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Abstract

A uniform weak consistency theory is presented for the marked and weighted em-
pirical distribution function of residuals. New and weaker suffi cient conditions for
uniform consistency are derived. The theory allows for a wide variety of regressors
and error distributions. We apply the theory to 1-step Huber-skip estimators. These
estimators describe the widespread practice of removing outlying observations from
an intial estimation of the model of interest and updating the estimation in a second
step by applying least squares to the selected observations. Two results are presented.
First, we give new and weaker conditions for consistency of the estimators. Second,
we analyze the gauge, which is the rate of false detection of outliers, and which can be
used to decide the cut-off in the rule for selecting outliers.

Keywords: 1-step Huber skip, Asymptotic theory, Empirical processes, Gauge,
Marked and Weighted Empirical processes, Non-stationarity, Robust Statistics, Sta-
tionarity.
JEL classification: C01, C22

1 Introduction

We study the uniform consistency of marked and weighted empirical distribution functions of
estimated residuals from a linear time series regression. This can be used to show consistency
of various procedures appearing in robust statistics. A common empirical strategy is to
estimate a regression equation by least squares or by a robust estimator, select observations
with small residuals, and then re-estimate the regression for the selected observations using
least squares. With the derived results, we can show consistency of the updated estimator,
which is an example of a 1-step Huber-skip estimator. We can also evaluate the gauge of
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the procedure, which is defined in terms of the falsely detected outliers when in fact there
are no outliers. The gauge is useful for choosing the cut-off for selection in the procedure.
These results can also be used to study more complicated algorithms that involve iteration
of 1-step Huber-skip estimators.
We consider a linear time series regression model

yi = x′iβ + εi i = 1, . . . , n,

where the regressors xi can be stationary, non-stationary, deterministically or even explo-
sively trending and the scaled errors εi/σ are assumed to be independent, identically dis-
tributed and independent of the regressors. Let β̃ and σ̃ be initial estimators of β and σ,
respectively, and define the estimated residuals by ε̃i = yi − x′iβ̃.
The marked and weighted empirical distribution function of interest is

F̂w,pn (c) = n−1
∑n

i=1winε
p
i 1(ε̃i≤σ̃c), (1.1)

where win are the weights, ε
p
i is the mark and c ∈ R. The main result is an asymptotic

expansion of the empirical distribution function F̂w,pn (c) uniformly in c. The proof of the result
has two ingredients. First, we show that, asymptotically, the empirical distribution function
F̂w,pn (c) does not depend on estimation errors. In order words, the empirical distribution
function of residuals F̂w,pn (c) is close to the empirical distribution function of the true errors

Fw,pn (c) = n−1
∑n

i=1winε
p
i 1(εi≤σc).

Second, we derive a Glivenko-Cantelli theorem for the empirical distribution function Fw,pn (c).
These two results are combined to derive uniform consistency of F̂w,pn (c).
The problem does not appear to have been studied much, apart from some non-uniform

results in Johansen and Nielsen (2009). Rather, the literature has focused on the empirical
process formed from the empirical distribution function, that is,

F̂w,pn (c) = n1/2{F̂w,pn (c)− F̄w,pn (c)},

where F̄w,pn (c) is a suitable compensator. A variety of results for this empirical process exist
in the literature. Billingsley (1968) studied the case without weights, marks and estimation
error. Koul and Ossiander (1994), see also Koul (2002), considered the weighted empirical
processes, in which the scale is known and p = 0, so that there are no marks. Johansen and
Nielsen (2016a) and Berenguer-Rico, Johansen and Nielsen (2019) considered the general
case with weights and marks. The marked empirical process of Koul and Stute (1999), and
Escanciano (2007) arise when the weights are win = n−1/21(xi≤d) and the present indicators
1(εi≤σc) are set to unity. Their expansions are uniform in d, which is not considered here.
By focusing on the empirical distribution function F̂w,pn (c) rather than the empirical

process F̂w,pn (c), we achieve simpler regularity conditions and a simpler proof. Plainly, to
obtain uniform consistency from uniform weak convergence imposes too strong assumptions
with a too complicated proof —the same way as deriving a law of large numbers result from
a central limit theorem would do. Thus, the technical contributions are two-fold. First,
the results for F̂w,pn (c) require certain moment conditions on the errors and regressors and
impose regularity assumptions on the density of εi/σ, whereas the results for F̂w,pn (c) require
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weaker moment conditions and impose regularity assumptions on the distribution function
of εi/σ. Hence, the distribution function need not be differentiable everywhere when ana-
lyzing F̂w,pn (c) and the amount of moments required is substantially lower. Second, in both
cases the proofs require chaining arguments. The chaining argument is considerably simpler
in the case of the empirical distribution functions. Having, said that, since the marks are
unbounded, we still need to use the iterated exponential martingale inequality of Johansen
and Nielsen (2016a).
We apply the theory to study 1-step Huber-skip estimators. These estimators cover a

widespread practice in applied work. It is well known that outliers can severely affect the
results of a regression analysis. For this reason, applied researches often remove atypical
values from the data, which have been previously identified via the residuals of an initial
estimation of the model. Once the outliers have been removed, the model is re-estimated with
the selected observations. This procedure can be described by what is known in the literature
as 1-step Huber-skip estimators —see Rupert and Carroll (1980), Welsh and Ronchetti (2002),
Johansen and Nielsen (2009, 2016b) or Jiao and Nielsen (2017). These estimators also appear
as building blocks in iterative outlier detection algorithms such as the Forward Search, see
Atkinson, Riani and Cerioli (2010), and Impulse Indicator Saturation within Autometrics
by Doornik (2009), see also Pretis, Reade and Sucarrat (2018). Specifically, the 1-step
Huber-skip estimators of β and σ2 are

β̂c = {
∑n

i=1xix
′
i1(|ε̃i|≤σ̃c)}−1

∑n
i=1xiyi1(|ε̃i|≤σ̃c),

σ̂2
c = (τ c0/τ

c
2){
∑n

i=11(|ε̃i|≤σ̃c)}−1
∑n

i=1(yi − x′iβ̂)21(|ε̃i|≤σ̃c),

for initial estimators β̃, σ̃2, residuals ε̃i = yi − x′iβ̃ and where τ ck = E{(εi/σ)k1(|εi/σ|≤c)}. The
sums in β̂c and σ̂2

c can be written in terms of marked and weighted empirical distribution
functions of residuals. For instance, introducing first the model for yi in β̂c and normalizations
xin = N ′xi for a deterministic normalization matrix N, we can write

n−1/2N−1(β̂c − β) = {n−1
∑n

i=1nxinx
′
in1(|ε̃i|≤σ̃c)}−1n−1

∑n
i=1n

1/2xinεi1(|ε̃i|≤σ̃c). (1.2)

The numerator and denominator can be written in terms of the marked and weighted em-
pirical distribution functions in (1.1) as follows. Let win = n1/2N ′xi(n

1/2N ′xi)
′ = nxinx

′
in

for the denominator and win = n1/2N ′xi = n1/2xin for the numerator. Then, noting that the
indicator functions in (1.2) are two sided, we can write

n−1/2N−1(β̂c − β) = {F̂xx,0n (c)− F̂xx,0n (−c−)}−1{F̂x,1n (c)− F̂x,1n (−c−)},

where F̂w,pn (−c−) = limh→0 F̂w,pn (−c−h). Hence, the theory presented in this paper allows us
to consider various aspects of these estimators.
First, we derive suffi cient conditions for the uniform consistency of β̂c and σ̂2

c . Suppos-
ing that the initial estimators are consistent, the following features arise. In models with
intercept, the estimators of intercept and scale are inconsistent when τ c1 6= 0, in particular,
when the innovation distribution is asymmetric. The slope coeffi cients are always consistent,
but standard inference can be misleading due to the inconsistency of the scale estimator σ̂2

c .
Correct inference requires a bias correction of σ̂2

c . In models without intercept and τ
c
1 6= 0,

the consistency of β̂c depends on the type of regressors. It is inconsistent for stationary
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regressors with a non-zero mean, but consistent for random walk regressors. However, when
τ c1 6= 0, the scale estimator σ̂c is inconsistent regardless of the stationarity properties of the
regressors. Hence, a bias correction is required.
Second, we study the consistency properties of the empirical gauge, which is defined in

terms of the number of falsely detected outliers, when no outliers are present. The notion
of gauge was introduced by Hendry and Santos (2010), and it is based on an idea of Hoover
and Perez (1999) in the context of variable selection —see also Hendry and Doornik (2014)
and Johansen and Nielsen (2016b). The idea, in an outlier detection context, is that finding
outliers in a sample is a multiple testing problem. Algorithms for that purpose involve
tuning parameters, such as the cut-off c in the case of 1-step Huber-skip estimators, for
instance. These tuning parameters can be chosen so as to control type I errors, that is the
false detection of outliers. Controlling the size of the algorithms is one such approach, that
is, controlling the probability of making no false detections at all. The size will inevitably
be fragile with respect to the number of decisions. In the extreme, if we make n independent
decisions with individual size p, then the overall size is 1− (1− p)n, which depends on n. In
this example, the gauge or frequency of falsely detected outliers is simply the average of the
individual sizes, that is p. Hence, it is independent of the number of decisions.
The empirical gauge for the 1-step Huber-skip estimator is defined as

γ̂c = n−1
∑n

i=11(ε̃i>σ̃c).

We obtain suffi cient conditions under which γ̂c converges to γc = P(|ε1/σ| > c) uniformly in c.
This result allows the investigator to set a level for the population gauge, say P(|ε1/σ| > c) =
0.01, which defines a cut-off value c. In particular, in a sample with n = 100 observations,
a gauge of 1% corresponds to, on average, falsely declaring one observation as outlier. This
calculation is feasible when the innovations are normal or follow some other known reference
distribution. The practical consequence is that we can choose the cut-off c so as to control
the gauge in an uncontaminated sample, just as the critical value for a standard test is
chosen under the hypothesis. The asymptotic properties of the gauge have been studied by
Johansen and Nielsen (2016b) and Jiao and Nielsen (2017) using theory for the process Fn.
With the new results for F̂n, we can present significantly weaker assumptions.
The paper is organized as follows. In §2, the model and tools related to the empirical

distribution function of residuals are described. In §3, the uniform weak consistency results
for the marked and weighted empirical distribution function are presented. Applications to
1-step Huber-skip estimators and the gauge are given in §4. Most proofs are collected in the
Appendix.

2 Model and main tools

For i = 1, . . . , n consider the multiple regression model

yi = x′iβ + εi, (2.1)

with possibly stochastic regressors xi, unknown parameters β and scale σ.We assume that the
scaled innovations εi/σ are independent, identically distributed with density f and distribu-
tion function F(c) = P(εi/σ ≤ c), as well as independent of xi, xi−1, xi−2, ..., see Assumption
3.1.
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Let β̃, σ̃ be estimators of the unknown β, σ. From β̃, we compute the residuals ε̃i =
yi−x′iβ̃. Let N be a deterministic normalization matrix and define the normalized regressors
and estimation errors

xin = N ′xi, ã = n1/2(σ̃ − σ)/σ, b̃ = N−1(β̃ − β)/σ, (2.2)

so that x′i(β̃ − β) = x′inb̃σ. In most situations, the normalization N is chosen so that∑n
i=1xinx

′
in has a positive definite limit. In this way, we can choose N = n−1/2 for sta-

tionary regressors and N = n−1 for random walk regressors. If the regressors are xi = (1, i),
we normalize them so that xin = (n−1/2, n−3/2i). If the regressors are explosive, say xi = 2i,
we let N = 2−n so that xin = 2i−n. In the asymptotic analysis, we consider triangular arrays
to accommodate the normalization built into xin. This means that we also cover certain
types of infill asymptotics. Suppose, in the context of model (2.1), that xi = 1(i≤n†) for some
n† ≤ n. The asymptotic constraint n†/n = τ for some 0 < τ < 1 can be accommodated by
choosing N−1 = n1/2 and xin = n−1/21(i≤τn) in (2.2).
Normalized estimation errors, ã, b̃, and regressors, xin, will be entering the marked and

weighted empirical distribution function of residuals as follows

F̂w,pn (c) = Fw,pn (ã, b̃, c) = n−1
∑n

i=1winε
p
i 1(ε̃i≤σ̃c) = n−1

∑n
i=1winε

p
i 1(εi/σ≤c+n−1/2ãc+x′inb̃)

, (2.3)

with weight win and mark ε
p
i . Some relevant examples of the weights in applications are

win = 1 and win = n1/2N ′xi = n1/2xin and win = n1/2N ′xi(n
1/2N ′xi)

′ = nxinx
′
in, see, for

instance, the 1-step Huber-skip estimator in (1.2).
We use three main tools when deriving a uniform law of large numbers for Fw,pn (ã, b̃, c) in

(2.3). The first tool allows us to replace Fw,pn (ã, b̃, c) by

Fw,pn (a, b, c) = n−1
∑n

i=1winε
p
i 1(εi/σ≤c+n−1/2ac+x′inb), (2.4)

and study Fw,pn (a, b, c) uniformly over a, b varying in expanding compact sets depending on n
and c ∈ R. Specifically, we make use of Lemma 3.1 in Berenguer-Rico, Johansen and Nielsen
(2019). It states that if limn→∞ P(θ̃ ∈ Θ) > 1 − ε for some estimator θ̃ in a compact set Θ
and ε > 0, then for any function Fn(θ, c) of θ ∈ Θ and c ∈ R, we have that

P{|Fn(θ̃, c)| > ε}≤ P{sup
θ∈Θ
|Fn(θ, c)| > ε}+ ε. (2.5)

The second tool is a chaining argument which allows us to derive the required uniformity
results over a, b, c. The argument is as follows, see also Berenguer-Rico, Johansen and Nielsen
(2019). Consider the process Fn(θ, c) where θ ∈ Θ and c ∈ R. Introduce K grid points ck
and cover the set Θ byM balls with centres θm with a small radius δ. The chaining argument
is

sup
θ∈Θ

sup
c∈R
|Fn(θ, c)| ≤ max

1≤m≤M
max

1≤k≤K
|Fn(θm, ck)|

+ max
1≤m≤M

max
1≤k≤K

sup
|θ−θm|≤δ

sup
ck−1<c≤ck

|Fn(θ, c)− Fn(θm, ck)|.

The two bounding terms are denoted the discrete point term and the oscillation term.
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The third tool is the lemma quoted below, which uses the iterated exponential martingale
inequality by Johansen and Nielsen (2016a). In turn, it is based on the exponential mar-
tingale inequality for unbounded martingales by Bercu and Touati (2008), see also Bercu,
Delyon and Rio (2015). Koul and Ossiander (1994) use the inequality by Freedman (1975)
for bounded martingales in their analysis of the weighted empirical process of residuals. That
approach is impractical with the inclusion of unbounded marks.

Lemma 2.1 (Johansen and Nielsen, 2016a, Lemma 4.2) For 1 ≤ ` ≤ Ln, 1 ≤ i ≤ n
let zn`i be Fin adapted and Ez2r

n`i < ∞ for some r ∈ N. Let Dnq = max1≤`≤Ln
∑n

i=1Ei−1z
2q

n`i

for 1 ≤ q ≤ r. Suppose, for some λ > 0, ς ≥ 0, that Ln = O(nλ) and Enq = EDnq = O(nς)
for 1 ≤ q ≤ r. Then, if υ > 0 is chosen such that

(i) ς < 2υ, (ii) ς + λ < υ2r,
it holds that

max
1≤`≤Ln

|
∑n

i=1(zn`i − Ei−1zn`i)| = oP(nυ).

Lemma 2.1 simplifies when zn`i is an indicator function.

Lemma 2.2 For 1 ≤ ` ≤ Ln, 1 ≤ i ≤ n let zn`i be Fin adapted indicator function. Let
Dn = max1≤`≤Ln

∑n
i=1Ei−1zn`i. Suppose, for some λ > 0, ς ≥ 0, that Ln = O(nλ) and

En = EDn = O(nς). If, in addition, υ > ς/2, then

max
1≤`≤Ln

|
∑n

i=1(zn`i − Ei−1zn`i)| = oP(nυ).

Proof. Since |zn`i| is an indicator function, then z2r

n`i = |zn`i| for any r ∈ N. Therefore,
we can apply Lemma 2.1 with r chosen so large that condition (ii) is satisfied.

3 Uniform consistency results

In order to find a uniform Law of Large Numbers for Fw,pn (ã, b̃, c), see (2.3), we decompose

Fw,pn (ã, b̃, c) = Fw,pn (0, 0, c) + {Fw,pn (ã, b̃, c)− Fw,pn (0, 0, c)}. (3.1)

The first term, Fw,pn (0, 0, c), has no estimation error. For a fixed c, it is analyzed using a
martingale Law of Large Numbers. For a varying c, Theorem 3.2 below can be used to get
uniform convergence in c. The second term, {Fw,pn (ã, b̃, c)− Fw,pn (0, 0, c)}, vanishes uniformly
in c due to Theorem 3.1 below combined with the first tool (2.5) described above. This result
shows that, asymptotically, Fw,pn (ã, b̃, c) does not depend on the estimation errors ã, b̃. The
main result, Theorem 3.3 below, combines Theorems 3.1, the inequality (2.5) and Theorem
3.2 to show the uniform consistency of Fw,pn (ã, b̃, c).
First, we prove the uniform convergence of Fw,pn (a, b, c) under the following assumptions.

Assumption 3.1 Let Fin be an array of increasing sequences of σ-fields so that Fi−1,n ⊂ Fin
where εi−1, xin, win are Fi−1,n measurable and εi/σ is independent of Fi−1,n with continuous
distribution function F.
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Definition 3.1 A distribution function F is
(i) additively Lipschitz if ∃CL > 0 : ∀b, c ∈ R it holds that |F(c+ b)− F(c)| ≤ CL|b|;
(ii) multiplicatively Lipschitz if ∃CL, a0 > 0 : ∀|a| ≤ a0, c ∈ R it holds that |F(c + ca) −
F(c)| ≤ CL|a|.

Remark 3.1 Examples of Definition 3.1 include the normal, the triangular and the uniform
distribution. More generally, if F has support on an open interval S and derivative f on S
satisfying supc∈R(1 + |c|)f(c) < ∞, then F is additively and multiplicatively Lipschitz. To
see this, first note that by the Mean Value Theorem, F(c + b) − F(c) = bf(c∗) for some
c∗so |c∗ − c| ≤ b. Here, f(c∗) is bounded by assumption. Second, replacing b by ca gives that
|F(c+ca)−F(c)| = |a||c|f(c∗) for |c∗−c| ≤ |a||c|. By the triangle inequality, |c| ≤ |c∗|+|c∗−c|
so that |c| ≤ |c∗| + |a||c| and |c|(1 − |a|) ≤ |c∗|. Thus, if |a| ≤ a0 = 1/2 then |c| ≤ 2|c∗|, so
that |F(c+ ca)− F(c)| ≤ 2|a||c∗|f(c∗), where |c∗|f(c∗) is bounded by assumption.

Assumption 3.2 Suppose, for p ∈ N0 and some ψ > 1, that
(i) innovations εi/σ satisfy

(a) moments: E|εi|pψ <∞;
(b) F is additively and multiplicatively Lipschitz (Definition 3.1);

(ii) regressors xin satisfy En−1
∑n

i=1n
1/2|xin| = O(1);

(iii) weights win satisfy En−1
∑n

i=1|win|ψ = O(1).

Theorem 3.1 Let Assumptions 3.1, 3.2 hold. Then, for any B > 0, ψ > 1, 0 < ζ < 1,

sup
c∈R

sup
|a|,|b|≤n1/2−ζB

|Fw,pn (a, b, c)− Fw,pn (0, 0, c)| = OP{n−ζ(ψ−1)/ψ} = oP(1).

The proof of Theorem 3.1 exploits that, with the inbuilt n-normalization in Fw,pn , the
marks and weights can be separated from the indicators using Hölder’s inequality. Thus,
initially, we focus on the special case of Theorem 3.1 without marks and weights. This
result is presented in Lemma A.4 in the Appendix. Its proof relies on two other intermediate
lemmas. First, in Lemma A.2 we set a = 0 and chain over c while bounding the influence of
b. Second, in Lemma A.3 we set b = 0 and deal with the scale estimation error a. Since a is
as a multiplicative distortion of the quantile c, we chain over two quantiles simultaneously.
These two results are then used in proving Lemma A.4.
Next, we establish an in probability version of the Glivenko-Cantelli theorem.

Theorem 3.2 Let Assumptions 3.1, 3.2(ia, iii) hold with ψ = 2. Then, for any ω > 0,

sup
c∈R
|Fw,pn (0, 0, c)− (n−1

∑n
i=1win)Eεpi 1(εi/σ≤c)| = OP(nω−1/3).

Finally, we combine the theorems above to derive the main result, which analyzes the
terms in the decomposition (3.1). We consider normalized estimators ã, b̃ of order OP(n1/2−ζ)
for 0 < ζ < 2/3. In standard models ζ = 1/2. However, when proving the following main
result, the combination of Theorems 3.1 and 3.2 allows for 0 < ζ < 2/3.
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Theorem 3.3 Uniform consistency result. Let Assumptions 3.1, 3.2 hold with ψ = 2
and suppose the estimators satisfy ã = n1/2(σ̃−σ)/σ = OP(n1/2−ζ) and b̃ = N−1(β̃−β)/σ =
OP(n1/2−ζ) for some 0 < ζ < 2/3. Then

sup
c∈R
|Fw,pn (ã, b̃, c)− (n−1

∑n
i=1win)Eεpi 1(εi/σ≤c)| = OP(n−ζ/2).

Proof of Theorem 3.3. Since ã = n1/2(σ̃ − σ) and b̃ = N−1(β̃ − β) are OP(n1/2−ζ), we
can use (2.5) and consider Rn(a, b, c) = |Fw,pn (a, b, c) − (n−1

∑n
i=1win)Eεpi 1(εi/σ≤c)| uniformly

in |a|, |b| ≤ n1/2−ζB, c ∈ R. Applying the triangle inequality and Theorems 3.1, 3.2 using
Assumptions 3.1, 3.2 with ψ = 2 shows that Rn(a, b, c) = OP(n−ζ/2) + OP(nω−1/3) uniformly
in a, b, c for any ω > 0 and where 0 < ζ < 1. Note that if ζ = 2/3 − ε for some ε > 0,
then we can always find an ω < ε/2 so that the first term dominates. Hence, the first term
dominates for 0 < ζ < 2/3. In turn, Rn(a, b, c) = OP(n−ζ/2) for 0 < ζ < 2/3 as desired.

Theorem 3.3 provides a stochastic expansion in terms of n−1
∑n

i=1win. Depending on the
nature of the weights, this will be deterministic or random.

Example 3.1 Weights win are i.i.d. with mean µ. Then, n−1
∑n

i=1win
P→ µ, so that

Fw,pn (ã, b̃, c) = µEεpi 1(εi/σ≤c) + oP(1) uniformly in c.

Example 3.2 Weights win are normalized random walks win = n−1/2
∑i

j=1 ηj for i.i.d., zero

mean ηj with unit variance. Then, n−1
∑n

i=1win
D→
∫ 1

0
Wudu for a standard Brownian motion

Wu so that Fw,pn (ã, b̃, c)
D→ (
∫ 1

0
Wudu)Eεpi 1(εi/σ≤c) uniformly in c.

4 Application to 1-step Huber-skip estimators

We now apply the above results to show, first, the uniform consistency of 1-step Huber-skip
estimators and, second, the uniform consistency of its associated gauge.

4.1 Uniform consistency of the estimators

We define the 1-step Huber-skip estimators as follows. Let β̃ and σ̃ be initial estimators
from which we can form the residuals ε̃i = yi− x′iβ̃. Observations with large scaled residuals
ε̃i/σ̃, that is, satisfying |ε̃i/σ̃| > c for a cut-off value c set up by the investigator, are removed
from the sample and least squares regression is applied to the new sample giving the 1-step
estimators

β̂c = {
∑n

i=1xix
′
i1(|ε̃i|≤σ̃c)}−1

∑n
i=1xiyi1(|ε̃i|≤σ̃c), (4.1)

σ̂2
c = (τ c0/τ

c
2){
∑n

i=11(|ε̃i|≤σ̃c)}−1
∑n

i=1(yi − x′iβ̂)21(|ε̃i|≤σ̃c), (4.2)

where
τ ck =

∫ c
−cv

kf(v)dv = E{(εi/σ)k1(|εi/σ|≤c)}.

We apply the above results to analyze the uniform weak consistency properties of β̂c, σ̂2
c .
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The 1-step Huber skip estimators mathematically describe the following widely used
practice in applied work; namely, the procedure where a researcher estimates a model using
some initial estimator and, based on this initial estimate, removes atypical values from the
sample. Then, in a second stage the model is re-estimated by least squares using only the
remaining observations. This practice has been termed by Welsh and Ronchetti (2002) the
data analytic strategy. The asymptotic properties of this procedure have been previously
analyzed by Ruppert and Carroll (1980), Johansen and Nielsen (2009, 2013, 2016a, 2016b)
and Jiao and Nielsen (2017). These papers have derived asymptotic expansions for the
rescaled 1-step Huber-skip estimator. In this section, we focus on uniform consistency only
and achieve weaker regularity conditions.

Assumption 4.1 Part I. Suppose that
(i) innovations εi/σ satisfy

(a) moments: E|εi|2 <∞;
(b) F is additively and multiplicatively Lipschitz (Definition 3.1);

(ii) regressors xin satisfy
(a) n−1E

∑n
i=1|n1/2xin|4 = O(1);

(b) Σ̂n =
∑n

i=1xinx
′
in

D→ Σ
a.s.
> 0 and µ̂n = n−1/2

∑n
i=1xin

D→ µ;
(iii) the initial estimation errors N−1(β̃ − β), n1/2(σ̃ − σ) are OP(n1/2−ζ) for some ζ > 0.
Part II. Suppose E|εi|4 <∞ and τ c02 > 0 for some c0 > 0.

We note that the limiting quantities Σ and µ in Assumption 4.1(ii), (b) will be determin-
istic in stationary settings whereas they can be stochastic in non-stationary models.

Theorem 4.1 Suppose Assumptions 3.1, 4.1,I are satisfied. Choose c0 > 0 so that τ c00 > 0.
Then, uniformly in c ≥ c0,

n−1/2N−1(β̂c − β) = σΣ̂−1
n µ̂n(τ c1/τ

c
0) + oP(1)

D→ σΣ−1µ(τ c1/τ
c
0).

If, in addition Assumption 4.1,II is satisfied, then uniformly in c ≥ c0,

σ̂2
c − σ2 = −σ2µ̂′nΣ̂−1

n µ̂n(τ c1)2/(τ c2τ
c
0) + oP(1)

D→ −σ2µ′Σ−1µ(τ c1)2/(τ c2τ
c
0).

Remark 4.1 In a model with an intercept, the bias expressions simplify. To see this, suppose
xi = (1, z′i)

′ and xin = (n−1/2, z′in)′. We then get µ̂′n = (1, 0)Σn so that µ̂′nΣ−1
n = (1, 0) and

µ̂′nΣ−1
n µ̂n = 1, even with non-stationary regressors. The consistency results are then

n−1/2N−1(β̂c − β)
P→ σ

(
1
0

)
τ c1
τ c0
, σ̂2

c − σ2 P→ −σ2 (τ c1)2

τ c2τ
c
0

.

We see that the intercept and variance estimators can be biased, while the slope estimators
are not biased. This feature is shared with, for instance, quantile regression, see Koenker
and Bassett (1978). Moreover, the bias only depends on the τ ck coeffi cients that are derived
from the innovation distribution. When τ c1 6= 0 the intercept is biased and, more critically,
standard inference on both intercept and slopes is distorted because of the bias in σ̂2

c . Hence,
a bias correction should be implemented. These results match the finding from least squares
theory that a necessary condition for consistency of β is that εi/σ has mean zero, which
ensures that the intercept is identified.
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Remark 4.2 In a model without intercept, the bias on β depends on the properties of the
regressors. First, for a stationary regressor we choose N−1 = n1/2 so that n−1/2N−1 is the
identity. In that case,

β̂c − β = σΣ̂−1
n µ̂n(τ c1/τ

c
0) + oP(1)

P→ σΣ−1µ(τ c1/τ
c
0).

The bias is present when µτ c1 6= 0. If the stationary regressor has zero mean, then µ = 0. If
the stationary regressor has non-zero mean, then µ 6= 0 and the bias occurs if τ c1 6= 0. Second,
for random walk regressors, we choose N−1 = n and n−1/2N−1 = n1/2 so that β̂c−β = oP(1).
Thus, in this case, β̂c is consistent for all the coeficients even when τ c1 6= 0. Nonetheless, if
τ c1 6= 0, the bias in σ̂2

c is present regardless of the stationarity properties of the regressors.
Therefore, a bias correction for σ̂2

c is needed to conduct correct inferences.

Remark 4.3 The biases are proportional to the coeffi cient τ c1 . For a symmetric distribution,
τ c1 = 0. For a non-symmetric distribution, τ c1 can be non-zero. If εi/σ follows a distribution
that is standard normal in the middle and unspecified in the tails, we can use the result to
detect which part of the distribution is normal. To be precise, suppose εi/σ has a density
f(x) that is standard normal for |x| ≤ ψ for some ψ ∈ R0 and asymmetric for |x| > ψ. In the
context of a model with an intercept, Theorem 4.1 shows that the process of 1-step Huber-skip
intercept estimators (1, 0)(β̂c− β) will converge to a function that is zero for c ≤ ψ whereas,
depending on the form of the asymmetry, it is non-zero for c > ψ.

Remark 4.4 The result in Theorem 4.1 gives suffi cient conditions for consistency that are
weaker than conditions previously derived in the literature. Ruppert and Carroll (1980) derive
an asymptotic expansion for n1/2(β̂c − β) in the case of fixed regressors, from which they
obtain pointwise consistency for β̂c. Jiao and Nielsen (2017) derive an asymptotic expansion
for N−1(β̂c − β) in a general setting, similar to the setup in this paper, but with stronger
conditions on the error term and the regressors. Specifically, the error term, on the one
hand, is assumed to have a density that is symmetric, satisfies certain smoothness conditions
and has moments which depend on the dimension of the regressors. The regressors, on the
other hand, are assumed to satisfy a maximal condition imposing in practice the existence of
many more moments than those required here. Overall, as shown in Theorem 4.1 above, the
conditions to derive uniform consistency can be substantially weakened.

4.2 Uniform consistency of the gauge

An important question in relation to the 1-step Huber-skip estimator is how does the in-
vestigator choose the cut-off value c? The 1-step Huber-skip algorithm to detect outliers
is defined as follows. Let β̃ and σ̃ be initial estimators from which we form the residuals
ε̃i = yi − x′iβ̃. Choose a cut-off c > 0. The 1-step Huber-skip estimators β̂c, σ̂2

c are the
least squares estimators on observations satisfying |ε̃i/σ̃| ≤ c as described in (4.1), (4.2).
Hence, the observations satisfying |ε̃i/σ̃| > c are declared outliers. The empirical gauge is
the frequency of declared outliers, that is

γ̂c = n−1
∑n

i=11(|ε̃i/σ̃|>c), (4.3)
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as introduced by Hendry and Santos (2010) and based on an idea of Hoover and Perez (1999).
The population gauge, say γc, is the probability limit of γ̂c, when there are no outliers. We
can choose the cut-off c indirectly, from a given value of the population gauge γc.
The asymptotic properties of the gauge in the context of 1-step Huber-skip estimators

have been analyzed by Johansen and Nielsen (2016b) and Xiao and Nielsen (2017). Their
analysis is based on expansions of the corresponding marked and weighted empirical process.
Hence, their derived suffi cient conditions can be weakened by using the results above. Note
that in this case, p = 0 and win = 1 in the marked and weighted empirical distribution
function of interest. Hence, the assumptions to Theorem 3.3 simplify as follows.

Assumption 4.2 Suppose that
(i) innovations εi/σ satisfy: F is additively and multiplicatively Lipschitz (Definition 3.1);
(ii) regressors xin satisfy n−1E

∑n
i=1|n1/2xin| = O(1);

(iii) the initial estimation errors N−1(β̃ − β), n1/2(σ̃ − σ) are OP(n1/2−ζ) for some ζ > 0.

Theorem 4.2 Suppose Assumptions 3.1, 4.2 are satisfied. Choose c0 > 0 so that τ c00 =
P(|εi/σ| ≤ c0) > 0. Then, uniformly in c ≥ c0,

γ̂c
P→ (1− τ c0).

Remark 4.5 Theorem 4.2 shows that the empirical gauge converges, uniformly in c, to the
population gauge, γc, so that

γc = (1− τ c0) = P(|ε1/σ| > c).

This gives a way of establishing an overall rate of false rejection when deciding whether
observation i, for i = 1, ..., n, is an outlier or not. In particular, assuming a distribution for
the error term and choosing P(|ε1/σ| > c) to be a certain value, one gets a cut-off value c.
For instance, under normality, if γc is set to be 0.01, then c = 2.57. In this case, the gauge
coincides with the size of the individual tests. See also Johansen and Nielsen (2016b) for a
discussion on the idea of gauge and its relation to the false discovery rate for multiple test
of Benjamini and Hochberg (1995).

Remark 4.6 Theorem 7 in Johansen and Nielsen (2016b) derives pointwise consistency of
the gauge under the assumption of normal errors and a list of conditions on the normalized
regressors such as convergence of the first and second empirical moments, boundedness of
the maximum over i and the existence of 9th moments. Theorem 4.2 above derives uniform
consistency under the much weaker assumption 4.2.

5 Concluding remarks

The main result is Theorem 3.3, which gives a uniform consistency result of the weighted and
marked empirical distribution function of estimated residuals. The empirical distribution is
consistent for the limit of the product of the average weight times the expectation of the
truncated mark.
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The result simplifies previous work on asymptotic expansions of the empirical distribution
function and on the associated empirical process. Both the regularity conditions and the
proofs are simplified in the same way as the Law of Large Number is simpler than the
Central Limit Theorem. In particular, the consistency result requires fewer moments than
the asymptotic expansions, and it requires continuity and smoothness of the distribution
function rather than of the density function.
The result was used to analyze 1-step Huber-skip estimators, which appear in various

robust statistical procedures. They also appear implicitly in the common data analytic strat-
egy of first estimating a least squares regression, dropping observations with large residuals
and then reestimating a regression on the selected observations. In particular, we show
consistency of the estimators and the associated gauge under weaker conditions than in the
previous literature.

A Appendix

For sequences sn, tn we say sn ∼ tn if sn = O(tn) and tn = O(sn). The weights win may
be matrix valued. To show that the resulting matrix of empirical processes vanishes, it
suffi ces to show this for each element. Thus, we proceed in this appendix as if win is scalar.
Throughout the rest of the Appendix we denote by C a generic constant, which need not be
the same in different expressions.

A.1 Metric and cover

The chaining argument is based on a finite number of points ck ∈ R, k = 0, 1, . . . , K, which
define a cover of R by K disjoint intervals with end points

−∞ = c0 < c1 < · · · < cK−1 < cK =∞. (A.1)

The definitions c0 = −∞ and cK = ∞ are convenient even when the support is finite.
In Johansen and Nielsen (2016a) and Berenguer-Rico, Johansen and Nielsen (2019), these
chaining points are chosen using the function

Hr(c) = E(1 + |εi/σ|2
rp)1(εi/σ≤c), (A.2)

for a given r = 0, 1, . . . . Here, we will need r = 0 and K ∼ n1/2 when proving Theorem 3.1,
while r = 1 and K ∼ n1/3−ω when proving Theorem 3.2. The function Hr is increasing in c.
It is bounded when

Hr = Hr(∞) = E(1 + |εi/σ|2
rp) <∞. (A.3)

The points ck are chosen so that

Hr(ck)− Hr(ck−1) = Hr/K for k = 0, 1, . . . , K. (A.4)

The inequality |εs| < 1 + |ε|r for 0 ≤ s ≤ r implies that, for c ≤ c†,

E{|εi/σ|1(c<εi/σ≤c†)}
2sp ≤ E(1 + |εi/σ|2

rp)1(c<εi/σ≤c†) = Hr(c
†)− Hr(c). (A.5)

We refer to Hr(c
†)− Hr(c) as the Hr-distance between c and c†.
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A.2 A preliminary lemma

The following Lemma, based on Lemma A.10 in Berenguer-Rico, Johansen and Nielsen
(2019), is used in the proof of the main results when chaining over a, c. On the one hand, it
bounds the effect of multiplicative perturbations using the Hr distance. On the other hand,
it gives an estimate of the number of ck intervals that are needed to cover the perturbation.
The result applies for general distance functions, say H.

Lemma A.1 Let ca = c(1 + n−1/2a) so that c0 = c. Let H(c) be non-decreasing and multi-
plicatively Lipschitz with H = H(∞) − H(−∞) < ∞. Choose grid points ck as in (A.1) so
that H(ck)− H(ck−1) = H/K for all k. Then:
(a) A constant C > 0 exists so that for all ζ > 0,

sup
c∈R

sup
|a|≤n1/2−ζB

|H(ca)− H(c)| ≤ Cn−ζ .

(b) Choose an index k(ca) and grid points ck(ca) so that ck(ca)−1 < ca ≤ ck(ca). Then, the
number of grid points between ca and c satisfies

supc∈R sup|a|≤n1/2−ζB |k(ca)− k(c)| ≤ 2 + Cn−ζK/H.

Proof of Lemma A.1. (a) The distance H = H(ca)−H(c). Since |n−1/2a| ≤ n−ζ , which
vanishes for large n, then for any a0 > 0 we have |n−1/2a| ≤ a0 for large n. The multiplicative
Lipschitz assumption then shows |H|≤Cn−ζ as desired.

(b) Translating the distance H in item (a) into a number of grid points. We start by
bounding H∗ = |H{ck(ca)} − H{ck(c0)}|. Add and subtract H(ca) and H(c) and apply the
triangle inequality to get

H∗ ≤ |H{ck(ca)} − H(ca)|+ |H{ck(c0)} − H(c)|+ |H(ca)− H(c)|. (A.6)

Each of the first two terms in (A.6) are bounded by H/K. Indeed, since ck(ca)−1 < ca ≤ ck(ca)

and, noting that c0 = c,

0 ≤ H{ck(ca)} − H(ca) ≤ H{ck(ca)} − H{ck(ca)−1} = H/K.

The third term in (A.6) equals |H| and satisfies |H|≤Cn−ζ as shown in part (a). Overall,

H∗ ≤ 2H/K + Cn−ζ = (2 + Cn−ζK/H)H/K,

implying that |k(ca)− k(c0)| ≤ 2 + Cn−ζK/H uniformly in a, c.

A.3 Auxiliary results

Theorem 3.1 gives a uniform Law of Large Numbers for Fw,pn (a, b, c).We start by considering
the case without weights and marks, that is F1,0

n (a, b, c). First, we analyze the special case
where a = 0. Second, we consider the case where b = 0. Finally, both cases are combined to
study the general case in which a, b vary.
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Lemma A.2 Let Assumption 3.1 hold and suppose
(i) F is additively Lipschitz (Definition 3.1);
(ii) En−1

∑n
i=1 n

1/2|xin| = O(1).
Then, for any B > 0, 0 < ζ < 1, we get

sup
c∈R

sup
|b|≤n1/2−ζB

n−1
∑n

i=1|1(εi/σ≤c+x′inb) − 1(εi/σ≤c)| = OP(n−ζ).

Proof of Lemma A.2. Let Rn(b, c) = n−1
∑n

i=1|1(εi/σ≤c+x′inb) − 1(εi/σ≤c)| and Rn =

supc∈R sup|b|≤n1/2−ζB Rn(b, c). We show Rn = OP(n−ζ).
1. Partition the support. Because there are no marks, we take p = 0 and r = 0 so that

(A.2) and (A.3) reduce to Hr(c) = 2F(c) and Hr = 2. Partition the axis as laid out in (A.1)
with K = int(Hrn

ζ). Thus, Hr(ck)− Hr(ck−1) = Hr/K ∼ n−ζ .
2. Assign c to the partitioned support. For each c there exists a k = k(c) and grid points

ck−1, ck so that ck−1 < c ≤ ck.
3. Bound Rn(b, c). Since |b| ≤ n1/2−ζB and ck−1 < c ≤ ck,

|1(εi/σ≤c+x′inb) − 1(εi/σ≤c)| ≤ 1(εi/σ≤ck+|xin|n1/2−ζB) − 1(εi/σ≤ck−1−|xin|n1/2−ζB) = zik.

Thus, 0 ≤ Rn(b, c) ≤ R̃nk = n−1
∑n

i=1zik, which does not depend on b. In turn Rn ≤ R̃n

where R̃n = max1≤k≤K R̃nk. It suffi ces to show that R̃n = OP(n−ζ).
4. Martingale decomposition. Write R̃nk = M̃nk + M̄nk where

M̃nk = n−1
∑n

i=1(zik − Ei−1zik), M̄nk = n−1
∑n

i=1Ei−1zik.

It suffi ces to show that M̃n = max1≤k≤K |M̃nk| and M̄n = max1≤k≤K M̄nk are OP(n−ζ).
5. Conditional mean of zik. The indicator function zik is Fin adapted. We find

Ei−1zik = F(ck + |xin|n1/2−ζB)− F(ck−1 − |xin|n1/2−ζB).

This can rewritten as

Ei−1zik = {F(ck + |xin|n1/2−ζB)− F(ck)}+ {F(ck)− F(ck−1)}
+ {F(ck−1)− F(ck−1 − |xin|n1/2−ζB)}.

The second term equals 1/K by construction. By the additive Lipschitz assumption (i),
the first and the third term are each bounded by CL|xin|n1/2−ζB. Overall, we get Ei−1zik ≤
1/K + C|xin|n1/2−ζ , for some C > 0. In turn,

En = E max
1≤k≤K

∑n
i=1Ei−1zik ≤ n/K + Cn1/2−ζE

∑n
i=1|xin|.

Since K ∼ nζ and E
∑n

i=1|xin| = O(n1/2) by assumption (ii), we get En = O(n1−ζ).
6. The compensator M̄n = OP(n−ζ). The Markov inequality implies that P(nζ |M̄n| >

C) ≤ Enζn|M̄n|/C for some C > 0. Note that EM̄n = n−1En. Thus, item 5 shows that
EM̄n = O(n−ζ) so that M̄n = OP(n−ζ).
7. The martingale M̃n = oP(n−ζ). We use Lemma 2.2 for

nM̃n = max
1≤k≤K

|
∑n

i=1(zik − Ei−1zik)|,
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with index ` = k so that zi` = zik, the count Ln = K and parameters λ = ζ > 0 and
υ = ς = 1 − ζ. We verify the conditions of Lemma 2.2. In item 5, it was established that
zi` = zik is Fin adapted. Further, item 5 shows that En = O(n1−ζ) = O(nς). Since 0 < ζ < 1,
then ς = 1− ζ > 0 and υ = ς > ς/2. Hence, applying Lemma 2.2, we see that,

nM̃n = n max
1≤k≤K

|M̃nk| = max
1≤k≤K

|
∑n

i=1(zik − Ei−1zik)| = oP(nυ).

In particular, M̃n = oP(nυ−1) = oP(n−ζ).

Lemma A.3 Let Assumption 3.1 hold and suppose F is multiplicatively Lipschitz (Definition
3.1). Then, for any B > 0, 0 < ζ < 1, we get

sup
c∈R

sup
|a|≤n1/2−ζB

n−1
∑n

i=1|1(εi/σ≤c+n−1/2ac) − 1(εi/σ≤c)| = OP(n−ζ).

Proof of Lemma A.3. Let ca = c + n−1/2ac so that c0 = c. Define Rn(c, ca) =
n−1
∑n

i=1|1(εi/σ≤ca)−1(εi/σ≤c)|.We show thatRn = supc∈R sup|a|≤n1/2−ζB |Rn(c, ca)| isOP(n−ζ).
1. Partition the support. Because there are no marks, we take p = 0 and r = 0 so that

(A.2) and (A.3) reduce to Hr(c) = 2F(c) and Hr = 2. Partition the axis as laid out in (A.1)
with K = int(Hrn

ζ). Thus, Hr(ck)− Hr(ck−1) = Hr/K ∼ n−ζ .
2. Assign c and ca to the partitioned support. For each ca there exists a k(ca) and grid

points ck(ca)−1, ck(ca) so that ck(ca)−1 < ca ≤ ck(ca). Lemma A.1, using the multiplicative
Lipschitz assumption shows that, for some C > 0 and some D > 2,

supc∈R sup|a|≤n1/2−ζB |k(ca)− k(c)| ≤ 2 + Cn−ζK/H ≤ D. (A.7)

3. Bound Rn(c, ca) and Rn. Add and subtract 1{εi/σ≤ck(ca)} and 1{εi/σ≤ck(c)} so that

Rn(c, ca) = n−1
∑n

i=1|1(εi/σ≤ca) − 1{εi/σ≤ck(ca)}

+ 1{εi/σ≤ck(ca)} − 1{εi/σ≤ck(c)} − 1(εi/σ≤c) + 1{εi/σ≤ck(c)}|.

By the triangle inequality we get

Rn(c, ca) ≤ Rn{ca, ck(ca)}+Rn{ck(c), ck(ca)}+Rn{c, ck(c)}. (A.8)

Accordingly, the triangle inequality gives Rn ≤
∑3

j=1Rjn where

R1n = sup
c∈R

sup
|a|≤n1/2−ζB

Rn{ca, ck(ca)},

R2n = sup
c∈R

sup
|a|≤n1/2−ζB

|Rn{ck(c), ck(ca)}|,

R3n = sup
c∈R

Rn{c, ck(c)}.

The quantities Rjn involve suprema over a, c. The next step is to replace the suprema with a
maximum over a finite number of grid point combinations. This maximum can, in turn, be
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analyzed using the iterated martingale inequality in Lemma 2.2. Thus, we start by arguing
that Rjn ≤ Tn for each j, where

Tn = max
1≤k≤K

max
k∗:k≤k∗≤k+D

n−1
∑n

i=1{1(εi/σ≤ck∗ ) − 1(εi/σ≤ck)}.

Note that the third term R3n is a special case of the first term R1n with a = 0 so that
R3n ≤ R1n. Accordingly, the triangle inequality gives Rn ≤ 2R1n +R2n.
3.1. The term R1n: For this term, note that ck(ca)−1 < ca ≤ ck(ca) so that

Rn{ca, ck(ca)} = n−1
∑n

i=1[1{εi/σ≤ck(ca)} − 1{εi/σ≤ca}] ≤ Rn{ck(ca)−1, ck(ca)},

where the bound involves grid points that are one interval apart. It is, therefore, bounded
by Tn uniformly in a, c since Tn takes maximum over pairs of grid points that are at most D
steps apart where D > 2. Hence, R1n ≤ Tn.
3.2. The term R2n: This term involves grid points k(c), k(ca) that may be more than one

point apart. Indeed, by (A.7) we have |k(ca)−k(c)| ≤ D uniformly in a, c. Thus, for any a, c
let k = min{k(ca), k(c)} and k∗ = max{k(ca), k(c)} with the property that k ≤ k∗ ≤ k +D.
As a consequence, we can bound

|Rn{ck(c), ck(ca)}| ≤ max
1≤k≤K

max
k∗:k≤k∗≤k+D

Rn(ck, ck∗) = Tn,

uniformly in a, c. Hence, taking supremum over a, c we get R2n ≤ Tn.
3.3. Combine items 3.1 and 3.2 to get Rn ≤ 2R1n +R2n ≤ 3Tn.
4. Martingale decomposition of Tn. Let zikk∗ = 1(εi/σ≤ck∗ )−1(εi/σ≤ck) and let Rn(ck, ck∗) =

M̃n(ck, ck∗) + M̄n(ck, ck∗) where

M̃n(ck, ck∗) = n−1
∑n

i=1(zikk∗ − Ei−1zikk∗), M̄n(ck, ck∗) = n−1
∑n

i=1Ei−1zikk∗ .

It suffi ces to show that M̃n = max1≤k≤K maxk∗:k≤k∗≤k+D |M̃n(ck, ck∗)|, for the martingale,
and M̄n = max1≤k≤K maxk∗:k≤k∗≤k+D M̄n(ck, ck∗), for the compensator, are OP(n−ζ).
5. Conditional mean of zikk∗ . Note that zikk∗ is an Fin adapted indicator function with

Ei−1zikk∗ = F(ck∗)− F(ck) = (1/2){Hr(ck∗)− Hr(ck)}.

Since k ≤ k∗ ≤ k + D, we bound Ei−1zikk∗ ≤ (1/2){Hr(ck+D) − Hr(ck)}. Recalling the
construction (A.4) and that Hr = 2 by item 1, we have Ei−1zikk∗ ≤ (D/2)(Hr/K) = D/K,
uniformly in i, k. Therefore,

En = E max
1≤k≤K

max
k∗:k≤k∗≤k+D

∑n
i=1Ei−1zikk∗ ≤ nD/K.

Since D is a constant, see (A.7), and K ∼ nζ we get En = O(n1−ζ).
6. The compensator satisfies M̄n = OP(n−ζ). The Markov inequality implies that

P(nζM̄n > C) ≤ EnζM̄n/C for some C > 0. Note that EM̄n = n−1En. Thus, item 5 shows
that EM̄n = O(n−ζ) so that M̄n = OP(n−ζ).
7. The martingale M̃n = oP(n−ζ). We use Lemma 2.2 for

nM̃n = max
1≤k≤K

max
k∗:k≤k∗≤k+D

|
∑n

i=1(zikk∗ − Ei−1zikk∗)|,
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with index ` = (k, k∗) so that zi` = zikk∗, υ = 1−ζ, parameters Ln = KD ∼ nζ and λ = ζ > 0
while υ = ς = 1 − ζ. We verify the conditions of Lemma 2.2. In item 5, it was established
that zi` = zikk∗ is Fin adapted. Further, item 5 shows that En = O(n1−ζ) = O(nς). Since
0 < ζ < 1, then ς = 1 − ζ > 0 and υ = ς > ς/2. Hence, applying Lemma 2.2, we see that,
nM̃n = oP(nυ) = oP(n1−ζ) so that M̃n = oP(n−ζ).

Lemma A.4 Let Assumption 3.1 hold and suppose
(i) F is additively and multiplicatively Lipschitz (Definition 3.1);
(ii) En−1

∑n
i=1 n

1/2|xin| = O(1).
Then, for any B > 0, 0 < ζ < 1,

sup
c∈R

sup
|a|,|b|≤n1/2−ζB

n−1
∑n

i=1|1(εi/σ≤c+n−1/2ac+x′inb) − 1(εi/σ≤c)| = OP(n−ζ).

Proof of Lemma A.4. Let vi(a, b, c) = |1(εi/σ≤c+n−1/2ac+x′inb)−1(εi/σ≤c)| and Vn(a, b, c) =

n−1
∑n

i=1vi(a, b, c). We show Vn = supc∈R sup|a|,|b|≤n1/2−ζB Vn(a, b, c) is OP(n−ζ).

Let ca = c+n−1/2ac. Add and subtract 1(εi/σ≤c+n−1/2ac) = 1(εi/σ≤ca) and apply the triangle
inequality to get

vi(a, b, c) ≤ |1(εi/σ≤ca+x′inb)
− 1(εi/σ≤ca)|+ |1(εi/σ≤ca) − 1(εi/σ≤c)| = vi(0, b, ca) + vi(a, 0, c).

Correspondingly, Vn(a, b, c) = Vn(0, b, ca) + Vn(a, 0, c). Taking supremum for each term gives

sup
c∈R

sup
|a|,|b|≤n1/2−ζB

|Vn(0, b, ca)| = sup
c∈R

sup
|b|≤n1/2−ζB

|Vn(0, b, c)| = V1n,

sup
c∈R

sup
|a|,|b|≤n1/2−ζB

|Vn(a, 0, c)| = sup
c∈R

sup
|a|≤n1/2−ζB

|Vn(a, 0, c)| = V2n.

Lemmas A.2, A.3, using assumptions (i, ii), show that V1n and V2n are both OP(n−ζ). Thus,
by the triangle inequality we also get Vn = OP(n−ζ).

A.4 Proof of main results

Proof of Theorem 3.1. Define Vn(a, b, c) = |Fw,pn (a, b, c) − Fw,pn (0, 0, c)|. We show that
Vn = supc∈R sup|a|,|b|≤n1/2−ζB Vn(a, b, c) is OP{n−ζ(ψ−1)/ψ} = oP(1). By the triangle inequality,

Vn(a, b, c) ≤ n−1
∑n

i=1|winε
p
i ||1(εi/σ≤c+n−1/2ac+x′inb) − 1(εi/σ≤c)|.

Apply the Hölder inequality to get, for ψ = 1 + χ > 1,

Vn(a, b, c) ≤ (n−1
∑n

i=1|winε
p
i |ψ)1/ψ(n−1

∑n
i=1|1(εi/σ≤c+n−1/2ac+x′inb) − 1(εi/σ≤c)|ψ/χ)χ/ψ. (A.9)

Notice that |1(εi/σ≤c+n−1/2ac+x′inb) − 1(εi/σ≤c)|ψ/χ = |1(εi/σ≤c+n−1/2ac+x′inb) − 1(εi/σ≤c)| and by
Lemma A.4 using Assumptions 3.1, 3.2(ib, ii), for 0 < ζ < 1,

sup
c∈R

sup
|a|,|b|≤n1/2−ζB

n−1
∑n

i=1|1(εi/σ≤c+n−1/2ac+x′inb) − 1(εi/σ≤c)| = OP(n−ζ). (A.10)
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We show that n−1
∑n

i=1|winε
p
i |ψ = OP(1). By the Markov inequality P(n−1

∑n
i=1|winε

p
i |ψ > C)

≤ E(n−1
∑n

i=1|winε
p
i |ψ)/C. Using the independence of εi and Fi−1,n in Assumption 3.1

gives E(n−1
∑n

i=1|winε
p
i |ψ) = n−1

∑n
i=1E|win|ψE|εpi |ψ. Since εi are i.i.d., E|εpi |ψ < ∞ and

n−1
∑n

i=1E|win|ψ = O(1) by Assumption 3.2(ia, iii), then E(n−1
∑n

i=1|winε
p
i |ψ) = O(1) and

n−1
∑n

i=1|winε
p
i |ψ = OP(1) by the Markov inequality. Insert this bound and (A.10) into (A.9)

to get Vn = {OP(1)}1/ψ{OP(n−ζ)}χ/ψ = OP(n−ζχ/ψ) = oP(1), as desired.

Proof of Theorem 3.2. Let Vn(c) = n−1
∑n

i=1win{ε
p
i 1(εi/σ≤c) − Ei−1ε

p
i 1(εi/σ≤c)}. We

want to prove, for all ω > 0, that Vn = supc∈R |Vn(c)| = OP(nω−1/3). Note that it suffi ces to
prove the result for all 0 < ω < 1/3.
We choose r = 1 noting H1 < ∞ by Assumption 3.2(ia) with ψ = 2. Partition the axis

as laid out in (A.1) with K = int(H1n
1/3−ω). Thus, H1(ck) − H1(ck−1) = H1/K ∼ nω−1/3.

Thus, for each c there exists ck−1, ck so ck−1 < c ≤ ck.
Decompose Vn(c) = Vn(ck) + {Vn(c)− Vn(ck)} where Vn(ck) is a discrete point term and

Vn(c)− Vn(ck) is an oscillation term. By the triangle inequality Vn ≤ V1n + V2n, where

V1n = max
1≤k≤K

|Vn(ck)|, V2n = max
1≤k≤K

sup
ck−1≤c≤ck

|Vn(c)− Vn(ck)|.

It suffi ces to show that V1n and V2n are OP(nω−1/3).
1. The term V1n is oP(nω−1/3). We use Lemma 2.1 for nVn(ck) with index ` = k so that

zi` = zik = winε
p
i 1(εi/σ≤ck), υ = 2/3+ω, parameters Ln = K and λ = 1/3−ω and ς = 1 while

r = 1. We verify the conditions of Lemma 2.1. Note that zi` is Fin adapted while Ez2
i` <∞,

since win and ε
p
i are independent with second moments by Assumptions 3.1, 3.2(ia) with

ψ = 2.
The parameter λ = 1/3− ω. The set of indices ` has size Ln = K ∼ n1/3−ω ∼ nλ where

λ > 0 for 0 < ω < 1/3.
The parameter ς = 1. Since win and εi are independent while E{εpi 1(εi/σ≤ck)}2 ≤ Eε2p

i <∞
uniformly in i, k by Assumption 3.2(ia) with ψ = 2 then

En1 = E max
1≤k≤K

∑n
i=1Ei−1z

2
ik = E max

1≤k≤K

∑n
i=1w

2
inEi−1ε

2p
i 1(εi/σ≤ck) ≤ CE

∑n
i=1w

2
in = O(n),

by Assumption 3.2(iii) with ψ = 2. We check the conditions (i, ii) of Lemma 2.1.
Condition (i) is that ς < 2υ. This holds since ς = 1 < 4/3 + 2ω = 2υ when ω > 0.
Condition (ii) is that ς + λ < υ2r with r = 1. We have ς + λ = 4/3 − ω, while υ2r =

(2/3 + ω)2 = 4/3 + 2ω.
Hence, Lemma 2.1 shows that nVn(ck) = oP(n2/3+ω) so that Vn(ck) = oP(nω−1/3).
2. The term V2n. Let Vn(c)− Vn(ck) = B1n(c, ck)−B2n(c, ck) where

B1n(c, ck) = n−1
∑n

i=1winε
p
i {1(εi/σ≤c) − 1(εi/σ≤ck)},

B2n(c, ck) = n−1
∑n

i=1winEi−1ε
p
i {1(εi/σ≤c) − 1(εi/σ≤ck)}.

Let zik = |win||εpi |{1(εi/σ≤ck) − 1(εi/σ≤ck−1)}. Using the triangle and Jensen inequalities and
noting ck−1 < c ≤ ck, we get

|B1n(c, ck)| ≤ n−1
∑n

i=1zik, |B2n(c, ck)| ≤ n−1
∑n

i=1Ei−1zik.
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A martingale decomposition gives a further bound |Vn(c)− Vn(ck)| ≤ M̃nk + 2M̄nk, where

M̃nk = n−1
∑n

i=1(zik − Ei−1zik), M̄nk = n−1
∑n

i=1Ei−1zik.

Let M̃n = max1≤k≤K M̃nk and M̄n = max1≤k≤K M̄nk. It suffi ces to show that M̃n,M̄n are
OP(nω−1/3) for all 0 < ω < 1/3.
3. Conditional moments of zik. Note that zik is Fin adapted while Ez2

ik < ∞ since win
and εpi are independent with second moments by Assumptions 3.1, 3.2(ia, iii) with ψ = 2.
In light of (A.4), (A.5), for q = 0, 1 and uniformly in k,

Ei−1z
2q

ik ≤ |win|2
q{H1(ck)− H1(ck−1)} = |win|2

q

H1/K.

In turn, we get using Assumption 3.2(iii) with ψ = 2 that, for q = 0, 1,

Enq = E max
1≤k≤K

∑n
i=1Ei−1z

2q

ik ≤ (H1/K)E
∑n

i=1|win|2
q

= O(n/K).

Finally, since K ∼ n1/3−ω we get that Enq = O(n2/3+ω).
4. The compensator M̄n isOP(nω−1/3). TheMarkov inequality implies that P(n1/3−ω|M̄n| >

C) ≤ En1/3−ω|M̄n|/C for some C > 0. Note that E|M̄n| = n−1En0 = O(nω−1/3) by item 3.
Thus, n1/3−ωM̄n = OP(1) and M̄n = OP(nω−1/3).
5. The martingale M̃n is OP(nω−1/3). We use Lemma 2.1 for nM̃n with index ` = k so

that zi` = zik, υ = 2/3 + ω, parameters Ln = K and λ = 1/3 − ω and ς = 2/3 + ω while
r = 1. We verify the conditions of Lemma 2.1. In item 3 it was established that zi` is Fin
adapted and Ez2

i` <∞.
The parameter λ = 1/3−ω > 0, since ω < 1/3. The set of indices ` has size Ln = K ∼ nλ.
The parameter ς = 2/3+ω ≥ 0, since ω > 0. Item 3 gives that En1 = O(n2/3+ω) = O(nς).
We check the conditions (i, ii) of Lemma 2.1.
Condition (i) is that ς < 2υ. This holds since ς = υ = 2/3 + ω < 2υ when ω > 0.
Condition (ii) is that ς+λ < υ2r with r = 1.We have ς+λ = 1, while υ2r = (2/3+ω)2 =

4/3 + 2ω.
Hence, Lemma 2.1 shows that nM̃n = oP(n2/3+ω) so that M̃n = oP(nω−1/3).

A.5 Proofs of application results

Introduce the two-sided empirical distribution function as follows

Gw,p
n (ã, b̃, c) = n−1

∑n
i=1winε

p
i 1(|ε̃i|≤σ̃c) = