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Summary 

Outcomes of interest often depend on the age, period, or cohort of the individual observed, 
where cohort and age add up to period. An example is consumption: consumption patterns 
change over the life-cycle (age) but are also affected by the availability of products at different 
times (period) and by birth cohort-specific habits and preferences (cohort). Age-period-cohort 
(APC) models are additive models where the predictor is a sum of three time effects, which are 
functions of age, period and cohort, respectively. Variations of these models are available for 
data aggregated over age, period, and cohort, and for data drawn from repeated cross-sections, 
where the time effects can be combined with individual covariates. 

The age, period and cohort time effects are intertwined. Inclusion of an indicator variable for 
each level of age, period, and cohort results in perfect collinearity, which is referred to as “the 
age-period-cohort identification problem”. Estimation can be done by dropping indicator 
variables. However, this has the adverse consequence that the time effects are not individually 
interpretable and inference becomes complicated. These consequences are avoided by 
decomposing the time effects into linear and non-linear components and noting that the 
identification problem relates to the linear components, whereas the non-linear components are 
identifiable. Thus, confusion is avoided by keeping the identifiable non-linear components of 
the time effects and the unidentifiable linear components apart. A variety of hypotheses of 
practical interest can be expressed in terms of the non-linear components. 
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Introduction 
Age-period-cohort (APC) models are commonly used when individuals or populations are 
followed over time. In economics the models are most frequently used in labour economics 
and analysis of savings and consumption, but are also relevant to health economics, migration, 
political economy, and industrial organisation, among other sub-disciplines. Elsewhere the 
models are used in cancer epidemiology, in demography, in sociology, in political science, and 
in actuarial science. The models involve three time scales for age, period and cohort, which are 
linearly interlinked since the calendar period is the sum of the cohort and the age. 

 The APC time scales are typically measured discretely but can also be measured 
continuously. They can have various interpretations. The cohort often refers to the calendar 
year that a person is born, but it could also refer to the year an individual enters university or 
the year that a financial contract is written. The age is then the follow-up time since the birth, 
entry to university, or the signing of the contract. Period is the sum of the two effects, i.e. the 
point in calendar time at which follow-up occurs. Together the three APC time scales constitute 
two time dimensions that are tracked simultaneously. 

 APC data can take many shapes. Data may be recorded at the individual level in 
repeated cross sections, where age and time of recording (period) are known for each 
individual. It could be panel data, where for each individual age progresses with time (period). 
Data could be aggregated at the level of age, period and cohort. The empirical illustration in 
this chapter is concerned with US employment data aggregated by age and period, see Tables 
2 and 3, so that the first entry in Table 2 indicates that 5.246 million 15-19 year olds were in 
the labour force in 1960. For this data, questions about age would consider the unemployment 
rates across different age groups while questions about period would relate to changes in the 
overall economy. A question about cohort effects might be whether workers entering the labour 
force during boom years face different unemployment rates to those entering during bust years.  

APC models will have many different appearances depending on the data and the 
question at hand. At the core of the models is a linear predictor of the form 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 + 𝛾𝛾𝑐𝑐𝑐𝑐ℎ + δ.       (1) 

This is a non-parametric model for APC which is additively separable in the three time scales, 
𝑎𝑎𝑎𝑎𝑎𝑎, 𝑝𝑝𝑎𝑎𝑝𝑝, and 𝑐𝑐𝑐𝑐ℎ. Thus, the time effects, 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎, 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 and 𝛾𝛾𝑐𝑐𝑐𝑐ℎ, are functions of the respective 
time indices. The right-hand side of (1) has a well-known identification problem in that linear 
trends can be added to the period effect and subtracted from the age and cohort effect without 
changing the left hand side of (1). The time effects can be decomposed into linear and non-
linear parts. Due to the identification problem the linear parts from the three APC effects cannot 
be disentangled. However, the non-linear parts are identifiable. As an example, suppose the 
age effect is quadratic 

𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛼𝛼𝑐𝑐 + 𝛼𝛼ℓ × 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛼𝛼𝑞𝑞 × (𝑎𝑎𝑎𝑎𝑎𝑎)2;      (2) 

then 𝛼𝛼𝑐𝑐 + 𝛼𝛼ℓ × 𝑎𝑎𝑎𝑎𝑎𝑎 is the non-identifiable linear part and 𝛼𝛼𝑞𝑞 × (𝑎𝑎𝑎𝑎𝑎𝑎)2 is the identifiable non-
linear part.  

Note that the identification problem is concerned with the right hand side of (1) in that 
different values of the time effects on the right hand side result in the same predictor on the left 
hand side. The premise for this feature is that the left hand side predictor is identifiable and 
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estimable in reasonable statistical models. This highlights that the crucial aspect of working 
with APC models is to be clear about what can and cannot be learned. 

 In economics a common type of data is the repeated cross section with a continuous 
outcome variable. Such data could be modelled as follows. Suppose the observations for each 
individual are a continuous dependent variable 𝑌𝑌𝑖𝑖  and a vector of regressors 𝑍𝑍𝑖𝑖 , as well as 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 
and 𝑐𝑐𝑐𝑐ℎ𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑁𝑁. A simple regression model has the form 

𝑌𝑌𝑖𝑖 = 𝜁𝜁′𝑍𝑍𝑖𝑖 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑐𝑐𝑐𝑐ℎ𝑖𝑖 + 𝜀𝜀𝑖𝑖,        (3) 

where the APC predictor 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑐𝑐𝑐𝑐ℎ𝑖𝑖  is given in (1) and 𝜀𝜀𝑖𝑖 is a least square error term. The 
identification problem from (1) is embedded in regression (3). The appropriate solution to this 
problem depends on what the investigator is interested in. If the primary interest is the 
parameter 𝜁𝜁 the problem can simply be addressed by restricting four of the time effect 
parameters to be zero, such as 

𝛼𝛼1 = 𝛽𝛽1 = 𝛽𝛽2 = 𝛾𝛾1 = 0.         (4) 

This restriction to the time effects is just-identifying and therefore untestable. The just-
identified linear trends do not have any interpretation outside the context of the restriction (4), 
which makes it difficult to interpret results and draw inferences. The issue, and the reason that 
(4) does not solve the problem, is that the investigator could just as well have imposed that  

𝛼𝛼1 = 𝛼𝛼2 = 𝛽𝛽1 = 𝛾𝛾1 = 0,        (5) 

resulting in time effects with very different appearance, see Figures 1 and 2 below. To 
appreciate the APC identification problem one has to go back to the original formulation (1) 
and ask if any inference drawn would be different if imposing (5) instead of (4). If there is a 
difference one has to be careful. 

 The identification problem has generated an enormous literature where solutions fall in 
three broad categories. The traditional approach is to identify the time effects by introducing 
non-testable constraints on the linear parts of time effects which are in principle like (4) or (5) 
(Hanoch & Honig 1985). A second approach is to abandon the APC model and either use 
graphs to get an impression of time effects (Meghir & Whitehouse 1996, Voas & Chaves 2016) 
or replace the time effects in the model with other variables (Heckman & Robb 1985). Finally, 
a more recent approach reparametrizes the model in terms of invariant, non-linear parts of the 
time effects (Kuang & al. 2008a). The latter approach clearifies the inferences that can be 
drawn from APC models. 

 It is possible to characterize precisely which questions can and cannot be addressed by 
APC models. Questions that can be addressed include any question relating to the linear 
predictor 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ on the left hand side of (1). This is valuable in forecasting. For instance, if it 
is of interest to forecast the resources needed for schools an APC model can be fitted to data 
for counts of school children at different ages and the predictor can then be extrapolated into 
the future. A different type of question may be how consumption changed from 2008 to 2009 
as compared to how it changed from 2007 to 2008 so as to measure the effect of the financial 
crisis. This question is concerned with differences-in-differences and is identifiable from the 
non-linear parts of the time effects. Note that a consequence of the model is that this change in 
consumption affects all cohorts in the same way. If one suspects that different cohorts are 
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differently affected an interaction term would be needed in model (1). Conversely, the 
questions that cannot be addressed by APC models can also be characterized. These are 
questions that relate to levels or slopes of the time effects. In the context of the quadratic age 
example (2) the level and slope are 𝛼𝛼𝑐𝑐 and 𝛼𝛼ℓ, respectively. 

 There are a variety of applications in economics for which APC modelling can be 
useful. In any setting where the passage of time is an explanatory factor, there is a risk of 
confused interpretation due to the APC problem. This has been recognised in studies of labour 
market dynamics (Hanoch & Honig, 1985; Heckman & Robb, 1985; Krueger & Pischke, 1992; 
Fitzenberger & al., 2004), life-cycle saving and growth (Deaton & Paxson, 1994a), 
consumption (Attanasio, 1998; Deaton & Paxson, 2000; Browning & al., 2016), migration 
(Beenstock & al., 2010), inequality (Kalwij & Alessie, 2007), and structural analysis 
(Schulhofer-Wohl, 2018). Yang & Land (2013) and O’Brien (2015) describe examples in 
criminology, epidemiology, and sociology.  

The risk of confusion due to the identification problem is avoidable. For example, 
McKenzie (2006) exploits the non-linear discontinuity in consumption with respect to period 
to evaluate the impact of the Mexican peso crisis. Ejrnæs & Hochguertel (2013) are not directly 
interested in the time effects and so can use an ad-hoc identified APC model to control for time 
in their investigation of the effect of unemployment insurance on the probability of becoming 
unemployed in Denmark.  

However, where the research question involves the linear part of a time effect, any 
attempt to answer this directly must involve untestable restrictions on the linear parts of other 
time effects. In this context the risk of confounding between time effects cannot be mitigated. 
One solution is to reformulate the question in terms of the non-linear parts of the time effects. 
Certain difference-in-difference questions naturally take this form, see for example 
McKenzie’s (2006) analysis of the peso crisis. Otherwise, the researcher’s only option is to 
argue for untestable restrictions using economic theory. Such restrictions may be explicit as in 
(4) or (5) or implicit if time effects are replaced with a proxy variable (Krueger & Pischke, 
1992; Deaton and Paxson, 1994b; Attanasio, 1998; Browning & al., 2016).  

The risks of confounding inherent in models involving any of age, period, or cohort can 
be avoided by beginning with a general model that allows for any possible combination of time 
effects, then gradually reducing the model by imposing testable restrictions. There is 
substantial scope for such testable restrictions: exclusion and functional form restrictions on 
the non-linear parts of each of age, period, and cohort can be tested, as can the replacement of 
time effects by proxy variables. 

The remainder of the chapter elaborates on the main points raised above. The 
identification problem is explained in greater detail. A number of approaches taken to resolve 
or avoid the identification problem are discussed, including several variants of the traditional 
approach and the recent reparameterization. Interpretation of the parameters of the APC model 
is discussed. The idea of sub-models, which provide a systematic guide to testable reductions 
of the APC model, is introduced. There is some discussion of “hidden” identification problems, 
which can arise when the initial model is insufficiently general. This is followed by a section 
explaining the sorts of problems that the APC model is well-equipped to address. The final 
section contains a more detailed discussion of statistical models for APC analysis and an 
empirical illustration.  



