rockafellar, 1970), upon which tropical geometry builds, in a different context.
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which guarantee equilibrium existence. For example, we exhibit a previously-unanalysed
demand type involving only complementary relationships between goods, in which equi-
librium always exists.3

Furthermore, it is straightforward in our framework that properties such as the
existence of equilibrium are preserved under (unimodular) basis changes of these same
vectors. Using this observation reveals when important properties of demands are the
same.

Finally, our understanding of the convex- and tropical-geometric structure of agents’
preferences facilitates the analysis of “Product-Mix Auctions” (Klemperer, 2008, 2010;
Baldwin and Klemperer, in preparation).4 In these auctions–introduced by the Bank of
England in response to the 2007 Northern Rock bank run and the subsequent financial
crisis–bidders offer prices for alternative bundles of goods, so their bids can be repre-
sented geometrically as sets of points in multi-dimensional price space.5 Our geometric
techniques tell us what kinds of bids are needed to represent different kinds of prefer-
ences, what “coherent” bids look like, how to efficiently solve for equilibrium (and when
it exists), etc.6

We begin, therefore, by explaining the basic concepts of tropical geometry. Section 2
describes the properties of a “tropical hypersurface”, a geometric object which contains
precisely those points at which the agent is indifferent between two or more bundles
and which therefore contains enough information to fully describe an agent’s valuation
function. It is composed of linear pieces known as ‘facets’ which separate the price space
into regions in which the agent demands different bundles.

Section 3 explores duality in our context. The same set of vectors that are orthogonal
to the facets of the tropical hypersurface also generates the surface of the agent’s valu-
ation function in quantity space (strictly, it generates the convex hull of that surface).
So there is a precise correspondence between classes of tropical hypersurfaces (in price
space) and subdivisions of “Newton polytopes” (in quantity space).

Section 4 focuses further on the structure of individual demand, by defining a “type”
of demand by the same set of vectors as above. Since these vectors describe the ways
in which the bundles demanded by the agent change with prices, they identify the key

3The demand type is fundamentally different from (i.e., not simply a basis change of) strong sub-
stitutes, unlike, e.g., “gross substitutes and complements”—see below.

4Product-mix auctions are “one-shot” auctions for allocating heterogeneous goods. Their equilibrium
allocations and prices are similar to those of Simultaneous Multiple-Round Auctions in private-value
contexts, but they permit the bid-taker to express richer preferences, are more robust against collusive
and/or predatory behaviour, and are, of course, much faster.

5Bids are made as lists of coordinates in implementations like the Bank of England’s; the Bank itself
(the bid-taker) depicts these bids, and also its own preferences, geometrically.

The Bank has already successfully auctioned approaching £100 billion in funds, and an Executive
Director of the Bank of England (Paul Fisher) described the auction design as “A world first in central
banking...potentially a major step forward in practical policies to support financial stability” (Milnes,
2010). (In principle, of course, funds are almost continuously divisible, but we can apply our same
indivisible-good duality techniques.)

6Expressing even richer preferences, and over more goods, than the Bank of England’s current
implementation permits may in some circumstances be important to this or other Central Banks who
have shown interest in using the auction, or for other applications such as the sale of related products
by a manufacturer, the purchase of electricity generated in different locations, the trading of permits
for emission reductions relating to different kinds of deforestation, etc. Our geometric methods also
permit easy alternative ways of representing preferences as bids.
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characteristics of demand. Our representation permits the easy proof and interpretation
of existing results in the theory of demand.

Section 5 turns to the structure of aggregate demand. Tropical intersection theory
inspires our proof that with n indivisible goods, a competitive equilibrium always exists
for concave demands of a type, if and only if the determinant of every subset of n of the
vectors that define the type has determinant 0, +1, or −1 (plus an additional condition
for cases in which the set of aggregate demands is in fewer dimensions than the number
of goods). An easy corollary is that with three or fewer goods, such equilibrium always
exists if and only if goods are “strong substitutes” in Milgrom and Strulovici’s (2009)
terminology, or a basis change of strong substitutes. But in four or more dimensions
the condition for equilibrium existence is strictly weaker; we provide an example. Our
theorem thus significantly extends earlier results; indeed a number of existing results
follow immediately from ours.7

Finally, we observe that since it is straightforward to “add” tropical hypersurfaces
in price space, a natural and easy way to compute aggregate demand from agents’
direct utility functions is by first computing each agent’s tropical hypersurface. This is
essentially a generalisation of the point that it is easy to compute total demand from
individuals’ bids in a Product-Mix Auction. However, we defer substantive discussion of
the application of tropical geometry to Product-Mix Auctions to Baldwin and Klemperer
(in preparation). So we conclude in Section 6.

2 Representing Demand in Tropical Geometry

2.1 Assumptions and Motivation

There are n goods, which come in indivisible units. Each agent has a valuation
function u : A → R over a finite set A ( Zn of possible bundles. We permit negative
bundles to allow consideration of sellers as well as buyers. Agents have quasilinear
preferences (and so, for example, no budget constraints). The price vector is p ∈ Rn,
so different units of the same good always have the same price.8 So the agent’s demand
set is

Du(p) := arg max
x∈A

{u(x)− p.x}.

We are interested in how Du(p) varies with p. It is of course constant while it is
single-valued. All the action takes place at those p at which more than one bundle is

7Easy corollaries of our theorem include: Milgrom and Strulovici’s (2009) result that equilibrium
exists for all “strong substitutes” demands, and Sun and Yang’s (2006) result about the existence
of equilibrium in their “two-group gross substitutes and complements” economy (both of which are
generalisations of Kelso and Crawford’s (1982) results); Hatfield et. al (2012)’s result about when a
stable outcome is not guaranteed in a trading network; and Teytelboym (2012)’s proof of equilibrium
existence in his model of contracts and trading on networks; as well as extensions of many of these
results.

Our theorem identifies the classes of valuation functions for which competitive equilibrium is guar-
anteed. The necessity of this condition contrasts with previous results that show only that equilibrium
always exists if all agents’ valuation functions have a certain property, but may fail if exactly one
valuation function does not have this property.

8We can, of course, model different units of a homogeneous good which are priced independently,
by simply treating them as different goods.
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Figure 1: A simple tropical hypersurface (TH). The bundle demanded on each side of
the TH is labelled.

demanded. So this set of prices is our principal object of study. We write this set of
prices as9

Tu := {p ∈ Rn | #Du(p) > 1} . (1)

The object Tu (with some additional structure–see Definition 2.3) is a convex-geometric
object, known as a ‘tropical hypersurface’ (TH) in the new sub-discipline of algebraic
geometry known as tropical geometry.10

A simple example is shown in Figure 1. The agent’s valuations are u(0, 0) = 0,
u(1, 0) = 5 and u(0, 1) = 4. So its demand is for precisely one of these bundles in each
of the three regions labelled, but switches from one bundle to another along the lines
drawn.

The following subsections describe properties of THs, and also how the structure of
the agents’ demands can be recovered from them.

2.2 The Tropical Hypersurface: associating geometric objects
with demand

We start by considering the local structure of a TH. Given a price p and its demand
set Du(p), we ask for what other prices p′ the demand set is the same, or closely related.

Definition 2.1.

1. The cell interior of the TH Tu at a price p consists of points p′ such that Du(p) =
Du(p

′). A subset of Tu is a cell interior if it is the cell interior at some point in Tu.
9We follow the mathematical literature in this slight abuse of notation.

10See Mikhalkin (2004) and others. In fact, Mikhalkin (2004) takes the tropical hypersurface asso-
ciated to u to be the non-smooth locus of p 7→ maxx∈A{x.p− u(x)}. Thus our tropical hypersurfaces
are ‘upside down’ compared with his. Mikhalkin’s convention is not universal; Maclagan and Sturmfels
(2009) take the non-smooth locus of p 7→ minx∈A{u(x)+x.p}, which defines tropical hypersurfaces the
‘same way up’ as ours, albeit shifted. Our convention seems the natural one from an economic point of
view: we maximise surplus, being the value of a bundle minus its cost.
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2. A subset of Tu is a cell if it the closure of a cell interior of Tu.

3. The affine span of a cell of Tu is the smallest affine space containing the cell.11

4. The boundary of a cell of Tu consists of those points in the cell that are not in its
cell interior.

Note that the cell interior is the largest set that is both contained in the cell and open
in the affine span of the cell.12

We call a cell of dimension k a k-cell,13 and call an (n− 1)-cell a facet.
Figure 1 illustrates these concepts. The three line-segments LA, LB and LC in the

figure do not include the point R. Each of these line-segments is a cell interior: Du(p) =
{(0, 0), (1, 0)} in LA, Du(p) = {(0, 0), (0, 1)} in LB, and Du(p) = {(1, 0), (0, 1)} in LC .
The point R is also a cell interior: Du(R) = {(0, 0), (1, 0), (0, 1)}. The corresponding
cells are the unions of these cell interiors with their limit points: LA ∪ R is thus a cell,
and indeed a facet; so are LB ∪R and LC ∪R. Finally, R itself is a 0-cell.

The price R is also the boundary of each of the 1-cells LA∪{R}, LB∪{R}, LC∪{R}.
(The 0-cell R has no boundary.) Note that the price R is contained in four cells, but
each price in the TH is contained in precisely one cell interior. Finally, the affine span of
any cell is the set of all prices at which the agent is indifferent between all the bundles in
the cell, so the affine spans of LA∪R, LB∪R, and LC∪R, are the entire lines containing
those line-segments, while the affine span of R is the point R itself.

It is immediate that:

I There are finitely many distinct cells, and the TH is the union of these.

II The cell interiors do not intersect.

Figure 2 illustrates the latter point: although the TH is ‘two line segments crossing
at a point’, it has four 1-cells with distinct interiors (and also a single 0-cell at R).

Furthermore Definition 2.1 implies that for a price p′ to be in the cell interior corre-
sponding to a set of bundles Du(p), the agent must be indifferent between those bundles,
that is, p′.(x − x′) = u(x) − u(x′) for all x,x′ ∈ Du(p), and the agent must strictly
prefer these bundles to all others, that is, p′.(x− x′′) < u(x)− u(x′′) for all x ∈ Du(p)
and x′′ ∈ A\Du(p). The cell corresponding to this cell interior contains its limit points,
so a price p′ is in the cell if the bundles in Du(p) are weakly preferred to all others at
this price; that is, we weaken the strict inequality above to a weak inequality (while
maintaining the indifference between bundles in Du(p)).14 So a cell is the intersection
of a finite number of half-spaces (sets {p′ ∈ Rn | p′.v ≤ α} for some v ∈ Rn and some
α ∈ R). Thus:

III Each cell is a closed convex polyhedral set in Rn.

11Recall that an affine space in Rn is a parallel shift of a linear subspace, that is, a set {v+c | v ∈ U}
for some linear subspace U ≤ Rn and some fixed vector c.

12See the equations for the three objects, given below. One might strictly refer to the ‘cell interior’
as the relative interior of the cell.

13To be precise, the dimension of a cell is the dimension of its affine span.
14It follows that we could alternatively define a cell as those points p′ such that Du(p) ⊆ Du(p′) for

some demand set Du(p).
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Figure 2: Cell interiors do not intersect; the line segments on either side of R are distinct
cells.

The affine span of the cell corresponding to Du(p) is simply those p′ such that
p′.(x− x′) = u(x)− u(x′) for all x,x′ ∈ Du(p). So the affine span of the cell is parallel
to a linear subspace of Rn, and, since x,x′ ∈ Zn, we have:

IV The slope of the affine span of each cell is rational.

Finally, the boundary of the cell corresponding to Du(p) is those p′ such that at least
one of the weak inequalities p′.(x − x′′) ≤ u(x) − u(x′′) for x ∈ Du(p), x′′ ∈ A\Du(p)
holds with equality. Such points therefore also lie in a lower dimensional cell, so by
restricting a suitable choice of inequalities to be equalities, we have:

V The boundary of a k-cell is a union of a finite number of (k − 1)-cells.

On the other hand, any (k − 1)-cell lies in the boundary of some k-cell (since, from
the equations defining any (k− 1)-cell, we can obtain the equations defining some k-cell
by weakening one or more of the equalities). It follows that a TH is contained in the
union of its facets.

We can therefore conclude that every TH for demand over n distinct goods can be
understood as an (n− 1)-dimensional rational polyhedral complex :

Definition 2.2 (Mikhalkin, 2004, Definitions 1 and 2). A subset Π ( Rn is a rational
polyhedral complex if it is a finite union of closed sets in Rn called cells which satisfy
properties I-V above. Π is k-dimensional if it is contained in the union of its k-cells.

By definition, demand in the complement of a TH is unique. We call a connected
component of the complement of a TH a unique demand region (UDR). Demand is
constant in each UDR, since the bundle demanded cannot change without the price
crossing the TH. But to understand how demand changes as we move between UDRs,
we need one additional type of information: ‘weightings’ on the facets.

Let F be a facet and let bundles x and x′ be demanded in the UDRs on either side.
So at prices p ∈ F , the agent is indifferent between x and x′, that is, u(x) − p.x =
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u(x′) − p.x′. The crucial point is that because p.(x′ − x) is therefore a constant for
these prices, the vector x′ − x is normal to F . Call the greatest common divisor of the
entries of x′ − x the weight of the facet, w(F ). So vF := 1

w(F )
(x′ − x) is a primitive

integer vector (that is, the greatest common divisor of its entries is 1), and it points
from the UDR where x′ is demanded to the UDR where x is. But since F is (n − 1)
dimensional, its normal direction is unique, so there is a unique primitive integer normal
vector pointing from the UDR of x′ to that of x. Thus knowing only F , w(F ) and x
allows us to derive vF , and hence x′. It therefore follows that if we know demand in any
one UDR, we can find demand everywhere from knowing the set of facets (and hence
their primitive integer normal vectors) and their weights.

A rational polyhedral complex is described as weighted if a positive integer weight
is attached to each facet. We provide examples in Section 2.4.

We can now provide the full definition of a TH:

Definition 2.3 (Mikhalkin, 2004, Example 2). Let A ( Zn be a finite set and let
u : A→ R be any function. Then the tropical hypersurface Tu associated with u is the
weighted rational polyhedral complex such that:

1. its underlying set is {p ∈ R | #Du(p) > 1};

2. if F is a facet separating the UDRs U and U ′, in which x and x′ are demanded
respectively, and if vF is the primitive integer vector normal to F which points
from U ′ to U , then the weight of F is the integer w(F ) such that w(F )vF = x′−x.

We will see that the TH captures all the information we might ever need to know
about an agent’s demand and valuation function, if the latter is concave in the standard
sense:

Definition 2.4. A function u : A → R is concave if A ( Zn is convex (as a subset of
Zn) and if u can be extended to a weakly concave function on Rn.

It is a standard result that concave functions are precisely those for which there are no
bundles in A that are never demanded. That is:

Lemma 2.5 (cf. e.g. Milgrom and Strulovici, 2009, Theorem 1). Let A ( Zn. A function
u : A→ R is concave iff, for all x ∈ A, there exists p ∈ Rn such that x ∈ Du(p).

2.3 Associating demand with geometric objects

When does a weighted rational polyhedral complex depict a valid demand of some
agent?

