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Abstract

We show that the cumulated sum of squares test has a standard Brownian bridge-type
asymptotic distribution in non-linear regression models with non-stationary regressors. This
contrasts with cumulated sum tests which have been studied previously and where the asymp-
totic distribution involves nuisance quantities. Through simulation we show that the power is
comparable in a wide of range of situations.
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1 Introduction

An increasing range of non-linear models with non-stationary regressors are available in the litera-
ture. We show that the specification of such models can be investigated with ease using a cumulated
sum of squares test with a standard Brownian bridge asymptotic distribution.

The Brownian bridge asymptotic result of the cumulated sum of squares test has been derived
in a linear model framework with stationary and non-stationary regressors, see for instance Brown,
Durbin and Evans (1975), McCabe and Harrison (1980), Ploberger and Krämer (1986), Lee, Na
and Na (2003), or Nielsen and Sohkanen (2011). In this paper, we first provide a set of general suf-
ficient assumptions for the Brownian Bridge result to hold. Then, we show that these assumptions
are satisfied in several different scenarios dealing with non-linear regression functions involving
stationary or non-stationary regressors. In contrast, cumulated sum tests based directly on the
residuals rather than on their squares have a more complicated asymptotic theory with nuisance
terms when the regressors are nonstationary, see Hao and Inder (1996), Xiao and Phillips (2002),
Kasparis (2008), Choi and Saikkonen (2010) or Berenguer-Rico and Gonzalo (2014).

The paper is organized as follows. In Section 2, the model and test statistics are put forward.
Sections 3 and 4 provide, respectively, high-level and medium-level sets of suffi cient assumptions for
the Brownian bridge result. Section 5 shows that the assumptions in Sections 3 and 4 are satisfied
in various non-linear models. In Section 6 the performance of the test in terms of size and power
is investigated through Monte Carlo experiments. The proofs follow in an Appendix.

2 Model and statistics

Consider data (y1, x1), . . . , (yn, xn) where yt is a scalar and xt is a p-vector. Consider the non-linear
regression model

yt = g(xt, θ) + εt t = 1, . . . , n, (2.1)
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where the functional form of g is known. The innovation εt is a martingale difference sequence with
respect to a filtration Ft with zero mean, variance σ2 and fourth moment ϕ2 = Eε4t − (Eε2t )

2, the
regressor xt is a p-vector Ft−1-adapted, and the parameter θ is a q-vector varying in a parameter
space Θ ⊂ Rq. The model is a conditional mean model where any unmodelled autocorrelation or
correlation between εt and xt will be regarded as misspecification.

The non-linear least squares estimator θ̂n of θ is the minimizer of the least squares criterion

Qn(θ) =
n∑
t=1

{yt − g(xt, θ)}2. (2.2)

The least squares residuals based on the full sample estimation are then ε̂t,n = yt − g(xt, θ̂n).
The cumulated sum of squares statistic, is defined as

CUSQn =
1

ϕ̂n
max
1≤t≤n

∣∣∣∣∣ 1√
n

(
t∑

s=1

ε̂2s,n −
t

n

n∑
s=1

ε̂2s,n

)∣∣∣∣∣ ,
where the standard deviation estimator can be chosen as, for instance,

ϕ̂2n =
1

n

n∑
t=1

ε̂4t,n −
(

1

n

n∑
t=1

ε̂2t,n

)2
.

We will argue that under quite general assumptions,

CUSQn
D→ sup
0≤u≤1

∣∣B0u∣∣ ,
where B0u is a standard Brownian bridge. Billingsley (1999, pp. 101—104) gives an analytic ex-
pression for the distribution function. In particular, the 95% quantile is 1.36; see Koziol and Byar
(1975, Tab. 1).

We also consider a recursive cumulated sum of squares statistic, where the model (2.1) is
estimated recursively. Then define the recursive statistic

RCUSQn =
1

ϕ̂n
max
n0≤t≤n

∣∣∣∣∣ 1√
n

(
t∑

s=1

ε̂2s,t −
t

n

n∑
s=1

ε̂2s,n

)∣∣∣∣∣ .
If the sequence of estimators θ̂n converges strongly, we can show that also

RCUSQn
D→ sup
0≤u≤1

∣∣B0u∣∣ .
3 Results under High Level Assumptions

We start by proving the Brownian bridge results under a set of high level assumptions to the
residuals and martingale difference innovations.

Assumption 3.1 Suppose (εt,Ft) is a martingale difference sequence with respect to a filtration
Ft, that is εt is Ft-adapted and E(εt|Ft−1) = 0 a.s., so that
(a) E(ε2t |Ft−1) = σ2 a.s.;
(b) E(ε4t − σ4|Ft−1) = ϕ2 a.s.;

(c) supt E(εψt |Ft−1) <∞ a.s. for some ψ > 4.

The first result shows that the tied down cumulated sum of squared innovations converges to
a Brownian bridge. This follows from the standard functional central limit theorem for martingale
differences, see for instance Brown (1971).
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Theorem 3.1 Suppose Assumption 3.1 is satisfied. Let B0u be a standard Brownian bridge. Then,
as a process on D[0, 1], the space of right continuous functions with left limits endowed with the
Skorokhod metric,

1√
n

[nu]∑
t=1

(
ε2t −

1

n

n∑
t=1

ε2t

)
D→ ϕB0u u ∈ [0, 1],

1

n

n∑
t=1

ε4t −
(

1

n

n∑
t=1

ε2t

)2
D→ ϕ2.

We would like to formulate similar results for the cumulated sum of squared residuals. This
can be done as long as the squares of residuals and innovations are close. We formulate this as two
assumptions.

Assumption 3.2 max1≤t≤n
∣∣n−1/2∑t

s=1(ε̂
2
s,n − ε2s)

∣∣ = oP(1).

Assumption 3.3 n−1
∑n

t=1(ε̂
4
t − ε4t ) = oP(1).

