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C Strong Substitute Valuations in 3 dimensions

Here we develop valuations for strong substitutes, in 3 dimensions, by using the
Valuation-Complex Equivalence Theorem (Thm. 2.14), together with duality between
the price complex and the LIP (Prop. 2.20).

Start with a domain of {0, 1}3. We consider possible demand complexes for strong
substitute valuations. Such a demand complex is a subdivision of the cube [0, 1]3, such
that the edges are all strong substitute vectors: they all are in directions ei or ei − ej

where i, j = 1, 2, 3. Thus the full set of allowed 1-cells is the collection of red and
black edges shown in Fig. 1a. A candidate subdivision is given in Fig. 1b. Three 2-cells,
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(a) Possible 1-cells in the demand complex
for a strong substitute valuation on {0, 1}3.
Black lines are edges of the cube [0, 1]3,
and must be 1-cells of the demand com-
plex. The red lines may also be 1-cells of
the demand complex.
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(b) A polyhedral complex subdivision of
[0, 1]3, with edges as shown in Fig. 1a. Let-
ters W , X, Y , Z label the four 3-cells.

Figure 1: Developing a candidate demand complex.
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distinguished by being red, blue and yellow, separate the cube into four 3-cells. We label
these 3-cells W , X, Y and Z, as shown. If this is the demand complex of a valuation,
then that valuation is for strong substitutes. But recall that not every such subdivision
is necessarily a demand complex of some valuation. To ascertain whether it is, we will
develop the dual complex in price space. If we can develop a balanced weighted rational
polyhedral complex in this way, then we can apply Thm. 2.14 to obtain a valuation.1

We thus plot out the (n− 1)-cells of the dual in price space, that is, the facets. First
identify that the demand complex 3-cell for the lowest quantities (“W”) corresponds to
a price 0-cell (pW ) for “high” prices. There are 1-cells terminating in pW coming in
from even higher prices in each of the coordinate directions, corresponding to the three
2-cells of W that are in the boundary of the cube. Between each pair of these 1-cells
is a facet; each is dual to one of the three edges in Fig 1b that lies along a coordinate
axis. Thus we obtain Fig. 2a.
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(a) Some cells of the complex dual to Fig. 1b:
0-cell pW is dual to the 3-cell W in Fig. 1b;
and each facet shown here is dual to an edge
lying along a coordinate axis in Fig. 1b.

pW

pX

p1

p2

p3

(b) Development of Fig. 2a with additional
cells: 0-cell pX is dual to the 3-cell X in Fig.
1b; and the three facets shown, that meet it,
are dual to the edges of the red 2-cell in Fig.
1b.

Figure 2: First steps in developing the rational polyhedral complex in price space, dual to
Fig. 1b. Facets are shown cut back, so that others lying “behind” can be seen. The complete
complex is shown in Fig. 3.

Similar consideration of the red 2-cell in Fig. 1b allows us to develop our picture
further: see Fig. 2b. The edges of this red 2-cell correspond to three further facets,
all meeting along the 1-cell dual to the red 2-cell itself. This 1-cell runs from pW
(corresponding to the 3-cell W in Fig. 1b) to a new point pX (corresponding to the
3-cell X in Fig. 1b).

The final result is Fig. 3: a 2-dimensional rational polyhedral complex in R3.
We give weight 1 to every facet of Fig. 3, as it is dual to an edge of “length” 1 in Fig

1b. This weighted LIP is balanced. To see this, consider the full set of facets meeting
any 1-cell of Fig. 3. This configuration is dual to a 2-cell of Fig. 1b, taken together with

1If we could find a valuation directly, such that Fig. 1 is the demand complex, then we would not
need to proceed to price space. This does not seem so easy.
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Figure 3: A rational polyhedral complex in price space, dual to Fig. 1b.

its edges. The vector sum of the edges, going once around the 2-cell, must be zero. But
the edges are equal to the normal vectors to the facets (Prop. 2.20). Thus, an oriented
weighted sum of the normal vectors to the facets in Fig. 3 is also zero.

Thus we may apply Thm. 2.14: there exists a valuation u whose LIP is depicted
in Fig. 3. Indeed, since we did not yet specify any precise coordinate information,
Fig. 3 represents an entire combinatorial type of valuations (as defined in Defn. 2.22).
Moreover, we can see more combinatorial types immediately. Recall that we developed
Fig. 3 on the basis of one subdivision of [0, 1]3 (namely Fig. 1b) that was consistent with
Fig. 1a. We can flip Fig. 1b over, interchanging the second and third coordinates, and
obtain Fig. 4a. This is, of course, also consistent with Fig. 1a. Now the blue face has
normal (1, 0, 1); in Fig. 1b, its normal vector was (1, 1, 0). The dual LIP would then, of
course, be the image of Fig. 3 under the same transformation. The final option, given
in Fig. 4b, is when the normal vector to the blue facet is (0, 1, 1). We obtain the dual
LIP for this case by interchanging the first and third coordinates in Fig. 3.

There are, of course, strong substitute valuations on {0, 1}3 with simpler demand
complexes; the trivial subdivision, in which [0, 1]3 is itself a 3-cell, also represents a
valuation for strong substitutes. But we can recover this demand complex from Fig. 1b
by merging adjacent 3-cells. Doing so is equivalent, in price space, to bringing together
two 0-cells at the end-points of a 1-cell. If we do so, then this 1-cell collapses into the
0-cells that we are bringing together. The facets adjoining the 1-cell similarly collapse
onto 1-cells in their boundaries. This is the same limiting process as we described (in 2
dimensions) in Example B.2.

In fact, any strong substitute valuation on {0, 1}3 may be obtained in this way:
it either is of the combinatorial type of Fig. 3; or is a transformation of this which
interchanges the coordinate axes; or is the limit of one of these cases, in which some or
all of the 0-cells have been brought together.

We now find, explicitly, a general form for any valuation of the combinatorial type
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(a) Alternative polyhedral
complex subdivision of
[0, 1]3, also with edges as
shown in Fig. 1a.
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(b) The third possible max-
imal subdivision of [0, 1]3

whose edges are as shown in
Fig. 1a.
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(c) Demand complex for a
valuation in which two units
of good 3 are available, com-
posed of Figs. 1b and 4a.

Figure 4: Additional demand complexes for strong substitutes.

shown in Fig. 3. First, we give coordinates to the labelled 0-cells, in such a way that
forces consistency with geometry of the complex. That is, first set pW = (a, b, c). Then
there must exist α > 0 such that pX = (a − α, b − α, c − α), because we know that
the 1-cell connecting these points is in direction (1, 1, 1) (it is dual to the red 1-cell
in Fig. 1b). Similarly, there exists β > 0 such that pY = pX − β(1, 1, 0) for some
β > 0, since the 1-cell connecting pX and pY is dual to the blue 2-cell in Fig. 1b. So
pY = (a− α− β, b− α− β, c− α). Finally, since pX lies below pY in direction (1, 1, 1)
again, there exists γ > 0 such that pZ = (a−α− β − γ, b−α− β − γ, c−α− γ). Note
that any a, b, c ∈ R and any α, β, γ > 0 are consistent with Fig. 3.

Now we know the coordinates of the facets, we may infer the valuation itself by
following a simple rule. The rule is: u(x) − p · x = u(y) − p · y, where p is in a
facet, and bundles x,y are demanded on either side of that facet. See Table 5. For any
a, b, c ∈ R and any α, β, γ ∈ R>0, this gives a strong substitute valuation of the same
combinatorial type as Fig. 3. Conversely, any valuation of the combinatorial type Fig.
3 may be presented in this form.

x1 u(x);
1 0 x3 = 0
a 0 0 x2

a+ b− α− β b 1

x1 u(x);
1 0 x3 = 1

a+ c− α c 0 x2
a+ b+ c− 2α− β − γ b+ c− α 1

Figure 5: The strong substitute valuation of Fig. 3, given in terms of parameters a, b, c ∈ R
and α, β, γ ∈ R>0.

We can go further: the process described above, of collapsing together two 0-cells
which are the end-points of the same 1-cell, is the geometric counterpart of just letting
one of α, β, γ relax to 0. So Table 5 also presents a strong substitute valuation if we
assume only that α, β, γ ≥ 0, and by doing so we obtain further combinatorial types of
valuations. For example, if α = β = γ = 0 then the valuation is additively separable, the
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demand complex is the trivial case (one 3-cell consisting of [0, 1]3) and the LIP consists
of three planes intersecting at (a, b, c). Additional cases correspond to only one or two
of these parameters being zero.

Since the remaining combinatorial types are obtained by transforming Figs. 1 and
3 by just interchanging the coordinate axes, a task it is straightforward to replicate in
Table 5, we conclude that we have in this way obtained all strong substitute valuations
for at most one unit of three goods.

Moreover, we may consider the agent’s value for additional units in the same way.
Extend the example to make a second unit of good 3 available, and assume that the
demand complex breaks down as one cube on top of another. We can keep our existing
analysis and apply the same technique to the second cube. Let the demand complex
now be that shown in Fig. 4c. The LIP is given in Fig. 6. The lower part is the same

p1

p2

p3

Figure 6: The LIP of a valuation dual to Fig. 4c.

as in Fig. 3, corresponding to the fact that the “lower” cube in Fig. 4c is the same as
Fig. 1b. Now imagine interchanging the second and third axes of Fig. 3, obtaining a
new LIP. The upper part of Fig. 6 has the same combinatorial type as this new LIP.
It is straightforward to infer, again, a general parametric form for any valuation of this
combinatorial type.
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D Mixed volumes and Mn
k (·, ·)

The quantity Mn
k (·, ·) arises from the “mixed volume” in algebraic geometry (see

e.g. Sangwine-Yager, 1993 or Cox et al., 2005, Chapter 7). Recall in Figs. 7c and 7d,
the value for M2({0, 1, 2}2, {0, 1, 2}2) was equal to the sum of the areas shaded in gray.
These gray areas are all the 2-cells of aggregate-demand complexes, with the property
that one edge comes from the first individual demand complex and one edge comes from
the second. We generalise:

Definition D.1 (See e.g. Cox et al. 2005, Defns. 7.6.4, 7.6.5, 7.6.6 and Thm. 7.6.7).
Suppose Q = Q1 + · · ·+Qm ( Rn, where Q1, . . . , Qm are polytopes with vertices in Zn.

1. A subdivision ofQ is a collection of polytopesR1, . . . , Rs such thatQ = R1∪· · ·∪Rs

and such that, for i 6= j, the intersection Ri ∩Rj is a face of both Ri and Rj.

2. A subdivision R1, . . . , Rs of Q is a mixed subdivision if each Ri can be written
as Ri = F 1 + · · · + Fm, where F j is a face of Qj for each j, and where n =
dim(F 1) + · · · + dim(Fm), and where if Rj = F ′1 + · · · + F ′m, then Ri ∩ Rj =
(F 1 ∩ F ′1) + · · ·+ (Fm ∩ F ′m).

3. A cell R = F 1 + · · · + Fm in a mixed subdivision is a mixed cell if dim(F i) ≤ 1
for all i. In particular if m = n then dim(F i) = 1 for all i.

4. When m = n, define the mixed volume MVn(Q1, . . . , Qn) :=
∑

R voln(R), where
the sum is over all mixed cells R of a mixed subdivision.

To understand these definitions, observe that the maximal cells of a demand complex
form a subdivision of the convex hull of its domain. Similarly, the maximal cells of the
aggregate-demand complex of m agents gives a subdivision of the convex hull of their
aggregate domain. If the intersection between the individual LIPs is transverse, then
this is a mixed subdivision. The mixed cells are dual to intersections of facets in their
interiors; in Figs. 7c and 7d, these are the gray areas.

In both of Figs. 7c and 7d, the sum of the areas of mixed cells is 2. Indeed, the sum
of the volumes of mixed cells is always independent of the choice of mixed subdivision;
this result is implicit in our definition of mixed volume above (see Huber and Sturmfels,
1995, Thm. 2.4; the standard definition is stated in their proof). So we can use very
simple subdivisions to calculate mixed volumes: see Ex. D.4.

Recall that equilibrium fails for two LIPs, Lu1 and Lu2 , iff it fails at an intersection
0-cell. Suppose cells Cσ1 , Cσ2 of the respective LIPs meet transversely at such a point.
In the demand complexes, we correspondingly have cells σ1, σ2, of dimensions k, n− k,
and such that σ = σ1 + σ2 is dual to the intersection 0-cell itself. As in Lemma 4.16,
equilibrium will fail if the aggregate-demand complex cell σ1 + σ2 is “too big”. So, as
in Sections 5.1.1-5.1.2, we wish to add up the volumes of all aggregate-demand complex
cells such as σ1 + σ2. And we can do this using mixed volumes.

To calculate a mixed volume we need n polytopes, with each mixed cell being a
sum of pieces of dimension 1. But we have two polytopes: the convex hulls of the
two domains. And we are interested in the sum of aggregate cells like σ1 + σ2, but
dimσ1 + dimσ2 = n (because the intersection is transverse). As Fact D.2 shows, the
solution is to take k := dimσ1 copies of the first domain and n− k copies of the second:
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Fact D.2 (follows from Huber and Sturmfels, 1995, Thm. 2.4). Suppose the intersection
of Lu1 and Lu2 is transverse. The total volume of aggregate-demand complex cells dual
to intersection 0-cells at which an (n − k)-cell of Lu1 meets a k-cell of Lu2 is equal to

1
k!(n−k)!MVn(conv(A1), . . . , conv(A1), conv(A2), . . . , conv(A2)), in which we take k copies

of conv(A1) and n− k copies of conv(A2).

The additional factor of 1
k!(n−k)! perfectly cancels the factors we used in defining

weights of cells–consistent with defining Mn
k (·, ·) as a mixed volume in this way.

Lemma D.3 (Cox et al., 2005, Thm 7.4.12.d). If A1, A2 ( Zn are finite, then Mn
k (A1, A2)

is the mixed volume of k copies of conv(A1) with (n − k) copies of conv(A2), for
k = 1, . . . , (n− 1).

Proof of Facts 5.15. 1 is Cox et al. (2005, Exercise 7.7.b). 2 is an elementary calculation.

Example D.4. Let n = 3 and suppose that A1 and A2 are the discrete-convex sets
with vertices {(0, 0, 0), (2, 0, 0), (0, 2, 0), (2, 2, 0)} and {(0, 0, 0), (1, 0, 0), (0, 0, 2), (1, 0, 2)}
respectively: the domains of the demand complexes shown in Figs. 14a-b.

We calculate M3
1 (A1, A2) and M3

2 (A1, A2) by considering: agent 1′, with valuation
u1

′
(x) = 0 for all x ∈ A1; and agent 2′, with valuation u2

′
(x) = x1 + x3 for all x ∈ A2.

Then Σu1′ has a single 2-cell of volume 4 (not the demand complexes pictured in Fig. 14).
The corresponding 1-cell of Lu1′ is in direction e3 and passes through 0. It therefore
intersects a weight-2 facet of Lu2′ corresponding to the edge of conv(A2) from e1 to
e1 + 2e3, and so the demand complex cell corresponding to this intersection 0-cell has
volume 4×2 = 8. So by Fact D.2 and Definition D.3 we knowM3

2 (A1, A2) = 2!1!×8 = 16.
Similarly, Σu2′ has a single 2-cell of volume 2, and the corresponding 1-cell is in

direction e2 and passes through (1, 0, 1). It therefore intersects a weight-2 facet of Lu1′
corresponding to the edge of conv(A2) from 0 to 2e2, and so the demand complex cell
corresponding to this intersection 0-cell has volume 2×2 = 4. So by Fact D.2 and Defn.
D.3 we know M3

1 (A1, A2) = 2!1!× 4 = 8.
We conclude that M3(A1, A2) = 8 + 16 = 24.

Proof of Thm. 5.22. See Bertand and Bihan, 2013, Thm. 6.1. Alternatively, see that if
Cσ1 and Cσ2 intersect transversely, then it follows from our definitions of cell weights
and subgroup indices that mult(Cσ{1,2}) = k!(n−k)!voln(σ{1,2}), where k = dimσ1. Thm
5.22 now follows from Fact B.2.
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