If we construct a TH by starting from some valuation function u, then the weights
we attach will necessarily be coherent, since if we cross facets by passing through a
sequence of UDRs that ends where it started, we must demand at the end precisely
what we demanded at the beginning. In particular, the TH will satisfy the balancing
condition:
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Definition 2.6 (Mikhalkin, 2004, Definition 3). An (n − 1)-dimensional weighted ra-
tional polyhedral complex Π ( Rn is balanced if for every for every (n− 2)-cell G ( Π,
the weights w(Fj) on the facets F1, . . . , Fl that are adjacent to G, and primitive integer
normal vectors vFj

for these facets that are defined by a rotational direction about G,

satisfy
∑l

j=1w(Fj)vFj
= 0.15

Note that there do not necessarily exist weights to balance a general rational poly-
hedral complex.16 However, the balancing condition is in fact the only condition that
a weighted rational polyhedral complex has to satisfy to be the TH of some valuation
function:

Theorem 2.7 (Mikhalkin, 2004, Proposition 2.4; also Mikhalkin, 2005, Theorem 3.15).
Suppose that Π ( Rn is an (n − 1)-dimensional balanced weighted rational polyhedral
complex.17 Then there exists a finite set A ( Zn and a function u : A→ R such that Π
is the TH, Tu.

The correspondence between a TH and its associated set A and function u is not
unique, but the ambiguities are trivial if u is concave. Clearly, adding a constant to u(x)
leaves the TH unchanged, as does increasing every available bundle by a fixed bundle
and making a corresponding shift in the valuation (though the bundle demanded in each
UDR will then also be increased by the fixed bundle). That is, if A′ = {x + c | x ∈ A}
and u′(x + c) = u(x) + α for all x ∈ A, some c ∈ Zn, and some α ∈ R, then Tu′ = Tu.

Furthermore, any non-concave u has the same TH as the minimal weakly-concave
function that weakly exceeds it everywhere on A. To see this, observe that if a bundle
is never demanded then its precise value to the agent is immaterial, so we can increase
its value up to the threshold at which it is just marginally demanded for some price(s)
without altering the shape or properties of the TH. Doing this for all never-demanded
bundles removes any non-concavities in the valuation function. It is also now clear that
if two agents have valuations u and u′, respectively on different sets of bundles A and
A′, but their convex hulls in Rn, which we write ConvA and ConvA′, coincide; and if
û is the minimal concave function on ConvA such that û ≥ u on A, and is also the
minimal concave function on ConvA such that û ≥ u′ on A′; then Tû = Tu = Tu′ .18

Summing up:

Theorem 2.8 (Mikhalkin, 2004, Remark 2.3). There is a 1-1 correspondence between
THs with an identified ‘demand 0’ UDR, and pairs (u,A), where A ( Zn is finite and
convex in Zn, u is a weakly-concave, function u on A, for which u(0) = 0 and 0 is
demanded where specified.

15To choose a rotational direction around G, pick a 2-dimensional affine subspace H of Rn orthogonal
to G, such that the intersection of each Fj with H is 1-dimensional. The intersection of H with the
TH is then a collection of 1-cells meeting at the 0-cell which is G∩H. An ordinary choice of rotational
direction in this two-dimensional picture gives a rotational direction around G in Rn.

16For example, in two dimensions, consider three 0-cells, each with three adjacent facets. If each
pair of 0-cells has an adjacent facet in common, the six weights must satisfy six balancing conditions
(that is, three equations in each of the two dimensions). But since the balancing conditions are trivially
satisfied by setting all weights equal to zero, the conditions can only be satisfied by positive integer
weights if the conditions are not linearly independent–which is non-generic.

17Strictly speaking, of course, Π is a subset of the space Rn and has weights. As before, we follow
Mikhalkin and the mathematical literature in our presentation.

18We defined û on ConvA ( Rn, but it still defines a TH if it is restricted to ConvA ∩ Zn.
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Figure 3: The TH of Example 2.9, with the bundle demanded in each UDR marked in
red.

Thus we have full equivalence between THs and weakly-concave valuation functions
(such that u(0) = 0 and 0 is demanded in a specified UDR). Note, in particular, that
a given set in Rn is the TH of some quasilinear demand if and only if it is a rational
polyhedral complex and there exist weights for the facets such that it is balanced.
Although we do not restrict attention to concave valuation functions–indeed Section 5.2
will ask when an aggregate valuation is concave–understanding of the concave case is
important.

Similarly, we do not restrict attention to what is demanded in UDRs, but doing so is
an important first step. Generically all prices are in a UDR so, as noted above Definition
2.3, given any TH and a specified ‘zero demand’ UDR we can easily work out what is
demanded for a generic price. And it is particularly straightforward to relate properties
of demand such as substitutes or complements to the geometry of the TH; see Section
4.

2.4 Demand examples

Example 2.9. Let A = {x ∈ Z2
≥0 | x1 + x2 ≤ 2} and let u : A → R be as follows (we

arrange the terms in this “back-to-front” way to correspond to the fact that smaller
quantities will appear higher in, and further right in, the TH; this convention will be
particularly helpful later):

x1 = 2 x1 = 1 x1 = 0 u
7 6 0 x2 = 0

9 4 x2 = 1
8 x2 = 2

.

The TH associated with the agent’s valuation, u, is shown in Figure 3, in which we
have additionally marked in red the bundle demanded by this agent in each UDR. The
facet between the UDRs in which (0, 0) and (0, 2) are demanded has weight 2. For p

10



in this facet (that is, for p2 = 4 and p1 > 6) we have Du(p) = {(0, 0), (0, 1), (0, 2)}; in
particular the bundle (0, 1) is demanded for some price and the function is concave. An
otherwise-identical valuation u′ in which u′(0, 1) < 4 would give rise to the same TH,
but would not be concave; (0, 1) would not be demanded for any price.

It is easy to work out from the TH which bundle is demanded in each UDR, if one
already knows what is demanded in any one UDR. If x1 = x2 = 0 in the top right UDR
we can simply “walk around” the diagram, adding to x1 (x2) the weight of any facet
crossed times the first (second) coordinate of the primitive integer facet normal. Thus
starting from the top right UDR, crossing the vertical facet with normal (1, 0), that is,
{p ∈ R2 | p1 = 6, p2 > 4}, changes demand from (0, 0) to (1, 0); from there, crossing the
facet with normal (−1, 2) changes demand to (0, 2), as may also be seen by crossing the
weight-2 horizontal from (0, 0) downwards; and so on.

Example 2.10. It will be useful later to discuss very simple examples of substitutes
and complements demands: if A = {0, 1}2, then u1 : A→ R and u2 : A→ R defined as
follows are demands for substitutes and complements, respectively, and their THs are
shown in Figures 4a and 4b.19

x1 = 1 x1 = 0 u1

1 0 x2 = 0
1 1 x2 = 1

and
x1 = 1 x1 = 0 u2

0 0 x2 = 0
1 0 x2 = 1

.

p
1

p
2

1

1

(a) Tu1 .

p
1

p
2

1

1

(b) Tu2 .

Figure 4: The THs of Example 2.10.

Clearly each TH has four UDRs in which these agents demand the bundles (0, 0),
(0, 1), (1, 1), and (1, 0), respectively, as one moves clockwise around the UDRs starting
at the top right–as is also easily confirmed by adding the appropriate primitive integer
facet normal on every crossing between UDRs.

Example 2.11. For a simple 3-dimensional example, let A = {x ∈ Z3
≥0 | x1 +x2 +x3 ≤

1} and let u(0, 0, 0) = 0 and u(1, 0, 0) = u(0, 1, 0) = u(0, 0, 1) = 1. The TH is given in
Figure 5. Now, the facets are 2-dimensional (pieces of planes), there are additionally
1-cells (lines along which these facets meet), and a 0-cell (point at which these lines
meet). Three of these facets, having normals (1, 0, 0) (dark-green facet), (0, 1, 0) (red

19The TH of Figure 4a appears to be a translation of Figure 1, but there is an important distinction.
In Figure 1 the support is {(0, 0), (0, 1), (1, 0)}, so the TH has only one 0-cell; here, u1 has support
{0, 1}2, and its TH has two 0-cells. (If we restricted u1 to the support {(0, 0), (0, 1), (1, 0)} its TH would
coincide with Tu1 on R2

≥0 but have only one 0-cell.)
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Figure 5: The TH of Example 2.11.

facet), and (0, 0, 1) (turquoise facet), border the UDR in which (0, 0, 0) is demanded;
this UDR is of course {p ∈ R3 | p1, p2, p3 > 1}. Crossing any one of these facets takes
us to the UDR in which the corresponding bundle is demanded. We swap between
the latter UDRs by crossing the remaining three facets, which have normals (1,−1, 0)
(orange facet), (0, 1,−1) (bluish-purple facet) and (1, 0,−1) (yellow facet).

3 Duality in Tropical Geometry

The previous section demonstrated the equivalence between THs and specific val-
uation functions. However, we now describe a coarser correspondence between a set
of THs that are “essentially” the same as one another, and sets of valuation functions
which–we will see–have the same fundamental properties.

Looking, e.g., at Figure 1, the important structure is that there are particular UDRs
and particular sets of prices at which the agent is indifferent between the bundles of
those UDRs. So we say that two THs have the same combinatorial type if there is a 1-1
correspondence between the cells of the THs which have the same dimension and slope,
and these cells connect to one another in the same way. Demands corresponding to THs
of the same combinatorial type are “essentially” the same in that they represent agents
who make the same trade-offs between additional units of goods, even if not always at
the same prices. We will show that all THs of the same combinatorial type are, in a
precise way, dual to a particular subdivision of ConvA.

3.1 Duality between convex polytopes and cells

Although we assume that goods are indivisible, we now develop a structure of convex
polytopes and their faces in quantity space, so extend our focus from A to ConvA (
Rn.20 We first show that this extension has no effect on the way we separate prices into

20Definitions and basic properties of standard geometric terms (polytopes, polyhedral sets, faces,
etc.) are in Appendix A.

12



different cell interiors by showing that ConvDu(p) = ConvDu(p
′)⇐⇒ Du(p) = Du(p

′),
for any prices p and p′. To do this we first prove a lemma, the Pseudo-equilibrium Prices
Lemma, that will be very important in the sequel:

Lemma 3.1 (Pseudo-equilibrium Prices Lemma, Milgrom and Strulovici, 2009, Propo-
sition 2). Let u be any valuation function. Suppose p is any price vector, and x is an
integer bundle in ConvDu(p). If there exists any price vector p′ such that x ∈ Du(p

′),
then x ∈ Du(p).

Proof. For all xβ ∈ Du(p), we know u(x) − p.x ≤ u(xβ) − p.xβ, with equality only
if x ∈ Du(p). So if x ∈ ConvDu(p), i.e., x =

∑
β λβx

β for some λβ ∈ [0, 1] with∑
β λβ = 1, then it follows that u(x) − p.x =

∑
β λβ (u(x)− p.x) ≤

∑
β λβu(xβ) −∑

β λβp.x
β =

∑
β λβu(xβ) − p.x and so, simplifying, that u(x) ≤

∑
β λβu(xβ), with

equality only if x ∈ Du(p).
Now suppose x ∈ Du(p

′). Then u(x)−p′.x ≥ u(xβ)−p′.xβ for all xβ so we similarly
show that u(x) ≥

∑
β λβu(xβ). Hence, if x ∈ Du(p

′) for any p′, then x ∈ Du(p). �

Note that we do not require that u is necessarily concave.

Corollary 3.2. For any valuation function, u, if p and p′ are any two price vectors,
then ConvDu(p) = ConvDu(p

′)⇐⇒ Du(p) = Du(p
′).

Proof. It is immediate from Lemma 3.1 that if x ∈ Du(p
′) ⊆ ConvDu(p

′) = ConvDu(p)
then x ∈ Du(p), so the result follows. �

For any price, p, we write ∆(p) := ConvDu(p) for this polytope in (divisible)
quantity space Rn. From Definition 2.1, and Corollary 3.2 we can write the associated
cell interior as {p′′ ∈ Rn | ∆(p) = ∆(p′′)}, and since it is therefore defined by the
polytope ∆(p), we write C∆(p) for the corresponding cell (its closure). Recall from the
discussion in Section 2.2 that a price p′′ is in the cell C∆(p) iff the bundles in Du(p) are
weakly preferred to all others at price p′′, i.e., iff Du(p) ⊆ Du(p

′′).21 Applying Corollary
3.2 again, we conclude that C∆(p) = {p′′ ∈ Rn | ∆(p) ⊆ ∆(p′′)}. It follows immediately

∆(p) ( ∆(p′)⇐⇒ C∆(p′) ( C∆(p). (2)

We now describe the dualities between the polytope ∆(p) in quantity space, and the
associated cell C∆(p) in price space; we show how they extend to the global structure
in the next subsection.

First, note the dimensions of ∆(p) and C∆(p) are dual. C∆(p) has the dimension of
its affine span, that is, of that set of prices p′ such that p′.(x−x′) = u(x)−u(x′) for all
x,x′ ∈ Du(p). If ∆(p) is k-dimensional, these equations impose k linearly independent
constraints on such p′, so dimC∆(p) = n− k.

Next observe the affine spans of these sets are orthogonal: since p′.(x−x′) is constant
for all p′ ∈ C∆(p) and all x,x′ ∈ Du(p), we have (p′ − p′′).(x − x′) = 0 for any
p′,p′′ ∈ C∆(p) and x,x′ ∈ ∆(p). So all prices in C∆(p) lie in a subspace of Rn orthogonal
to any x − x′ where x,x′ ∈ ∆(p), and all bundles in ∆(p) lie in a subspace of Rn

orthogonal to p′ − p′′ for any p′,p′′ ∈ C∆(p).

21See also Footnote 14.
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Therefore, any (n−1 dimensional) facet F = C∆(p) (in price space) corresponds to a
1-dimensional polytope, i.e., a line-segment, ∆(p), orthogonal to it (in quantity space).
And if x and x′ are the endpoints of the line-segment ∆(p), then x−x′ = wvF for some
w ∈ Z, where vF is a primitive integer vector in the direction of ∆(p), i.e. in the normal
direction to F ; let us chose vF so that w > 0. And since the bundles demanded in the
UDRs on either side of F are precisely the vertices at the endpoints of ∆(p), it also
follows that this w is the weight of F , as defined in Section 2.2. In words, the “length”
of the line-segment ∆(p) in quantity space is the weight of its corresponding facet in
price space.

3.2 The subdivided Newton Polytope

Convex geometry now provides a clever trick to find the set of all the polytopes,
∆(p), very quickly, and see how they fit together in quantity space. From this it is easy
to see how the cells of the TH fit together in price space.

