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Abstract

Optimal persuasion, à la Kamenica-Gentzkow (2011), require Senders to commit to
reporting strategies; one potential source of such commitment is repeated interaction.
We study a model in which a long lived Sender plays a cheap talk game with a se-
quence of short lived Receivers who observe the joint histories of reports and states. In
this setting, we show we can achieve optimal persuasion if and only if honest reporting
is optimal. However, as demonstrated in the persuasion literature, honest reporting is
generally not optimal for the Sender. We then show how optimal persuasion can always
be retrieved by altering the game so it has a property that we call “honestly dishonest”.
We show that we can make a game honestly dishonest by using cryptographic technolo-
gies or mediators. We then give several examples of games that are honestly dishonest
in the first place.

1 Introduction

Being able to believe and act on the claims of others is a corner stone of a well-functioning
society. A major source of such trust is that people want to be trusted in the future; the
cost of lying today is that they may not be believed tomorrow. Given this, should people
always tell the truth or can they gain from being systematically dishonest?
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We develop a general model which allows us to examine this question. Importantly, we
do so without the presence of the commitment assumption in Kamenica Gentzkow (2011). A
patient Sender plays a cheap talk game with a sequence of short lived Receivers. Each period
a state that is payoff relevant to the Receiver is realised according to an i.i.d. process. This
state is observed by the Sender; he then sends a message about the state to the Receiver; she
then takes an action based on her belief about the state; finally, the state is revealed. The
Sender’s stage payoff is the result of the action taken by the Receiver. The Receiver’s belief
about the state results from the message she receives and her beliefs about the Sender’s
strategy. Each new Receiver observes the joint history of messages and states which she uses
to form her beliefs about the Sender’s strategy. The Sender then, must look further than
today’s Receiver and also consider how his advice will affect the beliefs and actions of all
future Receivers. Hence, the value of being trusted in the future yields a potential source of
commitment for the Sender’s reporting strategy today.

As a preliminary result we show the threat of permanently ignoring the Sender’s messages
can sustain honest equilibria for sufficiently patient Senders. Where an honest equilibria is
one in which the Sender sends one, and only one, message in any particular state.1 Next
we show that, à la Kamenica Gentzkow (2011), we can also sustain equilibria where the
Sender can commit to any reporting policy at some stage in the game. However, when that
reporting policy is dishonest this implies that in some states of the world they are mixing
between the truth and a lie - where the lie is the more profitable message to send at the
stage game. To be able to commit to such a policy the Sender has to be indifferent between
telling the truth and lying - this indifference is maintained by on path punishment whenever
the Sender lies. Such dishonest equilibria are then characterised by trust cycles as Receivers
punish the Sender by ignoring him for some time after a lie.2

The existence of these on path punishments lead us to our next main result: the Sender
can only achieve the optimal average payoff if the optimal strategy in the commitment
game is honest. Note, most of the literature examines cases where the optimal strategy is
not honest. Further, we show when repetition is the only commitment mechanism for the
Sender that honest equilibria Pareto dominate dishonest equilibria in many of the canonical
cases. Unfortunately, in many of these cases, the Sender has little incentive to move to an
honest equilibrium. This should provide a note of caution about encouraging attempts at
persuasion in environments where repeated cheap talk is the form of commitment.

1This notion of honesty allows for coarse messages so long as the message space is a partition of the
state space. For example, having a totally uninformative message strategy can be honest i.e. never saying
anything.

2One might tentatively venture that the current episode of voters ignoring experts regarding the Brexit
referendum and the US presidential elections is an example of a low trust phase in such an equilibrium.
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However, our third main result gives us reason for hope: we can retrieve the payoffs
available under full commitment if a game has the property of being “honestly dishonest.”
To describe this property we will consider how we can make the game honestly dishonest with
what we call a “Coin and Cup” (CnC). A CnC is a payoff irrelevant random variable which
realizes some value each period; the Sender observes the CnC before giving advice and the
Receiver does not; the value of the CnC is publicly revealed at the same time as the payoff
relevant state. Receiver’s now observe the joint history of advice, states and realizations of
the CnC. The Sender can condition pure strategies on the CnC, for any realization of the
state, that are ex-ante equivalent to mixing from the perspective of the Receiver. However,
ex-post, Receivers can see if he deviated from his pure strategy and only punish him if he
lies for disallowed values of the CnC. That is, they can monitor whether he is being honestly
dishonest and so never need to punish him on the equilibrium path. It is worth noting
here that the field of cryptography already uses a technology analagous to a CnC for other
purposes; it is called a ‘commitment scheme’ and can be easily placed in a blockchain to
generate such a publicly verifiable record.

A game is honestly dishonest then, if the Sender can adopt a reporting strategy of sending
multiple messages in some payoff relevant state of the world according to a rule that is
stochastic from the Receiver’s perspective ex-ante but is deterministic and verifiable after
the Receiver has acted. We will show later that games can also be honestly dishonest when
there is a mediator or many Receivers acting simultaneously. Finally, we will examine a
case where institutional changes have been pushed by advisers within finance that allow
their customers to verify the rate at which they have “lied”. The effect of this change nicely
illustrates the results in this paper.

This paper is, in part, an analysis of how the commitment assumption layed out in
Kamenica and Gentzkow [2011] and applied in the subsequent literature (Rayo and Segal,
2010; Perez-Richet, 2014; Kolotilin, 2015; Taneva, 2015; Tamura, 2016) can be microfounded
by embedding cheap talk within a dynamic setting. Dynamic persuasion has been analysed
in Kremer et al. [2014], Ely [2015], Bizzotto et al. [2016], and elsewhere. However, unlike in
this paper, these are analyses of optimal persuasion when there is commitment at the stage
game.

The closest work to ours are Sobel [1985], Hermalin [2007], and Margaria and Smolin
[2015]. Sobel (1985) examines a finitely repeated cheap talk where the Sender is either a
‘friend’ whose preferences are aligned with the Receiver or an ‘enemy’ who’s preferences are
opposed. The desire to appear to be a friend can cause even enemies to be truthful. We do
not rely on multiple types of Senders in our paper. More importantly we examine a different
question: when beliefs about the Sender’s reporting strategy can discipline behaviour today
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what is the best the Senders and Receivers can achieve.
Hermalin (2007) examines a game where a Leader has private information about the value

of a public good and communicates with a team of myopic Followers using cheap talk and
costly signalling. We generalise one of the results in this paper about truthful communication
to a generalised setting. Unlike us Hermalin does not examine how a leader may do better
through dishonest communication nor how we can improve upon the equilibria of a standard
cheap talk game.

Margaria and Smolin’s paper does not seek to answer the problem of persuasion as the
Sender. They develop a folk theorem for a repeated cheap talk game with a long lived Re-
ceiver showing the players can attain any individual rational average payoffs. This sharp
difference from our result follows from the Sender’s ability to punish the Receiver by with-
holding information in the future. The threat of this punishment means the sender can
extract far more from the Receiver than in a Bayesian persuasion game with full commit-
ment. Our model, by focusing on Receiver’s whose actions are determined only by their
beliefs about the state, does seek to examine the question of persuasion. Moreover, we can
also look at how small changes to the game are able to allow for greater levels of persuasion
and communication: shifting out the Pareto frontier of the game.

The paper is organised as follows: in section 2 we provide a simple example that illustrates
the main results of the paper; in section 3 we describe the full model; in section 4 we analyse
the equilibrium and give the main results; in section 5 we look at some real world examples
of games that may be honestly dishonest; and in section 6 we conclude.

2 A Simple Example

The head of a construction Firm wants a Mayor to give them permission for a large con-
struction project. The Mayor is uncertain whether the project will be a net benefit or loss
for the city. If the project is rejected both the Firm and the Mayor get a payoff of zero. If
the mayor Accepts the project proposal the Firm always gets zero; the Mayor gets a payoff
of one when the project is Good and minus one when the project is Bad. Hence, the Mayor
will only okay the project if she believes the project will be Good with at least a fifty percent
probability. The red line in Figure 1 below then gives the Firm’s payoffs, v(.), as a function
of the Mayor’s posterior probability, µ, that the project will be Good fdsfdas

v(µ) =

1 if µ ≥ 0.5

0 if µ < 0.5
;
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the Mayor’s expected payoff as a function of her posterior belief is given by the green
line,

u(µ) =

2(µ− 0.5) if ≥ 0.5

0 if < 0.5
.

The prior probability of the project being Good is µ0 = 1/3. However, the Firm learns the
quality of the project, whether it is Good or Bad, with probability one.

Figure 1
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The Firm then sends a re-
port of ‘Accept’ or ‘Reject’. The
firm commits to a policy of send-
ing the ‘Accept’ report with some
probability if the project is Good,
and with a weakly lower proba-
bility when the project is Bad.
The (Bayesian) Mayor, after any
given report, forms posterior be-
liefs based on the relative probabil-
ities of receiving that report when
the project is Good versus Bad.

The Firm’s policy can induce any pair of posteriors that satisfy the law of total proba-
bilities,

Pr(Good) = Pr(Good|Accept)Pr(Accept) + Pr(Good|Reject)(1− Pr(Accept)). (1)

Hence, we can think of the Firm’s policy as a choice of any two posteriors, µA = Pr(Good|Accept)
and µR = Pr(Good|Reject), straddling the prior µ0; where the posteriors pin down the fre-
quency of sending an Accept. We can restrict attention to policies such that µA ≥ 0.5 as
the Firm can only make profits with policies that give incentive compatible advice where the
Mayor accepts the project if she receives an Accept. In which case the expected payoff to
the Firm is just the probability of sending an accept, from (1) this is

Pr(Accept) =
µ0 − µR
µA − µR

,
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Figure 2
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which is just the height of the line connect-
ing the posteriors µR and µA evaluated at the
prior µ0 as shown in figure 2a below. From the
Mayor’s perspective, the best policy is Truth
Telling -the Firm sends an Accept if and only
if the project is Good, (µR,µA) = (0, 1). This
pays out for Good projects only and, as can be
seen from figure 2b, this has an expected payoff
of one third to both parties.