6 
 

Background 
Elements of the conceptual framework used in subsequent formalized discussions of APC 
models are introduced. In particular, the recording of time is discussed, the types of data 
structures for which APC models are used are described, and vector notation is defined. 

Time 
In reality time is recorded discretely in units such as years, days, or seconds. Throughout this 
discussion it is assumed that the time index is positive. The traditional calendar convention is 
adopted whereby there is no year zero and time is rounded up to the nearest whole number of 
units, rather than the time stamp method which has a year zero and where time is rounded down 
to the nearest whole number of units. Suppose a given sample has single-year units. Then 
𝑎𝑎𝑎𝑎𝑎𝑎 = 1 is assigned to the youngest person and 𝑐𝑐𝑐𝑐ℎ = 1 is assigned to the earliest recorded 
birth year. This leads to the relation  

𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐ℎ = 𝑝𝑝𝑎𝑎𝑝𝑝 + 1.        (6) 

Typically only two of the three time scales, 𝑎𝑎𝑎𝑎𝑎𝑎, 𝑝𝑝𝑎𝑎𝑝𝑝 and 𝑐𝑐𝑐𝑐ℎ, are recorded. This leads to a 
slight inaccuracy due to mid-year birthdays. When age and period are the recorded values this 
is referred to as the problem of overlapping cohorts. Osmond & Gardner (1989) show that it 
does not matter for the identification problem whether two or three time scales are recorded. 
Carstensen (2007) shows how to handle the additional information from a third recorded time 
scale. 

Data array 
A range of data structures appear in the literature. The main types are age-period (AP) arrays, 
a common format for repeated cross sections; period-cohort (PC) arrays, used in prospective 
cohort studies; and age-cohort (AC) arrays. In 1875 Lexis referred to these arrays as the 
principal sets of death (Keiding, 1990). Another common data array is the age-cohort triangle 
used for reserving in general insurance (England & Verrall, 2002). The different data arrays 
can be unified by thinking of them as instances of generalized trapezoids (Kuang & al., 2008a) 
defined by the index set 

𝒥𝒥 = (1 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝐴𝐴     and    1 ≤ 𝑐𝑐𝑐𝑐ℎ ≤ 𝐶𝐶     and     𝐿𝐿 + 1 ≤ 𝑝𝑝𝑎𝑎𝑝𝑝 ≤ 𝐿𝐿 + 𝑃𝑃), (7) 

where 𝐿𝐿 is a period offset. The age-period array arises when 𝐿𝐿 = 𝐴𝐴 − 1 and 𝐿𝐿 + 𝑃𝑃 = 𝐶𝐶 while 
the age-cohort array has 𝐿𝐿 = 0 and 𝑃𝑃 = 𝐴𝐴 + 𝐶𝐶 − 1. From a geometric view point it is useful to 
consider all of these in an age-cohort coordinate system, due to the symmetry of age and cohort 
in equation (6). This convention is followed henceforth.  

Vector notation 
The time effect equation (1) has the linear predictor 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ on the left hand side. It varies on 
a surface indexed by age and cohort and where the shape is given by the combination of the 
time effects, 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎, 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 , and 𝛾𝛾𝑐𝑐𝑐𝑐ℎ. Stacking the linear predictors as a vector gives 

𝜇𝜇 = (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ)𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ∈ℐ,        (8) 

which has dimension 𝑛𝑛, so that 𝑛𝑛 = 𝐴𝐴𝐶𝐶 for an 𝐴𝐴𝐶𝐶 array and 𝑛𝑛 = 𝐴𝐴𝑃𝑃 for an 𝐴𝐴𝑃𝑃 array, and where 
𝒥𝒥 refers to an index set of the form (7).  

Collecting the time effects on the right hand side of (1) gives the vector 
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𝜃𝜃 = (𝛼𝛼1, … ,𝛼𝛼𝐴𝐴,𝛽𝛽𝐿𝐿+1, … ,𝛽𝛽𝐿𝐿+𝑃𝑃 ,𝛾𝛾1, … , 𝛾𝛾𝐶𝐶 , 𝛿𝛿)′,      (9) 

of dimension 𝑞𝑞 = 𝐴𝐴 + 𝑃𝑃 + 𝐶𝐶 + 1. Thus the model (1) implies that the 𝑛𝑛-vector 𝜇𝜇 in (8) varies 
on a surface with dimension of at most 𝑞𝑞. When 𝑛𝑛 is not too small the surface for 𝜇𝜇 is estimable 
so that 𝜇𝜇 can be identified up to sampling error. The APC identification problem is that the 
time effects are collinear, so that not all components in the 𝑞𝑞-vector 𝜃𝜃 are identified.  

The identification problem, explained 
The identification problem arising in the linear parts of the time effects is formally defined and 
illustrated in a simplified linear model.  

Formal characterization 
In equation (1) the predictor 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ is identifiable from data whereas the time effects on the 
right hand side of equation (1) are only identifiable up to linear trends. Indeed, the equation 
can, for any a,b,c,d, be rewritten as 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = (𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑎𝑎 + 𝑑𝑑 × 𝑎𝑎𝑎𝑎𝑎𝑎) + (𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 + 𝑏𝑏 − 𝑑𝑑 × 𝑝𝑝𝑎𝑎𝑝𝑝) 

+(𝛾𝛾𝑐𝑐𝑐𝑐ℎ + 𝑐𝑐 + 𝑑𝑑 × 𝑐𝑐𝑐𝑐ℎ) + (𝛿𝛿 − 𝑎𝑎 − 𝑏𝑏 − 𝑐𝑐 − 𝑑𝑑).  (10) 

Since the four quantities a,b,c,d are arbitrary, only a 𝑝𝑝 = 𝑞𝑞 − 4 dimensional version of 𝜃𝜃 is 
estimable. The equation (10) also shows that the time effects, such as the age effect 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎, are 
only discoverable up to an arbitrary linear trend. It is therefore possible to learn about the non-
linear part of the age effect only. The non-linearity captures the shape of the age effect which 
can be expressed through second and higher derivatives. The unidentified linear parts of the 
time effects combine to form a shared identifiable linear plane, which is explored in the next 
subsection. The unidentifiability of the linear components has a number of consequences with 
respect to interpretation, count of degrees of freedom, plotting, inference and forecasting. 

In the literature the identification problem has been addressed in various ways. A 
popular approach is to impose four (or sometimes more) constraints on the time effects. This 
addresses the immediate problem of estimating a version of the time effects, but leaves the 
problems outlined above. A more recent approach, which will be presented first, is to 
parametrize the predictor in terms of elements of the time effect that are invariant to the 
transformations given in (10). This approach clarifies what can be learned from the model. 

Illustration in a simple case: the linear plane model 
The linear plane model is the simplest model where the APC identification problem is present. 
It arises when all the time effects are assumed to be linear. For instance, the age effect is 
parametrized as 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛼𝛼𝑐𝑐 + 𝛼𝛼ℓ × 𝑎𝑎𝑎𝑎𝑎𝑎, where 𝛼𝛼𝑐𝑐  is a constant level and 𝛼𝛼ℓ is a linear slope. 
Combining the three linear time effects results in 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = (𝛼𝛼𝑐𝑐 + 𝛼𝛼ℓ × 𝑎𝑎𝑎𝑎𝑎𝑎) + (𝛽𝛽𝑐𝑐 + 𝛽𝛽ℓ × 𝑝𝑝𝑎𝑎𝑝𝑝) + (𝛾𝛾𝑐𝑐 + 𝛾𝛾ℓ × 𝑐𝑐𝑐𝑐ℎ) + 𝛿𝛿.  (11) 

This model involves seven parameters but only a three-dimensional combination is identified 
due to the transformations in (10). 

It is tempting to restrict the four intercepts in (11) and the three slopes to get a single 
intercept and two slopes by imposing constraints. This will not change the range of the 
predictor on the left hand side of (11) but it will change the interpretation of the unidentified 
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time effects on the right hand side. Two researchers choosing different restrictions may end up 
drawing different inferences about the time effects if this is not kept in mind. 

Model (11) implies that the predictor varies on a linear plane. A linear plane can be 
parametrized in many ways. For instance the plane could be parametrized in terms of age and 
cohort slopes anchored at 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑐𝑐𝑐𝑐ℎ = 1 as in 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝜇𝜇11 + (𝜇𝜇21 − 𝜇𝜇11)(𝑎𝑎𝑎𝑎𝑎𝑎 − 1) + (𝜇𝜇12 − 𝜇𝜇11)(𝑐𝑐𝑐𝑐ℎ − 1).   (12) 

Equally, it could be parametrized in terms of age and period slopes using (6) as in 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝜇𝜇11 + (𝜇𝜇21 − 𝜇𝜇12)(𝑎𝑎𝑎𝑎𝑎𝑎 − 1) + (𝜇𝜇12 − 𝜇𝜇11)(𝑝𝑝𝑎𝑎𝑝𝑝 − 1).   (13) 

The parametrizations (12), (13) both identify the variation of the predictor on the left hand side 
of (11). However, the slopes in (12) and (13) do not identify the slopes of the time effects. The 
age slopes in (12) and (13) are different and satisfy, within the linear plane model, 𝜇𝜇21 − 𝜇𝜇11 =
𝛼𝛼ℓ + 𝛽𝛽ℓ and 𝜇𝜇21 − 𝜇𝜇12 = 𝛼𝛼ℓ − 𝛾𝛾ℓ respectively; evidently, neither is equal to 𝛼𝛼ℓ.  

 The equation (12) parametrises the linear plane without reference to time effects. Time 
effects can only be identified by imposing restrictions on these. The constraint (4) is equivalent 
to 𝛼𝛼𝑐𝑐 =  𝛽𝛽𝑐𝑐 =  𝛾𝛾𝑐𝑐 = 𝛽𝛽ℓ = 0, in the linear plane model (11). With this constraint identification 
is achieved in that 𝜇𝜇21 − 𝜇𝜇11 = 𝛼𝛼ℓ and 𝜇𝜇21 − 𝜇𝜇12 = −𝛾𝛾ℓ and 𝜇𝜇11 = 𝛿𝛿. This identification gives 
a model in terms of age and cohort time effects. By imposing the constraint (5) a model in 
terms of period and cohort time effects could be obtained, and a similar set of constraints would 
result in a model in terms of age and period slopes. Each set of constraints appears to lead to 
information about the time effects, but clearly they cannot all be correct. In fact it is not possible 
to establish if any of these three sets of constraints lead to a correct impression of the 
unidentifiable time effects. Although the time effects cannot be identified it is still possible to 
answer any question that relates to the predictor 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ, such as forecasting future values or 
testing for change in 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ.  

 As a numerical example of the identification issue, suppose the linear plane (12) is 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 1 + 3(𝑎𝑎𝑎𝑎𝑎𝑎 − 1) + (𝑐𝑐𝑐𝑐ℎ − 1)      (14) 

over an AC array with 𝐴𝐴 = 𝐶𝐶 = 10. The linear plane (14) does not specify the time effects and 
the over-parametrized time effect specification (11) cannot be identified. 