The condition that a bundle x′ ∈ Du(p) maximises the agent’s surplus at price p
can be re-written using vectors in Rn+1 as (−p, 1).(x, u(x)) ≤ (−p, 1).(x′, u(x′)) for
all x ∈ A. So the points (x, u(x)), for all x ∈ A, must lie in a particular half-space
of Rn+1. Furthermore all the other bundles x′′ which are optimal at the same price p
satisfy (−p, 1).(x′′, u(x′′)) = (−p, 1).(x′, u(x′)) and so all lie on the hyperplane in Rn+1

bounding this half-space. Hence every set ∆(p)(= ConvDu(p)) is the projection to the
first n coordinates of a face of the set

Â := Conv{(x, u(x)) ∈ Rn+1 | x ∈ A}. (3)

Conversely, consider any face ∆̂ of Â on the ‘upper side’ with respect to the final
coordinate (i.e., any face such that points with a slightly lower final coordinate than

those in the face are in Â, and those with a slightly higher final coordinate are not). ∆̂

is the intersection of Â with some hyperplane {y ∈ Rn+1 | y.v = α} for some α ∈ R,
and some normal vector v ∈ Rn+1. We know Â is contained in the half-space below the
hyperplane with respect to the final coordinate. Renormalising so the final coordinate
of v is 1, so v = (−p, 1) for some vector p ∈ Rn, the face ∆̂ is the convex hull of all
points (x′, u(x′)), where x′ is in A, satisfying (−p, 1).(x, u(x)) ≤ (−p, 1).(x′, u(x′)) for

all x ∈ A; that is, u(x′)− p.x′ is maximal over bundles in A. Thus the projection of ∆̂
to its first n coordinates is exactly ∆(p) for this p.

Summarising, each upper face of Â is the set (x, u(x)) that are maximal when viewed
in the direction of some vector (−p, 1); the face then projects to ∆(p). And conversely,

any set ∆(p) is the projection of an upper face of Â. So the information about the
demand sets is contained in the projections of these faces, that is, in the collection of
sets

{
x | (x, u(x)) ∈ ∆̂

}
, where ∆̂ is an upper face of Â.

Definition 3.3.

1. The subdivision of ConvA given by the projections of the upper faces of Â onto
ConvA is a subdivided Newton polytope (SNP).22

22It is a subdivision of the set ConvA which is itself called a Newton polytope in (tropical) algebraic
geometry.

14



2. The image ∆ of a k-dimensional face ∆̂ of Â is a k-face of the SNP.

We give an example of how to construct an SNP in practice in Section 3.3.
Since, for k < n, any k-face of Â is the face of an n-face of Â, it is sufficient to

consider only the maximal faces of Â to identify the full SNP structure.
In particular, an SNP n-face, ∆, is the projection of an upper n-face ∆̂ of Â. But

since ∆̂ is n-dimensional, there is a unique hyperplane of Rn+1 passing through it, and
so a unique normal vector of the form (−p, 1). So the projection ∆ of ∆̂ to ConvA is
exactly ∆(p) = ConvDU(p), and is not ∆(p′) for any p′ 6= p. So p is the only price
at which all these bundles are demanded, and {p} is therefore a 0-cell in the TH, i.e.
{p} = C∆(p).

At the other extreme, for any 0-face {x} of the SNP, there exist prices p at which

(x, u(x)) is the unique point of Â intersecting a supporting hyperplane normal to (−p, 1).
For any such p we know {x} = Du(p). Furthermore, if any such p is changed infinites-
imally in any coordinate direction, the point {(x, u(x))} is still the unique point of

Â intersecting the corresponding supporting hyperplane. So the UDR in which x is
demanded, that is, the set of p such that {x} = Du(p), is (of course) n-dimensional.

Between these extremes, any upper k-face of Â, where 2 ≤ k ≤ n − 1, is the
intersection of Â with any one of a range of hyperplanes in Rn+1. The vector (−p, 1)
normal to any such hyperplane defines a price p lying in the corresponding (n − k)-
dimensional cell interior of the TH.

The fact that the SNP’s faces, ∆(p), are the projections of faces of a convex set tells
us how they fit together, and hence how the sets Du(p) fit together. If ∆(p) ( ∆(p′)
for two faces of the SNP, then ∆(p) must be a face of the polytope ∆(p′). But recall
(displayed equation 2) that ∆(p) ( ∆(p′) iff C∆(p′) ( C∆(p). As discussed above (at and
beneath point V of Section 2.2, ) the latter holds iff C∆(p′) is in the boundary of C∆(p).
Moreover, ∆(p) and C∆(p) are orthogonal, as discussed in Section 3.1. So knowing how
the ∆(p) fit together in quantity space makes it immediately obvious how the C∆(p) fit
together in price space, and vice versa.

So the SNP tells us which cells must exist in the corresponding THs, their slopes,
and how they are connected. In other words

Theorem 3.4 (Mikhalkin, 2004, Proposition 2.1.). For a given ConvA there is a 1-1
correspondence between SNPs and combinatorial types of THs.

As noted above, this correspondence is coarser than the correspondence we described
in the previous subsection (Theorem 2.8): different valuations correspond to the same
SNP, and hence to a TH of same combinatorial type, even though the coordinates of the
parts of the TH differ. However, this correspondence isolates the underlying properties
of demands, specifically the sets of bundles one might ever be indifferent between, and
the trade-offs one might make.

Also, starting from any SNP, it is easy to find the combinatorial type of the TH,
and so see which coordinates uniquely define the TH. The TH can then be completely
identified using the valuation u. We illustrate this in Section 3.3.

Another important point follows: if A is small, it is easy to list all the possible SNPs,
and hence also list all possible combinatorial types of THs for the set A. That is, we
can easily list every possible distinct structure of trade-offs that an agent might make
between a given finite collection of goods.
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Of course, we do not need to start with the SNP. Given the TH and an identified
‘demand 0’ UDR, we can easily infer both A and the full SNP using the duality described
in this section.

Note, however, that if we do not know ex ante whether a TH is concave, then neither
the TH nor the SNP can necessarily tell us which bundles are demanded in each cell of
the TH. The information we do have is as follows:

Corollary 3.5. Let A be convex in Zn, let u : A→ R be a valuation, and consider the
corresponding SNP.

1. A bundle x ∈ A is a vertex of the SNP iff it is demanded in some UDR of the
corresponding TH.

2. If every bundle x ∈ A is a vertex of the SNP, then û is concave for every valuation
û : A→ R such that Tû = Tu.

3. If a bundle x ∈ A is not a vertex of the SNP, there exist valuations û : A → R
such that Tû = Tu but x /∈ Dû(p) for any p ∈ R.

Proof. 1 is clear from the previous discussion. 2 follows from Lemma 2.5. For 3, define û
to be equal to u on the vertices of the SNP, and to be arbitrarily large negative numbers
on those bundles in A that are not vertices of the SNP. �

3.3 Examples

Example 3.6. Starting from a valuation function, a TH can easily be drawn by first
deriving the SNP, then using the SNP to draw the shape of the TH’s combinatorial
type, and finally using the valuations to fix the TH’s exact location in price space.

Figure 6 presents a valuation function u, both in the usual tabular representation,
and by showing the permissible set of bundles A, as a subset of the lattice Zn, labelled
with their valuations. As before, the quantity of good 1 increases as we move to the
left, and the quantity of good 2 increases as we move down, in order to show the duality
between the SNP and the TH most clearly.

Figure 7 adds a third dimension to Figure 6b. Figure 7a shows the points (x, u(x))
for all x ∈ A, with the valuations u(x) drawn as lines connecting them to their associated
bundles, x, to make the relationships clearer. Figure 7b then pictures the upper surface
of Â, with those lines that correspond to bundles that are demanded for some price(s) in
bold. Note that the valuation is non-concave and the bundle (1, 1) is never demanded.

The SNP is pictured in Figure 8. It is drawn without axes, since replacing A with
A+ c for some c ∈ Zn and re-defining u to correspond gives us the same SNP and TH.
A depiction of the SNP and an example of a TH of the corresponding combinatorial
type is given in Figure 9, colour-coded so that objects that are the geometric duals of
each other have the same colours as each other. That is, each point in the TH has the
same colour as its corresponding area in the SNP; each line-segment (facet) in the TH
has the same colour as the line-segment (edge) in the SNP that it corresponds, and is
orthogonal to; and the white areas (UDRs) in the TH correspond to the white points
(bundles that are vertices) in the SNP.
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(a) Tabular representation of the valua-
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0

7

9

5

8

13

10

12

13

x2

x =02

x =12

x =22

x
 =

2
1 x
 =

1
1 x
 =

0
1

x1

(b) Each circled number gives the value
of the bundle in that position.

Figure 6: Alternative representations of a valuation function.

Note that the black point in the SNP that represents the bundle (1, 1) has no object
corresponding to it in the TH–it is “hidden” inside the scarlet-coloured point in the
TH. If that bundle’s valuation were greater so that, rather than the line corresponding
to it in Figure 7b lying strictly below a plane coincident with Â, the line instead just
touched that plane,23 then the bundle would be demanded at the price corresponding
to the scarlet-coloured point in the TH. And if the bundle had a still higher valuation,
that point in the TH would “open up” to form an area corresponding to the range of
prices at which the bundle would then be demanded.

The final SNP lattice point is coloured grey. It is not an SNP vertex, but lies within
(horizontal) SNP edge of the same colour, which has “length” 2 (more precisely, the
greatest common divisor of the differences (2, and 0) between the co-ordinates of the
bundles at the ends of this edge is 2). And this corresponds to the vertical grey facet in
the TH which is labelled “2”, reflecting its weight.

Finally, remember that Figure 9b shows only one of many THs of the combinatorial
type corresponding to the SNP in that figure; the SNP is silent on the lengths of the
lines in its corresponding THs. However, the exact location of the TH for our specific
set of valuations can easily be worked out from the valuations of different bundles: See
Figure 10.

For example, it is clear from the valuations of bundles (1,0) and (0,1) that the top
right (pinky-purple) point of the TH is at p = (5, 7), since 5 and 7 are the prices below
which the agent will first buy any of goods 1 and 2, respectively,when the other good’s
price is very high. And the coordinates of the purple point at the bottom right of the
TH must be (4,2) since 9 − 7 = 2 is the incremental value of a second unit of good 2,
when the agent has no unit of good 1, and 13 − 9 = 4 would be the further increment
in value from then also having a unit of good 1, etc.

We discussed above (Section 2.2; see especially Example 2.9) how the demand in
each UDR can easily be worked out from the TH.

23It is easy to compute that the valuation of this bundle would have to be 10 for this to happen.
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(a) The values (x, u(x)) for all x ∈ A.
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(b) The upper surface of Â.

Figure 7: Finding Â in three dimensions.

x1

x2

Figure 8: The SNP.

Example 3.7. (Example 2.9 revisited.) It is not hard to check that the SNP for Example
2.9 is as shown in Figure 11a. Two examples of THs of the corresponding combinatorial
type are given in Figures 11b and 11c.

Example 3.8. For a fixed A, it is easy to draw every possible SNP and so obtain every
possible combinatorial type of TH, thus enumerating all possible “essentially-different”
structures of demand. We do this for A = {0, 1}2 in Figure 12.

It is not hard to see that Figure 12a applies when u(0, 0)+u(1, 1) < u(1, 0)+u(0, 1),
so represents substitutes; Figure 12b applies when u(0, 0) + u(1, 1) = u(1, 0) + u(0, 1),
so is additively separable demand; and Figure 12c applies when u(0, 0) + u(1, 1) >
u(1, 0)+u(0, 1), so is complements. (Recall Figure 4.) Importantly, it is clear that these
are the only possibilities.

Observe that Figure 12b can be seen as a limit of Figure 12a (or, equivalently, Figure
12c). In the TH, the two 0-cells become arbitrarily close and then coincide in the limit;

in the SNP, the faces of Â tilt until they are coplanar when the SNP edge distinguishing
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(a) The SNP, colour-coded.

2

p2

p1
(b) A TH, colour-coded to correspond.

Figure 9: The SNP and a TH of the corresponding combinatorial type, colour-coded so
that dual geometric objects have the same colours.

them disappears in this limit.
Likewise, any SNP in which the subdivision is not maximal (that is, additional valid

(n− 1)-faces could be added) can be recovered by deleting (n− 1)-faces from some SNP
whose subdivision is maximal; the corresponding TH is a limit (or ‘degeneration’). Even
for larger supports than A = {0, 1}2, we can efficiently enumerate all those combinatorial
types of demand for which the SNP subdivision is maximal, knowing we can recover the
remainder as their limits. We do this for A = {0, 1, 2} × {0, 1} in Figure 13.

With a bit of practice, starting from either the TH or SNP it is easy to draw the
other figure quite fast, at least in two dimensions: if we start with the TH, we know each
area around the TH corresponds to a vertex in the SNP, and areas that are separated
by a line-segment in the TH correspond to vertices that are connected by a line-segment
in the SNP. So we can immediately draw all the vertices and lines. The remaining task
is to “straighten out the SNP” without changing it topologically, noting that each line-
segment in the SNP is orthogonal to its corresponding line-segment in the TH, and that
where a line-segment of weight N is crossed in the TH, there are (N−1) points between
the vertices of the corresponding line-segment in the SNP. (The existence of additional
points in the SNP that are not on any line segment becomes apparent once the relative
positions of all lines are fixed.) Going from the SNP to the TH essentially reverses the
process, as we illustrated in Example 3.6, above.

4 Classifying demands

The previous sections suggest classifying demands according to the normal vectors
that determine the shapes of agents’ THs. We now show that defining demand ‘types’
in this way does indeed provide a simple characterisation of the standard concepts of
substitutes and complements, as well as more recently developed concepts such as strong
substitutes, and gross substitutes and complements.
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Figure 10: The TH of the valuation function presented in Figure 6.

(a)

2

(b)

2

(c)

Figure 11: (a) the SNP of Example 2.9; (b) and (c) two examples of THs of the combi-
natorial type of Example 2.9.

This offers an quick way to check whether demand is, e.g., strong substitutes, since
there are easy software solutions to calculate the normal vectors of the TH for any
valuation function, u, and hence also immediately yield the demand’s ‘type’.

Our approach also provides a natural answer to the question of when demand ‘types’
are effectively equivalent: if and only if they are unimodular basis changes of each other.
Furthermore, demand ‘types’ are a simple framework in which to develop additional
distinctions between classes of demands.24

Finally, we will show in Section 5 that our framework also allows us to develop
new results about aggregate demand, for example, about the existence of competitive
equilibrium.

24In other work, we use our framework to derive implications about the scope of possible demand
functions which are substitutes; for example, various marginal valuations must be equal. See also
Fujishige and Yang (2003).
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(a) (b) (c)

Figure 12: All the possible SNPs, and examples of their corresponding combinatorial
types of TH when A = {0, 1}2.

(a) (b) (c) (d) (e) (f)

Figure 13: All the possible SNPs with maximal subdivision, and examples of their
corresponding combinatorial types of TH, when A = {0, 1} × {0, 1, 2}.
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4.1 Demand Types

Let D = {v1, . . . ,vr} be a set of primitive integer vectors in Zn, such that if v ∈ D
then −v ∈ D. We will, however, abuse notation by writing the set to include just one
representative of each such pair:

Definition 4.1. An agent has demand of type D= {v1, . . . ,vr} if all the primitive
integer normals to the facets of the TH of its demand lie in D.

An agent has concave demand of type D if its demand is concave and of type D.

It would of course be equivalent to define the demand type of an agent by referring to
the edges of its SNP.

We will represent D by any n × r matrix D whose columns are the vectors of D.
Of course, D is not unique, since its columns can be in any order, whereas the set D is
unique.25 For example, any of a number of matrices including, for example,(

1 0 1
0 1 −1

)
,

(
0 1 1
1 0 −1

)
, and

(
0 −1 −1
−1 0 1

)
,

represent the demand type D = {±(1, 0),±(0, 1),±(1,−1)} of the THs in Figures 1,
4a, 12a, 12b, and 13a.26 Note that a TH has any demand type which contains its facet
normals; we do not restrict to the minimal such set. (So, for example, any of the THs
listed earlier in this paragraph are also of type {D,±(N1, N2)}, for any primitive integer
(N1, N2).)