From the Firm’s perspective this is waste-
ful, the Firm doesn’t need certainty after an Ac-
cept to get permission, just µA ≥ 0.5. Instead
the Firm’s prefers a maximally Persuasive pol-
icy where it reports Accept half the time when
the project is bad and all the time when the
project is Good. Under this policy the Firm is
now reporting Accept two thirds of the time and
it gives the Mayor posteriors (µR, µA) = (0, 0.5)

so the Mayor still accepts after receiving a posi-
tive report. While this is the best policy for the
Firm it is the worst for the Mayor: the Mayor
gets expected surplus of zero irrespective of the
report. We can see from figure 2c that this pol-
icy places us on the convex hull of the Firm’s
payoff function, as in Kamenica and Gentzkow
(2011).

The ability to commit to a reporting policy
in a one shot setting like that above may be in-
feasible. In such cases there is no equilibrium
in which the Mayor will follow the advice of Ac-
cept. The Mayor only accepts if the firm has a
strategy of sending Accept no more than half of

the time when the project is Bad, but this can’t be an equilibrium as the Firm would always
break its word and report Accept. Consequently, without commitment neither Truth Telling
nor Persuasion policies are feasible: all the equilibria of the game are payoff equivalent to
a Babbling equilibrium where the Firm randomly sends Accept and Reject reports while
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the Mayor ignores the reports. However, in a repeated setting where the Firm cares about
whether it is trusted in the future there may be some room to generate commitment.

In this light, consider now a Firm that is long lived and proposes a sequence of ex-ante
identical projects to a sequence of one term Mayors, one Mayor per term. As before, the
prior probability of the project being Good is µ0 = 1/3. Being short lived3 each Mayor’s
decision rule and payoff will not differ from the full commitment case; a term t Mayor will
accept the project if she believes it has at least a fifty percent chance of being Good: her
posterior µt ≥ 0.5. The Mayor in each term t observes all the reports that the Firm has sent,
the outcomes of all accepted projects, and she forms her beliefs about the Firms reporting
strategy accordingly. The Firm discounts future payoffs at rate δ so that the Firm’s lifetime
discounted payoff is

V0 =
∞∑
t=0

δtv(µt).

Figure 3
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We will compare what can be achieved in
this repeated setting to the baseline payoffs
of full commitment described in Figure 3. B
is the payoff from Babbling; T is the pay-
off from Truth Telling; and P is the payoff
from optimal Persuasion, Firm reports Ac-
cept half of the time when the project is Bad
and always when Good. Note, the line PT is
the Pareto frontier and B is the worst payoff
pair of the stage game.

As Babbling is an equilibrium of the one
shot game it is also an equilibrium of the
repeated game. The Truth Telling equilib-
rium can then be supported by the threat
of a Babbling equilibrium if the Firm is suf-
ficiently patient. On the equilibrium path,
Mayor’s believe the Firm tells the Truth and accept the project if and only if the Firm sends
an Accept report. If the Firm sends an Accept when the project is Bad then the Mayor’s
know they are off path and have the belief that the firm is babbling. The Firm’s on path
discounted payoff from Truth Telling at any stage is then:

3We restrict attention in the main body of this paper to one period Receivers because we want the
Receivers’ actions to be determined only by the Sender’s ability to induce beliefs and not by the effect of
Receivers’ own actions on their continuation payoffs. Need to say this better.
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V T =
µ0

1− δ
=

1

3(1− δ)
.

If at some term t, the Firm learns the project is Bad but reports an Accept the Firm gains
a payoff of one but loses the Truth Telling continuation payoff as the game moves to a
Babbling equilibrium in which the Firm gets nothing. Hence, the above beliefs of Mayor’s
can be supported as an equilibrium if

δ

3(1− δ)
> 1.

This result is not surprising. Perhaps more surprising though, is that the Firm can do
no better than the Truth Telling equilibrium. Consider an equilibrium where the expected
stage payoff is higher than Truth Telling at some stage. Hence, at this stage the Firm’s
strategy is to sometimes lies when the project is Bad: mix between Accept and Reject so
that µtA ∈ [0.5, 1). If the Firm is mixing then it must be indifferent between the two reports,
as the stage payoff from Accept is higher than Reject it follows that the lower continuation
payoff from sending an Accept in the Bad state must exactly offset the higher stage payoff.
Suppose then a Firm has a Bad project in some term and it is mixing, but by sheer chance
it sends a Reject; then suppose this happens each time it gets a Bad project for which it’s
strategy is to mix, forever; in this case the Firm never sends an incentive compatible Accept
report for a Bad project. The upper bound on the expected payoff conditioned on this
accidental outcome of never sending an incentive compatible Accept for a Bad project must
then be the Truth Telling equilibrium. Now, the Firm has not lost out by never sending
an incentive compatible Accept for a Bad project because the Firm was always indifferent
between sending Accept and Reject whenever it was mixing. As the Firm has not lost out
it follows that the upper bound on the expected payoff to the Firm is given by the Truth
Telling equilibrium.

While the above argument rules out the Firm getting a higher payoff than Truth Telling
it does not rule out equilibria in which the Firm persuades/lies at some stages. For example,
consider a game in which the Firm follows the optimal Persuasion strategy in ‘normal’ times
and babbling in ’punishment’ times. Punishment periods are triggered whenever a Firm lies
about a Bad project and go on long enough to make the Firm indifferent (modulo discrete
number issues) between lying and telling the truth. In such an equilibrium the Mayor’s
get zero surplus and the Firm get the same surplus as from Truth Telling. In general, the
set of persuasion equilibria that can be supported yield the average payoffs on the line DT.
Repeated games make it possible to support some degree of persuasion in equilibrium, but
this is Pareto dominated by Truth Telling. It follows then that without a mechanism for

8



generating commitment or for improving on the set of equilibria achievable by repeated
games it is best to forego persuasion.

The solution to the Firm’s problem is a coin and a cup. At the beginning of each term the
Firm shakes a coin in a cup, places it on the table and peeks under the cup to see whether
the coin came up heads or tails. The Mayor observes the Firm do all this, but does not see
the coin. The cup, with the coin still under it, is left on the table. Then, as before, the Firm
learns the quality of the project, sends a report, and the Mayor makes her decision. After the
decision the project (conditional on being Accepted) is revealed to be either Good or Bad.
After this, the Mayor goes to the table, lifts the cup, observes the coin and records whether
it was heads or tails.4 All Mayors now observe the history of reports, project qualities, and
coin flips from previous terms. The Firm goes through the same process with each Mayor.

For sufficiently patient Firms there is now a maximally persuasive equilibrium. In this
equilibrium the Firm only ever sends a Reject if the project is Bad and the coin comes up
tails, otherwise the Firm sends Accept. On the equilibrium path Mayor t always accepts after
the Firm sends Accept, as she has posteriors µtR = 0 and µtA = 0.5. Off the equilibrium path
Mayors all believe the Firm is babbling. The off path threat of the Babbling equilibrium is
enough to ensure the Firm never wants to deviate.

This simple transfer free mechanism5 achieves the maximally persuasive equilibrium by
allowing the Mayor to verify whether the Firm is keeping to the prescribed probability of
lying. Without such a mechanism the beliefs of subsequent Mayors have to generate on
path punishments that make the Firm indifferent between sending an Accept or Reject when
a project is bad, otherwise the Firm won’t randomize in the prescribed fashion. Now, by
introducing the coin and cup the Firm never gets punished on path because the Mayors know
whether the Firm was being honest about its level of dishonesty or not. In some sense the
coin and cup mechanism bears resemblance to a sunspot, it allows players to know where
people are in the game tree so there is no need for inappropriate (on path) punish. However,
in this case it is a staggered sunspot, a standard sunspot does not do the job as if both
players saw the coin when flipped the game would be changed in only the most trivial of
senses.

4For those who might worry, the table was in a room with a time triggered lock.
5Obviously, in the real world one would probably use an electronic randomization device rather than

something so crude as a coin and cup. This would allow further a greater range of policies.
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3 The Model

A Sender (‘he’) and a population of Receivers (each ‘she’) play the following infinitely re-
peated persuasion game.

3.1 Stage Game

Each period, a Receiver Rt must take an action at from a compact set A. His payoffs from
action at depend on an unknown state of the world, θt ∈ Θ =

{
θ1, θ2, . . . , θN

}
, where we

denote the cardinality of Θ byN . His payoffs are given by the utility function uR (at, θ). Each
θt is drawn independently, from a prior distribution represented by the vector µ0 ∈ ∆N .6 In
each period, Rt is ex ante uninformed about θt. Each Rt lives only in period tand thus in
each period t, plays her myopically optimal strategy.

At the beginning of each period, an infinitely-lived Sender S privately observes the real-
ization, θt. Before Rt takes an action, S can send a message mt from some set, M . With
some notational abuse, we occasionally use M to refer to the cardinality of the message
space. Within a period, the Sender only cares about the action taken by agent Rt and has
stage utility uS (at).

Within period, the timing of this static cheap talk game is as follows:

1. θt is drawn from distribution µ0. S privately observes this realization.

2. S sends a message mt ∈M (possibly random) to Rt.

3. After observation of mt, Rt chooses an action at ∈ A.

4. After taking action at, the state θt is observed by all players.

So the Sender first observes θt and chooses a message in accordance with his optimal strategy.
After receiving message mt, the Receiver Rt forms her posterior belief µt using Bayes’ rule
given the strategy of the Sender; she then chooses his action at (µt) to maximize her expected
utility E [uR (at, θt) | mt] and then dies. Hence, we can write the Sender’s equilibrium period-t
stage payoff, as a function of the Receiver’s posterior:

v (µt) := uS (a (µt)) .

As in Kamenica & Gentzkow (2011), we focus on Sender-preferred equilibria. That is,
whenever Rt’s posterior belief leaves her indifferent between two actions, we assume she
chooses the one S prefers. This ensures that v (µt) is a lower semi-continuous function.

6Following standard notation, we use ∆X to denote the simplex over setX, and ∆N for theN -dimensional
unit simplex.
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We refer to this stage game by Γt. As the stage game is a standard cheap talk game,
there always exists a babbling equilibrium. In general, this is not the unique equilibrium of
the stage game. Informative equilibria can be sustained so long as the equilibrium messages
are all equally profitable for S.7,8 This can happen, for instance, when |Θ| = 2, and v (µ) is
non-monotonic, with v (µ′) = v (µ′′) for some µ′ < µ0 < µ′′.