Suppose it is not known that the data is generated by (14), but it is known that a model of the 
form (11) generated the data. Applying the constraints (4) and (5) to the model (11) in the 
context of the data-generating process (14) results in the slopes 𝛼𝛼ℓ = 3, 𝛽𝛽ℓ = 0, 𝛾𝛾ℓ = 1 and 
𝛼𝛼ℓ = 0, 𝛽𝛽ℓ = 3, 𝛾𝛾ℓ = −2 respectively, as illustrated in Figures 1 and 2.  
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Figure 1. Time effect slopes under identification (4). 

 

Figure 2. Time effect slopes under identification (5) for the same linear plane as in Figure 1. 

The Figures 1 and 2 have a rather different appearance despite generating exactly the 
same linear plane. Three features are important. First, the signs of the slopes are not identified. 
The cohort effect is upward sloping in Figure 1(c) and downward sloping in Figure 2(c). 
Second, the units of the time effects have no meaning. The period scale is not defined in Figure 
1(b) whereas it is defined in Figure 2(b). Further, the units of the cohort scales are very different 
in Figures 1(c) and 2(c) which have slopes of 1 and -2, respectively, yet they are observationally 
equivalent. Third, a subtler feature is that within each Figure the sub-plots are interlinked. For 
example, by setting the period slope to zero in Figure 1(b) the cohort slope in Figure 1(c) 
becomes upward sloping. But where the age slope is set to zero in Figure 2(a) the period is 
upward sloping in Figure 2(b) while the cohort is downward sloping in Figure 2(c). Thus, it is 
not possible to draw inferences from any sub-plot in isolation. This is a serious limitation in 
practice as the eye tends to focus on one sub-plot at a time. 

Addressing the identification problem 
An overview is given of the some of the most commonly encountered identification strategies 
in the APC literature. Each of three categories of solutions – identification by restriction, 
forgoing the formal APC model, and the canonical parametrization – is considered.  
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What to look for in a good approach 
There are many proposed solutions and identification strategies in the literature on APC 
modelling, across several disciplines. This section provides guidance on assessing such 
identification strategies. 

Invariance 
It has long been recognized that it is useful to work with functions of the time effects that are 
invariant to the transformations in (10). Thus, there are some parallels to the theory for invariant 
reduction of statistical models (Lehman, 1986, §6; Cox & Hinkley, 1974, §5.3). In that vein 
Carstensen (2007) interpreted equation (10) as a group 𝑎𝑎 of transformation from the collection 
of time effects 𝜃𝜃 in (9) to the collection of predictors 𝜇𝜇 in (8). Invariant functions of 𝜃𝜃, say 
𝑓𝑓(𝜃𝜃) are invariant if 𝑓𝑓{𝑎𝑎(𝜃𝜃)} = 𝑓𝑓(𝜃𝜃). 

 Double differences of the time effects are invariant (Fienberg & Mason, 1979; Clayton 
& Schifflers, 1987; McKenzie, 2006). To see this consider the double differenced age effect: 

Δ2α𝑎𝑎𝑎𝑎𝑎𝑎 = Δα𝑎𝑎𝑎𝑎𝑎𝑎 − Δα𝑎𝑎𝑎𝑎𝑎𝑎−1 = α𝑎𝑎𝑎𝑎𝑎𝑎 − 2α𝑎𝑎𝑎𝑎𝑎𝑎−1 + α𝑎𝑎𝑎𝑎𝑎𝑎−2.    (15) 

Equation (10) shows that for any non-zero 𝑎𝑎,𝑑𝑑 the age effects 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 and 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑎𝑎 + 𝑑𝑑 × 𝑎𝑎𝑎𝑎𝑎𝑎 
are observationally equivalent but can differ substantially in value; this was demonstrated in 
Figures 1, 2. Now, the double differences of 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 and 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑎𝑎 + 𝑑𝑑 × 𝑎𝑎𝑎𝑎𝑎𝑎 are both Δ2α𝑎𝑎𝑎𝑎𝑎𝑎, 
which does not depend on 𝑎𝑎, 𝑑𝑑 and is therefore invariant to the transformations in (10). In the 
context of the quadratic example (2) it can be shown that Δ2α𝑎𝑎𝑎𝑎𝑎𝑎 = 2𝛼𝛼𝑞𝑞 . The double 
differences have an odds-ratio or difference-in-difference interpretation, that will be explored 
later, see (22). 

 The predictor 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ is also invariant (Kuang & al., 2008a). Indeed equation (10) 
shows that any transformation of that form applied to the time effects on the right hand side of 
(1) results in the same predictor. However, 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ alone may not be of great interest. The 
next step is therefore to represent the predictor 𝜇𝜇 exclusively in terms of invariant functions 
𝜉𝜉(𝜃𝜃). That is, the desired outcome is to express 𝜇𝜇 as a bijective function of 𝜉𝜉(𝜃𝜃), where 𝜉𝜉 is 
invariant so that 𝜉𝜉(𝜃𝜃) = 𝜉𝜉(𝑎𝑎(𝜃𝜃)). The function 𝜉𝜉 is then a maximal invariant and useful for 
parametrization of the model as it carries as much of the intended information from the time 
effects as possible while being invariant to the identification problem.  

 In the context of exponential family models, such as the linear model in (3) or logit or 
Poisson regressions, the predictor 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ enters linearly in the log-likelihood. If the maximal 
invariant parameter 𝜉𝜉 is a linear function of the time effects and varies freely in an open 
parameter space then the exponential family model is regular with 𝜉𝜉 as canonical parameter 
(Barndorff-Nielsen, 1978, §8). Such a canonical parameter is explicitly defined later. 

Sub-sample analysis 
An alternative way to think about invariance is sub-sample analysis. It is relevant in two ways. 
First, it can be used to check a claim that a particular identification strategy avoids the 
identification problem. Second, it can be used for specification testing in a practical analysis. 

 Suppose it is claimed that a proposed method for estimating the age effect or some 
structural parameter avoids the identification problem. In many cases it can be argued that the 
method should be, apart from estimation error, invariant to the choice of data array. 
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Specifically, suppose a data array 𝒥𝒥 of the form (7) is available. A sub-set 𝒥𝒥′ can be formed in 
various ways, for instance, by considering those age groups younger than some threshold 𝐴𝐴′. 
The claim that the method avoids the identification problem is then substantiated if the method 
gives the same result when applied to the full data array 𝒥𝒥 and to the sub-set data array 𝒥𝒥′. 

 Whatever method is applied, the specification of an estimated model can be checked by 
recursive analysis following common practice in time series analysis. The idea is to track the 
estimates of invariant parameters for different sub-sets 𝒥𝒥′ with different choices of threshold 
𝐴𝐴′ and plotting these against the threshold values, following Chow (1960). Investigators can 
check the specification of models by recursive modelling along the three time scales. For a 
well-specified model those estimates should not vary substantially with the threshold apart 
from minor variation due to estimation error. Larger variation is indicative of structural breaks 
in the data generating process and calls for a more flexible model than (1). 

Canonical Parametrization  
Overview  
The time effects can be decomposed into a linear and a non-linear part. The non-linear parts 
can be represented in terms of the double differences such as Δ2α𝑎𝑎𝑎𝑎𝑎𝑎,  introduced in (8). The 
linear parts of the three time effects along with the intercept in equation (1) combine to a linear 
plane where the slopes are identifiable (Holford, 1983). Combining these ideas the predictor 
can be given representations of the form 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝑙𝑙𝑖𝑖𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑎𝑎 + 𝛴𝛴𝛴𝛴𝑎𝑎𝑎𝑎𝑎𝑎Δ2𝛼𝛼𝑠𝑠 + 𝛴𝛴𝛴𝛴𝑝𝑝𝑎𝑎𝑝𝑝Δ2𝛽𝛽𝑠𝑠 + 𝛴𝛴𝛴𝛴𝑐𝑐𝑐𝑐ℎΔ2𝛾𝛾𝑠𝑠.  (16) 

The exact specification of the linear plane and the summation indices for the double sums of 
double differences depend on the index array for the age, period and cohort indices. Note that 
the linear terms are simply kept together as a linear plane without attempting to disentangle 
them into APC components. This circumvents the unsolvable identification problem. 

Age-cohort index arrays 
Kuang et al. (2008a) consider AC index arrays and show 

 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝜇𝜇1,1 + (𝜇𝜇2,1 − 𝜇𝜇1,1) × (𝑎𝑎𝑎𝑎𝑎𝑎 − 1) + (𝜇𝜇1,2 − 𝜇𝜇1,1) × (𝑐𝑐𝑐𝑐ℎ − 1) 

   +∑ ∑ Δ2𝛼𝛼𝑠𝑠𝑡𝑡
𝑠𝑠=3

𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡=3 + ∑ ∑ Δ2𝛽𝛽𝑠𝑠𝑡𝑡

𝑠𝑠=3
𝑝𝑝𝑎𝑎𝑝𝑝
𝑡𝑡=3 + ∑ ∑ Δ2𝛾𝛾𝑠𝑠𝑡𝑡

𝑠𝑠=3
𝑐𝑐𝑐𝑐ℎ
𝑡𝑡=3 , (17) 

with the convention that empty sums are zero. Here the linear plane has been parametrized as 
in (12). The plane is identified as it is invariant to the transformations (10) but the time effect 
slopes remain unidentified since the age, period, and cohort slopes remain interlinked, see (12), 
(13). A feature of the representation (17) is that the non-linear components are separated from 
the linear plane. The predictor in (17) can be summarised as 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝜉𝜉′𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ where 

𝜉𝜉 = (𝜇𝜇11, 𝜇𝜇21 − 𝜇𝜇11, 𝜇𝜇12 − 𝜇𝜇11,Δ2𝛼𝛼3, … ,Δ2𝛼𝛼𝐴𝐴,Δ2𝛽𝛽3, … ,Δ2𝛽𝛽𝐴𝐴+𝐶𝐶−1,Δ2𝛾𝛾3, … ,Δ2𝛾𝛾𝐶𝐶)′     (18) 

The design vector 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ is defined in terms of a function 𝑚𝑚(𝑡𝑡, 𝑠𝑠) = max (𝑡𝑡 − 𝑠𝑠 + 1,0) as 

𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = {1,𝑎𝑎𝑎𝑎𝑎𝑎 − 1, 𝑐𝑐𝑐𝑐ℎ − 1,𝑚𝑚(𝑎𝑎𝑎𝑎𝑎𝑎, 3), … ,𝑚𝑚(𝑎𝑎𝑎𝑎𝑎𝑎,𝐴𝐴), 

𝑚𝑚(𝑝𝑝𝑎𝑎𝑝𝑝, 3), … ,𝑚𝑚(𝑝𝑝𝑎𝑎𝑝𝑝,𝑃𝑃),𝑚𝑚(𝑐𝑐𝑐𝑐ℎ, 3), … ,𝑚𝑚(𝑐𝑐𝑐𝑐ℎ,𝐶𝐶)}′ (19) 
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Theorem 1 of Kuang, Nielsen, & Nielsen (2008a) shows that 𝜉𝜉 is a maximal invariant with 
respect to the transformations in (10) as it is composed of double differences and values of the 
predictor itself. The parameter 𝜉𝜉 will be canonical in the context of exponential family models 
such as normal, logistic or Poisson regressions. 