It is straightforward that two demands share many properties if one can be trans-
formed into the other by a unimodular basis change.27 Such a basis change is equivalent
to re-packaging the goods so that any integer bundle can still be obtained by buying
and selling an (integer) selection of the new packages; and any integer selection of the
new packages was available as an integer combination of the original goods. So such a
basis change has no “real” effect.

Likewise, such a basis change simply distorts the TH by a linear transformation
which leaves its important structure unaffected:

Proposition 4.2. For A ( Zn and u : A → R define a basis change by a unimodular
n× n matrix G by G∗u : G−1A→ R via G∗u(y) := u(Gy). Then

1. A bundle is demanded under the original demand at a certain price iff an asso-
ciated bundle is demanded under the transformed demand at an associated price;
specifically: x ∈ Du(p) ⇐⇒ G−1x ∈ DG∗u(G

Tp).

25Note our definition does not consider the weights on facets. We could take these into account, by
relaxing the condition that all vectors in D be primitive. Then, for every facet F (with weight ωF and
primitive integer normal vF ), we could require either that ωFvF ∈ D, or that ωFvF = kv, for some
k ∈ Z and some v ∈ D. The former approach would allow us to specify the precise weights that facets
may possess; this may seem unnatural, since a higher weight facet can be considered as the limit of
two lower weight facets as they come arbitrarily close together, and thus very similar agent demands
would be classified differently. The latter approach would allow us to insist on certain non-concavities
of demand, and is a more straightforward generalisation of our definition. However, since we are most
interested in concave demands, we have not pursued either approach here.

26We will see later (Section 4.2) that this demand type is “strong substitutes” in the two-good case,
which we will label D2

ss.
27A unimodular matrix G is an integer matrix with integer inverse; an action of G on bundles of

goods corresponds to an action of GT on prices.
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2. The TH of the transformed demand is a linear transformation of the original de-
mand: TG∗u = {GTp | p ∈ Tu};

3. The same linear transformation applies to demand types: u(·) is of (concave)
demand type D iff G∗u(·) is of (concave) demand type GTD = {GTv | v ∈ D}.

Proof. See Appendix B.1. �

4.2 Substitutes

We use the standard definitions of “(ordinary) substitutes” and “strong substi-
tutes”, as used in the seminal papers by Ausubel and Milgrom (2002), and Milgrom and
Strulovici (2009), respectively.28

Definition 4.3. Let A ( Zn be finite, and u : A→ R be a valuation:

1. goods are ordinary substitutes if for any prices p′ ≥ p such that #Du(p) =
#Du(p

′) = 1, if {x} = Du(p) and {x′} = Du(p
′) then x′k ≥ xk for all k such that

pk = p′k.
29

2. goods are strong substitutes if, when we consider every unit of every good as a
separate good, then they are ordinary substitutes.30

We define two corresponding demand types, Dnos and Dnss; we will show Dnos and
concave Dnss are exactly equivalent to “ordinary substitutes” and “strong substitutes”,
respectively.

Definition 4.4.

1. Dnos consists of those primitive integer vectors in Zn with at most one positive and
at most one negative coordinate entry, and all others zero.

2. Dnss consists of those vectors in Zn with at most one +1 and at most one −1
coordinate entry, and all others zero.

28That is, we call “ordinary substitutes”, precisely what Ausubel and Milgrom (2002) simply call
“substitutes”. We hope this increases clarity (since others loosely refer to substitutes in other ways).
Note, in particular, that Ausubel and Milgrom’s definition is not identical to that of Kelso and Crawford
(1982) when there are multiple units of three or more goods. (See Baldwin and Klemperer, 2012; the
definitions are equivalent in the simpler cases A = {0, 1}n–see Hatfield et al., 2011–and n = 2.) Milgrom
and Strulovici (2009) call Kelso and Crawford’s original definition “weak substitutes”, but this is in
fact a stronger definition of substitutes than Ausubel and Milgrom’s. The latter definition (that we
follow) seems most natural in the general case, and is also equivalent to several properties that seem to
naturally characterise “standard” substitutes, and to the indirect utility function (maxx∈A{u(x)−p.x})
being submodular. We discuss these issues in detail in Baldwin and Klemperer (2012).

29See Ausubel and Milgrom (2002).
30See Milgrom and Strulovici (2009). That this definition is equivalent to theirs follows from Hatfield

et al. (2011, Theorem A.1).
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Any change in demands from one UDR to another can be divided up into a series of
crossings of individual facets, at each of which demand changes in a direction prescribed
by the demand type. So it is straightforward that a valuation of demand type Dnos is an
ordinary substitutes valuation, and vice versa. We use results in Milgrom and Strulovici
(2009) and Hatfield et al. (2011 Theorem A.1) to show concave demand type Dnss is
equivalent to strong substitutes:

Proposition 4.5.

1. A valuation is of demand type Dnos iff it is an ordinary substitutes valuation.

2. A valuation is of concave demand type Dnss iff it is a strong substitutes valuation.

Proof. See Appendix B.1. �

So we can straightforwardly identify whether goods are ordinary or strong substitutes
from their ‘demand type’.

It is immediate, for example, that the examples of Figures 1, 4a, 12a, 12b, and 13a
are all of type D2

ss, while our 3-dimensional example, Figure 5, has demand type D3
ss.

However, Example 2.9 (Figure 3) has a facet with normal (−1, 2) (the line segment
between the prices (4,3) and (6,4)), in addition to facets with normals (1, 0), (0, 1), and
(1,−1), and so is not of type D2

ss, but is of type D2
os, as is the example of Figure 13b.

4.3 Complements

“Complements” can be defined analogously to the Definition 4.3.1 of “ordinary sub-
stitutes”:

Definition 4.6. Let A ( Zn be finite, and let u : A → R be a valuation. Goods are
complements if, for any prices p′ ≥ p such that #Du(p) = #Du(p

′) = 1, if {x} = Du(p)
and {x′} = Du(p

′) then x′k ≤ xk for all k such that pk = p′k.

Similarly to Definition 4.4.1 we define a corresponding demand type:

Definition 4.7. Dnc consists of those primitive integer vectors in Zn whose non-zero
coordinate entries are all of the same sign.

As in Proposition 4.5.1, the facet normal at every crossing of facets that is part of the
change in demands from one UDR to another prescribes the complementary property,
so it is elementary that:

Proposition 4.8. A valuation is of demand type Dnc iff it is a complements valuation.

Proof. See Appendix B.1. �

The examples of Figures 4b, 12b, 12c, 13c and 13d are all of type D2
c .

Note that although complements are often thought of as directly analogous to (ordi-
nary) substitutes–as they are in two dimensions–this is not true if there are more than
two goods. The case of complements permits facet normals with any number of non-zero
entries, whereas substitutes permits at most two non-zero entries.
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Figure 14: A facet with normal (1,−1, 1): increasing either p1 (as shown with an arrow)
or p3 demonstrates complementarities between goods 1 and 3.

The reason is that with substitutes, if any one good could trade-off against two
others at the same price, it would necessarily follow that the two other goods were
complementary. Even when all goods are mutual substitutes, there can never be trade-
offs between more than two of them across a single facet: if more than two facet normal
coordinate entries are non-zero, then at least two must have the same sign, so there are
complementarities between the corresponding goods.

Consider, for example, Figure 14, in which there is a facet with normal (1,-1,1),
defined by {p ∈ R3 | p1 + p3 = p2; p1,p2, p3 ≥ 0}: an increase in the price of either good
1 or good 3 that moves from the UDR with p1 + p3 < p2 to the UDR with p1 + p3 > p2

reduces demand for both goods. So, despite the symmetry between Definitions 4.3.1 and
4.6, complements allows far more degrees of freedom than does substitutes. One benefit
of our way of classifying demand “types” is that it makes this lack of symmetry between
substitutes and complements very clear.

4.4 Additively Separable Demand

Additively separable demand corresponds to an extremely simple demand type:

Definition 4.9. Dna consists of the coordinate vectors {ei | i = 1, . . . , n} in Zn.

In the additively separable case, a change in the price of one good will never affect
demand for any other good. So it is not hard to show:

Proposition 4.10. A valuation is of concave demand type Dna iff it is additively sepa-
rable.

Proof. See Appendix B.1. �

Note that being additively separable is a more stringent condition than being both
(ordinary) substitutes and complements: neither of the latter conditions require a val-
uation to be concave, but an additively separable valuation necessarily is. A simple
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example of a valuation of type D2
a which is not concave (or additively separable) is:

A = {0, 1, 2}2, and

u(x, y) =

{
x+ y (x, y) ∈ A, (x, y) 6= (1, 1)
0 (x, y) = (1, 1).

.

4.5 Generalised Gross Substitutes and Complements (cf., Sun
and Yang, 2006)

We define “generalised gross substitutes and complements” (GGSC) for the extension
of Sun and Yang’s (2006, see also 2009) definition of “gross substitutes and complements”
to permit multiple units of goods. First recall:

Definition 4.11 (Sun and Yang, 2006, Definition 2.1). A valuation u : {0, 1}n1+n2 → R
is a gross substitutes and complements valuation (in the sense of Sun and Yang) if, for
any price p and any p′ = p + δei where δ > 0, and any x ∈ Du(p): if i ≤ n1 then there
exists x′ ∈ Du(p

′) such that x′k ≥ xk for all k ≤ n1 such that k 6= i, and x′k ≤ xk for all
k > n1; and if i > n1 then there exists x′′ ∈ Du(p

′′) such that x′′k ≤ xk for all k ≤ n1,
and x′′k ≥ xk for all k > n1 such that k 6= i.

We will write In1,n2 for the (n1 +n2)×(n1 +n2) matrix In1,n2 :=

(
−In1 0

0 In2

)
where

Ini
is the ni × ni identity matrix, i = 1, 2. Recall from Proposition 4.2 that, if A (

Zn1+n2 then, for any u : A → R, we define the valuation I ∗n1,n2
u : I −1

n1,n2
A → R via

I ∗n1,n2
u(y) = u(In1,n2y) for all y ∈ I −1

n1,n2
A. Now we define:

Definition 4.12. Let A ( Zn be finite, and let u : A → R be a valuation. Goods are
generalised gross substitutes and complements (GGSC) if the goods may be reordered
such that, for some n1 + n2 = n, the valuation I ∗n1,n2

u is a strong substitute valuation.

The corresponding demand type we define is as follows:

Definition 4.13. Dn1,n2

GGSC is the following set of vectors in Zn1+n2

{ei, ej, ei − ei
′
, ei + ej, ej − ej

′ | i, i′ ∈ {1, . . . , n1}, j, j′ ∈ {n1 + 1, . . . , n1 + n2}}.

It follows straightforwardly that:

Proposition 4.14. A valuation is a GGSC valuation iff the goods may be reordered
such that, for some n1 + n2 = n, it is of concave type Dn1,n2

GGSC.

Proof. It is not hard to see that Dn1,n2

GGSC = I T
n1,n2
Dnss. So the result follows by Definition

4.12 and by Proposition 4.2. �

Sun and Yang (2006, Section 3) have shown definitions 4.11 and 4.12 coincide when
A = {0, 1}n, so this interpretation applies also to their demand structure.

5 Aggregate Demand and Equilibrium

We now consider aggregate demand across many agents. In particular, we precisely
identify the demand types for which competitive equilibrium always exists.
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5.1 The structure of aggregate demand

We now have a finite set J of agents. Each agent j has a valuation uj of integer
bundles in a finite setAj, so the bundles of interest on aggregate areA := {

∑
j∈J xj | xj ∈

Aj}, which we shall refer to as the support of the aggregate valuation.31 The aggregate
demand at any price p is simply

D{uj}(p) :=

{∑
j∈J

xj | xj ∈ Duj(p)

}
. (4)

One way to find aggregate demand is to start with the valuation functions uj(·),
combine them to give an ‘aggregate valuation function’, and then proceed in exactly the
same way as for individual demand. It is standard (see Appendix B.2) that if agents’
preferences are quasilinear then one attains an aggregate valuation function U : A→ R
as the greatest sum of valuations that can be attained by dividing any bundle y ∈ A
between the agents:

U(y) := max

{∑
j∈J

uj(xj) | xj ∈ Aj,
∑
j∈J

xj = y

}
,

and:

Proposition 5.1. D{uj}(p) = DU(p) for all p ∈ Rn.

So we henceforth refer to D{uj}(p) using the simpler notation DU(p).
However, the problem with this approach is that U(·) is very hard to work with–to

find any value of U(y), we need to consider all possible partitions of y among the agents,
which is both time-consuming and unintuitive.

It is straightforward, on the other hand, to start with the individual THs, Tuj ,
combine them to form an aggregate TH, T{uj}, and find information about aggregate
demand from that. Recall that the underlying set of Tuj is those prices at which demand
uj is non-unique. So, since aggregate demand DU(p) is unique iff all individual demands
Dui(p) are, the underlying set of T{uj} is just the union of all the Tuj . Figure 15
illustrates this for the aggregate of the two agents’ demands in our simple substitutes
and complements example, Example 2.10.
T{uj} inherits the structure of a proper rational polyhedral complex from the indi-

vidual THs, although the cells will not in general be exactly the same: if cell interiors
from two different agents intersect, the cells are split up into new, smaller cells in T{uj}
with a new, lower-dimensional, cell at their intersection. For example, in Figure 15b,
the point (1

2
, 1

2
) is a 0-cell, on the boundary of four distinct 1-cells.

It is easy to see that T{uj} also inherits a balanced weighting from the weightings of
the individual THs. For any facet F of T{uj}, let its weighting w{uj}(F ) be

∑
j∈J wj(F ),

in which wj(F ) is the weight of the facet Fj ⊇ F of Tuj , or wj(F ) = 0 if no facet
Fj ⊇ F of Tuj exists. Since each individual TH is balanced, adding weightings in this

31We could alternatively consider each agent as having a valuation over the full support of the
aggregate valuation A by letting uj(x) := max{u(y) | y ∈ Aj , yi ≤ xi, i = 1, . . . , n} for any x ∈ A for
which this set is non-empty, and uj(x) = −∞ otherwise.
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Figure 15: (a) and (b) the THs of the individual demands of Example 2.10; (c) the TH
of the aggregate of the two demands of Example 2.10.

way creates a balanced weighting.32 And the change in aggregate demand as we cross a
facet is just the sum of changes in individual demand.

So, since the underlying sets of T{uj} and TU are the same, and so are their weightings,
it follows (see Appendix B.2) that as THs,

Proposition 5.2. T{uj} = TU .

So we will henceforth also refer to the aggregate TH, T{uj}, using the simpler notation
TU .

Thus simply “adding” the individual THs yields the aggregate TH. If we know what
is demanded in one UDR then, as before, we immediately know what is demanded in
all the UDRs, without needing to directly consider the function U . And it is immediate
that demand ‘type’ is preserved under aggregation:

Corollary 5.3. Valuations uj are of demand type D for all j ∈ J iff the aggregate
demand TU is of demand type D.