We contrast this stage game to a static information design problem, in which S can
commit in advance to a (mixed) reporting strategy before learning θt. In the persuasion
game, the timing and available actions are as follows:

1a. S chooses an experiment : a message space M , and a random mapping ŝ : Θ→ ∆M .

2a. θt is privately drawn from distribution µ0. Conditional on θt, mt ∈M is drawn from s0.

3a. Rt observes mt and chooses an action at ∈ A.

In the static information design problem, S commits (before observing θt) to an experiment
(a meesage spaceM , and a garbling ŝ of θt). The key distinguishing feasture of an experiment
is that S can commit to a stochastic policy. R then observes a draw mt from the experiment
and uses this information to choose an optimal action.

Of course, S can do at least as well using information design as she can in any equilibrium
of the static cheap talk game. Define v̂ (µ) as the smallest concave function that is everywhere
weakly greater v (µ). That is,

v̂ (µ) := sup {ν : ν ∈ co(v)}

where co(v) denotes the convex hull of the graph of v. Kamenica & Gentzkow (2011) show
that S’s optimal payoff via information design is exactly v̂ (µ0), which we refer to as “Optimal
Persuasion”.

By definition, v̂ (µ0) ≥ v (µ0). If v̂ (µ0) = v (µ0), then S’s optimal payoff can be achieved
by sending no information to Rt, or by a garbling equilibrium of the cheap talk game. To
ensure that persuasion is a useful tool for Sender, we assume in the rest of the paper that v,
µ0 are such that

v̂ (µ0) > v (µ0)

7Chakraborty & Harbaugh (2010) study the class of equilibria generally attainable in this stage game,
under some natural assumptions on payoffs.

8Whenever the stage game has multiple equilibria, it will typically be possible to enforce a wider set of
outcomes than repeated play of stage equilibria, even for finitely repeated interactions. In these cases, it is
nevertheless easier to sustain additional equilibria when the game is infinitely repeated. Moreover, in several
highly studies classes of problem babbling is the only equilibrium of the stage game. In these cases, we need
infinite repetition to sustain equilibria.
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3.2 The Repeated Game

The stage game Γt is repeated each period t = 0, 1, 2, . . . , ad infinitum - we refer to this
infinitely repeated game by Γ∞. At each period t and history φt = (mt, at, θt)

t−1
τ=0, the Sender

sends a message to a new Receiver Rτ . The Receiver observes φt and the message mt and
then chooses an action at before dying. The Sender’s discounted payoff from a sequence of
Receiver actions a = (a1, a2, . . . ) is

∞∑
t=0

δtuS (at) .

Let the set of all period-t histories be Φt. At period t, let the map st : Φt × Θ → ∆M

express a history and state dependent probability distribution over the Sender’s messages. A
strategy for the Sender is a collection s = (st)

∞
t=0. Similarly, let a mixed strategy for Receiver

Rt be a map ρt : Φt ×M → ∆A.
We use the term equilibrium to refer to weak Perfect Bayesian equilibria of the above

game. An equilibrium specifies (i) a strategy s for the Sender; (ii) strategies ρ = (ρt)
∞
t=0 for

each Rt and (iii) posterior beliefs {µt}∞t=0, where µt ∈ ∆Θ is an N -dimensional vector, such
that:

1. Given the Receivers’ strategies and history (φt, θt), s maximizes the Sender’s expected
discounted payoff

E

[
∞∑
τ=t

δτuS (at) | φt, θt; ρ

]
.

2. Given the Sender’s strategy, ρt maximizes Rt’s expected payoff

E [uR (a, θt) | mt] =
N∑
i=1

µit · uR
(
a, θit

)
.

3. Where possible, the Receiver’s posterior beliefs µt =
(
µ1
t , . . . , µ

N
t

)
satisfy

µit = Pr
(
θt = θit | φt,mt; s

)
3.3 A Direct Equilibrium

At any history ht, a messagem sent under the Sender’s behavioural strategy st (ht, θt) induces
a posterior belief µt (ht,m) for the Receiver, on which he bases her optimal action. As we
have already noted, Sender’s payoffs from such a message can be expressed as a reduced-form
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function of Rt’s belief, v (µt). More broadly, st (ht, θt) induces a lottery λ ∈ ∆ (∆Θ) over
Rt’s posterior beliefs. Of course, since Rt is a rational Bayesian, these induced posteriors
integrate back to the prior. A key insight of Kamenica & Gentzkow (2011) is that this
restriction is the only constraint on the lotteries λ that can represent some strategy. For any
prior µ0, we refer to the (convex) subset of such feasible lotteries by Λ (µ0) ⊂ ∆ (∆Θ). In
other words, if at some history ht, λ induces a lottery of M posteriors (µt,1, µt,2, . . . , µt,M)

with λj = Pr (µ = µ1,j), j = 1, 2, . . . ,M that satisfies

µ0 =
M∑
j=1

λjµt,j (2)

then there exists a strategy st (ht, θt) that could have generated this distribution of posteriors
from S’s strategy at history ht.

With these observations in hand, the notion of equilibrium in our infinitely repeated
game can be cast entirely in terms of history-dependent lotteries over beliefs, µt. Define
the stage game Γ̂t as the following adaptation of game Γt: Γ̂t specifies the Sender’s feasible
message space as the set of possible posterior beliefs that Rt may hold, ∆Θ, and is elsewhere
the same as Γt. The infinitely repeated game, Γ̂∞, is analogously defined. In such an
environment, histories are now vectors of the form ht = (µ̃t, at, θt)

t−1
τ=0, the set of all period-

thistories Ht, and (behavioural) strategies functions of the form σ = (στ (hτ , θτ ))
∞
τ=0, where

each σt : Ht × Θ → ∆M , and ρt : Φt ×M → ∆A for S, Rt respectively. We denote the set
of all strategies for S by Σ.

We define a direct equilibrium of this repeated game as follows:

1. (Best responses) Given the Receivers’ belief functions µt (ht, µ̃t), µ̃t ∈ ∪θt∈Θsupp (σt (ht, θt))

maximizes the Sender’s expected discounted payoff

Vt (ht, θt) = v (µt (ht, µ̃t)) + δE [Vt+1 ((ht, µ̃t, θt) , θt+1)] (3)

where Vt is Sender’s continuation payoff at history (ht, θt).

2. (Obedient beliefs) The Receiver believes any equilibrium message, µ̃t ∈ ∪θt∈Θsupp (σt (ht, θt))

µt (ht, µ̃t) = µ̃t

3. (Bayes plausibility) µ0 ∈ co (∪θt∈Θsupp (σt (ht, θt))).

The function µt (ht, µ̃t) specifies Rt’s beliefs, given observation of history ht and message µ̃t
sent by S in period t. Given these beliefs, the optimal behaviour of the Receiver is implicit
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in the function v (µt (ht, µ̃t)), which defines S’s stage payoff from this behaviour. Vt is simply
the sum of S’s discounted payoff from equilibrium play, from history (ht, θt) onwards. In any
equilibrium, S must maximize (3) at all histories of the game tree, given µτ (hτ , µ̃τ ), τ ≥ t.
Moreover, a direct equilibrium requires that (i) Rt’s beliefs conform to the recommendation
made by S, for any µ̃t on the equilibrium path, (ii) at any history, S’s mixed strategy
over messages can be ‘averaged back’ the the Receiver’s prior. While these two conditions
appear stronger than required for any equilibrium, the following Lemma establishes that it
is without loss to restrict attention to such direct equilibria of game Γ∞:

Lemma 1. For any equilibrium of game Γ∞, there is a direct equilibrium of game Γ̂∞ that
induces the same distribution over Receivers’ actions, for each state θt and history ht on the
equilibrium path.

Lemma 1 extends the insight of Kamenica & Gentzkow (2011) to equilibria of repeated
games, in which Sender is unable to commit to his signalling strategy at any history. The
intuition for the Lemma is as follows: For any equilibrium in which S uses message m̃ to
induce Rt to take an action ã, it must be the case that Rt’s posterior belief µ̃ made ã optimal
for him. Since all that matters about S’s strategy is the effect it has on Rt’s beliefs, we can
replace S’s messages with recommendations of the beliefs that Rt should hold. Of course,
under this new messaging strategy, Rt’s posterior belief always satisfies the recommendation
(that is, condition 2 holds at each history). Moreover these recommendations must be
optimal for S, since the underlying equilibrium messages m̃ were optimal in the original game
(condition 1 holds at each history). Off the equilibrium path, Rt’s beliefs are not constrained
by Bayes’ rule and thus we can support the equilibrium with beliefs µt

(
ht, µ̃′t

)
= µ, where

µ ∈ arg min v (µ).9 Finally, as we described above any equilibrium strategy must induce
posteriors that satisfy the Law of Total Probability, (2). Since Rt’s beliefs conform to µ̃t,
this same condition carries over to equilibrium messages in game Γ̂∞. Condition 3 simply
restates that this must be the case, in terms of requiring that µ0 live in the convex hull of
the support of S’s strategy at each history.

4 The Value of Repetition for Persuasion

In this Section, we are primarily interested in understanding when the opportunity for re-
peated interaction can allow S to achieve her optimal discounted average payoffs under

9If no minimum exists, we can simply use a function µt (ht) where v
(
µ
t

)
= inf v (µ) + εt, for some εt

chosen sufficiently small that the current payoff is lower than the worst stage payoff among on-path beliefs
(which is well-defined: See Lemma ).
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Figure 4: A (non-generic) example of optimal persuasion attainable via cheap talk

persuasion, despite only being able to make cheap talk statements. First, we establish that
there is generally a need for repeated interaction to improve the possible payoffs that Sender
can achieve in equilibrium. Interestingly, it is possible to find preferences v (µ) for which
optimal persuasion can be achieved as an equilibrium of a static cheap talk game with non-
trivial communication (see Figure 4). However, our first main result establishes that these
kind of functions are not typical and therefore static cheap talk does not usually allow Sender
to do as well as he would under commitment to optimal persuasion:

Theorem 1. For any prior µ0, optimal persuasion is generically not possible in a static
cheap-talk game. 10

While there exist nonconvex functions v (µ) for which the concavification v̂ (µ) involves
at least two points µx, µy such that v (µx) = (µy) and v̂ (µx,y), ∀µx,y = αµx + (1− α)µy,
α ∈ [0, 1] (see Figure 4). In such cases, S is indifferent between sending messages µx and
µy and moreover these messages are feasible in a direct equilibrium if µ0 = µx,y for some
α ∈ [0, 1]. Thus, there exists an equilibrium of the static cheap talk game which achieves
v̂ (µ) (and therefore, S’s optimal stage payoff under commitment11) without the need for
repeated play. The proof of Theorem 1 shows that such functions are in fact non-generic.
Since such cases are rare, we focus in the rest of the paper on functions v and priors µ0 for
which no cheap talk game can achieve S’s optimal payoffs under commitment to persuasion.