General index arrays including age-period arrays  
General index arrays (7) are considered by Nielsen (2015). They exclude the age-cohort 
triangle where 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐ℎ ≤ 𝐿𝐿 and hence the anchoring point 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑐𝑐𝑐𝑐ℎ = 1 in (17) when 
𝐿𝐿 ≥ 1. This will be the case for age-period arrays where 𝐿𝐿 = 𝐴𝐴 − 1. Thus, to achieve a unified 
representation that preserves the age-cohort symmetry the anchoring point is chosen  in the 
middle of the first or second period diagonal, depending on whether L is even or odd. To find 
this point, the quantity 𝑈𝑈 = 𝑖𝑖𝑛𝑛𝑡𝑡{(𝐿𝐿 + 3)/2} is defined and the anchoring point is chosen to be 
at 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑐𝑐𝑐𝑐ℎ = 𝑈𝑈. Note that 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑐𝑐𝑐𝑐ℎ = 𝑈𝑈 gives 𝑝𝑝𝑎𝑎𝑝𝑝 = 2𝑈𝑈 − 1 and that 𝐿𝐿 + 3 = 2𝑈𝑈 for 
odd 𝐿𝐿 while 𝐿𝐿 + 3 = 2𝑈𝑈 + 1 for even 𝐿𝐿. The representation is then 

 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝜇𝜇𝑈𝑈𝑈𝑈 + (𝜇𝜇𝑈𝑈+1,𝑈𝑈 − 𝜇𝜇𝑈𝑈𝑈𝑈) × (𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑈𝑈) + (𝜇𝜇𝑈𝑈,𝑈𝑈+1 − 𝜇𝜇𝑈𝑈𝑈𝑈) × (𝑐𝑐𝑐𝑐ℎ − 𝑈𝑈) 

 +1(𝑎𝑎𝑎𝑎𝑎𝑎<𝑈𝑈) ∑ ∑ Δ2𝛼𝛼𝑠𝑠 + 1(𝑎𝑎𝑎𝑎𝑎𝑎>𝑈𝑈+1)
𝑈𝑈+1
𝑠𝑠=𝑡𝑡

𝑈𝑈+1
𝑡𝑡=𝑎𝑎𝑎𝑎𝑎𝑎+2 ∑ ∑ Δ2𝛼𝛼𝑠𝑠𝑡𝑡

𝑠𝑠=𝑈𝑈+2
𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡=𝑈𝑈+2  

 +1(𝐿𝐿 𝑐𝑐𝑜𝑜𝑜𝑜 & 𝑝𝑝𝑎𝑎𝑝𝑝=2𝑈𝑈−2)Δ2𝛽𝛽2𝑈𝑈 + 1(𝑝𝑝𝑎𝑎𝑝𝑝>2𝑈𝑈) ∑ ∑ Δ2𝛽𝛽𝑠𝑠𝑡𝑡
𝑠𝑠=2𝑈𝑈+1

𝑝𝑝𝑎𝑎𝑝𝑝
𝑡𝑡=2𝑈𝑈+1  

 +1(𝑐𝑐𝑐𝑐ℎ<𝑈𝑈) ∑ ∑ Δ2𝛾𝛾𝑠𝑠 + 1(𝑐𝑐𝑐𝑐ℎ>𝑈𝑈+1)
𝑈𝑈+1
𝑠𝑠=𝑡𝑡

𝑈𝑈+1
𝑡𝑡=𝑐𝑐𝑐𝑐ℎ+2 ∑ ∑ Δ2𝛾𝛾𝑠𝑠𝑡𝑡

𝑠𝑠=𝑈𝑈+2 .𝑐𝑐𝑐𝑐ℎ
𝑡𝑡=𝑈𝑈+2   (20) 

The representation (17) for age-cohort arrays arises in the special case where 𝐿𝐿 = 0, implying 
𝑈𝑈 = 1. The general representation (20) can also be written as 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝜉𝜉′𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ where 

𝜉𝜉 = (𝜇𝜇𝑈𝑈𝑈𝑈, 𝜇𝜇𝑈𝑈+1,𝑈𝑈 − 𝜇𝜇𝑈𝑈𝑈𝑈 , 𝜇𝜇𝑈𝑈,𝑈𝑈+1 − 𝜇𝜇𝑈𝑈𝑈𝑈,  

   Δ2𝛼𝛼3, … ,Δ2𝛼𝛼𝐴𝐴,Δ2𝛽𝛽𝐿𝐿+3, … ,Δ2𝛽𝛽𝐿𝐿+𝑃𝑃 ,Δ2𝛾𝛾3, … ,Δ2𝛾𝛾𝐶𝐶)′.  (21) 

The design vector is defined in terms of the function 𝑚𝑚(𝑡𝑡, 𝑠𝑠) = max (𝑡𝑡 − 𝑠𝑠 + 1,0) as  

𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = {1,𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑈𝑈, 𝑐𝑐𝑐𝑐ℎ − 𝑈𝑈, 

𝑚𝑚(1,𝑎𝑎𝑎𝑎𝑎𝑎), … ,𝑚𝑚(𝑈𝑈 − 1, 𝑎𝑎𝑎𝑎𝑎𝑎),𝑚𝑚(𝑎𝑎𝑎𝑎𝑎𝑎,𝑈𝑈 + 2), … ,𝑚𝑚(𝑎𝑎𝑎𝑎𝑎𝑎,𝐴𝐴), 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ
𝛽𝛽 , 

𝑚𝑚(1, 𝑐𝑐𝑐𝑐ℎ), … ,𝑚𝑚(𝑈𝑈 − 1, 𝑐𝑐𝑐𝑐ℎ),𝑚𝑚(𝑐𝑐𝑐𝑐ℎ,𝑈𝑈 + 2), … ,𝑚𝑚(𝑐𝑐𝑐𝑐ℎ,𝐶𝐶)}, (22) 

where the period part 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ
𝛽𝛽  depends on whether L is even or odd: 

𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ
𝛽𝛽 = �

1(𝑝𝑝𝑎𝑎𝑝𝑝=𝐿𝐿+1),𝑚𝑚(𝑝𝑝𝑎𝑎𝑝𝑝, 𝐿𝐿 + 4), … ,𝑚𝑚(𝑝𝑝𝑎𝑎𝑝𝑝, 𝐿𝐿 + 𝑃𝑃) 𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝐿𝐿 𝑖𝑖𝑠𝑠 𝑐𝑐𝑑𝑑𝑑𝑑,
𝑚𝑚(𝑝𝑝𝑎𝑎𝑝𝑝, 𝐿𝐿 + 3), … ,𝑚𝑚(𝑝𝑝𝑎𝑎𝑝𝑝, 𝐿𝐿 + 𝑃𝑃) 𝑤𝑤ℎ𝑎𝑎𝑛𝑛 𝐿𝐿 𝑖𝑖𝑠𝑠 𝑎𝑎𝑒𝑒𝑎𝑎𝑛𝑛.

 (23) 

This canonical parametrization captures all the identifiable variation in the predictor due to the 
time effects. The interpretation of the elements of 𝜉𝜉 is discussed in a subsequent section.   

Identification by restriction 
The traditional approach to identification is to introduce restrictions of the type (4) and (5). 
Such restrictions give a parametrization that is not invariant to the transformations in (10). This 
leads to the kind of issues highlighted with Figures 1,2. The purpose of the restrictions is 
essentially to extract some version of the linear parts of the time effect from the linear plane. 
The linear plane only has one level and two slopes as seen in (12). There is no unique way to 
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distribute these quantities on the three time effects. Various approaches have been suggested 
in the literature, some of which are reviewed below. Typically these approaches have two steps, 
where the levels are identified at first and then the linear slope is identified. This makes a formal 
analysis complicated, see Nielsen & Nielsen (2015). 

Restrictions on levels 
There are two main approaches to identifying the level: restricting particular coordinates of the 
time effects, or restricting the average level of the time effect. Neither approach is invariant to 
the transformations in (10). 

Restricting coordinates of the time effects. A common restriction is to set individual coordinates 
of the time effects to zero as in (4) and (5). Ejrnæs & Hochguertel (2013) provide an example. 
In practice this works by first including a full set of APC dummies and then dropping the 
dummies where it is intended that time effects be set to zero. Such restrictions are not invariant 
to the transformations in (10). Indeed, the requirement 𝛼𝛼1 = 0 is violated when adding some 
non-zero number 𝑎𝑎 to 𝛼𝛼1. With this approach it is possible to ensure comparability between 
estimates for sub-samples as long as exactly the same restriction is imposed. 

Restricting the average levels. A common restriction is to set the average of the time effects to 
zero so that (1/𝐴𝐴)𝛴𝛴𝑎𝑎𝑎𝑎𝑎𝑎=1𝐴𝐴 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 = (1/𝑃𝑃)𝛴𝛴𝑝𝑝𝑎𝑎𝑝𝑝=𝐿𝐿+1𝐿𝐿+𝑃𝑃 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 = (1/𝐶𝐶)𝛴𝛴𝑐𝑐𝑐𝑐ℎ=1𝐶𝐶 𝛾𝛾𝑐𝑐𝑐𝑐ℎ = 0. The level of 
the model is then picked up by the intercept 𝛿𝛿 in (1). This restriction is commonly used (Deaton 
& Paxson, 1994a; Schulhofer-Wohl, 2018). A feature of this type of restriction is that the 
unidentified levels and slopes are orthogonalized, but this comes at the cost of making the scale 
of the time effects dependent on the dimensions of the index array (7). As before, the zero 
average restriction is not invariant to the transformations in (10). Indeed, increasing all age 
effects by some non-zero number 𝑎𝑎 violates the restriction.  

Figures 3 and 4 applies this restriction to the plane (14) and demonstrates that the restriction is 
specific to the index array through a sub-sample argument. AC index arrays are chosen so that 
Figure 3 has 𝐴𝐴 = 𝐶𝐶 = 10 while Figure 4 has 𝐴𝐴 = 𝐶𝐶 = 5. In both figures the average level is 
set to zero while the period slope is set to zero as in (Deaton & Paxson, 1994a). Note that the 
absolute ranges for age (28) and cohort (10) are the same as in Figure 1. The intercepts are very 
different with 𝛿𝛿 = 19 and 𝛿𝛿 = 9, respectively. Further, the time effects are not comparable, for 
instance, 𝛼𝛼5.5 = 0 in Figure 3, whereas 𝛼𝛼3 = 0 in Figure 3. Arguing, ad absurdum, the sub-
sample analysis implies that by varying the data array while keeping the zero level constraint 
the time effects must be zero. 
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Figure 3. Time effect slopes under average level identification 
For an AC array with 𝐴𝐴 = 𝐶𝐶 = 10 

 

Figure 4. Time effect slopes under average level identification 
for an AC array with 𝐴𝐴 = 𝐶𝐶 = 5 

 
The APC slopes are the same in Figures 3 and 4. This is not a general feature of the 

zero average restriction but a consequence of working with a linear plane predictor of the form 
(14). To illustrate this point introduce a non-linear effect into (14) to get 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 1 + 3(𝑎𝑎𝑎𝑎𝑎𝑎 − 1) + 2(𝑐𝑐𝑐𝑐ℎ − 1)+1(𝑝𝑝𝑎𝑎𝑝𝑝≥10).    (24) 

On the smaller AC array with 𝐴𝐴 = 𝐶𝐶 = 5 this reduces to the linear plane in (14) so that for zero 
average levels and a zero period slope Figure 4 emerges. On the larger AC array with 𝐴𝐴 = 𝐶𝐶 =
10 the non-linearity matters. Keeping the zero average level constraint and setting the period 
slope to zero through 𝛴𝛴𝑝𝑝𝑎𝑎𝑝𝑝=119 𝑝𝑝𝑎𝑎𝑝𝑝 × 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 = 0 results in Figure 5. Comparing Figures 4 and 5 it 
is seen that all slopes are different. The age slope are 3 and 3.02, respectively, and the cohort 
slopes are 1 and 1.02 respectively. The period slopes for 𝑝𝑝𝑎𝑎𝑝𝑝 ≤ 9 are zero and -0.08, 
respectively. 