Proof. This is immediate from Proposition 5.2 and the definition of T{uj}. �

However, it is not the case that concavity of each individual demand implies con-
cavity of the aggregate demand. (We will exhibit a simple example of this failure in
Example 5.11.) And we have seen (Lemma 2.5) that if the function U is not concave,
then there exists a bundle in A that is never demanded.

Furthermore, we cannot generally infer from an aggregate TH whether there is a
bundle that is never the aggregate demand–recall that the geometric construction does
not tell us the precise demand set, DU(p), at all prices p ∈ T{uj}, so it is ambiguous
from the geometry whether any integer vectors in ConvDU(p) that are not vertices of
ConvDU(p) are in DU(p) (see Corollary 3.5).

32In more detail: let G be a (n− 2)-cell in T{uj}, let F1, . . . , Fl be the facets adjacent to G, and let
vFk

be primitive integer vectors for each, chosen according to a coherent orientation. Then for every

agent j, the equation
∑l

k=1 wj(Fk)vFk
= 0 holds: if G is contained in an (n− 2) -cell of Tuj then, this

follows from Tuj being balanced; if G is contained only in a single facet of Tuj then the only non-zero
terms in this sum are those which first add and then subtract the weight of this facet to j; if G∩Tuj = ∅
then the expression is identically zero. We conclude

∑l
k=1 w{uj}(Fk)vFk

=
∑

j∈J
∑l

k=1 wj(Fk)vFk
= 0.

Alternatively, one can see this by appealing to Appendix B.2, which confirms that the weightings are
the same as those on TU – being, of course, automatically balanced since it is the TH corresponding to
U(·).
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Of course, if there is a bundle which is not the aggregate demand of the agents for
any price, then a competitive equilibrium does not exist when this is the bundle of goods
available in the economy.

The remainder of this section therefore provides conditions which guarantee that
a competitive equilibrium always exists, by providing conditions which guarantee that
the aggregate valuation U(·) is concave (without needing to explicitly calculate U(·)).
In particular, we are interested in the existence of equilibrium for agents with specified
demand types, as defined in Section 4:

Definition 5.4. A (concave) demand type D always has a competitive equilibrium if,
for every set of agents with (concave) demands of type D, and for an economy endowed
with any bundle in the support of the aggregate valuation, a competitive equilibrium
exists.

Note that there always exist some collections of agents with demands of type D
which do have a competitive equilibrium for any supply in their support, whether or not
the type D ‘always has a competitive equilibrium’.33 Note also that since the demand
of a single agent with non-concave valuation function fails to always have a competitive
equilibrium, we are only interested in concave demand types here.

A benefit of our method of categorising demand types is that it is straightforward
that:

Proposition 5.5. Always having a competitive equilibrium is a property that is preserved
under unimodular basis changes.

Proof. See Appendix B.2 �

5.2 When does Competitive Equilibrium exist?

This section proves a theorem, inspired by “intersection multiplicities” in tropical
geometry, which identifies precisely which demand types always have a competitive
equilibrium. Our assumptions about agents’ preferences are weaker than in the existing
literature, so our “necessary and sufficient” condition for equilibrium is correspondingly
more general. In particular (see Section 5.3.3) it is not necessary for all agents to have
strong substitute demands (or some basis change thereof) for equilibrium to always
exist.34

Throughout, we write “the determinant of vectors w1, . . . ,wn” to mean the deter-
minant of the n×n matrix which has these vectors as its columns.35 And we say that a
linearly independent set {w1, . . . ,ws} of vectors is “an integer basis for the subset they

33Trivially, a set of identical agents with concave demands of the type D does always have a compet-
itive equilibrium.

34For example, results such as those of Kelso and Crawford (1982), Hatfield and Kojima (2008), and
Hatfield et al. (2012) are necessary ‘in the maximal domain sense’, in Hatfield et al. (2012)’s words.
That is, in our language, they show that equilibrium always exists for some demand type D, but that
if one agent has preferences outside of D then this may fail.

35Changing the order of the vectors may change the sign of the determinant, so strictly speaking the
determinant is a property of an ordered n-tuple of vectors. This detail does not concern us as we are
only ever interested in the absolute values of determinants.
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span” if, whenever y ∈ Zn can be written as
∑s

i=1 aiw
i, in which ai ∈ R, then in fact

ai ∈ Z for i = 1, . . . , s.

Theorem 5.6. A concave demand type D always has a competitive equilibrium iff every
linearly independent set of vectors from D are an integer basis for the subspace they
span.

It is a standard result that our condition on D is equivalent to the condition that any s-
dimensional parallelepiped, whose edges are s linearly independent vectors inD, contains
no integer point (either in its boundary or in its interior) aside from its vertices–this
equivalence will be helpful in understanding our result. But this condition holds iff the
s-dimensional volume of the parallelepiped is 1 and, when s = n, this volume is simply
the (absolute value of the) determinant of the vectors along its edges. So if the set of
aggregate demands is in the same dimension as the number of goods, we can re-state
the theorem in a form that is easier to check:

Corollary 5.7. With n goods, a concave demand type D = {v1, . . . ,vr}, in which
v1, . . . ,vr span Rn, always has a competitive equilibrium iff every subset of n vectors
from D has determinant 0 or ±1.

In the more general case of Theorem 5.6 we allow demand types D that ignore
some directions of good availability. In such a D there are no collections of n linearly
independent vectors, so every subset of n vectors has determinant 0, and the check of
Corollary 5.7 tells us nothing. In this case, however, we can use one of the equivalent
conditions in Remark 5.8.2 and .3:

Remark 5.8. The following are equivalent, for a set of s linearly independent vectors
in Zn:

1. they are an integer basis for the subspace they span;

2. they can be extended to a basis for Rn, of integer vectors, with determinant ±1;

3. among the determinants of all the s× s matrices consisting of s rows of the n× s
matrix whose columns are these s vectors, the greatest common factor is 1.

Proofs of these facts may be found in Cassels (1959).36

We first show Theorem 5.6’s condition is necessary by presenting a class of examples:
whenever a set of s linearly independent vectors fails the condition, an example from
this class exhibits failure of competitive equilibrium. Take such a set of s vectors, and
fix a price p. Suppose we have s distinct corresponding agents such that, at price p,
each agent is indifferent between precisely two bundles, and those bundles differ by the
corresponding vector from the set. Thus each individual TH has a facet with p in its
interior, and with the corresponding vector as its normal vector. Suppose also that the
individual TH of no agent other than these s agents passes through p.37 Then there

361 ⇔ 2 follows from Cassels (1959) Lemma I.1 and Corollary I.3. 1 ⇔ 3 is Cassels (1959) Lemma
I.2.

37Our ‘determinant condition’ is equivalent to the tropical intersection multiplicity being greater than
one in such a case (see e.g. Osserman and Payne, 2010).
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always exists a possible bundle which is not demanded at any price. In fact, the SNP
face ConvDU(p) is a parallelepiped whose edges are the s vectors in question; it does
contains an integer point which is not at a vertex, and this integer point is precisely the
bundle which is never demanded. In detail:

Proposition 5.9. Consider s ≤ n agents each of whose demand set includes precisely
2 bundles at price p, i.e., #Dui(p) = 2, for i = 1, . . . , s. Write vi for the difference
between the two bundles demanded by agent i (so vi is normal to i’s facet of demand at
p). Write U for the aggregate valuation. Suppose the s vectors v1, . . . ,vs are linearly
independent but not an integer basis for the subspace they span. Then there exists an
integer bundle in ConvDU(p) which is not demanded at any price.

Proof. Each agent i’s demand at p has the form Dui(p) = {yi + δiv
i | δi ∈ {0, 1}} ,

where yi is the bundle demanded on the appropriate side of the TH facet. So the set of
bundles demanded on aggregate at p is

DU(p) =
{
y + δ1v

1 + · · ·+ δsv
s | δi ∈ {0, 1}; i = 1, . . . , s

}
,

where y =
∑

i y
i. That is, DU(p) is precisely the vertices of an s-dimensional paral-

lelepiped in Zn (since the vi are linearly independent) and, in particular, no bundle not
at the vertex of the parallelepiped is in DU(p). But it follows from the assumptions
that this parallelepiped contains a lattice point (that is, an integer bundle) not at one
of its vertices.38 For we know there exists a vector v ∈ Zn such that v =

∑
i βiv

i with
βi not all in Z. Subtracting, for each i, the integer part of βi times vi yields a vector
ṽ ∈ Zn such that y + ṽ is within the parallelepiped described. That is, there exists an
integer bundle ∈ ConvDU(p) but /∈ DU(p), and by Lemma 3.1, such a bundle cannot
be demanded at any price. �

Thus Theorem 5.6’s condition is necessary; we now turn to the question of its suffi-
ciency.

A demand type, D, always has a competitive equilibrium iff all integer bundles
(i.e., all lattice points) in the SNP of aggregate demand are demanded for some price.
It is immediate that any integer bundle that is at a vertex of the SNP is demanded.
Furthermore, any integer lattice point in the SNP of aggregate demand that is not a
vertex is “hidden” inside the corresponding intersection of the individual agents’ THs. So
the question is whether all the integer bundles that are in the convex hull of the demands
at an intersection of THs of agents with demand of type D are always demanded.

We show the “if” part of the Theorem in two stages: first, we show in Proposition 5.10
that all the integer bundles in the convex hull of the demands at any “nice” intersection
of agents’ THs are always demanded.

We will make our definition of a “nice” intersection precise in the statement of
Proposition 5.10 below. We will see that it covers any generic intersection at a single
price. For example, in two dimensions, two lines crossing at a single point is “nice”,
but having two coincident lines is not “nice”, and nor is three lines crossing at a single
point (which is non-generic); in three dimensions, either three planes meeting in a single
point, or a line meeting a plane in a single point is “nice”. The important property of

38This result amounts to a simple case of Minkowski’s theorem, for which see e.g. Cassels (1959)
Chapter III.
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“nice” intersections is that the changes in bundles considered by the different agents (as
each agent crosses between different regions of its TH) are always linearly independent.
This means that, if we consider any change in the aggregate demand at this price point,
we can straightforwardly and uniquely apportion it between the individual agents by
simply giving each individual agent that part of the aggregate change that follows its
direction of change.

Our proof of Proposition 5.10 observes that this fact implies that at any “nice” in-
tersection price, any integer bundle in the convex hull of aggregate demand can also
be uniquely partitioned into separate components of the bundle that are demanded by
the different individual agents; it then follows that each of these separate components
is in the convex hull of the corresponding individual agent’s demand at the given price.
Furthermore, the condition of Theorem 5.6 tells us precisely that any integer change in
aggregate demand at the price must correspond to a (possibly zero) integer change in
each agent’s allocation of each good. The concavity of each individual agent’s valua-
tion then means that each separate component of the total bundle is demanded by an
individual agent, and therefore that the aggregate bundle is also demanded. So we now
prove this in Proposition 5.10, for an appropriate definition of “nice”.

Proposition 5.10. Suppose price p is in the interior of an (n − ki)-cell Ci of the TH
Tui of each of s agents i = 1, . . . , s, who have concave valuations ui, and together have
aggregate valuation Ũ . Then every integer bundle in ConvDŨ(p) is demanded at p if
each Ci is a subset of the intersection of a set of facets F i

1, . . . , F
i
ki

of Tui (not necessarily
comprising all facets of Tui that pass through Ci) with primitive integer normal vectors
vi1, . . . ,v

i
ki

and {vij | i = 1, . . . , s; j = 1, . . . , ki} are an integer basis for the subspace of
Rn they span.

Proof. Agent i demands at p precisely the bundles demanded throughout the (n−ki)-cell
Ci, which corresponds to a ki-dimensional polytope ∆i in the SNP of agent i. Moreover,
∆i possesses an edge in direction vij for j = 1, . . . , ki; each corresponds to the facet F i

j .
Thus, if yi is some integer bundle in Dui(p), then (by a dimension count) the affine span

of ∆i is precisely
{

yi +
∑ki

j=1 β
i
jv

i
j | βij ∈ R for j = 1, . . . , ki

}
, and in particular, Dui(p)

is contained in this set.
Thus, using equation (4) we may express aggregate demand among these agents

as DŨ(p) =
{

y +
∑s

i=1

∑ki
j=1 a

i
jv

i
j | yi +

∑ki
j=1 a

i
jv

i
j ∈ Dui(p) for i = 1, . . . , s

}
, where

y :=
∑s

i=1 yi.
Now, suppose x is an integer bundle in ConvDŨ(p). Then x − y is in the span

of the vij. But since they are an integer basis for their span, we can write x − y =∑s
i=1

∑ki
j=1 b

i
jv

i
j, for some bij ∈ Z. So we can define xi := yi +

∑ki
j=1 b

i
jv

i
j, and know that

xi ∈ Zn.
But we also know xi ∈ ConvDui(p). To see this, observe that since x ∈ ConvDŨ(p),

we can write x − y =
∑

β

∑s
i=1

∑ki
j=1 λβa

i
j,βv

i
j for some finite set of weights λβ ∈ [0, 1]

such that
∑

β λβ = 1 and such that yi +
∑ki

j=1 a
i
j,βv

i
j ∈ Dui(p) for each agent i and

for each β. But since the vij are linearly independent, there is an unique way to write

x − y as a weighted sum of the vij, so bij =
∑

β λβa
i
j,β , and so xi = yi +

∑ki
j=1 b

i
jv

i
j =

yi +
∑ki

j=1

∑
β λβa

i
j,βv

i
j ∈ ConvDui(p).
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So xi is an integer vector in ConvDui(p). By concavity of ui there exists some
price at which xi is demanded by agent i (Lemma 2.5), and so by Lemma 3.1 we know
xi ∈ Dui(p). Thus x =

∑s
i=1 xi ∈ DŨ(p). That is, x is demanded at p, as required. �

Proposition 5.10 shows that Theorem 5.6’s condition is sufficient if all the intersec-
tions of the TH are “nice”. The second half of the proof of the “if” part of the Theorem
shows that generically all TH intersections are “nice”, and that any non-“nice” intersec-
tion is therefore close enough to being a “nice” intersection that Theorem 5.6’s condition
still suffices.

Consider an integer bundle that is “hidden” in the convex hull of aggregate demand
at a price point in a not-nice intersection. If it is not demanded at this price, agents’
aggregate utility from this bundle, at this price vector, must be strictly lower than their
aggregate utility from any bundle that is demanded at this price. Since this bundle
is a convex combination of other bundles that are demanded at this price vector, the
aggregate valuation from the bundle in question is strictly lower than the same convex
combination of the aggregate valuations of these other bundles. Let this aggregate
valuation difference be ε.

Now consider perturbing all agents’ valuation functions by arbitrarily small amounts,
so that their TH undergoes a small translation in price space. It is straightforward,
although somewhat tedious, to show that generically all the TH intersections are now
“nice”. So we can choose these small perturbations so this holds; additionally, we ensure
that no agent’s valuation of any available bundle is affected by more than ε

3m
, in which

m is the number of agents present.
If the condition of Theorem 5.6 is satisfied, the bundle in question is (by Proposition

5.10) demanded by agents with the perturbed valuation functions at some price. But
the perturbation of the valuation functions cannot change the aggregate valuation from
either this bundle, or the same convex combination of the aggregate valuation of the
other bundles, by more than ε/3. So the aggregate valuation from this bundle is still
below the same convex combination of the aggregate valuation of the other bundles,
and therefore the aggregate utility of this bundle is also still below the same convex
combination of the aggregate utility of the other bundles at any prices (since at any
prices, the cost of this bundle equals this convex combination of the cost of the other
bundles). So we have a contradiction, and the lattice point must have been demanded at
the original price point. That is, Theorem 5.6’s condition is also sufficient for non-“nice”
intersections.