Theorem 1 tells us that cases in which Sender can achieve optimal persuasion using cheap
talk without the need for repeated interaction are rare. Moreover we are interested studying
the role of repetition in persuasion. We therefore focus our attention on the generic cases
of Sender payoff function for which static cheap talk cannot be used to sustain optimal
persuasion.

For any subset P ⊆ Θ, define ∆PΘ := {µ ∈ ∆Θ : θi ∈ P ⇐⇒ µi = 0} as the set of
posteriors which put positive probability on a state if and only if it is in P .

Assumption 1. For all P ⊆ Θ, optimal persuasion cannot be achieved by informative, static
cheap talk, conditional on θ ∈ P .

In the Appendix, make the formal statement of Assumption 1. Assumption 1 ensures
that there is no subset of types for which S could use one-shot, informative communication
to achieve the optimal commitment payoff v̂P , conditional on R also knowing that θ ∈ P .

10Special thanks to Bill Zame for advice on this proof.
11This follows immediately from Corollary 2, Kamenica & Gentzkow (2011).
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Considering first P = Θ, Theorem 1 assures us that functions violating Assumption 1 in this
case are non-generic. In other words, such functions are rare. Since Theorem 1 applies to
any finite state space, Θ, we can similarly apply the logic to the payoff function v, defined
over the subspace ∆PΘ. In this way, Theorem 1 also assures us that v functions for which
cheap talk could achieve the optimal commitment outcome for S on any subset P of the
state space are also rare. Since these cases are non-generic, we omit their analysis from the
main results in order to aid exposition of the typical persuasion problem.

By ruling out only informative cheap talk as a method of achieving the KG (2011) solution
on any P ⊂ Θ, Assumption 1 allows for situations in which S prefers to communicate no
more information if he knows that R believes θ ∈ P . This is important, as we do not
wish to rule out cases in which S never wishes to conceal information - indeed, strategically
concealing information is at the heart of persuasion. Our assumption allows for this. In fact,
as we have emphasized it allows for almost any combination of interior and boundary beliefs
as part of the optimal commitment signal. It only requires that such signals do not all leave
S indifferent when induced in the stage game.

4.1 Repeated Persuasion

Suppose now S has the opportunity to interact sequentially with a (potentially infinite) set
of short-run Receivers. As a preliminary result, we show that repeated play of the cheap-talk
game can sustain truth-telling by the Sender as an equilibrium.

Proposition 1. There exists δ < 1 such that truth-telling is an equlibrium of the repeated
game ∀δ ≤ δ < 1, iff Sender’s truth-telling payoff exceeds his worst stage game equilibrium
payoff.

Proposition 1 generalizes Hermalin (2007), Proposition 1. To sustain on-path truth-telling
in every period the equilibrium employs a trigger strategy, moving to the worst cheap-talk
equilibrium forever if a deviation is detected12. When θt can be observed at the end of each
round, deviations from truth-telling are easily detectable to Receivers. Therefore, so long as
Sender is sufficiently patient and the worst cheap talk equilibrium yields a lower expected
Sender stage payoff than does truth-telling, such a strategy enforces truthful equilibria.

We now ask how the potential for using repetition as a commitment device affects S’s
ability to earn rents from persuasion in the equilibrium of some repeated cheap talk game.
In asking this question, we move to a focus on Sender-preferred equilibria.

In particular, consider the problem of maximizing S’s period-0 discounted utility, across
all possible equilibria of the repeated cheap talk game:

12Such an equilibrium can in general be worse for Sender than babbling.
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maxσ∈Σ Eθ [V0 (θ0)] (4)

s.t.

Vt (ht, θt) = v (µt) + δE [Vt+1 ((ht, µt, θt) , θt+1)] ≥ v (µ′t) + δE [Vt+1 ((ht, µ
′
t, θt) , θt+1)] ,

∀ht ∈ Ht, µt ∈ supp(σt (ht, θt)), µ′t ∈ ∪θt∈Θsupp(σt (ht, θt)), and

µ0 ∈ co (∪θt∈Θsupp (σt (ht, θt))) ,

∀ht ∈ Ht.
Problem (4) involves choosing a strategy profile σ = (σ1, σ2 (h2) , . . . ) for S that max-

imizes his present discounted utility, subject to: (i) each choice of µt ∈ supp(σt (ht, θt))

involves a (weakly) higher present discount value for S at history ht than any alternative
µ′t that is played by S with some positive probability at ht; (ii) satisfying Bayes plausibil-
ity at each history. There is a subtle difference between problem (4) and the description
of equilibrium. In equilibrium, S need only maximize his choice of µ̃t at each history ht,
subject to Rt believing that these choices be consistent with the equilibrium strategy, σ. In
particular, non-equilibrium choices of µ̃ can be ruled out because we can choose Rt’s beliefs
to be skeptical after such reports.13 In problem (4), when we choose a strategy σ′, we are also
able to vary Rt’s beliefs following any message sent, so long as they conform to equilibrium
restrictions. In addition, the choice of strategy must be optimal for S, given the Receivers’
beliefs.

To help understand more properties of the solution to (4), we first present a useful Lemma:

Lemma 2. In any equilibrium, Sender can do no better than a strategy which at any history
ht induces at most N possible posterior beliefs, µt (ht).

Lemma 2 establishes that from the perspective of S’s payoffs it is without loss to restrict
attention to direct equilibria in which at any history, S’s strategy induces no more than an
N -point distribution over posterior beliefs (recall that N = |Θ|). The result simplifies the
search for optimal equilibria significantly. Most importantly, it ensures us that we only need
consider strategies that induce a finite distribution of posteriors for any Receiver, Rt. We
use some key properties of direct equilibria for S’s payoffs and of convex sets to establish

13To support the equilibrium, we additionally specify the continuation play after sending µ̃ as equal to the
worst on-path message at ht, thereafter.
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that if N ′ > N signals were ever being sent at some history ht, one of these signals would be
redundant for S’s continuation payoff at that history (and for feasibility of induced posteriors
at that history). Removing such an alternative from S’s strategy at ht is feasible at ht, and
since it does not affect payoffs at ht, it does not affect S’s incentives at earlier histories
or indeed his expected discounted payoff from the game, Eθ [V0 (θ0)]. Interestingly, the
properties of equilibrium allow us to reduce the cardinality of the signal space by more
than under standard persuasion, which can reduce the search over signals to N + 1-point
distributions.14

Next, we characterize the solution to the value function for problem (4). First, we
introduce some notation. Let vi (λ) := min {v (µ) : µ ∈ supp (λ) , µi > 0} be the minimum
payoff to S among all posteriors µ that (i) are in the support of N ′-point distribution
λ ∈ ∆ (∆Θ), for N ′ ≤ N , and (ii) occur with strictly positive probability conditional on
state θit (under λ). Then we have:

Proposition 2. Sender’s discounted average continuation value from any repeated cheap talk
game is bounded above by

(1− δ)Eθ [V0 (θ0)] ≤ max
λ∈Λ(µ0)

∑
µi0vi (λ) (5)

There exists δ such that ∀1 > δ ≥ δ, this upper bound can be attained at some equilibrium.

Proposition 2 establishes an upper bound on the payoffs that Sender can achieve in any
equilibrium of the repeated game. Moreover, it shows that this upper bound is attainable in
some equilirium, so long as Sender is sufficiently patient. The bound in equation (5) states
that Sender’s best discounted average payoff must be no greater than the best expected
statewise-minimal payof, among all lotteries of posteriors λ ∈ Λ (µ0). The importance of the
statewise-minimal payoff is as follows: in any equilibrium, if there are multiple messages in
the support of Sender’s strategy conditional on some θ, then Sender must be held indifferent
across these messages. Thus, messages which lead to more preferable current actions must
also be associated with larger future punishments. In a Sender-preferred equilibrium, the
least-preferred current action is never associated with future punishment, pinning down
the upper bound on Sender’s equilibrium discounted average payoffs. In the Appendix, we
construct a strategy profile which achieves this bound using finite punishment periods for
sending messages other than the Sender’s least-preferrd one at some θt, followed by reversion
to the original strategy thereafter. Since the worst cheap talk equilibrium yields statewise

14The proof deals with two complications as compared with standard persuasion arguments. First, it deals
with the fact that S does not commit to his strategy. And second, we must ensure that the equilibrium
dynamics are not violated.
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minimal payoffs, it is necessarily (weakly) worse than the bound in (5), and thus may always
be used as a punishment (or itself achieves the Sender’s largest payoff).

In comparing the repeated cheap talk game to the commitment benchmark, a particular
class of experiments is important for understanding when the bound on S’s payoff, (5),
is tight, relative to the commitment payoff v̂ (µ0). We introduce the notion of an honest
experiment, as follows:

Definition 1. An experiment (ŝ,M) (resp. behavioural strategy, (σ̂t,M)) is honest if there
exists a partition P of Θ such that ŝ (resp. σ̂t) can be expressed as a bijection ŝ (σ̂t) : P →M .

Under an honest reporting strategy there is no θ ∈ Θ for which S might randomize over
sending two or more messages. Honest experiments (reporting strategies) are therefore ones
for which each message convinces the Receiver that θ lies in a different, disjoint subset of Θ.
In other words, assuming S plays according to σ̂t at round t, Rt receives a truthful report
about the element of the partition P in which θ lives. While these reports are truthful about
the partition in which θ lies, they are nonetheless coarse signals. In particular, our definition
of honesty allows for completely uninformative ‘babbling’ experiments (reports) and perfect
truth-telling.