15 
 

 

Figure 5. Time effect slopes for (24) under average level identification 
and the slope constraint 𝛴𝛴𝑝𝑝𝑎𝑎𝑝𝑝=119 𝑝𝑝𝑎𝑎𝑝𝑝 × 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 = 0 for an AC array with 𝐴𝐴 = 𝐶𝐶 = 10. 

 
Restrictions on slopes 
Once the level is attributed between the time effects and the intercept, the slopes have to be 
restricted. This approach necessarily binds the slopes of the three time effects together. 
Graphically, this can have dramatic consequences as seen in Figures 1 and 2. 

Restricting a pair of adjacent time effects. The slope can be identified by restricting a pair of 
adjacent time effects to be equal. An example would be to let 𝛽𝛽1 = 𝛽𝛽2 as in (4). Fienberg & 
Mason (1979) propose this method combined with a zero average restriction. This restriction 
is not invariant to (10). Indeed, adding a linear trend with non-zero slope 𝑑𝑑 to the age effect 
violates the restriction.  

Orthogonalizing a time effect with respect to a time trend. A more complicated version of the 
previous approach is to pin down one of time effects by orthogonalization with respect to a 
time trend so as to constrain the slope to be zero. An example would be to require that 
𝛴𝛴𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 × 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 = 0. Deaton and Paxson (1994a) apply this approach in conjunction with an 
average restriction on the level of the period effect and zero restrictions of the first coordinates 
of the age and cohort effects. The lack of invariance is commented upon above in connection 
with (24) and Figures 4 and 5. 

Generalized inverses. The identification problem can be thought of as a collinearity problem 
that can be addressed using generalized inverses. This would be implemented as follows. First 
a design matrix 𝐷𝐷 with a full set of APC dummies is created. Zero average constraints are 
imposed and three columns of 𝐷𝐷 are dropped to implement this constraint, leaving the selected 
matrix 𝐷𝐷𝐷𝐷 with a rank deficiency of one. The time effects are then estimated using least squares 
while applying a Moore-Penrose generalized inverse for 𝐷𝐷′𝐷𝐷′𝐷𝐷𝐷𝐷. This method was proposed 
by Kupper & al. (1985) and is called the “intrinsic estimator” by Yang & al. (2004). It has been 
criticised by Holford (1985), O’Brien (2011) and Luo (2013). Nielsen & Nielsen (2014, 
Theorem 8) analyse how the estimator depends on the choice of level constraint, selection 
matrix 𝐷𝐷, and choice of generalized inverse. 

Forgoing APC models 
Some researchers take the position that since formal modelling of the linear time effects is 
plagued by problems of identification, the attempt to construct a statistical model which allows 
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for all three of age, period, and cohort effects should be abandoned. Two approaches are 
followed: either to use a combination of graphs and discipline-specific knowledge to build a 
story about the time effects, or to replace the time effects with other explanatory variables.  

Graphical analysis 
Most research involving APC effects will include some preliminary graphical analysis of the 
data by age, by period, and by cohort. Some researchers believe that due to the identification 
problem there is little to gain by going beyond the graphical analysis. Kupper & al. (1984) were 
early proponents of this view. A clear articulation of the position and an illustration of how 
conclusions might be drawn from graphs can be found in Voas & Chaves (2016). Their Figure 
1 shows trends in religious affiliation against time, which can be read as age or period, for 
several British cohorts. The lines are broadly parallel and horizontal, with the line for each 
cohort successively lower than the next. They argue that such a graph could be generated by 
only two models: either a model containing only cohort effects, or a model with perfectly 
balanced age and period effects. Since the latter is implausible they decide that the data must 
have been generated by the first. Meghir & Whitehouse (1996) also use this sort of graphical 
analysis in their analysis of wage trends. 

The graphical approach can be helpful when the common features and appropriate 
interpretation of them are clear as they are in Voas & Chaves (2016). However, without parallel 
trends it is difficult to draw inferences, and of course there is no scope for formal testing.  

Alternative variables 
Another way of side-stepping the APC identification problem, advocated by Heckman & Robb 
(1985), is to reconceptualize the model. They argue that researchers are rarely interested in 
pure APC time effects; rather, these variables are “proxies” for the true “latent” variable of 
interest. Their solution is to replace one or all of age, period, and cohort with a latent variable. 
For example, they suggest using a physiological measure of aging in place of age and indicators 
reflecting macroeconomic conditions in place of period in a model for earnings.  

An example of this approach is the model of life cycle demand for consumer durables 
in Browning & al. (2016). The idea is to retain age and cohort time effects, but replace the 
period time effect with a measure of the user cost of durables. This gives a sub-model of the 
APC model, which is analysed in the below section on sub-models. As such it is a testable 
restriction on the APC model. The linear period effect remains unidentifiable but is present in 
part as an unidentified contributor to the linear plane generated by the age and cohort time 
effects and in part as the linear component of the observed period variable.  

Bayesian identification 
Bayesian methods are also used for identification. By and large the problems are the same as 
with identification by restriction. Bayesian models are set up as follows. The likelihood is 
denoted 𝑝𝑝(𝑌𝑌|𝜃𝜃) where 𝜃𝜃 is the 𝑞𝑞-vector of time effects in (9) and 𝑌𝑌 is the data. The prior is 
𝑝𝑝(𝜃𝜃). Decompose 𝜃𝜃 = (𝜉𝜉, 𝜆𝜆), where 𝜉𝜉 is the 𝑝𝑝-dimensional canonical parameter and 𝜆𝜆 is of 
dimension 𝑞𝑞 − 𝑝𝑝 = 4 and represents the unidentifiable part of 𝜃𝜃. The likelihood thus satisfies 
𝑝𝑝(𝑌𝑌|𝜃𝜃) = 𝑝𝑝(𝑌𝑌|𝜉𝜉). Now, decompose the prior 𝑝𝑝(𝜉𝜉, 𝜆𝜆) = 𝑝𝑝(𝜉𝜉)𝑝𝑝(𝜆𝜆|𝜉𝜉), so that 𝑝𝑝(𝜉𝜉) is the prior 
for the identifiable parameter and 𝑝𝑝(𝜆𝜆|𝜉𝜉) is the conditional prior for the unidentified parameter 
given the identified parameter. Finally, the posterior distribution decomposes as 𝑝𝑝(𝜃𝜃|𝑌𝑌) =
𝑝𝑝(𝜉𝜉|𝑌𝑌)𝑝𝑝(𝜆𝜆|𝜉𝜉,𝑌𝑌) so, by Proposition 2 of Poirier (1998), 
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𝑝𝑝(𝜉𝜉|𝑌𝑌) = 𝑝𝑝(𝑌𝑌|𝜉𝜉)𝑝𝑝(𝜉𝜉)/𝑝𝑝(𝑌𝑌)  and  𝑝𝑝(𝜆𝜆|𝜉𝜉,𝑌𝑌) = 𝑝𝑝(𝜆𝜆|𝜉𝜉).    (25) 

This shows that the likelihood updates the canonical parameter but cannot update any prior 
information about the unidentified parameter, in line with the earlier argument concerning 
identification by restriction. Consequences for forecasting are analysed in Nielsen & Nielsen 
(2014). 

In Bayesian APC models it is common to choose a prior where the double differences 
are independent identically normal. Berzuini & Clayton (1994) suggested using a uniform prior 
for the linear parts of the time effects, which include the unidentified parameter 𝜆𝜆. More 
recently, Smith & Wakefield (2016) have suggested a model with a prior for the linear plane, 
but avoiding formulation of a prior for the unidentified parameter.  

Some concluding remarks on the identification problem.  
To summarize, the identification problem is that the linear parts of the time effects cannot be 
identified because of transformations in (10). Instead, what can be identified are the non-linear 
parts of the time effects and a linear plane for the predictor that combines the linear parts of the 
time effects. In practice one has to keep these non-linear and linear features apart. The approach 
of identification by restriction does not achieve this, as demonstrated in Figures 1 to 5. It creates 
problems with interpretation, formulation of hypotheses, and counts of degrees of freedom. In 
contrast, the canonical parametrization keeps non-linear and linear features apart and it is 
therefore suitable for estimation, formulation of hypotheses, and counts of degrees freedom. 
The interpretation of the APC model and its elements is addressed in the next section. 

Interpretation 
The previous section demonstrated that non-linear and linear features of the APC model must 
be kept apart. The canonical parametrization (20) combines the linear features in a single, 
common linear plane and records the non-linear features as double differences. The 
representation (20) is therefore well-suited for estimation and statistical inference. In terms of 
interpretation two issues remain: how to interpret double differences of the time effect directly, 
and whether any interpretation in terms of the original time effects in (1) is feasible. 

Interpretation of double differences of time effects 
The double differences have an odds ratio or difference-in-difference interpretation. A double 
difference in age is defined by 

𝛥𝛥2𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−1,𝑐𝑐𝑐𝑐ℎ − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−1,𝑐𝑐𝑐𝑐ℎ+1 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−2,𝑐𝑐𝑐𝑐ℎ+1.   (26) 

As a numerical example, let 𝑎𝑎𝑎𝑎𝑎𝑎 = 18 and 𝑐𝑐𝑐𝑐ℎ = 2001. Then the first two terms in (26) give 
the effect of ageing from 17 to 18 for the 2001 cohort, while the last two terms give the effect 
of ageing from 16 to 17 for the 2002 cohort. Both of these effects happen over the period 2017 
to 2018, with the time convention in (6). Indeed, writing (26) in AP coordinates gives 

𝛥𝛥2𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑝𝑝𝑎𝑎𝑝𝑝 − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−1,𝑝𝑝𝑎𝑎𝑝𝑝−1 − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−1,𝑝𝑝𝑎𝑎𝑝𝑝 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−2,𝑝𝑝𝑎𝑎𝑝𝑝−1.   (27) 

On the right hand sides of (26) and (27) any pair of consecutive cohorts or periods, respectively, 
could be used. Thus 𝛥𝛥2𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 equals the average difference-in-difference effect for all cohorts 
or periods. For binary outcomes the double difference 𝛥𝛥2𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 has a log odds interpretation. 

 In the same vein, the period and cohort double differences are interpretable through 
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𝛥𝛥2𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 = 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−1,𝑐𝑐𝑐𝑐ℎ − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ−1 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−1,𝑐𝑐𝑐𝑐ℎ−1,   (28)  

𝛥𝛥2𝛾𝛾𝑐𝑐𝑐𝑐ℎ = 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ−1 − 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎+1,𝑐𝑐𝑐𝑐ℎ−1 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎+1,𝑐𝑐𝑐𝑐ℎ−2.   (29) 

The equations (26), (28), (29) are illustrated with Figure 6, which is a modification of a figure 
in Martínez Miranda & al. (2015). A major advantage of the double differences is their 
invariance as explored above. However, estimated double differences will inevitably be 
somewhat erratic. Therefore it is often desirable for interpretation to generate a representation 
of the time effects by cumulating the double differences. This procedure is discussed below.  

 

Figure 6. Illustration of double differences. 
Solid/open circles represent predictors taken with positive/negative sign. 

 
Interpretation of time effects 
The original time effects are not fully identifiable and thus they are also not fully interpretable. 
Yet, the APC model (1) is composed of the time effects so it remains of interest to seek to 
interpret them as far as possible. Since the non-linear parts of the time effects are identifiable 
the focus should be on illustrating these. This can be done through detrending. The three plots 
of age, period, and cohort time effects should be interpretable individually, so the detrending 
must be applied to each time effect. Linear trends are absorbed into linear plane. 

 In the representations (17) and (20) the double differences are double cumulated with 
respect to the plane anchored at 𝜇𝜇𝑈𝑈𝑈𝑈, 𝜇𝜇𝑈𝑈,𝑈𝑈+1, and 𝜇𝜇𝑈𝑈+1,𝑈𝑈. This representation is useful for 
estimation as it immediately leads to design vectors in (19) and (22). However, the cumulations 
of the double differences are not ideally suited for graphical representation of the non-linear 
time effect. On the one hand, it is easy to see that these double sums have the same degrees of 
freedom as the double differences and are disentangled, in contrast to the time effects identified 
by restriction. On the other hand, they will often be strongly trending in practice which does 
not allow for an easy interpretation. The last issue can be addressed through detrending. 

 The double sums of double differences can be detrended in various ways. One approach 
would be to orthogonalize each of the three sets of double sums with respect to an intercept 
and a time trend. Consider for instance the age effects from (20). The double sum of double 
differences is 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴 = ∑ ∑ Δ2𝛼𝛼𝑠𝑠𝑡𝑡

𝑠𝑠=3
𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡=3 , for 1 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎 ≤ A so that 𝛼𝛼1𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴 = 𝛼𝛼2𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴 = 0. Then 

𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝𝑡𝑡ℎ𝑐𝑐 = 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴 − 𝑎𝑎 − 𝑑𝑑 × 𝑎𝑎𝑎𝑎𝑎𝑎 is the orthogonalized age effect if 𝑎𝑎, 𝑑𝑑 are chosen so that 
𝛴𝛴𝑎𝑎𝑎𝑎𝑎𝑎=1𝐴𝐴 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝𝑡𝑡ℎ𝑐𝑐(1,𝑎𝑎𝑎𝑎𝑎𝑎) = 0. This is in spirit with the approach of Deaton & Paxson (1994a), 
but with the difference that the orthogonalization is applied to each of the three double sums, 
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so that the time trends are disentangled. A drawback of this approach is that it is no longer 
evident that the degrees of freedom are the same as for the double differences. 

 Another approach to detrending is to impose that the double sums start and end in zero 
(Nielsen, 2015). Defining 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑡𝑡𝑝𝑝𝑎𝑎𝑑𝑑𝑜𝑜 = 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴 − 𝑎𝑎 − 𝑑𝑑 × 𝑎𝑎𝑎𝑎𝑎𝑎 this entails the choices 𝑎𝑎 = −𝑑𝑑 
and 𝑑𝑑 = 𝛼𝛼𝐴𝐴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴/(𝐴𝐴 − 1) so that 𝛼𝛼1𝑜𝑜𝑎𝑎𝑡𝑡𝑝𝑝𝑎𝑎𝑑𝑑𝑜𝑜 = 𝛼𝛼𝐴𝐴𝑜𝑜𝑎𝑎𝑡𝑡𝑝𝑝𝑎𝑎𝑑𝑑𝑜𝑜 = 0. With this approach it is apparent 
that the degrees of freedom are the same as for the double differences. The graph of 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑡𝑡𝑝𝑝𝑎𝑎𝑑𝑑𝑜𝑜 
visually emphasises the non-linearity as the start and end points are anchored at zero. At the 
same time, the detrending clearly depends on the particular index array with its particular 
choice of minimal and maximal age. From the graph it may be possible to identify a U or S-
shaped curve which can be tested for consistency with a quadratic or higher-order polynomial.  

Sub-models 
A common empirical question is whether all components of the APC model are needed. While 
this question is often formulated in terms of the time effect formulation (1) it is actually easier 
to appreciate the restrictions and the associated degrees of freedom using the canonical 
parametrization (20) and the associated canonical parameter ξ in (21). 

Age-cohort models 
The hypothesis of no period effect illustrates the identification issues very well. The hypothesis 
results in age-cohort (AC) models, which are commonly used in economics; see for instance 
Browning & al. (1985), Attanasio (1998), Deaton & Paxson (2000), and Browning & al. 
(2016). AC models can arise through reduction of the general APC model or they may be 
postulated at the outset. From the perspective of the time effect formulation (1) the hypothesis 
is that 𝛽𝛽𝐿𝐿+1 = ⋯ = 𝛽𝛽𝐿𝐿+𝑃𝑃 = 0. This leaves the model (1) as an age-cohort model of the form  

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛾𝛾𝑐𝑐𝑐𝑐ℎ + δ.        (30) 

This formulation gives the impression of a P-dimensional restriction. However, it is in fact 
observationally equivalent to imposing a hypothesis of no non-linear effect in period. Under 
the canonical parametrization this is ∆2𝛽𝛽𝐿𝐿+3 = ⋯ = ∆2𝛽𝛽𝐿𝐿+𝑃𝑃 = 0, which is a restriction of 
dimension 𝑃𝑃 − 2. Nielsen & Nielsen (2014, §5.3) present a formal algebraic analysis of the 
relation between restrictions of time effects and double differences. The intuition is that 
because the period effect is only identified up to a linear trend, imposing the hypothesis 𝛽𝛽𝐿𝐿+1 =
⋯ = 𝛽𝛽𝐿𝐿+𝑃𝑃 = 0 in (1) does not actually restrict the common linear plane at all. Any linear effect 
of period will still be present in the restricted model (30).  

The feature that the linear time effects are not identifiable from the AC model is perhaps 
best understood in the special case where all time effects are linear as in (11). It was explained 
in a previous section that (11) can be written equivalently as a combination of APC, AC, AP 
or CP effects. The model (30) is analogous to the model (12). At first glance it may appear 
natural to attribute the linear plane in (12) to age and cohort effects, but in fact the linear effect 
of period is not constrained. Rather it is absorbed into the slopes in the age and cohort 
dimensions, with 𝜇𝜇21 − 𝜇𝜇11 = ∆𝛼𝛼2 + ∆𝛽𝛽2 and 𝜇𝜇12 − 𝜇𝜇11 = ∆𝛽𝛽2 + ∆𝛾𝛾2. 

Linear sub-models 
Apart from the AC model, there are many other sub-models of the APC model. Table 1 gives 
a range of sub-models that may be of interest. It is taken from Nielsen (2015), with similar 
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tables appearing in Holford (1983) and Oh & Holford (2015). The first model, denoted APC, 
is the unrestricted APC model. 

Restricting one set of double differences. The three models, AP, AC, and PC each have one set 
of double differences or non-linearities eliminated, that is the cohort, period, and age double 
differences, respectively. The preceding remarks pertaining to the AC model apply to any of 
the three models. 

Restricting two sets of double differences. The three models Ad, Pd, and Cd are known as drift 
models. For instance, the age-drift model has both period and cohort double differences 
eliminated, so that ∆2𝛼𝛼3 = ⋯ = ∆2𝛼𝛼𝐴𝐴 = 0 and ∆2𝛽𝛽𝐿𝐿+3 = ⋯ = ∆2𝛽𝛽𝐿𝐿+𝑃𝑃 = 0, while the linear 
plane is unrestricted. The identification problem remains, as pointed out by Clayton & Schiffler 
(1987), because the linear plane can be parametrized either in terms of age and cohort linear 
trends or in terms of age and period linear trends.  

Restricting two sets of double differences and the linear plane. The three models A, P, and C 
are the first to include restrictions on the linear plane. For instance, in the A model period and 
cohort double differences are eliminated and the linear plane is restricted to have just one slope, 
in age. Consequently, the A model can be written as 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎. 

Linear plane model. Finally, the linear plane model arises when all non-linear effects are 
absent. In this case  ∆2𝛼𝛼3 = ⋯ = ∆2𝛼𝛼𝐴𝐴 = 0 and ∆2𝛽𝛽𝐿𝐿+3 = ⋯ = ∆2𝛽𝛽𝐿𝐿+𝑃𝑃 = 0 and  ∆2𝛾𝛾3 = ⋯ =
∆2𝛾𝛾𝐶𝐶 = 0. This model was used earlier to illustrate the simplest example of the APC 
identification problem of entangled linear age, period and cohort effects.  

Model Linear double differences total 
 Plane ∆2𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 ∆2𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 ∆2𝛾𝛾𝑐𝑐𝑐𝑐ℎ  

APC 3 A-2 P-2 C-2 A+P+C-3 
AP 3 A-2 P-2  A+P-1 
AC 3 A-2  C-2 A+C-1 
PC 3  P-2 C-2 P+C-1 

A-drift 3 A-2   A+1 
P-drift 3  P-2  P+1 
C-drift 3   C-2 C+1 

A 2 A-2   A 
P 2  P-2  P 
C 2   C-2 C 

linear plane 3    3 
Table 1: Sub-models with degrees of freedom.  

Functional form sub-models 
Another set of sub-models arises by imposing a specific functional form on the time effects. 

Quadratic polynomials. The age effect, in particular, often has a concave or convex appearance. 
In that case the age effect may be described parsimoniously by a quadratic polynomial. The 
hypotheses of a quadratic age effect, 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛼𝛼𝑐𝑐 + 𝛼𝛼ℓ × 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛼𝛼𝑞𝑞 × 𝑎𝑎𝑎𝑎𝑎𝑎2 as in (2), and of 
constant double differences,  

∆2𝛼𝛼3 = ⋯ = ∆2𝛼𝛼𝐴𝐴,         (31) 



21 
 

are equivalent since the linear trends are not identified. Thus, the hypothesis can be imposed 
as a linear restriction on the canonical parameter. The degrees of freedom are 𝐴𝐴 − 3. Similarly, 
restricting a time effect to be a polynomial of order 𝑘𝑘 is equivalent to restricting the 
corresponding double differences to be a polynomial of order 𝑘𝑘 − 2. For instance a slightly 
skew concave or an S-shape appearance could potentially be captured by a third order 
polynomial in the time effects, or equivalently a first order polynomial in the double 
differences. 

A more elaborate quadratic model. Suppose now that all three time effects are quadratic so that 
equation (1) becomes 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = �𝛼𝛼𝑐𝑐 + 𝛼𝛼ℓ × 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛼𝛼𝑞𝑞 × (𝑎𝑎𝑎𝑎𝑎𝑎)2� + {𝛽𝛽𝑐𝑐 + 𝛽𝛽ℓ × 𝑝𝑝𝑎𝑎𝑝𝑝 + 𝛽𝛽𝑞𝑞 × (𝑝𝑝𝑎𝑎𝑝𝑝)2}  

+�𝛾𝛾𝑐𝑐 + 𝛾𝛾ℓ × 𝑐𝑐𝑐𝑐ℎ + 𝛾𝛾𝑞𝑞 × (𝑐𝑐𝑐𝑐ℎ)2� + 𝛿𝛿. (32) 

The identifiable non-linear parameters are 𝛼𝛼𝑞𝑞, 𝛽𝛽𝑞𝑞, 𝛾𝛾𝑞𝑞, while the remaining parameters combine 
to a linear plane as in (11). A sub-model is the quadratic AC model 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = �𝛼𝛼𝑐𝑐 + 𝛼𝛼ℓ × 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛼𝛼𝑞𝑞 × (𝑎𝑎𝑎𝑎𝑎𝑎)2�  

+�𝛾𝛾𝑐𝑐 + 𝛾𝛾ℓ × 𝑐𝑐𝑐𝑐ℎ + 𝛾𝛾𝑞𝑞 × (𝑐𝑐𝑐𝑐ℎ)2� + 𝛿𝛿, (33) 

which is a special case of (30). The linear parts 𝛼𝛼𝑐𝑐 + 𝛼𝛼ℓ × 𝑎𝑎𝑎𝑎𝑎𝑎, 𝛾𝛾𝑐𝑐 + 𝛾𝛾ℓ × 𝑐𝑐𝑐𝑐ℎ, and 𝛿𝛿 combine 
to a linear plane and the identification problem remains. Only the absence of 𝛽𝛽𝑞𝑞 is an over-
identifying constraint. Thus, a tests of (33) against (32) would have 1 degree of freedom. 

Replacing a time effect by an observed variable. It is often of interest to replace the period 
effect, in particular, with an observed time series, 𝑇𝑇𝑝𝑝𝑎𝑎𝑝𝑝 say. The time series 𝑇𝑇𝑝𝑝𝑎𝑎𝑝𝑝 decomposes 
into a linear part and a non-linear part. Thus, in the context of an APC model it is equivalent to 
imposing 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 = 𝑇𝑇𝑝𝑝𝑎𝑎𝑝𝑝 for 1 ≤ 𝑝𝑝𝑎𝑎𝑝𝑝 ≤ 𝑃𝑃 and ∆2𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝 = ∆2𝑇𝑇𝑝𝑝𝑎𝑎𝑝𝑝 for 3 ≤ 𝑝𝑝𝑎𝑎𝑝𝑝 ≤ 𝑃𝑃. Thus, this 
restriction has 𝑃𝑃 − 3 degrees of freedom. Since there is already a linear plane in the model the 
linear effect of 𝑇𝑇𝑝𝑝𝑎𝑎𝑝𝑝 remains unidentified.  

When to use APC models 
It is important to recognise that the APC models described above do not “solve” the 
identification problem. The identification problem still limits the range of questions that can 
be answered using formal statistical analysis. The following sections explain the questions that 
can and cannot be answered with APC models, given that the non-linear parts of the time effects 
are identified but the linear parts are not.  

Questions that can be answered 
The questions that APC models can answer fall into the following categories: certain 
difference-in-difference questions; questions related to the non-linear effects of age, period, or 
cohort; exploratory analysis; forecasting; and questions where APC effects appear in the model 
as control variables. 

 Difference-in-difference analysis can be done using the APC model. For example, 
McKenzie (2006) uses data from the Mexican ENIGH household survey, collected at two-year 
intervals, to investigate the effect of the 1995 peso crisis on consumption. He compares the 
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change in consumption from 1994 to 1996 with the change in consumption from 1992 to 1994, 
and that from 1996 to 1998. This is equivalent to tests on the parameters Δ2𝛽𝛽1996 and Δ2𝛽𝛽1998. 

Non-linearities implied by economic theory can be investigated with APC models. For 
example, the life cycle hypothesis of consumption implies decelerating saving in old age, which 
is a testable non-linearity in the age effect. An analysis could start by first estimating an APC 
model for the stock of savings. Next, the age non-linearity would be isolated from the linear 
plane and tested for significance. If significant, the shape could be inspected for consistency 
with the life cycle hypothesis in consumption either through visual inspection or through a 
formal test for instance for a concave, quadratic age effect, see (31). 

Exploratory analysis. APC models are well-suited to exploratory analysis. Diouf & al. 
(2010) conduct such an analysis of the dynamics of the obesity epidemic in France from 1997 
to 2006. They find significant curvature in the cohort dimension, with deceleration among those 
who were children during the second world war and acceleration post-1960s, but little evidence 
for non-linearities in either age or period. These findings correspond to an cohort-drift model, 
see Table 1, and are interpreted as evidence that early life conditions are important determinants 
of obesity. 

Forecasting. APC models are effective forecasting tools. When forecasting it is usually 
necessary to extrapolate one or more time effects. Identification assumptions will impact the 
forecast unless the extrapolation method is chosen to be invariant to transformations in (10), 
see Kuang & al. (2008b). Extrapolation can avoided altogether if an AC model is adequate and 
only current cohorts are forecasted. Mammen & al. (2015) refer to this as in-sample forecasting. 
One example is the Chain-Ladder model used in general insurance (England & Verrall, 2002) 
with distribution forecasts by bootstrap (England, 2002) or by asymptotic theory (Harnau & 
Nielsen, 2017). Another example is the forecast of future rates of mesothelioma, a cancer 
resulting from exposure to asbestos, in Martinez Miranda & al. (2015). Extrapolation is needed 
when the model involves period non-linearities. In that case techniques from econometric 
forecasting of non-stationary time series can be applied with advantage, see Clements & 
Hendry (1999). An application to general insurance is given by Kuang & al. (2011). 

Questions that do not involve time effects. Often, a researcher is interested in the effect 
of some policy intervention or treatment but is concerned about possible confounding with pure 
time effects; in this case, the APC model is included as a statistical control. For example, 
Ejrnæs & Hochguertel (2013) are interested in the effect of a change to unemployment 
insurance in Denmark on employment and use a model incorporating APC effects identified 
by restriction to ensure that their results are not contaminated by pure time effects. 

There are many variations and extensions of the question types outlined above. One 
possibility is to include interactions with other covariates; for example, allowing for an 
interaction between age and level of education in a model for earnings. Another is to use two 
or more samples and test cross-sample restrictions: comparing estimated period non-linearities 
in savings between pairs of countries to assess macroeconomic interdependence. Some 
extensions are discussed further in the section on using APC models. 

Questions that cannot be answered 
Any question relating to the linear parts of any of the time effects is unanswerable. This is true 
regardless of the nature of the dataset. If the data is a single slice in any one time dimension it 
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is not possible to separate the effects of the other two. For example, with a cross-section of 
adults in 2018 it is not possible to determine whether the old have higher savings because 
savings increase with age or because later cohorts exhibit declining financial responsibility.  

Having a repeated cross-section, containing data from 2008-2018, does not help. There is now 
a possible period trend to contend with: savings may be decreasing over the period range due 
to a rising gap between real wages and the cost of living. An APC model cannot separate these 
effects, except by imposing a substantive and untestable assumption. More subtly, it is not 
possible to identify the linear part of the effect in a single time dimension even if the other time 
dimensions are excluded from the model. 

Given the above, it is recommended that hypotheses in terms of the linear parts of any of the 
three time effects be avoided, as any test of these is necessarily biased. Instead, it is advised to 
formulate hypotheses primarily in terms of the non-linear parts of time effects. 

Using APC models 
This section introduces the reader to the practicalities of APC modelling. The different data 
contexts in which APC models have been used are described. Possible extensions of the APC 
models are discussed. Finally, a fully-worked example of an APC analysis is provided.  

Data types 
APC models have primarily been used with aggregate or repeated cross-section data. The most 
commonly used models are least squares, Poisson, and logistic regressions. These are all 
examples of generalized linear models (GLMs); the GLM framework was developed by Nelder 
& Wedderburn (1972) and an introduction can be found in Dobson (1990).  

Aggregate data 
The simplest form of APC data is a table where each age-cohort combination is a single cell. 
Information is aggregated over individuals within each cell. The APC literature using this form 
of data has focused on point estimation and point forecasting. The information recorded in each 
cell will take one of the following forms:  

Counts of both exposure and outcomes. An example is the size of the labour force and the 
number of unemployed. This format is common in epidemiology, where exposure is the 
population size and the outcome is the number of deaths from a particular disease, such as 
cancer. Clayton & Schifflers (1987) provide an overview of the use of APC models for this 
form of epidemiological data. Such data are analysed using logistic regression or by Poisson 
regression with the log exposure as an offset. 

Rates can be calculated from counts of outcomes and exposure. The unemployment rate is a 
clear example. In demography, fertility and mortality rates are of substantial interest.  Rates 
are often modelled by (log) least squares regression.  

Counts of outcomes without a measure of exposure. While outcomes may be clearly defined, 
the exposure is sometimes ill-defined or poorly measured. Forecasts of the counts alone may 
be of interest in this situation. An example from epidemiology is the number of AIDS cases 
classified by time of diagnosis (cohort) and reporting delay (age), where only an unknown 
subset of the population is exposed (Davison & Hinkley, 1997, Example 7.4). Another example 
is the number of mesothelioma deaths, caused by exposure to asbestos fibres, classified by age 
and year of death (period). Proxies for exposure may be constructed (Peto & al., 1995), or the 
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counts can be modelled directly using Poisson regression with no offset (Martínez Miranda & 
al., 2015). 

Values of outcomes without a measure of exposure. An example is the insurance reserving 
problem, where the data consists of the total value of payments from an insurance portfolio 
classified by insurance year (cohort) and reporting delay (age). The objective is to forecast 
unknown liabilities (i.e. incurred but not yet reported). A commonly-used modelling approach 
is the chain ladder (England & Verrall, 2002), which is equivalent to a Poisson regression with 
an AC predictor. 

Inference for aggregate data 
For conducting inference, classical exact normal theory may be applied. Some thought is 
required concerning the repetitive structure. Two frameworks have been considered for 
asymptotic analysis: expanding array asymptotics and fixed array asymptotics. 

Expanding array asymptotics. Fu & Hall (2006) consider a least squares approach to modelling 
aggregate values of outcomes. The time effects are identified by restricting averages in each 
dimension to zero. Consistency is investigated with increasing period dimension. Fu (2016) 
gives further consistency results for the age effects for the same least squares model and for a 
Poisson regression with exposure. 

Fixed array asymptotics. By holding the time dimensions fixed, asymptotic analysis can be 
related to the analysis of contingency tables (Agresti, 2013) with the difference that rows and 
columns are ordered by the APC structure. The analysis of models without exposure has been 
studied. Martínez Miranda et al. (2015) considered a Poisson model for counts, while Harnau 
& Nielsen (2017) analysed an over-dispersed Poisson model for values of outcomes.  

Specification tests. For aggregate, discrete data the model fit can be assessed by a deviance test 
against a saturated model where the cells have unrelated predictors 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ. Harnau (2018a) 
suggests a Bartlett test for constant over dispersion in an over-dispersed Poisson model. Harnau 
(2018b) suggests an encompassing test comparing over-dispersed Poisson and log normal 
specifications. 

Repeated cross sections 
Repeated surveys can be used to form repeated cross section data. A basic regression model 
would be of the form (3). Ejrnæs & Hochguertel (2013) estimate a model of this form and 
address the identification problem by the restriction method. Yang & Land (2006) propose a 
hierarchical APC model where age is quadratic and where cohort and period are treated as 
random effects. Fannon & al (2018) propose models involving the canonical parametrization. 
This includes a least squares regression as in (3) and a logistic regression of the form 

log{𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝑍𝑍) 𝑃𝑃(𝑌𝑌𝑖𝑖 = 0|𝑍𝑍)⁄ } = 𝜁𝜁′𝑍𝑍𝑖𝑖 +  𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑐𝑐𝑐𝑐ℎ𝑖𝑖     (34) 

Asymptotic inference is conducted by allowing the number of individuals in the sample to 
increase while holding the array fixed. Likelihood ratio tests are used to assess restrictions 
imposed on the APC model. In both models the fit can be tested by saturating the data array 
with indicators for each age-cohort cell.  
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Extensions 
Continuous time data 
There is a budding literature on non-parametric models for continuous time data. Ogate et al. 
(2000) develop an empirical Bayes model for the incidence of diabetes. Martínez Miranda et 
al. (2013) develop a continuous time version of the chain ladder model. This is extended to in-
sample density forecasting methods by Lee et al. (2015) and Mammen et al. (2015). 

Models with unequal intervals 
The theoretical framework used in this chapter is primarily concerned with data where each 
time dimension is recorded in the same units. This is often not the case. 

Regular intervals. It is common that data are recorded annually, but age is grouped at a coarser 
level; this is seen in the empirical example in this chapter. There are two approaches when 
working with such data. The first and easy option is to coerce the data into a single unit 
framework by grouping periods, either by taking averages or by dropping certain periods. This 
of course implies a loss of information. The second option is to construct a model allowing for 
different interval lengths. This may actually create more identification issues, as discussed by 
Holford, 2006. He proposed an approach based on finding the least common multiple of the 
interval lengths, using this least common multiple to split the data into blocks, and treating 
within-block micro trends separately from between-block macro trends.  

Irregular intervals. This can arise with repeated survey data. In some cases one is interested in 
an outcome variable that is irregularly recorded; for instance, a variable recorded in 1997, 1999, 
2002, 2009, and annually thereafter. One solution is to use a subsample with a single frequency. 
An alternative possibility may be to use interpolation to regularise the intervals or to use 
continuous time scales. 

Two-sample-model 
A further extension involves combining data for two samples, for instance women and men or 
data from two countries. The model (1) for the predictor then becomes 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ,𝑠𝑠 = 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠 + 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝,𝑠𝑠 + 𝛾𝛾𝑐𝑐𝑐𝑐ℎ,𝑠𝑠 + δ𝑠𝑠,      (35) 

where the index 𝑠𝑠 indicates the sample. Tests could then be performed for common parameters 
between the two samples, for instance a common period effect such that 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝,1 = 𝛽𝛽𝑝𝑝𝑎𝑎𝑝𝑝,2. 
Riebler & Held (2010) present a Bayesian estimation method. The identification is discussed 
further by Nielsen & Nielsen (2014). 

Software 
Various software packages are available for APC analysis. For R these include epi 
(Carstensen, 2013) and apc (Nielsen, 2018). For Stata these include st0245 (Sasieni, 2012), 
apc (Schulhofer-Wohl & Yang, 2006), and apcd (Chauvel, 2012). 

Empirical illustration using US employment data 
Consider US data for employment for 1960-2015, retrieved from the OECD’s online database. 
Age is recorded in five-year intervals. Data from every fifth year is used to get an AP dataset 
with base unit five. There are 12 periods and 11 ages, thus 22 cohorts. Table 2 shows the size 
of the labour force in each age-cohort cell while Table 3 shows the number of unemployed, 
each in thousands of persons. 
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Various questions could be answered with this data. Expected non-linearities could be 
checked: for example, a U-shape in age, or discontinuities in period consistent with known 
periods of recession. Difference-in-difference hypotheses could be tested: for instance, was 
there a significant difference between the increase in unemployment from 2000 to 2005 and 
that from 2005 to 2010? This could indicate how quickly the effects of the financial crisis were 
felt in the labour market. 

 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 
15-19 5246 6350 7249 8870 9380 7901 7792 7765 8271 7164 5905 5700 
20-24 7679 9301 10597 13750 15922 15717 14700 13687 14251 15127 15028 15523 
25-29 7186 7582 9241 12698 15400 17265 17677 15913 15800 16049 17300 17494 
30-34 7884 7407 7795 10165 13827 16285 18253 18285 16955 16291 16313 17153 
35-39 8474 8341 7774 8560 11161 14371 16927 18633 18616 17124 16271 16267 
40-44 8173 8887 8664 8343 9303 11702 15218 17118 18950 18905 17095 16337 
45-49 8011 8326 8980 8675 8478 9270 11557 14667 16907 18562 18460 16640 
50-54 6903 7520 7968 8409 8433 8052 8691 10555 14164 15841 17500 17262 
55-59 5464 6138 6768 6866 7388 7240 6902 7423 9267 12289 14145 15394 
60-64 3927 4217 4515 4480 4597 4751 4673 4437 5090 6691 9152 10559 
65-69 1798 1794 1922 1757 1828 1719 2076 2123 2322 2846 3796 5125 

Table 2: US labour force in 1000s  

 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 
15-19 711 874 1105 1768 1668 1467 1211 1346 1082 1186 1527 966 
20-24 583 557 866 1864 1836 1738 1299 1244 1022 1335 2329 1501 
25-29 380 288 427 1091 1234 1299 1056 916 651 933 1883 1057 
30-34 372 241 290 685 791 1043 938 925 556 728 1501 848 
35-39 354 272 250 514 548 769 739 864 582 694 1320 708 
40-44 317 275 265 437 392 572 589 686 550 705 1383 644 
45-49 328 237 261 452 362 448 443 503 422 675 1441 616 
50-54 286 199 214 440 313 364 279 342 340 520 1328 643 
55-59 221 189 197 308 246 327 241 266 220 416 995 576 
60-64 174 133 113 212 153 191 145 159 134 214 667 402 
65-69 83 68 75 114 66 62 67 91 73 98 286 198 

Table 3: US unemployed in 1000s  

Preliminaries 
The package apc for R is used (Nielsen, 2015). The first step of the analysis is to visualize the 
data. Employment rates are found by dividing the unemployment numbers in Table 3 with the 
labour force numbers in Table 2. Line plots of within-period changes in employment with 
respect to age, or within-cohort evolution of unemployment over time, can be informative; see 
Figure 7. To aid the visualization the numbers are averaged over 10 or 20 year groups. The 
curves in panel (a) correspond to the columns in the AP table for unemployment rates. Panel 
(b) shows the same columns, but plotted against cohort which is period minus age. In panel (c) 
the curves correspond to the cohort diagonals in the AP table plotted against age. Finally, in 
panel (d) the rows of the AP table are plotted against cohort. 
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Figure 7. Plots of unemployment data.  
Model estimation 
To answer the questions proposed above an econometric model that isolates the identifiable 
non-linear parts of the time effects from the non-identifiable linear parts is required. A logit 
model is used where 

log�𝜋𝜋𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ �1 − 𝜋𝜋𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ�⁄ � = 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ.      (36) 

Here 𝜋𝜋𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ is the probability of unemployment for a given age-cohort combination and 
𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ = 𝜉𝜉′𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ, where 𝜉𝜉 and 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐ℎ are given in (21) and (22). Since the canonical 
parametrization is identified and embedded in a GLM framework it can be estimated uniquely.  

The individual double-differences at this point have a diff-in-diff or log odds 
interpretation. Where it is of interest to study the general shape of the non-linearities in each 
time dimension, the double differences may be double cumulated and detrended, following the 
discussion in the earlier section on interpretation of time effects. This fully separates the linear 
and non-linear parts of the time effects. 

Figure 8 visualizes the estimated APC model for the US unemployment data using the 
canonical parametrization and detrending. Panels (a)-(c) show the estimated double-differences 
in each of age, period, and cohort. Panels (d)-(f) show the level and slopes of the linear plane, 
calculated after the detrending. Panels (g)-(i) show the non-linear parts of time effects. These 
are found by double cumulating and detrending the double differences so that the first and last 
value in each plot is anchored at zero. There is evidence for a U-shaped relationship between 
age and unemployment. The non-linear parts of the period effect show the discontinuous effects 
of macroeconomic conditions, with accelerations in unemployment in the early 1970s and late 
2000s. There is weak evidence for discontinuities in cohort which may reflect hysteresis; the 
cohorts of the late 1950s (who came of age in the 1970s) are relatively underemployed 
compared to those before and after them.  
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Figure 8. APC model for US unemployment data in terms of the canonical parametrization. 
 
Conclusions 

The existence of an identification problem between age, period, and cohort is widely 
recognised by economists. Many papers have grappled with the problem, particularly in the 
contexts of consumption, savings, and labour market dynamics. The problem is not unique to 
economics; it is also discussed by sociologists, demographers, political scientists, actuaries, 
epidemiologists, and statisticians. A comprehensive account of the problem therefore requires 
a survey of a broad literature, much of it outside economics. 

The APC identification problem arises due to the identity 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐ℎ = 𝑝𝑝𝑎𝑎𝑝𝑝 + 1 which 
links the time scales. This chapter has focused exclusively on the linear APC model, but the 
problem also arises in the non-linear Lee-Carter (Lee & Carter 1992) model and in extensions 
thereof such as Cairns et al. (2009). The main features of the APC identification problem are 
the following. First, it is a problem affecting the linear parts of the time effects only; the levels 
and slopes specific to each dimension cannot be identified, whereas higher-order effects can 
be. Second, a model including only one or two of the three remains afflicted by the problem. 
Finally, the problem is fundamentally one in continuous time; changing the observation unit 
for the APC scales will not resolve it.  

A range of identification strategies have been proposed to deal with the APC problem, 
some of which are outlined in this chapter. The key question to ask of any such strategy is: 
Would a different identification strategy lead to the same conclusions? This is a question of 
invariance to the transformations in (10). Of those parametrizations discussed in this chapter, 
only the canonical parametrization is invariant as it does not attempt the impossible by seeking 
to separate the linear effects, but rather focuses on the identifiable non-linear effects. This 
brings clarity to interpretation and inference. 
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