We give the formal details of this part of the proof in Appendix B.2.

5.3 Examples

5.3.1 Examples of non-existence of equilibrium

We first illustrate our result with two simple examples of non-existence of equilib-
rium, whose demands fit the conditions of Proposition 5.9.

Example 5.11. 39 The simplest concave type of demand for which equilibrium need not
exist has one agent for whom two goods are substitutes, and a second agent for whom

39Hatfield et al. (2012, Example 2) present essentially this example.
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the same two goods are complements. So D can be represented by

D =

(
1 1 0 1
−1 0 1 1

)
in which the first three column vectors together yield the substitutes demand, and the
last three column vectors together yield complements demand. Trivially, the matrix
formed by the first and last column has determinant 2, so equilibrium need not exist.

Our Example 2.10 is of this type: we repeat its valuation functions for the “substi-
tutes agent” and “complements agent” respectively, below:

x1 = 1 x1 = 0 u1

1 0 x2 = 0
1 1 x2 = 1

and
x1 = 1 x1 = 0 u2

0 0 x2 = 0
1 0 x2 = 1

,

Note that both these valuation functions are concave. However, the aggregate valuation
function, which we give in Figure 16a is not concave, as can be easily seen by observing
that (U(1, 0) +U(0, 1) +U(2, 1) +U(1, 2))/4 > U(1, 1). This inequality is also apparent
in Figure 16b which shows a 3-dimensional illustration of U together with the face of
Â (see equation (3)) that corresponds to the price vector (1

2
, 1

2
). It follows that all the

x1 = 2 x1 = 1 x1 = 0 U
1 1 0 x2 = 0
2 1 1 x2 = 1
2 2 1 x2 = 2

(a) Aggregate valuation.

0

1

1

1

1

2

1

2

2

x1

x
2

value

(b) 3 dimensional illustration of the aggre-

gate valuation, showing the face of Â that
corresponds to the price vector ( 1

2 ,
1
2 ).

Figure 16: The aggregate valuation of Example 5.11.

bundles (1, 0), (0, 1), (2, 1), and (1, 2) are demanded at this price, while the bundle (1, 1)
is “hidden” at the intersection of the diagonals of the TH at the price, (1

2
, 1

2
), and is

never demanded at any price. So aggregate demand is never x1 = x2 = 1. The SNP
and the TH of the individual and aggregate demands are shown in Figure 17. Observe
in Figure 17c that in the aggregate SNP the bundle (1, 1) is not a vertex, and the area

of the diamond is det

(
1 1
−1 1

)
= 2.

Of course, our analysis only shows that equilibrium may not exist for this type of
demand. Equilibrium would exist if, for example, the “complements” consumer had
valuation 3 for the combination of 1 unit of each of x1 and x2. In that case the facets
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Figure 17: The individual and aggregate SNPs and THs for Example 5.11.

corresponding to the vectors (1, 1) and (1,−1) would not intersect, so Proposition 5.9
does not apply. We will return to this issue in Section 5.4.

Example 5.12. 40 Consider a set of “complements” consumers each of whom is only
interested in a different pair of goods, and such that there is a cycle in the pairs of
goods that these consumers wish for. That is, we can number both consumers and goods
1, . . . , n, such that every consumer i < n demands goods i and i + 1, and consumer n
demands goods n and 1. It is not hard to see that:41

if D =



1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
· 0 1 · · ·
· · · · · · ·
0 0 0 · 1 0
0 0 0 1 1


then detD =

{
0 if n is even
2 if n is odd.

So if n is odd, there exist agents with demands of this type such that equilibrium does
not exist: such an example is, again, easy to construct following Proposition 5.9.

Indeed, one can see directly that equilibrium fails in the simplest symmetric case: if
each consumer has valuation 1 for any allocation that includes the pair it desires, and
valuation 0 for any other allocation, aggregate demand is never exactly 1 unit of each
good. To see this, note that at least one good, w.l.o.g. good 1, would not be part of a
pair. So p1 = 0. Therefore p2 ≥ 1 (else consumer 1 would demand the pair of goods 1
and 2). So p2 = 1, and therefore p3 = 0, since otherwise good 2 would not be demanded,
and consumer 2 therefore buys goods 2 and 3. Therefore p4 ≥ 1 (else consumer 3 would

40Sun and Yang (personal communication), and also Teytelboym (2012), have independently con-
sidered the demand described in this example, using alternative methods that extend Sun and Yang
(2006), showing as we do that equilibrium always exists iff n is even. See also Footnote 42.

41To see this easily, expand by the first row: noting the “1”s in the first and the last column of that
row, we have det D = 1(1) + (−1)n−1(1).
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demand goods 3 and 4). So p4 = 1, and p5 = 0, etc. In particular, pj = 0 if j is odd.
But in that case, consumer n wishes to buy goods n and 1, which is a contradiction.

On the other hand, if n is even, the columns of D are not linearly independent, but if
we exclude the ith column, for any i, the remaining n− 1 rows are linearly independent
and can trivially be extended to n linearly independent vectors with determinant 1 by
adding the column ei, so Theorem 5.6 then shows that equilibrium always exists. For
example, in the simple symmetric case, pj = 0 if j is odd and pj = 1 if j is even, for all
j, supports qi = 1 for all i as an aggregate demand.

5.3.2 Strong substitutes and Generalised gross substitutes and comple-
ments

Recall from Section 4.2 that a valuation is ‘strong substitutes’, in the terminology
introduced by Milgrom and Strulovici (2009), if every unit of every good is an ordinary
substitute for every other unit of every good (including being an ordinary substitute
for every other unit of the same good). We showed in Proposition 4.5.2 that strong
substitutes are precisely are concave demand type Dnss; the latter may be presented as
{ei, ei − ej | i, j = 1, . . . , n; i < j} (see Section 4.2).

One of the pleasing properties that Milgrom and Strulovici (2009) showed for ‘strong
substitutes’ is that equilibrium always exists:

Proposition 5.13 (Milgrom and Strulovici, 2009, Theorem 19). Equilibrium always
exists when agents’ demands are strong substitutes.

Our framework makes it particularly straightforward to confirm this result, by show-
ing that Dnss satisfies the condition of Corollary 5.7:

Note first that any vector v = ei − ej satisfies v.1 = 0, where 1 = (1, 1, . . . , 1)T .
So any set of n vectors that are all of the form ei − ej does not have 1 in its span,
so is not linearly independent and therefore has determinant 0. It follows that any set
of linearly independent vectors in Dnss must include a coordinate vector ei (or −ei).
Now observe that the determinant of any matrix which has this set of vectors as its
columns is non-zero (since the vectors are linearly independent), and also ±1 times the
(n− 1)× (n− 1) matrix formed when we delete row i and the column in which ±ei was
placed. But since this (n− 1)× (n− 1) matrix therefore has non-zero determinant, its
columns are linearly independent, and they are also vectors in Dn−1

ss . So Dnss satisfies
the determinant condition if Dn−1

ss does. But it is trivial that D1
ss satisfies the condition

so, by induction on n, Dnss satisfies the condition of Corollary 5.7 for all n.

Moreover, it is now trivial to reproduce:

Corollary 5.14 (Milgrom and Strulovici, 2009, Theorem 20). If uj is a strong substitute
valuation for all j ∈ J , then the aggregate valuation U is a strong substitute valuation.

Proof. If uj is of concave demand type Dnss for j ∈ J, then U is of type Dnss by Corollary
5.3. By Proposition 5.13 (and Lemma 2.5) U is also concave; applying Proposition 4.5.2
completes the proof. �

Because equilibrium existence is preserved under unimodular basis changes (the clar-
ity of this is one of the benefits of our representation of demand), an elementary appli-
cation of Proposition 5.13 is:
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Corollary 5.15 (cf. Sun and Yang, 2006, Theorem 3.1). Equilibrium always exists for
the ‘generalised gross substitutes and complements’ type of demand.

Proof: Immediate from Propositions 5.13, 4.14 and 5.5. �

Note this corollary also provides another proof of Example 5.12’s “even cycle of
complements” result. If we separate the goods into two classes corresponding to the
odd- and even-numbered goods, and re-order so that all the odd ones come first, demand
is then of type Dn/2,n/2GGSC , so Corollary 5.15 applies.

Moreover, we can now generalise further to an even more general style of GGSC-
like demand, in which goods are separated into an arbitrary number of groups, with
goods within the same group being strong substitutes, but with 1-1 complementarities
between some pairs of groups (that is, for those pairs of groups, each good in one of the
groups may exhibit 1-1 complementarities with any good in the other group). If all the
“cycles” formed by the sequences of “paired” groups are of even length, then we can
again separate the groups of goods into two classes, so that the demand is again GGSC
demand, and so always has a competitive equilibrium. But if any odd cycle exists then,
just as in Example 5.12, competitive equilibrium may fail.42

5.3.3 When is Strong Substitutes a necessary condition for equilibrium?

By enumerating possible sub-cases it is not too hard to show (see Appendix B.4)
that if there are at most three goods, equilibrium can always exist only if demand is a
(unimodular) basis change from strong substitutes. So:

Theorem 5.16. In R3, equilibrium always exists for a concave demand type D if and
only if it is a unimodular basis change from strong substitutes, or a subset thereof.

One might therefore wonder whether equilibrium always exists only when demand is
a basis change from strong substitutes. However, we now show that this is not the case,
by exhibiting a 4-D demand type which is genuinely different from strong substitutes,
and always has a competitive equilibrium. Consider the demand type defined by the
matrix

D :=


1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 1 1

 .

We show this always has a competitive equilibrium in Appendix B.4.
To show it is not just a basis change from 4-D strong substitutes, D4

ss, assume (for
contradiction) there exists a unimodular matrix G such that GTD consists entirely of
distinct column vectors from D4

ss.
43 Since D has 9 columns, GTD must include all but

one of the 10 distinct vectors in D4
ss. Note that every row r of D satisfies r.w = 0,

where w = (1, 1, 1, 1, 1, 1,−1,−1,−1), so the rows r′ of GTD must also satisfy r′.w = 0
(since pre-multiplying D by any matrix generates a new matrix whose rows are linear

42This result has independently been established by Sun and Yang (private communication), and also
Teytelboym (2012); the latter paper gives fuller details.

43Recall that vectors which are the negation of one another are not considered “distinct” in our
framework.
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combinations of D’s rows). But there are precisely four vectors in D4
ss with non-zero

entry in any coordinate i (ei, and ei− ej for the three values of j 6= i), so there are four
non-zero entries in every row of the matrix whose columns are the 10 distinct vectors
of D4

ss, and if we delete any one column, then at least one row must have exactly three
non-zero entries. Since these three entries are ±1, there is no way to add or subtract
the three together to obtain zero; it is impossible that this row has zero dot product
with w. Thus no 9 vectors of D4

ss can form the columns of GTD, for any unimodular
matrix G.44

5.4 Existence of equilibrium for specific demands

Our Theorem 5.6 tells us which demand types always have a competitive equilibrium.
When the answer is negative, it does not tell us whether competitive equilibrium exists
for every supply bundle, for a specific set of demands. But if all intersections are “nice”
(in the sense of Section 5.2) then we can apply Proposition 5.10 to each intersection
point to check for such a failure.

Take, for example, Agents 1 and 2 who have THs of the combinatorial types of
Figures 1 and 11, respectively, and concave valuations. (A valuation function of the
combinatorial type of Figure 1 must be concave. A valuation function of the type of
Figure 11 need not be concave, though the specific valuation function of this type that
is given in Example 2.9 is concave.)

The combinatorial type of aggregate demand will depend on how the agents’ THs
meet in price space; assume they only intersect “nicely”. Applying Propositions 5.9 and
5.10, we see that there exists a supply bundle such that competitive equilibrium does

not exist iff the facets with normals (1, 0) and (−1, 2) intersect (since det

(
1 −1
0 2

)
=

2 > 1). An example of aggregate demand of this combinatorial type is illustrated in
Figure 18a; the bundle (1, 1) is in the interior of the parallelogram in the SNP of Figure
18a, and is never demanded on aggregate (see Proposition 5.9).

Combinatorial types of aggregate demand in which competitive equilibrium does
exist for any supply bundle are illustrated in Figures 18b, 18c and 18d (there are others).

In Figures 18b and 18c, there are two intersections between the THs. In each case,
the areas of the SNP faces corresponding to the intersections are 1. We call this area
the ‘multiplicity’ of the intersection; note that it is, of course, the determinant of the
(primitive integer) edges of the SNP face (and so, as we have seen, intimately connected
with the existence of competitive equilibrium).

Conversely, in Figures 18a and 18d there is only one intersection. Now, however, the
corresponding SNP face has area 2; we say the ‘multiplicity’ of the intersection is 2.

Observe that in each case, the number of intersections, weighted by multiplicity, is
2. It can be checked that this holds for every other aggregate of the demands of two

44What might this demand represent? The final good is worth nothing on its own (the vector e4 is not
in D) but increases the value of any of the first three goods, as shown by the pairwise complementarities
that form the 4th to 6th columns of D. Furthermore, there are pairwise complementarities between
the first three goods only in the additional presence of the fourth good: this is the meaning of the
final three columns. So the first three goods might be front-line workers, and the fourth a facilitator or
manager.
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Figure 18: Examples of aggregate THs and SNPs of agents with THs of the combinatorial
types of Fig. 1 (dashed line) and Fig. 11 (solid line). The number of intersections of
the THs, weighted by facet weights, reveals the existence or failure of equilibrium.

agents whose individual THs are of the same combinatorial types as Figures 1 and 11,
respectively. This is a special case of the Tropical Bézout Theorem.45

However, the natures of the multiplicity 2 intersections in Figures 18a and 18d are
different. In Figure 18d, one of the corresponding facets is of weight 2; Agent 2 has a
concave valuation and so has three bundles in its demand set, so Proposition 5.9 does
not apply–the bundles ‘inside’ the weight-2 facet (in the centres of the long edges of the
rectangle in the SNP) are both demanded at this price. The best way to understand
this situation is that ‘two intersections have become arbitrarily close’. By contrast, in
Figure 18a, neither of the corresponding facets has weight 2, Proposition 5.9 does apply,
and the bundle in the centre of the parallelogram is not demanded at any price.

Recall that the multiplicity of the intersection is the area of the SNP face, which
equals the (absolute value of the) determinant of its edges. The key point is that this
can be factorised into the product of the facet weights times the (absolute value of the)
determinant of the primitive integer edge directions (that is, the primitive integer facet
normals). And equilibrium fails iff the (absolute value of the) latter determinant exceeds
1. So the existence of a supply bundle for which competitive equilibrium fails is signalled
by a case in which the sum of intersections, weighted only by facet weights, is too small.

These ideas can be applied more generally, as will be developed in future work.