We will later show that Assumptions 3.2 and 3.3 are satisfied in a wide range of situations.
Under these assumptions we then have the following result.

Theorem 3.2 If Assumptions 3.1, 3.2, 3.3 are satisfied then CUSQn
D→ sup0≤u≤1

∣∣B0u∣∣ .
For the recursive version of the result we need to strengthen Assumption 3.2.

Assumption 3.4 max1≤t≤n
∣∣n−1/2∑t

s=1(ε̂
2
s,t − ε2s)

∣∣ = oP(1).

Theorem 3.3 If Assumptions 3.1, 3.3, 3.4 are satisfied then RCUSQn
D→ sup0≤u≤1

∣∣B0u∣∣ .
For a linear model it is possible to analyze Assumptions 3.2, 3.3 and 3.4 directly. In this

way Nielsen and Sohkanen (2011) consider the case of the linear autoregressive distributed lag
model with non-stationary (possibly explosive) regressors. Their Lemma 4.2 and Theorem 4.5
show that Assumptions 3.3 and 3.4 are satisfied under the martingale difference Assumption 3.1.
For non-linear models it is useful to formulate a set of intermediate level assumptions that imply
Assumptions 3.2, 3.3 and 3.4. We do this in the following.

4 Intermediate Level Results

In the non-linear regression model (2.1) we can replace the high level Assumptions 3.2 and 3.3 by
local consistency of θ̂n and smoothness of the criterion function.

Assumption 4.1 Let δ < 1/4. Suppose N−1n,θ0(θ̂n − θ0) is either (a) oP(nδ) or (b) o(nδ) a.s.

The normalization N−1n,θ0 allows both stationary and non-stationary regressors. In linear models

N−1n,θ0 = n1/2 for stationary regressors and N−1n,θ0 = n for random walk regressors. In more general

cointegrated models N−1n,θ0 may be block diagonal with different normalizations in different blocks,
see Kristensen and Rahbek (2010). In non-linear models the normalization may depend on the
parameter θ under which we evaluate the distributions. We use the notation θ0 to emphasize this
choice of parameter.

The following smoothness assumption involves normalized sums of the first two derivatives of
the known function g with respect to θ. These are the q-vector ġ(xt, θ) = ∂g(xt, θ)/∂θ and the q×q
square matrix g̈(xt, θ) = ∂g(xt, θ)/∂θ∂θ

′. We will need a matrix norm. In the proof we use the
spectral norm, but at this point any equivalent matrix norm can be used.
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Assumption 4.2 Suppose xt is Ft−1-measurable and g(xt, θ) is twice differentiable with respect to
θ. Let δ < 1/4 be the consistency rate in Assumption 4.1 and let ε > 0. Suppose
(a) supθ:||N−1n,θ0 (θ−θ0)||≤n

δε

∑n
t=1{g(xt, θ)− g(xt, θ0)}2 = oP(n1/2);

(b) supθ:||N−1n,θ0 (θ−θ0)||≤n
δε

∑n
t=1{g(xt, θ)− g(xt, θ0)}4 = oP(n);

(c)
∑n

t=1 ||N ′n,θ0 ġ(xt, θ0)||2 = OP(n1−2δ−η) for some η > 0;

(d)
∑n

t=1 ||N ′n,θ0 g̈(xt, θ0)Nn,θ0 ||2 = OP(n1−4δ−η) for some η > 0;

(e) supθ:||N−1n,θ0 (θ−θ0)||≤n
δε

∑n
t=1 ||N ′n,θ0 {g̈(xt, θ)− g̈(xt, θ0)}Nn,θ0 ||2 = OP(n−4δ).

Finally, we need some technical conditions to ensure invertibility of certain matrices.

Assumption 4.3 Suppose inf[n :
∑n

t=1wtw
′
t is invertible] < ∞ a.s. for wt = ġ(xt, θ0) and wt =

vec{g̈(xt, θ0)} with the convention that the empty set has infinite infimum. Moreover, suppose
N−1n,θ0 = O(n`) for some ` > 0.

We can now show that Assumptions 3.2, 3.3, 3.4 are satisfied. Subsequently, we return to a
discussion of the assumptions.

Theorem 4.1 Assumptions 3.1,4.1(a),4.2,4.3 imply Assumptions 3.2,3.3 so Theorem 3.2 applies.

For the recursive cumulated sum of squares statistic we require strong uniformity properties.
If the estimator is strongly consistent we can get that uniformity from Egorov’s Theorem, see
Davidson (1994, Theorem 18.4).

Theorem 4.2 Assumptions 3.1,4.1(b),4.2,4.3 imply Assumptions 3.3,3.4 so Theorem 3.3 applies.

In the proof we analyze n−1/2
∑n

s=1(ε̂
2
s,n−ε2s) through a martingale decomposition. Noting that

ε̂s,n − εs = ∇g(xs, θ̂n) = g(xs, θ̂n)− g(xs, θ0) and expanding (ε−∇)2 − ε2 = −2ε∇+∇2 we get

n−1/2
n∑
s=1

(ε̂2s,n − ε2s) = −2n−1/2
n∑
s=1

εs∇g(xs, θ̂n) + n−1/2
n∑
s=1

{∇g(xs, θ̂n)}2. (4.1)

Due to Assumption 4.1 the estimator θ̂n varies in a local region around θ0. Thus, it suffi ces to replace
θ̂n with a deterministic value θ and show that the sums in (4.1) vanish uniformly over the local
region. These sums are a martingale and its compensator. Now, the compensator vanishes under
Assumption 4.2(a). Jennrich (1969, Theorem 6) uses a similar condition when proving consistency
of non-linear least squares, with the difference that he takes supremum over a non-vanishing set. In
the proof the main bulk of the work is to show that the martingale part vanishes under Assumption
4.2(c) − (e). For this we exploit Lemma 1 of Lai and Wei (1982). The conditions (c) − (e) are
somewhat weaker than the usual conditions for deriving the asymptotic distribution of non-linear
least squares estimators, see for instance Amemiya (1985, page 111). Finally, Assumption 4.2(b) is
used for showing the consistency of the fourth moment estimator ϕ̂2n.

In many applications the non-linear function g and its derivatives satisfy a Lipschitz condition.
In that case one can easily relate condition (a) of Assumption 4.2 to conditions (c) − (e). To do
this, one just needs to second order Taylor expand g(xt, θ)−g(xt, θ0) around θ0, square it, and take
supremum before cumulating. A similar argument applies to condition (b). This gives a somewhat
shorter set of assumptions that imply Assumption 4.2.

Assumption 4.4 Suppose xt is Ft−1-measurable and g(xt, θ) is twice differentiable with respect
to θ. Let δ < 1/4 be the consistency rate in Assumption 4.1 and let ε > 0. Suppose, the following
conditions hold, for k = 2, 4,
(a)

∑n
t=1 ||N ′n,θ0 ġ(xt, θ0)||k = oP(nk/4−kδ);

(b)
∑n

t=1 ||N ′n,θ0 g̈(xt, θ0)Nn,θ0 ||k = oP(nk/4−2kδ);

(c)
∑n

t=1 supθ:||N−1n,θ0 (θ−θ0)||≤n
δε ||N ′n,θ0 {g̈(xt, θ)− g̈(xt, θ0)}Nn,θ0 ||k = oP(n−4δ).

Theorem 4.3 Assumption 4.4 implies Assumption 4.2.
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5 Analysis of some particular models

In this section, we consider some particular non-linear models that have been discussed in the
literature. For these models it is relevant to test their validity using a cumulated sum of squares
test. We will assume that the consistency Assumption 4.1 has been dealt elsewhere. Thus, we
know the appropriate normalization of the estimator. The diffi culty is therefore to establish the
smoothness Assumption 4.4. We will show that this assumption is rather mild.

5.1 The linear model

In the linear model g(xt, θ) = θ′xt so that ġ(xt, θ) = xt and g̈(xt, θ) = 0. Thus, Assumption
4.4 reduces to showing

∑n
t=1 ||N ′n,θ0xt||

k = oP(nk/4−kδ) for k = 2, 4. Suppose xt is univariate

and stationary then Nn,θ0 = n−1/2 whereas Nn,θ0 = n−1 if xt is a random walk. In both cases
Nk
n,θ0

∑n
t=1 |xt|k = OP(1) = oP(nk/4−kδ).

For the recursive statistic we would need to establish that θ̂n is strongly consistent. For non-
stationary models this is not always so easy. To our knowledge this has not been proved for a
first order autoregressive model with an intercept and where the autoregressive coeffi cient is unity.
Nielsen and Sohkanen (2011) therefore work directly with the high level Assumption 3.4.

5.2 The power function model

As a first non-linear case we consider the power function g(xt, θ) = |xt|θ to illustrate where the
diffi culties lie in the arguments. The model equation is then

yt = |xt|θ + εt t = 1, . . . , n, (5.1)

with θ > 0 and where xt is either stationary or a random walk. We will suppose that Assumption
4.1 is satisfied and show that Assumption 4.2 holds.

The properties of the regressor xt are reflected in the choice of the normalization Nn,θ0 . Hence,
if xt is stationary with finite |xt|4θ0 log8 |xt| moments we let N−1n,θ0 =

√
n and apply techniques

from Wooldridge (1994). If xt is a random walk we let N−1n,θ0 = n(1+θ0)/2 log n1/2 and apply tech-
niques from Park and Phillips (2001). These techniques go back to Cramér and involve smooth-
ness conditions that are similar but also somewhat stronger than Assumption 4.2. Here, we take
N−1n,θ0(θ̂n − θ) = OP(1) as given. Hence Assumption 4.1 follows for any δ > 0.

To prove Assumption 4.4 we differentiate g and get

g(x, θ) = |x|θ, ġ(x, θ) = |x|θ log |x|, g̈(x, θ) = |x|θ log2 |x|.

These functions are continuous in x when θ > 0 and |x| > 0 and they can be extended continuously
to all x ∈ R because the power function dominates the logarithm at the origin.

We now look at Assumption 4.4 (a) in some detail. As in the linear case we show

S =

n∑
t=1

|Nn,θ0 ġ(xt, θ0)|k = OP(1) = oP(nk/4−kδ).

In the stationary case we use Theorems 3.5.3, 3.5.7 of Stout (1974) to get

S =
1

nk/2

n∑
t=1

|xt|kθ0 logk |xt| = O(n1−k/2) = O(1) a.s.

In the random walk case we get

S =
1

n(1+θ0)k/2 logk n1/2

n∑
t=1

|xt|kθ0 logk |xt| =
1

nk/2

n∑
t=1

|xt/n1/2|kθ0
(

log |xt/n1/2|
log n1/2

+ 1

)k
= OP(1),
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where the second equality follows by noting that log |x| = log |x/n1/2|+log n1/2. For the last bound
note that xinteger(nu)/n1/2 converges to a Brownian motion as a function on D[0, 1]. The functions

|y|2θ0 log |y| and |y|2θ0 are continuous and therefore the integrals
∫ 1
0 |y|

2θ0 log |y|dy and
∫ 1
0 |y|

2θ0dy
are continuous mappings from D[0, 1] to R. The Continuous Mapping Theorem, see Billingsley
(1999, Theorem 2.7) then shows that the normalized sum converges in distribution.

For Assumption 4.4 (b) a similar argument shows
∑n

t=1 |N2
n,θ0

g̈(xt, θ0)|k = OP(n1−k).
For Assumption 4.4 (c) we apply a Lipschitz argument. The second derivative of g satisfies

|g̈(xt, θ)− g̈(xt, θ0)| ≤ (|x|ν + |x|−ν)|x|θ0 log2 |x|

for all θ so |θ − θ0| ≤ ν for some 0 < ν < θ0. The result is proved by analyzing the function
|x|θ−θ0 − 1 for all four sign combinations of |x| − 1 and θ− θ0. Applying this to condition (c) gives

n∑
t=1

sup
θ:|θ−θ0|≤ν

|N2
n,θ0{g̈(xt, θ)− g̈(xt, θ0)}|k

≤
n∑
t=1

{N2
n,θ0(|xt|

ν + |xt|−ν)|xt|θ0 log2 |xt|}k = OP(n1−k) = oP(1), (5.2)

where the second bound follows by the same argument as above.

5.3 Cointegration with non-linear error correction

In the model of Kristensen and Rahbek (2010) xt is a p-dimensional time series satisfying

∆xt = g(β′xt−1, γ) + Φ1∆xt−1 + · · ·+ Φk∆xt−k + εt.

In specification analysis we consider the coordinates of the residual vector ε̂t separately. Their
Theorem 1 gives conditions ensuring that β′xt−1,∆xt−1, . . . ,∆xt−k are geometrically ergodic and
that xt satisfies a Granger—Johansen-type representation. With this and some further conditions
their Theorem 5 provides the normalization N−1n,θ0(θ̂n−θ0) = OP(1) that is required in our Assump-
tion 4.1. Their Assumption A.5 requires that the first, second and third derivatives of g(z, γ) with
respect to z or γ are of order O(|z|). With these boundedness conditions our Assumption 4.4 can
be proved. The proof is slightly involved as one will have to keep track of the various components
in the Granger-Johansen-type representation and how they interact with the derivatives of g.

5.4 Non-linear models with random walk regressors

Park and Phillips (2001) consider a triangular system with a univariate random walk regressor:

yt = g (xt, θ) + εt t = 1, . . . , n, (5.3)

xt = xt−1 + vt, (5.4)

where εt is an Ft-martingale difference sequence, (εt, vt)
′ satisfies a functional central limit theorem,

xt is Ft−1-adapted, and g is in one of two main classes of functions: integrable and asymptotically
homogeneous. For recent developments see Chan and Wang (2015).

The class of integrable functions includes transformations g (xt, θ) such as 1/(1+θx2), e−θx
2
, or

θ1(0 ≤ x ≤ 1) which are integrable over x ∈ R and satisfy a Lipschitz condition over θ. In Theorem
5.1 of Park and Phillips (2001) the asymptotic distribution of the non-linear least squares estimator
for the integrable functions case is derived, showing that n1/4(θ̂n − θ) converges in distribution.
Thus, we can choose N−1n,θ0 = n1/4 and otherwise proceed as in the power function example.

The class of asymptotically homogenous functions includes transformations g(x, θ) which as-
ymptotically behave like homogeneous functions; they include the power function in Section 5.2
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as well as logistic, threshold-like or logarithmic transformations. Specifically, an asymptotically
homogeneous function f(x, θ) is a function such that

f(λx, θ) = κ(λ, θ)H(x, θ) +R(λ, x, θ),

where κ is a normalization, H satisfies some regularity conditions (such as local integrability —
see also Pötscher, 2004) and R is a lower order remainder term. In Theorem 5.3 of Park and
Phillips (2001) each of the functions g, ġ and g̈ are assumed to be asymptotically homogenous
and satisfy conditions that have the same flavour as those in Assumption 4.4. It then follows
that n1/2κ̇ (

√
n, θ0)

′
(θ̂n − θ) converges in distribution. Thus, we can choose the normalization

N−1n,θ0 = n1/2κ̇ (
√
n, θ0)

′
. For instance, in the power function model (5.1) with random walk regressor

we have κ̇ (
√
n, θ0) = nθ0/2 log n1/2.

6 Finite Sample Performance

In this section, we study the finite sample performance of the CUSQ test through simulation. We
use the exact asymptotic 95% critical value of 1.36 and 10000 replicas. Two sets of results are
presented for various asymptotically homogeneous models. First, we check size and power for a
set of models that are either linear or non-linear in parameters. Next, we consider a set of models
suggested by Kasparis (2008). For these we compare the power of the CUSQ test with the power
of a cumulated sum (CUSUM) test reported by Kasparis (2008). We find that the two tests have
power of similar magnitude, so there is no apparent advantage in using the more complicated
CUSUM test.

Table 1 contains the first set of data generating processes (DGPs). Four correctly specified (CS)
DGPs and five misspecified (M) DGPs are analyzed. The regressor xt is (fractionally) integrated
so that ∆τxt is iid N(0, 1) with xt = 0 for t ≤ 0 and with τ = 0.7, 1, 2. While the models in
Section 5 focus on stationary and random walk models the theory does extend to other types of
nonstationarity, see Chan and Wang (2015).

Table 2, DGPs 1-4, reports the size of the CUSQ test. The size control is fairly uniform across
the DGPs. This is in correspondence with the results for linear autoregressions in Nielsen and
Sohkanen (2011). The test is, however, slightly undersized in small samples. The size distortion
can be removed by applying the finite sample 95% critical value 1.36−0.67n−1/2−0.89n−1 suggested
by Edgerton and Wells (1994). Similarly, for the recursive test Sohkanen (2011) suggests the 95%
critical value 1.36(1− 0.68n−1/2 + 3.13n−1 − 33.9n−3/2 + 93.9n−2).

Table 2, DGPs 5-9, reports the power of the CUSQ test for a range of asymptotically ho-
mogenous functions. The power increases with sample size in all cases. The power also tends to
increase with the order of integration of the regressors. This is in line with the power analysis for
linear models conducted by McCabe and Harrison (1980), Ploberger and Krämer (1990), Deng and
Perron (2008), or Turner (2010).

The CUSQ also has power to detect misspecification involving integrable functions of persistent
processes. As an example consider the data generating process yt = θ1/(1 + θ2x

2
t ) + εt, while the

regression model is polynomial. Simulations not reported here show that power arises as long as
the signal from the integrable function component θ1/(1 + θ2x

2
t ) dominates the noise εt.

Next, we compare the power of the CUSQ test with the CUSUM test of Kasparis (2008).
Table 3 reports his ten DGPs. In all cases a linear model for yt and xt is fitted, which is therefore
misspecified. The results are reported in Table 4. Kasparis’test uses a long run variance estimator
to standardize the statistic; hence, the power of the test depends on a bandwidth choice. Kasparis
reports power for different bandwidths and we report the highest of these. Table 4 shows that no
test dominates in all cases but both tests perform in a similar way. We note that the CUSUM test
involves nuisance terms depending on the functional form of the model whereas the CUSQ has a
Brownian bridge theory quite generally.
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A Appendix: Proofs

In most places we use the spectral norm for matrices, so that for a matrix m then

‖m‖ =
√

max eigen(m′m).

The spectral norm reduces to the Euclidean norm for vectors. It is compatible with the Euclidean
norm in the sense that ||mv|| = ||m||||v|| for a matrix m and a vector v. It satisfies the norm
inequality ||mn|| ≤ ||m||||n|| for matrices m,n. Occasionally, we will use the Frobenius norm

||m||F = (
∑

i,j |mij |2)1/2.

Note that ||m|| ≤ ||m||F with equality when m is a vector, while ||m||F ≤ q||m|| where q is the
column dimension of m. Further, ||m||F = ||vec(m)||F .

We start with a modification of the martingale result by Lai and Wei (1982).

Lemma A.1 Let Nn,θ0 be a q × q normalizing matrix where N−1n,θ0 = O(n`) for some ` > 0.
Further, let g(xt, θ0) be a function g : Rp × Rq → R, with derivatives with respect to θ: ġ, g̈. Also
let Assumption 3.1(a) hold. Let wt be Ft−1-measurable and given as either of
(i) wt = N ′n,θ0 ġ(xt, θ0);
(ii) wt = N ′n,θ0 g̈(xt, θ0)Nn,θ0 .
Suppose n0 = inf[n :

∑n
t=1{vec(wt)}{vec(wt)}′ is invertible] <∞ a.s. Then, for all ς > 0,

max
n0≤s≤n

‖
∑s

t=1wtεt‖
a.s.
= o

[
nς
∥∥∑n

t=1 {vec(wt)} {vec(wt)}′
∥∥1/2+ς]+ O(1)

= o

{
nς
(∑n

t=1 ‖wt‖
2
)1/2+ς}

+ O(1).

Proof of Lemma A.1: Part (i): Introduce the notation

Sġε,u =
∑[nu]

t=1 ġ(xt, θ0)εt and Sġġ,u =
∑[nu]

t=1 ġ(xt, θ0)ġ(xt, θ0)
′,

so that
N ′n,θ0Sġε,u =

∑[nu]
t=1wtεt and N ′n,θ0Sġġ,uNn,θ0 =

∑[nu]
t=1wtw

′
t.

Notice that, for n0 < [nu],∥∥N ′n,θ0Sġε,u∥∥ =
∥∥∥(N ′n,θ0Sġġ,uNn,θ0)

1/2S
−1/2
ġġ,u Sġε,u

∥∥∥ ≤ ∥∥N ′n,θ0Sġġ,uNn,θ0

∥∥1/2 ∥∥∥S−1/2ġġ,u Sġε,u

∥∥∥ . (A.1)

Use Lai and Wei (1982, Lemma 1,i,ii) with Assumption 3.1(a) recalling the definition of the spectral
norm, to see that ∥∥∥S−1/2ġġ,u Sġε,u

∥∥∥ =
∥∥∥Sεġ,uS−1ġġ,uSġε,u∥∥∥1/2 a.s.= o

(
‖Sġġ,u‖ς̃

)
+ O(1),

for all ς̃ > 0. Since ‖Sġġ,u‖ is non-decreasing in u this is bounded by ‖Sġġ,1‖ . Using that N−1n,θ0 =

O
(
n`
)
for some ` > 0, we can write∥∥∥S−1/2ġġ,u Sġε,u

∥∥∥ a.s.
= o

(∥∥∥N−1n,θ0∥∥∥2ς̃ ∥∥N ′n,θ0Sġġ,1Nn,θ0

∥∥ς̃)+ O(1) = o
(
nς
∥∥N ′n,θ0Sġġ,1Nn,θ0

∥∥ς)+ O(1),

for all ς > 0, uniformly in u. Hence, using (A.1),

sup
u

∥∥N ′n,θ0Sġε,u∥∥ a.s.
= o(nς

∥∥N ′n,θ0Sġġ,1Nn,θ0

∥∥1/2+ς) + O (1) ,

which is the first desired expression and by the triangle inequality we get the second expression.
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Part (ii): By the properties of the Frobenius norm we get that∥∥∥∑[nu]
t=1wtεt

∥∥∥ ≤ ∥∥∥∑[nu]
t=1wtεt

∥∥∥
F

=
∥∥∥∑[nu]

t=1vec (wt) εt

∥∥∥ .
Now argue as in (i) with wt replaced by vec (wt) to get

sup
u

∥∥∥∑[nu]
t=1wtεt

∥∥∥ ≤ o
(
nς
∥∥∑n

t=1 {vec (wt)} {vec (wt)}′
∥∥1/2+ς) a.s.,

which is the first desired expression. To get the second expression notice that∥∥∑n
t=1 {vec (wt)} {vec (wt)}′

∥∥ ≤∑n
t=1

∥∥{vec (wt)} {vec (wt)}′
∥∥

and ||{vec(wt)}{vec(wt)}′|| = ‖vec (wt)‖2F = ‖wt‖2F ≤ q ‖wt‖
2 as desired. �

Proof of Theorem 3.2: The statistic of interest is CUSQn = An/ϕ̂n, where

An = max
1≤t≤n

∣∣∣n−1/2∑t
s=1

(
ε̂2s,n − n−1

∑n
r=1ε̂

2
r,n

)∣∣∣ .
Expand An = Bn + (An − Bn) , where

Bn = max
1≤t≤n

∣∣∣n−1/2∑t
s=1

(
ε2s − n−1

∑n
r=1ε

2
r

)∣∣∣ .
Noting that ε̂2s,n = (ε̂2s,n − ε2s) + ε2s we get

An−Bn = max
1≤t≤n

∣∣∣n−1/2∑t
s=1

(
ε2s − n−1

∑n
r=1ε

2
r

)
+ n−1/2

∑t
s=1

{(
ε̂2s,n − ε2s

)
− n−1

∑n
r=1

(
ε̂2r,n − ε2r

)}∣∣∣
− max
1≤t≤n

∣∣∣n−1/2∑t
s=1

(
ε2s − n−1

∑n
r=1ε

2
r

)∣∣∣ .
By the triangle inequality An − Bn ≤ Bn + Cn − Bn = Cn where

Cn = max
1≤t≤n

∣∣∣n−1/2∑t
s=1

{(
ε̂2s,n − ε2s

)
− n−1

∑n
r=1

(
ε̂2r,n − ε2r

)}∣∣∣ .
By Assumption 3.2,

An − Bn ≤ Cn ≤ 2 max
1≤t≤n

∣∣∣n−1/2∑t
s=1

(
ε̂2s,n − ε2s

)∣∣∣ = oP(1). (A.2)

Thus, by Theorem 3.1 and the Continuous Mapping Theorem applied to the maximum, we have

An = Bn + oP(1)
D→ ϕ sup

0≤u≤1

∣∣B0u∣∣ .
Consider now ϕ̂2n = n−1

∑n
t=1ε̂

4
t,n − (n−1

∑n
t=1ε̂

2
t,n)2. Further, n−1

∑n
t=1(ε̂

k
t,n − εkt ) = oP(1) for

k = 2, 4 by Assumptions 3.2, 3.3. Therefore,

ϕ̂2n = n−1
∑n

t=1ε
4
t −

(
n−1

∑n
t=1ε

2
t

)2
+ oP(1).

By Theorem 3.1, under Assumption 3.1, we have ϕ̂2n = ϕ2 + oP(1).
All together, CUSQn converges in distribution to sup0≤u≤1

∣∣B0u∣∣ as desired. �

Proof of Theorem 3.3: Follow the proof of Theorem 3.2 replacing ε̂2s,n by ε̂
2
s,t and using Assump-

tion 3.4 instead of Assumption 3.2 when evaluating (A.2). �
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Proof of Theorem 4.1: Part I: Assumption 3.2.
1. The problem. Let St,θ = n−1/2{Qt(θ) − Qt(θ0)} so that St,θ̂n = n−1/2

∑t
s=1 ε̂

2
s,n − ε2s. We show

that St,θ̂n = oP(1) uniformly in 1 ≤ t ≤ n. From (4.1) we have St,θ = −2S̃t,θ + St,θ, where

S̃t,θ = n−1/2
∑t

s=1εs∇gs(θ), St,θ = n−1/2
∑t

s=1{∇gs(θ)}
2.

2. Expand the martingale S̃t,θ. We use a second order mean value result. To simplify the expression
we introduce the notation

ḣs(θ) = N ′n,θ0 ġ(xs, θ), ḧs(θ) = N ′n,θ0 g̈(xs, θ)Nn,θ0 ,

ϑ = N−1n,θ0 (θ − θ0) , ∇ḧs(θ) = N ′n,θ0 {g̈(xs, θ)− g̈(xs, θ0)}Nn,θ0 .

With this notation we get, for instance, that

(θ − θ0)′ġ(xs, θ0) = {N−1n,θ0(θ − θ0)}
′N ′n,θ0 ġ(xs, θ0) = ϑ′ḣs(θ0).

Overall, we can expand S̃t,θ̂n = n−1/2
∑t

s=1εs∇gs(θ̂n) as

S̃t,θ̂n = n−1/2
∑t

s=1εsϑ̂
′
nḣs(θ0) +

1

2
n−1/2

∑t
s=1εsϑ̂

′
nḧs(θ0)ϑ̂n

+
1

2
n−1/2

∑t
s=1εsϑ̂

′
n{ḧs(θ∗)− ḧs(θ0)}ϑ̂n, (A.3)

for an intermediate point θ∗ depending on the summation limit t and θ̂n so ||θ∗ − θ0|| ≤ ||θ̂n − θ0||.
Note that the first two terms only depend on θ̂n through the factor ϑ̂n. For simplicity we write
(A.3) as S̃t,θ̂n = S̃t,1 + (S̃t,2 + S̃t,θ̂n,3)/2.
3. The martingale term S̃t,1. The norm inequality and the bound to ϑ̂n in Assumption 4.1 (a) give

|S̃t,1| ≤ n−1/2||ϑ̂n||||
∑t

s=1εsḣs(θ0)|| ≤ oP(nδ−1/2)||
∑t

s=1εsḣs(θ0)||.

Apply Lemma A.1 (i) using Assumptions 3.1, 4.3 to get, for any ς > 0,

max
n0≤t≤n

|S̃t,1| = oP(nδ−1/2)oa.s.[n
ς{
∑n

t=1||ḣt(θ0)||
2}1/2+ς ] + oP(nδ−1/2)Oa.s. (1) .

By Assumption 4.2 (c), we have that
∑n

t=1 ||ḣt(θ0)||2 = OP

(
n1−2δ−η

)
for some η > 0 while δ < 1/4.

We then get, when choosing 2ς ≤ η/(2− 2δ − η),

max
n0≤t≤n

|S̃t,1| = oP(nδ−1/2)oP{n(1−2δ−η)(1/2+ς)+ς}+ oP(nδ−1/2) = oP(1).

4. The martingale term S̃t,2. Argue as in item 3. First, the norm inequality gives

|S̃t,2| ≤ n−1/2||ϑ̂n||2||
∑t

s=1εsḧs(θ0)|| ≤ oP(n2δ−1/2)||
∑t

s=1εsḧs(θ0)||.

Then apply Lemma A.1 (ii) using Assumptions 3.1, 4.3 along with Assumption 4.2 (d) to get

max
n0≤t≤n

|S̃t,2| = oP(n2δ−1/2)oP(n(1−4δ−η)(1/2+ς)+ς) + oP(n2δ−1/2) = oP(1),

when δ < 1/4 and ς > 0 is chosen suffi ciently small.
5. The term S̃t,θ̂n,3. Apply the norm and triangle inequalities to get

|S̃t,θ̂n,3| ≤ ||ϑ̂n||
2n−1/2

∑t
s=1|εs| ||ḧs(θ∗)− ḧs(θ0)||.

The summands are positive so that a further bound arises by extending the summation limit

|S̃t,θ̂n,3| ≤ ||ϑ̂n||
2n−1/2

∑n
s=1|εs| ||ḧs(θ∗)− ḧs(θ0)||,
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where θ∗ remains dependent on t and θ̂n. Apply the Hölder inequality to get

|S̃t,θ̂n,3| ≤ ||ϑ̂n||
2(n−1

∑n
s=1ε

2
s)
1/2(

∑n
s=1||ḧs(θ∗)− ḧs(θ0)||

2)1/2.

The martingale Law of Large Numbers (Chow, 1965, Theorem 5) shows n−1
∑n

s=1ε
2
s = O(1) a.s.

By Assumption 4.1 (a) then ϑ̂n = N−1n,θ0(θ̂n − θ0) = oP(nδ). For any ε > 0 and large n then

||N−1n,θ0(θ̂n − θ0)|| ≤ εnδ with large probability. For such θ̂n we have that θ∗ is also local to θ0 and
we can then bound∑n

s=1||ḧs(θ∗)− ḧs(θ0)||
2 ≤ sup

θ:||N−1n,θ0 (θ−θ0)||≤εn
δ

∑n
s=1||ḧs(θ)− ḧs(θ0)||

2,

which depends neither on t nor θ̂n. Then Assumption 4.2 (e) implies |S̃t,θ̂n,3| = oP(n2δ−2δ) = oP(1)
uniformly in t.
6. The compensator. As before ||N−1n,θ0(θ̂n− θ0)|| ≤ εn

δ on a set with large probability. On that set

St,θ̂n ≤ supθ:||N−1n,θ0 (θ−θ0)||≤εn
δ St,θ which is oP(1) by Assumption 4.2 (a).

Part II: Assumption 3.3.
1. The problem. Let Vn,θ = n−1

∑n
t=1[{εt − ∇gs(θ)}4 − ε4t ] where ∇gs(θ) = g(xs, θ) − g(xs, θ0) as

before, so that Vn,θ̂n = n−1
∑n

t=1(ε̂
4
t − ε4t ).

2. Some inequalities: By binomial expansion (ε − ∇)4 − ε4 = ∇4 − 4∇3ε + 6∇2ε2 − 4∇ε3. Thus,
by Hölder’s inequality,

|Vn,θ| ≤ n−1
∑n

t=1{∇gs(θ)}
4 − 4[n−1

∑n
t=1{∇gs(θ)}

4]3/4(n−1
∑n

t=1ε
4
t )
1/4

+ 6[n−1
∑n

t=1{∇gs(θ)}
4]1/2(n−1

∑n
t=1ε

4
t )
1/2 − 4[n−1

∑n
t=1{∇gs(θ)}

4]1/4(n−1
∑n

t=1ε
4
t )
3/4.

Now, n−1
∑n

t=1ε
4
t = OP(1) by the martingale Law of Large Numbers and Assumption 3.1 while

n−1
∑n

t=1{∇gs(θ̂n)}4 = oP(1) by an argument as in part I, item 6 using Assumption 4.2 (b). �

Proof of Theorem 4.2. Since θ̂n = θ0 + o(nδ) a.s. by Assumption 4.1 (b) then Egorov’s theorem
(Davidson 1994, Theorem 18.4) implies ∀ν > 0 ∃t0 so Ωη = {supt>t0 |N

−1
n,θ0

(θ̂t−θ0)| < νnδ} satisfies
P(Ωη) > 1− ν. On Ωη we bound

max
1≤t≤n

|n−1/2
t∑

s=1

(ε̂2s,t − ε2s)| ≤ n−1/2 max
1≤t≤t0

|
t∑

s=1

(ε̂2s,t − ε2s)|+ max
t0+1≤t≤n

|n−1/2
t∑

s=1

(ε̂2s,t − ε2s)|.

Since t0 is finite, the first term vanishes. For the second term we can follow the proof of Theorem
4.1 replacing ε̂2s,n by ε̂

2
s,t. When expanding in item 3 the intermediate point θ∗ will now depend on

t through the summation limit and θ̂t. However, with t > t0 then θ̂t is local to θ0 uniformly in t
and the remaining arguments apply. �

Proof of Theorem 4.3. Assumption 4.4 (a,b,c) with k = 2 imply Assumption 4.2 (c,d,e).
Now, recall the notation in item 3 in the proof of Theorem 4.1 and expand

g(xt, θ)− g(xt, θ0) = ϑ′ḣt(θ0) +
1

2
ϑ′ḧt(θ0)ϑ+

1

2
ϑ′{ḧt(θt)− ḧt(θ0)}ϑ,

where θt is an intermediate point depending on xt so |θt − θ0| ≤ |θ − θ0|. Raise this to the power
k = 2 or k = 4 and apply the inequality (x+ y + z)m ≤ C(xm + ym + zm) to see that

|g(xt, θ)− g(xt, θ0)|k ≤ C{||ϑ||k||ḣt(θ0)||k + ||ϑ||2k||ḧt(θ0)||k + ||ϑ||2k||ḧt(θt)− ḧt(θ0)||k}.
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In Assumption 4.2 (a,b) we only consider ||ϑ|| ≤ εnδ. Thus θt is local to θ0 so that ||ḧt(θt)−ḧt(θ0)||k
≤ supθ:||N−1n,θ0 (θ−θ0)||≤εn

δ ||ḧt(θ)− ḧt(θ0)||k. Then cumulate to get

|
n∑
t=1

{g(xt, θ)− g(xt, θ0)}k| ≤ εknδk
n∑
t=1

||ḣt(θ0)||k

+ ε2kn2δk
n∑
t=1

||ḧt(θ0)||k + ε2kn2δk
n∑
t=1

sup
θ:||N−1n,θ0 (θ−θ0)||≤εn

δ

||ḧt(θ)− ḧt(θ0)||2k,

which is oP(n1/2) for k = 2 and oP(n) for k = 4 due to Assumption 4.4. �

B Tables

Table 1: DGPs: Data Generating Processes
* DGP yt g (xt, θ)

CS 1 1 + 0.5xt + εt θ1 + θ2xt
CS 2 1 + 0.5x2t + εt θ1 + θ2x

2
t

CS 3 1 + 0.9xt1 (vt ≤ 0) + 0.5xt1 (vt > 0) + εt θ1 + θ2xt1 (vt ≤ 0) + θ3xt1 (vt > 0)

CS 4 1 + 0.3 |xt|1.5 + εt θ1 + θ2 |xt|θ3

M 5 yt−1 + εt θ1 + θ2 |xt|θ3
M 6 1 + 0.9xt1 (vt ≤ 0) + 0.5xt1 (vt > 0) + εt θ1 + θ2xt
M 7 1 + 0.5x2t + εt θ1 + θ2xt
M 8 1 + 0.3 |xt|1.5 + ut ut = xt + εt θ1 + θ2 |xt|θ3
M 9 1 + 0.5x2t + εt θ1 + θ2ln

2 |xt|
CS denotes correct specification and M denotes misspecification. yt and g(xt, θ) are the
dependent variable and the estimated regression function, respetively. xt ∼ I(τ) with τ =

0.7, 1, 2. εt, vt ∼ i.i.d.N (0, 1). xt, εt, and vt are independent of each other.

Table 2: Size and Power: Finite Sample Performance
xt∼ I (0.7) xt∼ I (1) xt∼ I (2)

CUSQn n n n

* DGP 100 500 1000 100 500 1000 100 500 1000
CS 1 0.031 0.041 0.044 0.032 0.040 0.044 0.031 0.040 0.044
CS 2 0.031 0.040 0.045 0.031 0.040 0.044 0.031 0.039 0.044
CS 3 0.030 0.041 0.043 0.033 0.042 0.043 0.033 0.041 0.042
CS 4 0.031 0.040 0.045 0.031 0.041 0.043 0.033 0.040 0.044

M 5 0.527 0.975 0.997 0.814 0.999 1.000 0.957 1.000 1.000
M 6 0.085 0.485 0.708 0.553 0.984 0.999 0.998 1.000 1.000
M 7 0.096 0.790 0.962 0.479 0.993 1.000 0.974 1.000 1.000
M 8 0.302 0.854 0.946 0.460 0.846 0.913 0.935 1.000 1.000
M 9 0.313 0.709 0.775 0.320 0.599 0.759 0.945 0.999 0.999

CS denotes correct specification; hence, size is being analyzed in those cases. M denotes mis-
specification; hence, power is considered in those cases. 10000 replications are conducted.
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Table 3: Power performance comparison with Kasparis (2008)
DGP yt
R1 zt
R2 sign (zt) |zt|0.5

R3 sign (xt) |xt|0.75 + ut
R4 sign (xt) |xt|1.25 + ut
R5 ln (1 + |xt|) + ut
R6 xt + |xt|0.5 + ut
R7 0.4xt1 (xt ≤ 0) +1.8xt1 (xt ≥ 0) + ut
R8 xt + 1.8 [xt/(1 + exp (−xt/

√
n− 2))] + ut

R9 xt + zt + ut
R10 sign (xt) (|xt| |zt|)0.5 + ut

zt = zt−1 + wt where wt = 0.3wt−1 + ωt, xt = xt−1 + ηt,
ut = εt, (εt, ηt+1, ωt+1)

′ = Drt where rt ∼ i.i.d.N (0, 1) and
D = [1 .2 .1, .3 2 0, 0 .1 1.2]

Table 4: Power performance comparison with Kasparis (2008)
CUSQn Kasparis’best power

n 100 200 500 100 200 500

R1 0.909 0.999 1.000 0.762 0.920 0.984
R2 0.925 1.000 1.000 0.790 0.930 0.984
R3 0.093 0.612 0.860 0.180 0.377 0.698
R4 0.349 0.962 0.996 0.430 0.706 0.902
R5 0.408 0.922 0.986 0.706 0.901 0.993
R6 0.514 0.953 0.993 0.626 0.862 0.989
R7 0.548 0.825 0.872 0.485 0.597 0.704
R8 0.340 0.849 0.959 0.327 0.557 0.825
R9 0.882 0.999 1.000 0.753 0.915 0.983
R10 0.670 0.997 1.000 0.411 0.702 0.904
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