With this definition in hand, we can establish the following Theorem:

Theorem 2. Suppose Assumption 1 holds. Optimal persuasion is attainable by repeated
cheap-talk if and only if the optimal experiment is honest, for δ ≥ δ.

Theorem 2 tells us that S’s optimal persuasion payoff v̂ (µ0) can be attained in the
equilibrium of the repeated cheap-talk game if and only if the optimal experiment under
commitment involves sending messages which are honest. The intuition for this result rests
on a simple observation: Receivers can verify ex post whether S has deviated from making
reports that are consistent with honest experiments. Therefore, honest reporting strategies
can be sustained in equilibrium of the repeated game by using only the threat of off-path
punishments. If the optimal experiment under commitment happens to be honest, then
there is an equilibrium of the game in which S makes reports that mimic this experiment
on-path, sustained by off-path punishments whose costs are never realized (for large enough
δ) . By contrast if the optimal commitment experiment only involves randomization between
messages at some θ, S’s strategy can never mimic such an experiment at any history without
leaving Receivers in doubt about whether S has deviated from the experiment at some θt. In
order to ensure incentive compatibility, Receivers thus need to punish S on the equilibrium
path following some messages.
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5 Recovering Sender Optimality: ‘Coin and Cup’ Mech-

anisms

As we have seen in Section 4, the repeated opportunity for cheap talk does not typically
allow Sender to achieve her optimal commitment payoff v̂ (µ0). However, Theorem 2 also
provides hope that there might be ways to design institutions such that S can achieve v̂ (µ0)

in some equilibrium. As we pointed out above, a key feature of honest experiments is that
in each period Receivers can verify ex post whether S has deviated from making reports
that are consistent with such experiments. Importantly, this allowed for on-path equilibrium
strategies to be sustained using only off-path punishments. Thus, if we can find mechanisms
which allow for this feature without also insisting on strict honesty (with respect to Θ) then
we might be able to recover optimal long-run equilibria in these games too.

In this section, we introduce a simple ‘Coin and Cup’ (CnC) mechanism which can
indeed be used to ensure S can achieve v̂ (µ0), without violating incentive compatibility.
The CnC mechanism augments the repeated game in a payoff irrelevant way for all players
but nonetheless introduces equilibria that attain v̂ (µ0) for S. In addition these mechanisms
are robust to changes in the payoffs of Sender and Receiver. Finally we identify several
examples of real-world applications in which institutions appear to use naturally occuring
versions of CnC mechanisms and show how these institutions can be used to maximize
Sender’s payoffs.

A ‘Coin and Cup’ mechanism introduces a payoff-irrelevant state variable, ωt ∈ Ω, to
the repeated game in Section 3. To ease exposition, we suppose that ωt is i.i.d. over time
ωt ∼ U [0, 1]. The CnC mechanism is a combination of sequence of random variables ωt and
repeated play of the following adapted stage game:

1a. θt, ωt are drawn independently from their respective distributions. S privately
observes both realizations.

2a. S sends a message mt ∈Mt to Rt

3a. After observation of mt, Rt chooses an action at ∈ At.

4a. After taking action at, ωt and a noisy signal of the state θt are both observed by
all Receivers.

The CnC mechanism requires that we can find a payoff-irrelevant random variable each
period such that (i) Sender is able to privately observe ωt before Rt; (ii) Sender cannot
manipulate the realization of ωt; (iii) Rt is able to observe ωt. In this way, one can think of
ωt as a staggered sunspot.
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As the next Proposition shows, the CnC mechanism always admits equiliria in which
Sender achieves his full commitment payoff:

Theorem 3. Suppose Sender can achieve payoff ν? via commitment to some experiment. ν?

is attainable in an equilibrium of some CnC mechanism, if ν? exceeds S’s worst stage game
payoff.

Intuitively, the CnC mechanism improves on pure repetition because it allows punish-
ments to be conditioned on the realization of a much larger ‘augmented’ state, (θt, ωt), where
ωt does not involve any new payoff considerations for Sender or Receiver. On this expanded
state space, we can use ωt as a way to assign a ‘budget’ for reports sent given each θt. Thus,
if the optimal experiment ever proscribes mixing between two messages µ1, µ2 with prob-
abilities λ1, λ2 at some state θ′t, we can simply choose the equilibrium strategies to allow
message µ1 to be reported without subsequent punishment if ωt ∈ [a, a+ λ1], a+λ1 ≤ 1, and
µ2 to be reported if ωt ∈ [b, b+ λ1] , b+ λ1 ≤ 1, for disjoint intervals [a, a+ λ1], [b, b+ λ1].15

Importantly, this means that each round Sender can credibly mimic the optimal experiment,
knowing that if he reports according to her ‘budget’ (given θ′t), he will face no punishment.
Otherwise, he will face a ‘Grim Trigger’-style punishment in which future Receivers all revert
to the babbbling equilibrium.

Importantly, for the CnC mechanism to improve equilibrium outcomes, Sender must know
the realization of ωt before reporting (to know which message to send without punishment),
while Receiver must only observe ωt after taking action at. If Receiver learned ωt too
early, this would destroy Sender’s ability to effectively persuade without facing on-path
punishments. In other words, the environment would revert to the repeated games setting
of Section 3. Thus, the ability to delay observation of ωt to Receivers is a crucial element of
the design of CnC mechanisms.

Such staggered sunspots ωt are implementable and don’t require any specialist knowledge
of the decision problem or the distribution of θ.16 As the simplest possible example, we can
create them using no more than some coins and a cup. So long as the Receiver observes the
coins being tossed into the cup, Sender can privately peer in and check if each is a ‘Heads’
or a ‘Tails’, before sending his messages to Receiver.17 The proportion of ‘Heads’ across the
cups can then play the role of ωt. As a more realistic example, Blockchain technologies (such
as that underpinning Bitcoin) support decentralized recording and updating of information

15Since mixing probabilities sum to 1 and ωt is uniform, it is easy to characterize disjoint sets intervals on
Ω that support such a strategy. A similar logic goes through for more general distributions of ω, so long as
the distribution at each t is atomless.

16Notice that we do not require S to be able to commit to a specific experimental procedure for generating
a particular distribution, ωt.

17Sender is not allowed to touch the cup.
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among peers using cryptographic methods.18 These technologies can be used to share infor-
mation in a way that cannot subsequently be tampered with, and allow for information to
be withheld from some participants until prespecified times.19 Programmed with a random
number generator to update the Blockchain with new messages ωt, these technologies could
be used as the basis of a CnC mechanism. Interestingly, the availability of ‘trust’ technolo-
gies such as Blockchain can therefore introduce equilibria in which the payoffs to persuasion
are improved.

5.1 Financial Advice & Disclsoure Rules

Investment banks and financial brokerages provide several services to clients, helping them to
access financial markets: they act as direct trading counterparties, execute trading orders on
clients’ behalfs and/or provide asset management services on some allocation of funds. Often,
these firms are paid via commissions on trades, and ongoing fees on portfolios managed.
Moreover, many larger firms employ financial analysts, who conduct research on the markets
and provide explicit trading recommendations to clients.

In 2002, the National Association of Security Dealers, a financial industry self-regulating
body, imposed rules that required banks to disclose the aggregate distribution of ‘Buy’,
‘Hold’ and ‘Sell’ recommendations their analysts were making across assets.20 Barber et al.
[2006]report that prior to the introduction of these rules, average analyst recommenda-
tions were heavily skewed towards Buy recommendations: 60% Buy recommendations; 35%
Hold; and only 5% Sell. However, on introduction of these new rules Buy recommendations
dropped almost immediately to 51% and buy the following year the ratios were 42% Buy,
41% Hold and 17% Sell. Nor was this merely a drop from an anomylous high, since 1996
Buy recommendations had been greater than 60% and Sell recommendations lower than 5%.
Moreover, Kadan et al. (2009) show that prices were more responsive to analyst reports
after the introduction of the rules.

Using an adaptation of our model, we can study how the introduction of these disclsoure
rules affected the ability of brokerage firms to persuade clients to trade with them. In the
absence of these rules, analysts faced repeated interaction with clients. Given the results of
Section 4, we would expect any informative communication in this setting to be sustained
by long periods of babbling as a clients punish overly optimistic recommendations. Indeed,

18Other recent uses of Blockchain technology include: ‘smart contracts’ for verifying the performance of
obligations, reducing manipulation of experimental design in medical trials, and creating trustworthy digital
accounts of property ownership.

19http://www.economist.com/news/science-and-technology/21699099-blockchain-technology-could-
improve-reliability-medical-trials-better

20For further details, see Kadan et al. (2009).
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the aggregate reporting data bear this out somewhat - reports were skewed heavily towards
‘Buy’ calls, and yet simultaneously had little effect on market behaviour. Nonetheless, the
nature of repeated interaction may have provided enough discipline to prevent analysts from
completely babbling.

One effect of the rule change was to allow investors to see the distribution of recom-
mendations made by the investment bank’s analysts across assets, providing context for the
recommendation made in an individual report. In doing this, the NASD rules effectively pro-
vided banks with a commitment device to enact optimal persuasion. Indeed, we show that
the introduction of aggregate reporting standards introduces equilibria in which the banks
can achieve the optimal payoffs from persuasion.21 In equilibrium, the aggregate reporting
standard can be used as a payoff-irrelevant disciplining device, around which investors can
‘punish’ the bank with babbling if its aggregate reports become excessively skewed toward
‘Buy’ (when compared to individual outcomes, ex post). Given such a device and a large
enough asset space, an equilibrium can be sustained in which the bank credibly reports
according to the optimal persuasive strategy and in which Receivers never need to employ
on-path punishments, since the aggregate statistics can be used as a disciplining device.
Notice that, from the perspective of a single asset, we have introduced a payoff-irrelevant
‘state’ variable which is seen first by the bank and only later by investors. - this is simply
the vector of performance outcomes across the other assets.

5.2 Online Platforms & Coarse Reviews

Several online platforms, such as Amazon, eBay, Booking.com, and AirBnB allow consumers
to search through listings of independent sellers of goods and services, such as hotels and
restaurants. On these platforms sellers can often provide descriptions and photographs
advertising their products, to help encourage sales. However, not all experiences for buyers
on these sites turn out to be good ex post, with some products failing to meet the standards
promised on the platform. An obvious way to discipline sellers on these websites is to create
reputational concerns by allowing customers to leave feedback about sellers online. However,
while platforms make feedback possible, they often aggregate individual feedback into coarse
signals of the seller’s trustworthiness.

Again, interventions by online platforms to coarsen feedback given by buyers could be
interpreted in the light of allowing sellers to persuade effectively. Allowing detailed feed-
back places sellers in a pure repeated game setting, in which attempts at persuasion would
necessarily have to be met with costly punishments - periods in which no potential buyer

21Details available on request.
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will believe their advertisements, and subsequently shun their prospects. Indeed, in simple
binary action model, we have seen that sellers could do no better than in the truth-telling
equilibrium. However, if the online platform instead provides information on only the aggre-
gate proportion of buyers who were dissatisfied with their purchase (i.e. those who had been
falsely persuaded) in an interval of time, this statistic again allows for equilibria in which
sellers can achieve payoffs as if they were able to commit to their advetising strategies.

We note that the results of our model apply well when buyers do not have common
preferences over a seller’s good - i.e. the ‘state’ variable is a horizontal match between buyer
and product, as it might be on AirBnB where location, amenities, quietness, etc. matter.
Alternatively, our model applies well if the seller sells multiple different types of good online,
as they might on eBay or Amazon. In these settings, others’ preferences can play the role of
payoff-irrelevant signal, on which aggregate statistics can be used to discipline sellers.

5.3 Financial Roadshows

When investment banks arrange the sale of new debt and equity securities on behalf of
an issuing company, a common practice is to arrange tours of presentations (‘roadshows’)
around the world which act as an opportunity to advertise the new assets separately to
different members of the investment community. After these roadshows, these assets are
sold to the market.

At the time of any individual presentation, an individual investor must both process
the information provided about these assets and consider the credibility of the source, com-
paring the investment bank’s previous sales pitches to the subsquent peformance of those
assets. However, investors can also condition their beliefs about the credibility of the bank’s
statements based not only on the individual reports it received, but also indirectly on the
reports that other inestors received in the past, through the bidding interest at Initial Public
Offerings. In work available on request, we show that the ability to condition beliefs about
the bank’s future credibility on the reports it sent to all investors (about the same asset)
can again be used as the basis to secure optimal persuasion for the investment bank in a
repeated cheap talk setting without the need for costly on-path punishments, so long as there
are sufficiently many to whom it can sell.

6 Conclusion

There are three main results in this paper. The first, in line with previous thinking, is
that meaningful communication today can be sustained out of the desire for meaningful
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communication in the future. The second, is that while repeated interaction can generate
commitment to dishonest reporting strategies it cannot generally achieve the optimal out-
come for the Sender. The third is that there are ways of changing the game so that we can
achieve the optimal outcome for the Sender.

These results have important implications for the real world and the literature on per-
suasion. Perhaps the biggest implication is that it is quite feasible that we have very bad
equilibria in the world where people with information are using dishonest persuasion in a
fashion that benefits them little but might be very harmful to those relying on their infor-
mation. If such cases can be identified it may be possible through explicit recognition of
the problem and the incentives to move to a better, more honest, equilibrium. However,
further to this, when stuck in such a bad equilibrium there are easily created cryptographic
mechanisms that allow us to strictly improve the outcomes for both Senders and Receivers.
Given this strictly improves the payoffs of both Senders and Receiver they should have a
strong incentive to create and coordinate on the use of such a device. Of course, there
are also settings where greater ability to commit arises more naturally from repetition. In
these cases we should see a greater ability of Senders to persuade and further we should see
Senders, and perhaps Receivers, trying to create such settings in the first place.

These results and insights demonstrate a clear tension between honest and dishonest
persuasion. On one hand, we show that dishonesty can serve Senders very well when the
setting allows for honestly dishonest equilibria. However, on the other, we see that dishonesty
can also give the Sender nothing beyond truth telling while worsening the outcomes of
Receivers. This suggest that we should take caution when thinking about what kind of
advice we give about the extent to which experts should try to persuade through dishonest
methods. For if we don’t pay attention to the settings and the way such setting can generate
commitment we may find such advice doing much more harm than good.
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Appendix

Below we provide the formal statement underlying Assumption 1 in the main text:

Assumption. For any µ1, . . . , µn ∈ ∆PΘ such that v (µ1) = v (µ2) = · · · = v (µn) , where
µi 6= µj for at least two i, j ∈ {1, 2, . . . , n}, n > 1, the concavification of v on ∆P , v̂P (µ),
satisfies

v̂P

(
n∑
i=1

αiµi

)
>

n∑
i=1

αiv (µi)

Proof of Lemma 1

Proof. To Be Added.

Proof of Theorem 1

Proof. Fix µ0. Let U be the set of all real-valued upper-semicontinuous functions on ∆Θ,
with typical member v ∈ U , and consider the metric space (U, || · ||) endowed with the sup
norm. As in the text, we denote the concavification of v by v̂, and an element of ∆Θ by µ.
We show that the set U?, defined as

U? (µ0) =

{
v ∈ U : v̂ (µ0) >

∑
i

αiv (µi) , ∀ {µi}N+1
i=1 , s.t. µ0 =

∑
i

αiµi, v (µi) = v (µj) , µi 6= µj, i, j = 1, 2, . . . , N + 1

}

is open and dense.22

To establish density of U?, consider a function v′ ∈ U/U?. We show that there exist
arbitrarily small perturbations of v′ under the sup norm such that the perturbed function,
v, lives in U?. The concavification of v′ can be expressed

v̂′ = sup
λ∈Λ̃(µ0)

N+1∑
i=1

λiv (µi)

where Λ̃ (µ0) is the subset of N + 1-point distributions in Λ (µ0).23 Since v′ is upper semi-
continuous and Λ̃ (µ0) is compact in λ, the function

∑N+1
i=1 λiv (µi) attains its maximum in

Λ̃ (µ0).24 Moreover the set Λ̃ (µ0) is both upper and lower hemicontinuous in µ0.To estab-
lish upper hemicontinuity, take a sequence {µn0} → µ0, and any corresponding convergent

22By Caratheodory’s Theorem, it is without loss of generality to define U? with regard to finite sets,
{µi}N+1

i=1 .
23By Caratheodory’s Theorem, this is without loss for finding v̂′.
24Indeed, it is easy to see that Λ̃ (µ0) is a compact subset of RN(N+2).
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sequence, {λn} → λ, λn ∈ Λ (µn0 ). We show that λ ∈ Λ (µ0). Suppose not. Then, for any
ε > 0, there always exist a subsequence {n′} ∈ N such that∣∣∣∣∣

N+1∑
i=1

λn
′

i µ
n′

i − µ0

∣∣∣∣∣ > ε

∀n′. But since {µn0} → µ0, and
∣∣λn′i ∣∣ < 1, ∀i, n′, for some 0 < ε′ < ε

N+1
, there must exist an

m such that for all n′ ≥ m, we have∣∣∣∣∣
N+1∑
i=1

λn
′

i µ
n′

i − µ0

∣∣∣∣∣ ≤
N+1∑
i=1

λn
′

i

∣∣∣µn′i − µ0

∣∣∣ < ε

- a contradiction. To show lower hemicontinuity, take any sequence {µn0} → µ0, and any
λ ∈ Λ (µ0). We show that there exists a subsequence

{
µn
′′

0

}
, such that ∃λn′′ ∈ Λ

(
µn
′′

0

)
satisfying λn′′ → λ. Fixing some ε > 0, we can find vertices p (ε) = (µ1 (ε) , . . . , µN (ε)) for
which all µ̃0 satisfying |µ̃0 − µ0| ≤ ε can be expressed as convex combinations of the vertices
inp (ε) (Rockafeller, Theorem 20.4). Moreover for an ε

2k
-ball, k ∈ N, k ≥ 1, we can enclose all

points in |µ̃0 − µ0| ≤ ε
2k

by the simplex generated by pk (ε) =
(

2k−1
2k

µ0 + 1
2k
µi (ε)

)N
i=1

. Noting

that we can write µ0 =
∑
λiµ

i
0, each vertex of pk (ε) can be written

∑
λiµ

i
0 + 1

2k
(µi (ε)− µ0).

Thus, for any sequence µn′′0 → µ0 andm ∈ N, we can find k such that all µn′′ can be expressed
as a convex combination of points pk, which get arbitrarily close to

∑
λiµ

i
0. This establishes

the limiting sequence λn′′ → λ.
Applying Berge’s Theorem of the Maximum, the value function, v̂′, is continuous on ∆Θ.

Consequently, the subgraph of v̂′, sub (v̂′) = {(µ, ν) : ν ≤ v̂′ (µ) , µ ∈ ∆Θ}, is a closed convex
set. Bound sub (v̂′) below by some B ∈ R, such that B < minµ∈∆Θ v̂

′ (µ) and define the
bounded, closed convex set, H (v̂′) := sub(v̂′)

⋂
{(µ, v) : v ≥ B}. Note that H (v̂′ + ε) has

the same properties and contains H (v̂′ + 2ε).
We are now able to find an ε-perturbation of v′ such that the new function v satisfies

v ∈ U?. Partition ∆Θ into two sets: C = {µ : v′ (µ) = v̂′ (µ)} and C := ∆Θ/C. We
now construct a polyhedral convex set P for which int (sub (v̂)) ⊂ P ⊂ int (sub (v̂ + ε))

and all the vertices of P , {(µ?i , ν?i )}Mi=1, for which νi > v̂′ (µ) satisfy proj∆Θ (vi) ∈ C. For
any x ∈ H (v̂′), we can choose a simplex Sx such that x ∈ Sx and Sx ∈ int(D). Because∑N+1

i=1 λiv (µi) attains its maximum on ∆Θ, we can in fact choose Sx such that its vertices
(s1, s2, . . . , sN+1) satisfy si = (µ′i, v̂

′ (µi) + ε) and µ′i ∈ C, if si /∈ int(H (v̂)). From this union
of simplices

⋃
{Sx}, we can find a finite subset of simplices whose convex hull also covers

H (v̂′) - this is the polyhedron P (Rockafeller, Theorem 20.4). Moreover, by construction,
no vertex of P that lies above H (v̂′) has µ?i ∈ C.
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Finally, perturb v̂′ to some ṽ by adding ε to v̂′ at each vertex {(µ?i , ν?i )}Mi=1 of P . ṽ is
clearly still upper semi-continuous. Moreover, the concavification of ṽ is P . On ṽ, it suffices
to check that ν?i 6= ν?j for i 6= j ∈ {1, . . .M}. If two such i,j can be found, we can find a
perturbation of ν?i by some ε̃ satisfying 0 < ε̃ > ε, such that ν?i 6= ν?k , k ∈ {1, 2, . . . ,M} / {i}
and the new polyhedron P ′ still contains C everywhere. This new perturbed function v

is upper semi-continuous, satisfies v ∈ U? and |v − v̂′| < (M + 1) ε, which can be chosen
arbitrarily close to 0.

We now show that U? is open in v, for all priors close to µ0, for any µ0 satisfying
v (µ0) < v̂ (µ0). Specifically, we show that for any function v ∈ U?, there exist ε1, ε2 > 0 s.t.
for all ṽ satisfying ||ṽ− v|| < ε1, µ̃0 satisfying |µ̃0−µ0| < ε2, we have ṽ ∈

⋃
|µ̃0−µ0|<ε2 U

? (µ0).
Take some v ∈ U?. We argue that, for some δ1 > 0, there exists ε̃1, ε̃2 > 0 such that

∀ |µ̃0 − µ0| < ε̃1, if |v̂ (µ̃0)−
∑

i αiv (µi)| < δ1, for some λ ∈ Λ (µ̃0) then |v (µi)− v (µj)| ≥ ε̃2

for some i 6= j, i, j ∈ {1, 2, . . . , N + 1}.25 Suppose this were not the case. Then, for
any δ, ε̃1, ε̃2 > 0, we could find some µ̃0 and λ ∈ Λ (µ̃0) such that (i) |µ̃0 − µ0| < ε̃1,
(ii) |v (µi)− v (µj)| < ε̃2, (iii) |v̂ (µ̃0)−

∑
i αiv (µi)| < δ1. Now consider any sequence

(δn, ε̃n1 , ε̃
n
2 )∞n=1 satisfying limn→∞ (δn, ε̃n1 , ε̃

n
2 ) = 0. Thus, we can find a corresponding sequence

((µ̃n0 , λ
n
0 ))∞n=1 in which each (µ̃n0 , λ

n
0 ) satisfies (i)-(iii) evaluated at δ = δn, ε̃1 = ε̃n1 and ε̃2 = ε̃n2 .

But since (µ0, λ) ∈ RN × RN+1 and Λ (µ0) is compact in (µ0, λ), the Bolzano-Weierstrass
Theorem implies that we can find a convergent subsequence

((
µ̃n
′

0 , λ
n′
0

))
→ (µ0, λ) for

some λ? ∈ Λ (µ0).26 Moreover, upper semi-continuity of v implies that at this limit, we
must either have (i) v̂ (µ0) =

∑
i λ

?
i v (µ?i ), and v (µi) = v̂ (µj), ∀i, j ∈ {1, 2, . . . , N + 1};

(ii)
∑

i αiv (µi) > v̂ (µ0), or (iii) v̂ (µ0) =
∑

i λiv (µi), v (µi) 6= v (µj), for at least two
i,j ∈ {1, 2, . . . , N + 1}.27 Since v ∈ U?, case (i) yields a contradiction. By definition of v̂,
case (ii) also implies a contradiction. Finally, we rule out case (iii). Since there the discrete
upward jump at µ?i , for some i, must also cause a discontinuity at v̂ (µ0) on the path µn0 → µ0

- a contradiction, to the continuity of v̂, which we proved above.
Finally, for any perturbed function v′ such that ||v′−v|| ≤ min

{
δ
3
, ε2

3

}
, we must also have

∀ |µ̃0 − µ0| < ε̃1, if |v̂′ (µ̃0)−
∑

i αiv
′ (µi)| < δ′1, for some λ ∈ Λ (µ̃0) then |v′ (µi)− v′ (µj)| ≥

ε̃′2 for some i 6= j, i, j ∈ {1, 2, . . . , N + 1}, for some ε̃′2, δ′1 > 0.
25Again, by Caratheodory’s Theorem it is without loss to restrict attention to N + 1-point distributions,

λ ∈ Λ̃ (µ̃0).
26A variation on our argument that Λ (µ0) is compact in λ can be used to establish compactness in (µ0, λ).
27Since v̂ is continuous, we cannot have at the limit v̂ (µ0) >

∑
i αiv (µi).
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Proof of Lemma 2

Proof. Suppose for a contradiction that for some equilibrium payoff E [V (hτ , θτ )] of the
Sender and some history hτ , the minimum number of messages in the Sender’s strategy
compatible with obtaining E [V (hτ , θτ )] in equilibrium is |M ′| = N ′ > N , where M ′ =

∪θ∈Θtsupp (στ (hτ , θ)). This strategy induces a N ′-point distribution ν ∈ ∆
(
∆ΘN ′

)
of pos-

terior beliefs {µτ (m)}m∈M ′ over θτ and a corresponding distribution over Receiver Rτ ’s
actions, aτ (µτ (m)), where

aτ (µτ (m)) ∈ arg max
a∈A

E [uR (a, θ) | µt] =
N∑
i=1

µiτ · uR
(
a, θi

)
For this to be an equilibrium, it must be that for all mτ ∈ supp (στ (hτ , θ)) and any

m ∈M ,

V (hτ , θτ ) := v (µτ (mτ )) + δE [V ((hτ+1, θτ+1))] ≥ v (µτ (m̃)) + δE
[
V
((
h̃τ+1, θτ+1

))]
where hτ+1 = (hτ ,mτ , aτ , θτ ) and h̃τ+1 = (hτ , m̃, ãτ , θτ ). In particular, given any state θτ
and messages mτ , m̃τ ∈ supp (στ (hτ , θ)), we must have

v (µτ (mτ )) + δE [V ((hτ+1, θτ+1))] = v (µτ (m̃τ )) + δE
[
V
((
h̃τ+1, θτ+1

))]
Given any history, we define an equilibrium message mθ ∈ M ′ to be uniquely proscribed

at state θ if supp (στ (hτ , θ)) =
{
mθ
}
. The set of all messages that are uniquely proscribed

at some state θ ∈ Θτ is denoted MΘ. We divide the set of equilibrium messages sent at
history hτ into two mutually exclusive and exhaustive sub-groups: those that are uniquely
proscribed, m ∈MΘ, and those that are not, m ∈M ′/MΘ.

Since N ′ > N , there exists an m̃ ∈ M ′ and corresponding µτ (m̃) ∈ {µτ (m)}m∈M ′
that can be removed from the support such that remaining posteriors still satisfy Bayes’
plausibility ∑

mτ∈M ′/{m̃}

αmτµτ (mτ ) = µ0 (6)

for some weights αmτ such that αmτ ≥ 0,
∑
αmτ = 1 (follows from Caratheodory’s Theorem

applied to the convex set, ∆
(
∆ΘN ′

)
). By Proposition 1 in Kamenica & Gentzkow (2011),

the posteriors µτ (m̃) ∈ {µτ (m)}m∈M ′/{m̃} can be sustained by a feasible signal structure with
N ′−1 distinct messages. Moreover, the message m̃ cannot be uniquely proscribed in any state
θ ∈ Θ. Otherwise, there would exist some θi for which µiτ (m) = 0, ∀m ∈ M ′/ {m̃}, while
µi0 > 0, violating (6). Therefore, m̃ ∈ M ′/MΘ and for every state θ in which σ proscribes
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Pr (mτ = m̃ | hτ , θ) > 0, there exists another message m′θ sent with positive probability in
state θ.

Construct a new strategy σ? which induces the distribution (αmτ )mτ∈M ′/{m̃} over the
posteriors {µτ (m)}m∈M ′ at history hτ , and plays according to σ otherwise (this is feasible,
by Proposition 1 of Kamenica & Gentzkow (2011)). For any m ∈ M ′/ {m̃}, the strategy
continues to induce belief µτ (m) at history hτ and leaves continuation payoffs unchanged at
V (hτ , θτ ) thereafter (for any θτ ∈ Θτ ). Moreover, this continuation payoff is well defined for
each m since m̃ was never uniquely proscribed.

Therefore, strategy σ? achieves the same payoffs for the Sender from history hτ , leaves
payoffs otherwise unchanged at other histories, and involves only N ′ − 1 messages sent at
history hτ . Therefore, it also does not affect incentive compatibility of equilibrium play at
any prior history, ht, for t < τ . It trivially does not affect the incentive compatiblity of any
history ht, for t > τ . But this is a contradiction to N ′ as the minimum number of messages
in any strategy consistent with E [V (hτ , θτ )].

Proof of Proposition 2

Proof. In any equilibrium, S must be indifferent at any history (ht, θ
i
t) between all messages

µ̃ ∈ σt (ht, θ
i
t). Since µ

i
(ht) := arg min vi (σt (ht, θ

i
t)) is by definition in the support of

σt (ht, θ), we must have that payoffs from any equilibrium message at this history are

Vt (ht, θt) = v
(
µ
i
(ht)

)
+ δE [Vt+1 ((ht, µt, θt) , θt+1)] .

Consider the following problem:

supσ∈Σ Eθ [Vt (ht, θ0)] (7)

s.t.

Vt+τ
(
ht+τ , θt+τ

)
= v

(
µ
t+τ

)
+ δE

[
Vt+τ+1

((
ht+τ , µt+τ , θt+τ

)
, θt+τ+1

)]
,

µ0 ∈ co (∪θt∈Θsupp (σt (ht, θt))) ,

∀ht s.t. µ̃t = µi
τ
at all subsequences hτ ′ , 0 ≤ τ ′ ≤ τ , of ht at which S acts. We refer to the

set of continuation payoffs that satisfy all constraints in (7), by V . Notice V is non-empty.28

At t = 0 (where h0 = ∅), problem (7) is a relaxed version of problem (4): it only retains

28The discounted payoff from repeated play of the static babbling equilibrium at each history, v(µ0)
1−δ , is

feasible.
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constraints for histories in which S has always reported the ‘worst’ current message µi
τ ′

among all those available in the support of his strategy at previous histories, hτ ′ , τ ′ < τ . All
other constraints from (4) are dropped. Thus, the optimal value of (7) provides an upper
bound on (4).

Let V ?
t (ht, θt) be the supremum achieved in problem (7) at history ht. From the first

constraint, we must have

E
[
V ?
t+τ

(
ht+τ , θt+τ

)]
= sup

σt(ht,θ),Vt+τ+1

E
[
v
(
µi
t+τ

)
+ δVt+τ+1

((
ht+τ , µ

i

t+τ
, θt+τ

)
, θt+τ+1

)]
(8)

where the supremum is taken over feasible lotteries σt (ht, θ) ∈ Λ (µ0) and feasible payoffs
from the continuation equilibrium, Vt+τ+1 ∈ V .29

Notice that, for any t+τ , history
(
ht+τ , θt+τ

)
and corresponding σt+τ

(
ht+τ , θt+τ

)
, Vt+τ

(
ht+τ , θt+τ

)
is maximized by choosing the highest feasible expected continuation, E

[
V ?
t+τ+1

((
ht+τ , µt+τ , θt+τ

)
, θt+τ+1

)]
.

Moreover, since the continuation games at histories
(
ht+τ

)
and

((
ht+τ , µt+τ , θt+τ

))
are iden-

tical, the expected continuation values must be equal:

E
[
V ?
t+τ

(
ht+τ , θt+τ

)]
= E

[
V ?
t+τ+1

((
ht+τ , µt+τ , θt+τ

)
, θt+τ+1

)]
Substituting into (8) yields, on rearrangement:

(1− δ)Eθ [V ?
0 (θ0)] = max

λ∈Λ(µ0)

∑
µi0vi (λ) (9)

Since any equilibrium value is bounded by this supremum, the first part of our result holds.
Since vi (λ) is the minimum of finitely many upper semicontinuous functions (from Lemma

2, we need only choose from N distinct posteriors, µ, and v is upper semicontinuous), it is
upper semi-continuous. Moreover, the set Λ (µ0) is clearly compact. Therefore, by the
Extreme Value Theorem, the maximum exists. Let the lottery that achieves this optimum
be λ? ∈ Λ (µ0), with associated support {µ?1, µ?2, . . . , µ?N ′}, where for convenience we index
such that v (µ?1) ≤ v (µ?2) ≤ · · · ≤ v (µ?N ′)

Finally we show there exists a δ < 1 such that for all δ ≤ δ < 1, it is possible to construct
an equilibrium which attains this upper bound. Specifically, consider the following strategy
profile σ?:

• At any history ht, S plays λ? forever, subsequent Rt play their best strategies;30

29Focusing on expected continuations (rather than values conditional on θ) ensures that we do not violate
the constraint µ0 ∈ co (∪θt∈Θsupp (σt (ht, θt))).

30Subject to choosing the Sender-optimal action among those she is indifferent between.
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• For any history
(
ht−1, µ̃t

)
, µ̃t ∈ supp (λ?), µ̃t 6= µi,?, revert to the worst possible stage

game equilibrium for Ki (µ̃t, δ) periods, where Ki is chosen to make S indifferent
(the final period of this punishment can be implemented with a public randomization
device to get around discreteness problems).31 This punishment is always weakly worse
than the solution to (9). If this difference is strict, we can use the worst equilibrium
as a punishment for some appropriate δ < δ, for each on-path deviation. If it is weak,
then we just use a strategy of playing the worst stage equilibrium forever to implement
the payoff - this won’t require punishment histories.

• Note that the best ‘stage’ deviation payoff is uniformly bounded above by maxµ∈∆Θ v (µ)−
v (µ?1), which is necessarily finite, since v (µ) is an upper semi-continuous function on
the convex set ∆Θ. Therefore, we will be able to find a single δ that can sustain
punishments appropriately (i.e. we won’t need to take δ all the way to 1 to ensure no
temptation to cheat at all histories).

• After period K of a punishment phase, return to playing according to σ? (as if you are
at history h0 - i.e. play λ? until a deviation, and punish accordingly).

• For any history that is K ′ < K periods into the punishment, maintain play of the
worst static equilibrium in all histories (regardless of ’on-path’ deviations within this
phase)

• For any off-path deviation µ̃t at any point in the game µ̃t /∈ supp (σ?t (ht)), Rt be-
lieves µ (µ̃t) = arg min {v (µ) : µ ∈ σ?t (ht)} and we revert to play of the worst static
equilibrium thereafter. This clearly makes off-path deviations never profitable at any
history.

Proof of Theorem 2

Proof. (If) Clearly, the optimal discounted average payoff achievable via information design
on each Receiver Rt weakly excceds the optimal payoff from any repeated game (since this
problem is similar to (2), but without incentive constraints). Suppose that at prior µ0,
the optimal payoff under information design, v̂ (µ0), can be implemented by a bijection ŝP
between some partition P of Θ to M := {m1,m2, . . . ,mN ′}, where N ′ ≤ N . Thus, for each
θi ∈ Θ, ŝ (θi) = m (θi), for some unique m ∈M . Moreover, we can define an inverse function

31We choose to enforce punishments with public randomization only for the sake of ease of exposition of
the strategy. We can esablish a similar result without public randomization, for the limit as δ → 1.
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m−1 (mj) := {θ : m (θ) = mj} ⊂ Θ, with the property that m−1 (mj) ∩ m−1 (mk), ∀j, k ∈
{1, 2, . . . , N ′}, j 6= k and ∪j∈{1,...,N ′}m−1 (mj) = Θ. Under such a strategy, a Recevier’s
posterior belief, conditional on observing a message mj ∈ M is a vector µ (mj), where the
jth entry of µ is

µi (mj) = Pr
(
θ | θ ∈ m−1 (Θ)

)
S’s payoff from experiment (M, ŝP ) is∑

i∈{1,...,N}

µi0v (µ (mj (θ)))

Now, consider the repeated cheap talk game and the following lottery, λP , whose support is
{µ (mj)}j∈{1,2,...,N ′}. Under lottery λP ,

Pr (µ = µ (mj)) =
∑

θi∈m−1(mj)

µi0

Lottery λP replicates the induced distribution of posteriors under ŝP : therefore, it is clearly
feasible, λP ∈ Λ (µ0). Moreover, since each θi induces one and only one message under λP ,
vi (λP ) = v (µ (mj (θ))). Therefore,∑

µi0vi (λP ) =
∑

i∈{1,...,N}

µi0v (µ (mj (θ)))

Since the optimal payoff from information design is an upper bound on that under repeated
persuasion, λP must achieve the maximum value of (5).

Finally, by Proposition 2 there exists a δ < 1 such that we can obtain this payoff as an
equilibrium of the repeated game for all δ ≤ δ < 1 - establishing necessity.

(Only if) Suppose that the discounted average payoff from optimal signal design on each
Receiver, v̂ (µ0), cannot be obtained by any partition strategy. Take any optimal experiment
(M, s??) that does achieve v̂ (µ0), and denote the lottery over posteriors induced by the
experiment by λ?? ∈ ∆ (∆Θ). Let the support of this distribution be {µ??1 , µ??2 , . . . , µ??N ′},
and let the probability of posterior µ??j under λ?? be λ??j . Then, the expected payoff under
lottery λ?? is ∑

j∈{1,2,...,N ′}

λ??j v
(
µ??j
)

=
∑
i

µi0

(∑
j

λ??j µ
i,??
j

µi0
v
(
µ??j
))

where µi,??j := Pr
(
θi | µ = µ??j

)
is the ith component of vector µ??j , and

∑
j

λ??j µ
i,??
j

µi0
= 1.
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However, by definition of vi (λ??) we have

vi (λ
??) ≤

∑
j

λ??j µ
i,??
j

µi0
v
(
µ??j
)

(10)

We now argue that, generically, there must exist i ∈ {1, 2, . . . , N} such that (9) holds with
strict inequality. Suppose not. Then experiment s?? must involve a partition of Θ into a
set of subsets {P1, P2, . . . , PN ′′} and corresponding partitions ofM into {M1, . . . ,MN ′′} such
that

Pr (m ∈Mj | θ ∈ Pk)

> 0 , if j = k

= 0 , otherwise.

j, k ∈ {1, 2, . . . , N ′′} and
v (µ (m)) = v (µ (m′))

∀m,m′ ∈Mj, j = 1, 2, . . . , N ′′. Since by assumption, this signal is not honest, there must ex-
ist at least one j ∈ {1, 2, . . . , N ′′} and messages m,m′ ∈Mj such that v (µ (m)) = v (µ (m′))

but µ (m) 6= µ (m′). However, notice that these messages are only ever sent in the subset
of Pj ⊂ Θ . Therefore, for s?? to maximize E [v (µ)] on Λ (µ0), it must also be maximizing
E [v (µ)] among all lotteries on γ ∈ ∆Pj, subject to the restriction that∑

l

γl ˆ̂µl = µ (Pj) (:= Pr (θ | θ ∈ Pj))

for some beliefs ˆ̂µl in the support of ∆Pj.32 Refer to this feasible set as ΓPj (µ (Pj)). However,
by Theorem 1, this generically cannot be true: there exist arbitrarily small perturbations of
v on the subset ∆Pj such that v (µ (m)) 6= v (µ (m′)) at the optimal value of E [v (µ)] on the
set ΓPj (µ (Pj)).

Thus, generically there must exist some state θi ∈ Θ for which

vi (λ
??) <

∑
j

λ??j µ
i,??
j

µi0
v
(
µ??j
)

and therefore ∑
µi0vi (λ

??) <
∑

j∈{1,2,...,N ′}

λ??j v
(
µ??j
)

= v̂ (µ0) (11)

A similar argument establishes that the payoff from any experiment inducing arbitrary

32Note that ˆ̂µil = 0 for θi /∈ Pj .
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lottery λ′ attains a weakly higher payoff than
∑
µi0vi (λ

′) evaluated at λ′. Therefore,∑
µi0vi (λ

?) < v̂ (µ0)

where λ? solves (9). The inequality is generically strict since either: (i) λ? is not an
honest strategy (in which case (11) holds generically), or (ii) λ? is honest, in which case∑

j∈{1,2,...,N ′} λ
?
jv
(
µ?j
)
< v̂ (µ0) by our assumption that v̂ (µ0) cannot be implemented by an

honest experiment.
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