6 Conclusion

Studying the tropical geometry of demand yields a range of insights. The structure of
an agent’s preferences can be efficiently summarised by a set of vectors that is orthogonal
to the divisions between the regions of price space in which the agent demands different
bundles. The same set of vectors also generates the surface of the convex hull of the
agent’s valuation function in quantity space. The duality between these representations

45See Richter-Gebert et al (2005).
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has powerful implications, and the pictorial representations that tropical geometry gives
us generate new intuitions.46

We began this work while studying the properties of many-dimensional Product-Mix
Auctions. Convex and tropical geometry is the key to much of our analysis in Baldwin
and Klemperer (in preparation) in which we describe ways in which different prefer-
ences can be represented in these auctions, and the implications of different restrictions
on bids.47 Geometric reasoning has also helped us develop extensions to the Bank of
England’s original implementation of the auction,48 and understand the connections to
related auction designs.49

Our current paper has shown that convex- and tropical-geometric analysis provides
an efficient way of determining the “type” of demand, and it has also proven a new
theorem about the existence of competitive equilibrium.

In other work, we have found that similar geometric analysis is useful in understand-
ing results obtained by others, and that it can prove these results more quickly than
currently-used techniques. So we are optimistic that tropical-geometric analysis will
yield more economic insights in the future; we hope others will take up these methods.

A Standard concepts of convex geometry

[This section to be completed later]

B Proofs of Results in the text

B.1 Proofs of Results in Section 4

Proof of Proposition 4.2 1. By definition, x ∈ Du(p) if pT (x − x′) ≤ u(x) − u(x′)
for all x′ ∈ A, with equality iff x′ ∈ Du(p) also. For any invertible matrix G, we may
re-write

pT (x− x′) = pTGG−1(x− x′) = (GTp)T (G−1x−G−1x′).

46These intuitions are obscured by existing pictorial representations which shoehorn indivisible de-
mand into the standard divisible-demand framework.

47In the Bank of England’s implementation, the bid-taker expresses preferences through a “supply
function” while bidders can make sets of “or” bids that can, if desired, be represented as sets of points
on a graph. Permitting negative as well as positive bids broadens the set of preferences that can be
expressed, as does permitting bidders to specify additional constraints (Klemperer, 2008, 2010). The
issue is: what kinds of bids should we permit to achieve a sufficiently rich representation of preferences,
while retaining a unique solution (the extent to which we can permit some degree of complements
is a particular challenge), achieving an efficient outcome (in particular, not incentivising strategic
behaviour), and retaining simplicity and transparency?

48Extensions include broadening the range of contexts to which these (or related) auctions can be
applied, through a better understanding of when equilibrium is guaranteed to exist, as well as better
ways of representing bidders’ and bid-takers’ multi-dimensional preferences.

49Related designs include, in particular, the Assignment Auction suggested independently by Milgrom
(2009), and versions of Simultaneous Multiple Round Auction (see, e.g., Milgrom, 2000) and “Clock
Auctions” (see, e.g., Ausubel and Milgrom, 2002, Gul and Stacchetti, 2000, and Milgrom and Strulovici,
2009); see also the papers in Cramton, Shoham, and Steinberg (2006). As noted in the Introduction,
we are also concerned with efficient solution techniques for Product-Mix Auctions, both when we need
integer solutions, and when rationing is permitted, etc.
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If G is additionally unimodular, then G−1x and G−1x′ ∈ Zn. We define a new valuation
G∗u on the finite set G−1A ( Zn via G∗u(y) := u(Gy). If we write y = G−1x and
y′ = G−1x′ then (GTp)T (y−y′) ≤ G∗u(y)−G∗u(y′) holds iff pT (x−x′) ≤ u(x)−u(x′).
So we have

x ∈ Du(p) ⇔ y = G−1x ∈ DG∗u(G
Tp),

as required.
2. Since the underlying set of Tu is those p for which #Du(p) > 1 it follows imme-

diately from 1. that TG∗u = {GTp | p ∈ Tu}, as required.
3. It follows from 2. that if v is normal to a facet of Tu then GTv is normal to a

facet of TG∗u. As G has an integer inverse, the converse is also true. Trivially, for any
unimodular matrix G, the valuation G∗u is concave iff the valuation u is. �

Proof of Proposition 4.5: 1. Suppose an agent’s valuation is not of type Dnos. Then
its TH has a facet, F , with a primitive integer normal v which has entries vi and vj
which are both positive.50 So some integer bundle x is demanded on one side, and on
the other, the bundle x + mv is demanded, for some m ∈ Z>0. Pick a price p in the
interior of F . Note that the vector ei does not lie within the facet, as ei.v = vi > 0. So
there exists ε > 0 such that p− εei and p + εei are in the UDRs on either side of F . So
increasing the price of good i from p− εei to p + εei changes the set of demands from
{x+mv} to {x} (since buying additional units of good i is now slightly less attractive).
But mvj > 0, so an increase in the price for good i has reduced demand for good j.
Thus demand is not ordinary substitutes.

Now suppose that u is of type Dnos. Consider p′ ≥ p such that Du(p) and Du(p
′)

contain only one bundle. Generically the line [p,p′] crosses only facets, not any lower
dimensional cells in Tu. Furthermore, because the UDRs are open sets and because
there are only finitely many cells of lower dimension than n − 1, we can chose always
prices q and q′ such that the only bundle demanded at q is the bundle demanded at
p, the only bundle demanded at q′ is the bundle demanded at p′, and the line [q,q′]
is in the same direction as [p,p′] and does cross only facets in Tu. All the facets have
normal vector in Dnos and so crossing one corresponds to demanding less of at most one
good, and more of at most one good. By the strict law of demand (which applies since
utility is quasilinear), the good of which less is demanded must be a good whose price is
changing, and so the quantity of those whose price does not change is weakly increased.
As this applies to the pair [q,q′], it also applies to [p,p′].

2.51 This proof relies on the following result (Baldwin and Klemperer 2012, Propo-
sition B.1, which is a slight extension of Milgrom and Strulovici 2009, Theorem 12):
a valuation u : A → R is a strong substitute valuation iff it is an ordinary substitute
valuation and satisfies the consecutive integer property, that is, for any p ∈ Rn and for
i = 1, . . . , n, the set {xi | x ∈ Du(p)} consists of consecutive integers.

First assume that u is a strong substitute valuation; as above, it follows that it is
an ordinary substitute valuation and satisfies the consecutive integer property. By 1.
above, it has demand type Dnos. But if αei−βej is a facet normal in Dnos, but not in Dnss,
then α, β > 0 are coprime and not both equal to 1, and so, at any price on the interior
of this facet, the consecutive integer property is violated. So u is of demand type Dnss.

50If v is a facet normal then so is −v so this assumption is without loss of generality.
51In the case that n = 1, Proposition 4.5.2 follows from Kelso and Crawford Theorem 6.
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Finally, u is concave (Milgrom and Strulovici 2009, Theorem 9).
On the other hand, suppose u is of concave type Dnss. By Part 1. we know it is an

ordinary substitute valuation, so it is sufficient to show that it satisfies the consecutive
integer property. For any price p, consider the SNP face Du(p). For any good i, the sets
of bundles in Du(p) minimal and maximal for i must contain vertices of Du(p). The
set of vertices of Du(p) is connected by the set of edges of Du(p), and so there exists a
path along edges from a minimal vertex for i to a maximal vertex for i; all lattice points
along this path are in Du(p). But every edge of Du(p) is some integer multiple of a
vector Dnss; since u is concave, every intermediate integer multiple of this vector is also
in Du(p). So we may take a path from a vertex of Du(p) minimal with respect to i to
one maximal with respect to i, along only vectors in Dnss. But the non-zero coordinate
entries of these vectors are ±1. Thus the quantity of good i demanded changes by at
most 1 at each step; this demonstrates the consecutive integer property. Thus u is a
strong substitute valuation, as required. �

Proof of Proposition 4.8: (This proof is similar to that of Proposition 4.5.1.) Suppose
an agent’s valuation is not of type Dnc . Then its TH has a facet, F , with a primitive
integer normal v which has entries vi and vj where vi > 0 and vj < 0. So some integer
bundle x is demanded on one side, and on the other, the bundle x + mv is demanded,
for some m ∈ Z>0. Pick a price p in the interior of F . Note that the vector ei does not
lie within the facet, as ei.v = vi > 0. So there exists ε > 0 such that p− εei and p + εei

are in the UDRs on either side of F . So increasing the price of good i from p − εei to
p+ εei changes the set of demands from {x+mv} to {x} (since buying additional units
of good i is now slightly less attractive). But mvj < 0, so an increase in the price for
good i has increased demand for good j. Thus demand is not complements.

Now suppose that u is of type Dnc . For some i > 0, consider p′ = p + δei for some
δ > 0, such that Du(p) and Du(p

′) contain only one bundle. Following exactly the
argument given in the proof of Proposition 4.5.1, we can assume that the line [p,p′]
crosses only facets. As the price increases from p to p′, demand for good i weakly
decreases by revealed preference. But since every facet normal is in Dnc it follows that
demand for every other good must also weakly decrease. Since we may break down any
price increase from p to p′ ≥ p into a series of increases in a single price, this completes
the proof. �

Proof of Proposition 4.10. Recall that if demand is additively separable then a
change in the price pi for any one good has no effect on the demand for other goods.

Consider Tu not of demand type Dna . Then Tu has a facet F whose normal v has
two non-zero entries, vi and vj (where i 6= j). We may cross this facet by changing only
price pi; this has a non-zero effect on the demand for good j. So u is not additively
separable in this case.

Now suppose u is of concave demand type Dna . It follows that the only SNP edges
are the coordinate vectors, and that every integer bundle within an SNP face is valued
at the appropriate convex combination of the values of the vertices of the face. But this
implies that the value of an additional unit of a good is independent of the number of
units of other goods one possesses, which is additive separability. �
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B.2 Proofs of Results in Section 5.1

Proof of Propositions 5.1 and 5.2. Proposition 5.1 is straightforward. Note that

∑
j∈J

max
xj∈A
{uj(xj)− p.xj} = max

{∑
j∈J

uj(xj)− p.

(∑
j∈J

xj

)
| xj ∈ Aj, j ∈ J

}
,

and on the other hand (since y ∈ A iff y =
∑

j∈J xj,xj ∈ AJ) that

max
y∈A
{U(y)− p.y}

= max

{
max

{∑
j∈J

uj(xj) | xj ∈ Aj,
∑
j∈J

xj = y

}
− p.y | y =

∑
j∈J

xj,xj ∈ Ajj ∈ J

}

= max

{∑
j∈J

uj(xj)− p.

(∑
j∈J

xj

)
| xj ∈ A, j ∈ J

}
,

and that the same arguments xj ∈ A, with y =
∑

j∈J xj, are maximising in either case.
The text showed the underlying sets of TU and T{uj} are the same, so completing the

proof of Proposition 5.2 only requires checking the weightings are the same. So suppose
F is a facet of TU with adjacent UDRs U and U ′; let vF be a primitive integer vector
pointing from U to U ′. Suppose agent j demands xj in U and xj′ in U ′ (for some agent
these will be distinct, but not necessarily for all). Then wj(F )vF = xj′ − xj for all j,
and so ∑

j

wj(F )vF =
∑
j

xj′ −
∑
j

xj.

So wU(F ) =
∑

j wj(F ) = w{uj}(F ), as required. �

Proof of Proposition 5.5. Suppose GTD always has a competitive equilibrium. Con-
sider any agent valuations u1, . . . , uk of type D and let x be in the support of their
aggregate valuation. Then demands G∗u1, . . . , G∗uk have type GTD and y := G−1x is
in their aggregate valuation set. By assumption competitive equilibrium exists in the
latter case: there exists a price p at which the agent with valuation G∗ui demands yi and∑

i y
i = y. But then in each case we may define xi := Gyi ∈ Dui(G

−Tp) (see Propo-
sition 4.2.1). At price G−Tp the market clears for x :=

∑
i x

i. So D has a competitive
equilibrium. The converse is shown by repeating the argument, using the unimodular
matrix G−T . �

B.3 Proof of results in Section 5.2

This Appendix gives the additional details needed to complete the proof of Theorem
5.6. Lemmas B.1, B.4 and B.5 demonstrate that generically all single-point intersections
of the TH are “nice”. The logic is as follows: first (Lemma B.1), we show how to perform
affine translations of agents’ THs, and bound the associated change in valuation. Now
consider an intersection of two cells from distinct agents’ THs. Generically (in the space
of affine translations) there can be no vector normal to both; if there were, a small
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shift the agents’ demands in the direction of this vector would mean the cells no longer
intersected at all. We argue thus in Lemma B.4.

In Lemma B.5 we show how to make all intersections ‘nice’, while bounding the
change in any agent’s valuation. Begin by considering an intersection of two cells from
distinct agents’ THs. Generically, there can be no vector normal to both, since if there
were, a small shift of one of the agents’ demands in the direction of this vector would
mean the cells no longer intersected at all. Make such a shift, if necessary. Now, for
each of the two cells that intersect, we nominate a linearly independent set of vectors
normal to adjacent facets. The fact that there is no vector normal to both the cells
means that the union of these sets remains linearly independent. But the intersection
of the two cells is now a cell of the TH of the aggregate demand of the two agents,
and the collection of vectors we have defined so far are normal to facets in this TH
whose intersection is this new cell. Continuing to add any additional agents’ demands
that intersect the cell generically, we can construct a set of linearly independent vectors,
each normal to a facet of the TH of aggregate demand, such that the intersection of
these facets locally defines the intersection of the cells in question.

It follows that, if the equivalent conditions of Remark 5.8 are satisfied, we may apply
Proposition 5.10 at any intersection of agents’ THs. So, after these small perturbations,
any bundle is demanded at some price. We complete the proof of Theorem 5.6 by showing
that, if a bundle is demanded following an extremely small perturbation in agents’
valuations, it must have also been demanded before this perturbation. This proves the
sufficiency of the condition given in Theorem 5.6: that any linearly independent subset
of vectors in the demand type are an integer basis for their span.

Necessity of this has already been provided by Proposition 5.9.

First, then, we introduce the affine perturbations discussed above.

Lemma B.1. Suppose an agent has valuation function u : A → R. For any w ∈ Rn,
we may define a valuation function uw : A→ R such that, for all p ∈ Rn, we have

1. Duw(p) = Du(p + w);

2. Tuw = {p−w | p ∈ Tu};

3. ‖uw(x)− u(x)‖ ≤ R‖w‖, where R satisfies ‖x‖ < R for all x ∈ A.

Proof. Let uw(x) = u(x)− x.w. Then

Duw(p) = arg max
x∈A

{u(x)− x.w − x.p} = arg max
x∈A

{u(x)− x.(p + w)} = Du(p + w).

The remainder of the lemma follows by definition of Tu, and the CauchySchwarz in-
equality. �

To prove that the hypotheses of Proposition 5.10 are satisfied after such perturba-
tions, is convenient to use “annihilator spaces”. For a linear or affine subspace of Rn,
these give the linear subspace of all orthogonal vectors. We recall their definition and
basic properties.
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Definition B.2 (See e.g. Spence et al., 2000). If C ⊆ Rn is an affine subspace, define

C◦ := {v ∈ Rn | v.(c− c′) = 0, ∀c, c′ ∈ C}.52

Note that if D = C + w for some w ∈ Rn then D◦ = C◦.
We use annihilator spaces for the following results.

Lemma B.3 (See e.g. Spence et al., 2000). Suppose that C1, C2 ⊆ Rn are affine sub-
spaces.

1. If C1 ⊆ C2 then C◦2 ⊆ C◦1

2. If C1 ∩ C2 6= ∅ then additionally (C1 ∩ C2)◦ = C◦1 + C◦2 .

3. dimC1 + dim(C1)◦ = n

Proof. Part 1 is clear. Part 2 follows from the standard result when C1 and C2 are
linear subspaces (see, e.g. Spence et al. 2000): if −w ∈ C1∩C2 then C1 + w and C2 + w
are linear subspaces, and so ((C1 + w) ∩ (C2 + w))◦ = (C1 + w)◦ + (C2 + w)◦. But
(C1 + w) ∩ (C2 + w) = (C1 ∩C2) + w so the result follows from the note above. Part 3
similarly follows immediately from the linear case. �

Now we show that any two THs may be perturbed so that the intersection of their
cells is ‘generic’ (as given in the statement of the following lemma):

Lemma B.4. Suppose we have agents 1 and 2 with valuation functions u1 and u2 (not
necessarily concave). For any ε > 0 we may find a vector w such that, if we perturb
agent 2’s demand by w to obtain u2

w, then ‖u2
w(x)− u2(x)‖ < ε for all x ∈ A, and any

cells C1 of Tu1 and Cw
2 of Tu2w satisfy C1 ∩ Cw

2 6= ∅ ⇒ C◦1 ∩ (Cw
2 )◦ = {0}.

Proof. Suppose that C1 in Tu1 and C2 in Tu2 satisfy C1 ∩ C2 6= ∅ and C◦1 ∩ C◦2 6= {0}.
Choose w1 ∈ C◦1∩C◦2 with w1 6= 0. Then, for all η > 0, we show that (C2+ηw1)∩C1 = ∅.
For, given any c2 ∈ C2, if c1 ∈ C1 ∩ C2 then w1.(c1 − (c2 + ηw1)) = η‖w1‖2 6= 0 (since
c1, c2 ∈ C2) and so, since w1 ∈ C◦1 , it follows that c2 + ηw1 /∈ C1.

On the other hand, recall that the cells of THs are closed objects. It follows that a
sufficiently small perturbation of one of the THs will not introduce any new intersections
between cells. So there exists η1 > 0 such that if η < η1 then no new intersections arise.53

Since THs consist of a finite number of affine cells, we may suppose that there are
in total d intersections of cells in Tu1 and Tu2 whose annihilator spaces have non-zero
intersection. We find wj and ηj as above for each in turn, and apply them all.54 Thus,

perturbing Agent 2 by w = ηv, where v =
∑d

j=1 ηj‖wj‖ and η ∈ (0, 1], gives us the
intersection properties required. To ensure that the perturbation to the agent’s valuation
is sufficiently small, we choose η < ε

R‖v‖ where R satisfies ‖x‖ < R for all x ∈ A. By

Lemma B.1.3, this implies that ‖u2
w(x)− u2(x)‖ < ε for all x ∈ A, as required. �

52If D ≤ Rn is a linear subspace then this definition clearly coincides with the usual D◦ := {v ∈
Rn | v.d = 0 ∀d ∈ D}.

53To be precise: if Cw
2a in Tu2

w
satisfies Cw

2a ∩ C1a 6= ∅ for any cell C1a in Tu1 then the corresponding
C2a in Tu2 satisfies C2a ∩ C1a 6= ∅.

54Strictly speaking, each ηj should be found when we compare the cells after Tu2 has undergone the
translations corresponding to intersections 1, . . . , j − 1.
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We may now take a set of m agents, and shift each so that their valuation for any
bundle is changed by at most ε, and nearly all the conditions of Proposition 5.10 are
met at every intersection of the THs. The only condition we do not insist on is that
the set of primitive integer facet normals are an integer basis for their span; whether or
not this could possibly hold will depend on the demand types of the agents in question.
What we prove is that these vectors are linearly independent.

Lemma B.5. Suppose we have m agents, with valuations ui for i = 1, . . . ,m. For every
ε > 0 we may perturb each agent’s valuation by a vector wi such that ‖ui(x)−uiwi(x)‖ < ε
for all x in R, and such that, whenever a price point p is in the interior of (n − kij)-
cell Cij of the TH Tuij for agents i1, . . . , is, then each Cij is locally to p, given by the

intersection of a set of facets F
ij
1 , . . . , F

ij
kij

of Tuij (not necessarily comprising all facets

of Tuij that pass through Cij) with primitive integer normal vectors v
ij
1 , . . .v

ij
kij

, such that

the full set {vijl | j = 1, . . . , s; l = 1, . . . , kij} is linearly independent.

Proof. We make a series of perturbations of agents’ individual demands, as in Lemmas
B.1 and B.4. First, we allow Agent 1 to remain unperturbed. For i = 2, . . . ,m we
compare:

1. the TH of aggregate demand of agents 1, . . . , i− 1;

2. the TH of agent i.

In each case, we apply Lemma B.4 to find wi with ‖ui(x) − uiwi(x)‖ < ε, and such
that, after the perturbation, C◦i ∩ C◦ = {0} whenever Ci ∩ C 6= ∅, where Ci is any cell
in Tui and C is any cell in the TH of aggregate demand of agents 1, . . . , i− 1.

Write U ′ for the new aggregate demand, after all agents have been perturbed. Now
we need to see that the hypotheses of Proposition 5.10 are satisfied at every intersection
of individual perturbed THs that make up TU ′ . Consider a price point p, which lies in
the interior of (n− kij)-cells Ci1 , . . . , Cis of the THs of individual demand from distinct
agents i1, . . . , is respectively, where we index so that i1 < · · · < is. From Lemma B.3.3
we know that dimC◦ij is kij .

Let C :=
⋂s
j=1 Cij . By Lemma B.3.2, we know that C◦ =

(⋂s−1
j=1 Cij

)◦
+C◦is . On the

other hand, p ∈
⋂s−1
j=1 Cij , and so there is a cell C ′ of the tropical variety of aggregate

demand of agents 1, . . . , is− 1, with p ∈ C ′. Since demand is constant in the interior of
a cell, it follows that C ′ ⊆ Cij for j = 1, . . . , is−1 and so C ′ ⊆

⋂s−1
j=1 Cij . We know that

p ∈ Cis ∩C ′ and so, by the construction of the perturbations, we know C ′◦ ∩C◦is = {0}.
As C ′ ⊆

⋂s−1
j=1 Cij , it follows by Lemma B.3.1 that

(⋂s−1
j=1 Cij

)◦
⊆ C ′◦, so we may

conclude that
(⋂s−1

j=1 Cij

)◦
∩ C◦is = {0}. Thus

C◦ =

(
s−1⋂
j=1

Cij

)◦
⊕ C◦is .

Proceeding inductively
C◦ = C◦i1 ⊕ · · · ⊕ C

◦
is .
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We conclude in particular: if v
ij
1 , . . . ,v

ij
kij

are a basis for C◦ij then {vijl | l = 1, . . . , kij ; j =

1, . . . , s} is a set of linearly independent vectors.

But if Cij =
⋂
l F

ij
l where F

ij
l are all the facets of this agent’s TH of demand which

contain Cij in their boundary, then applying Lemma B.3.2 again, C◦ij is the sum of the

spaces (F
ij
l )◦. Each (F

ij
l )◦ is spanned by a single vector v

ij
l , which we may choose to

be a primitive integer vector. We may select a maximal linearly independent subset of

these vectors, and re-index so these are {vijl | l = 1, . . . , kij}. Then C◦ij =
⊕kij

l=1(F
ij
l )◦.

We already know that Cij ⊆
⋂kij
l=1 F

ij
l so it follows (by Lemma B.3.2) that the affine

spans of Cij and
⋂kij
l=1 F

ij
l coincide. It follows that Cij is given, locally around p, by the

intersection of the facets F
ij
1 , . . . , F

ij
kij

; these facets were chosen above such that their

normal vectors are linearly independent. �

We now have the technical results we need to prove Theorem 5.6.

Proof of Theorem 5.6 Proposition 5.9 covers the case in which condition of the
theorem is not satisfied. So suppose that the condition is satisfied. Suppose we m
agents and for j = 1, . . . ,m their valuation is uj : Aj → R; write U : A → R for the
aggregate valuation (as in Section 5.1). We have the tropical variety TU of aggregate
demand, and the corresponding SNP.

This SNP provides a subdivision of Conv(A). Our bundle x may lie at a vertex of the
subdivision, in which case there exists a price vector at which it is uniquely demanded.
If not, it lies in some k-face of the SNP for some k 6= 0. Let ∆x be one such k-face.
Let px ∈ Rn be a price in the corresponding (n− k)-cell Cx of aggregate demand. The
set {yβ | β ∈ B} of vertices of ∆x are the bundles which are uniquely demanded in an
open (n-dimensional) region of Rn with Cx in its boundary. By assumption there exist
λβ ∈ [0, 1] with

∑
β λβ = 1 such that x =

∑
β λβy

β.
Suppose that x is not demanded on aggregate at any price. Then, as in the proof of

Lemma 3.1, it must follows that U(x) <
∑

β λβU(yβ).
Pick ε so that

U(x) <
∑
β

λβU(yβ)− ε.

Now apply Lemma B.5, perturbing agents j = 2, . . . ,m so that their valuation
function is altered by no more than ε

3m
, where we recall that m is the number of agents

present. It follows, by assumption regarding the demand type D, that the conditions of
Proposition 5.10 are satisfied at any intersection of agents’ demands. Let U ′ be the new
aggregate demand.

Now x lies in some k-face of the SNP of this new aggregate demand U ′, which
corresponds to some (n−k)-cell of TU ′ . Let price p′ ∈ Rn be in this cell. By Proposition
5.10, it follows that x ∈ DU ′(p

′).
However, x ∈ DU ′(p

′) means that x is weakly preferred on aggregate to any other
bundle – including all those in our original vertex set {yβ}. So, for each β ∈ B, we have

U ′(x)− x.p′ ≥ U ′(yβ)− yβ.p′. (5)

But U ′(x) =
∑m

j=1(uj)′(xj), where xj ∈ Aj is the bundle accorded to agent j under this
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optimal allocation (in particular
∑

j xj = x) and (uj)′ is the agent’s perturbed valuation
function. So

‖U ′(x)− U(x)‖ = ‖
m∑
j=1

[(uj)′(xj)− uj(xj)]‖ ≤
m∑
j=1

‖(uj)′(xj)− uj(xj)‖ ≤ m · ε

3m
=
ε

3

and hence U(x) + ε
3
≥ U ′(x). Similarly, for all β ∈ B, we have ‖U ′(yβ) − U(yβ)‖ ≤ ε

3

and so U ′(yβ) ≥ U(yβ)− ε
3
. Putting these facts together in line (5) we find:

U(x)− x.p′ ≥ U(yβ)− yβ.p′ − 2ε

3
.

Since this holds for all vertices yβ of our original k-face ∆x of the SNP, it follows that
we may take a weighted sum, using the same weights as originally identified:

U(x)− x.p′ ≥
∑
β

λβU(yβ)−
∑
β

λβy
β.p′ − 2ε

3
=⇒ U(x) ≥

∑
β

λβU(yβ)− 2ε

3
.

But we originally chose ε to satisfy U(x) <
∑

β λβU(yβ) − ε. This contradiction com-
pletes the proof. �

B.4 Proof of results in Section 5.3

Proof of Theorem 5.16. Consider a 3-dimensional demand type D whose vectors
span R3, and which always has competitive equilibrium. By a basis change, we can
assume D includes the unit coordinate vectors, e1, e2, e3,55 so any coordinate entry in
any v ∈ D must be 0 or ±1 (since if not, there is a determinant of v together with two
of e1, e2, e3 that exceeds 1 in magnitude).

Now if D contains a vector w with non-zero entry in each coordinate direction,
then by a basis change, exchanging any ei with −ei as necessary, we can assume that
w = e1 +e2 +e3. We now consider the two cases e1 +e2 +e3 ∈ D, and e1 +e2 +e3 /∈ D,
in turn.

In either case, however, D cannot contain all three of e1 + e2, e2 + e3 and e1 + e3,
since ∣∣∣∣∣∣

1 0 1
1 1 0
0 1 1

∣∣∣∣∣∣ = 2.

So suppose w.l.o.g. that e1 + e3 /∈ D in both cases.
If e1 + e2 + e3 ∈ D, then e1 − e2 /∈ D, since∣∣∣∣∣∣

1 1 0
1 −1 0
1 0 1

∣∣∣∣∣∣ = −2,

55There exist v1,v2,v3 ∈ D spanning R3; it follows that matrix G with these vectors as columns
is unimodular. Since G−1vi = ei for i = 1, 2, 3, demand of type G−1D contains the unit coordinate
vectors.
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and likewise e2 − e3 /∈ D, e1 − e3 /∈ D. So all the vectors of D must be columns of 1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ,

(although not all these columns need be in D). Pre-multiplying this matrix by the
unimodular matrix  1 0 0

−1 1 0
0 0 −1


yields a matrix all of whose columns are in D3

ss, so D is a basis change of a subset of
D3
ss.

If, instead, e1 + e2 + e3 /∈ D, and if D is not a subset of D3
ss (in which case we are

done), then D must contain at least one of e1 + e2 and e2 + e3 (since we already have
e1 + e3 /∈ D). So assume w.l.o.g. that e1 + e2 ∈ D. Then e1 − e2 /∈ D, since∣∣∣∣∣∣

1 1 0
1 −1 0
0 0 1

∣∣∣∣∣∣ = −2

and likewise only one of e2 + e3 and e2 − e3 can be in D. Also, if e2 − e3 ∈ D then
e1 − e3 /∈ D, since ∣∣∣∣∣∣

1 0 1
1 1 0
0 −1 −1

∣∣∣∣∣∣ = −2.

So if e1 + e2 + e3 /∈ D, and if D is not a subset of D3
ss, the vectors of D must all be

contained in the columns of just one of the two matrices 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 −1

 and

 1 0 0 1 0
0 1 0 1 1
0 0 1 0 −1

 .

But pre-multiplying these two matrices by the two unimodular matrices, 1 0 0
0 −1 0
0 0 1

 and

 −1 0 0
0 1 0
0 0 1

 ,

respectively, yields matrices all of whose columns are in D3
ss.

So if equilibrium always exists for D, and the vectors of D span R3 then D is a basis
change from a subset of D3

ss.
Suppose next that the vectors for D do not span R3. As before we may perform a

basis change of D so that this time e1 and e2 ∈ D. Since the span of the vectors in
D now has dimension 2, we conclude that (after the aforementioned basis change) all
vectors in D have 0 third coordinate; as before, their first and second coordinates may
only be ±1 or 0. So additional vectors in D can only be e1−e2 or e1 +e2. These vectors
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cannot both be in D.56 In the former case we have D ( D3
ss, and in the latter D is

transformed to a subset of D3
ss after basis change by −1 0 0

0 1 0
0 0 1

 .

The fact that equilibrium always exists for any basis change from a subset of D3
ss

follows immediately from the discussion in Section 5.3.2 and Proposition 5.5. �

Checking that the 4-D example of Section 5.3.3 always has a competitive equilibrium
We check that D does satisfy the criterion of Corollary 5.7 using Matlab. [Further

details to be completed.]
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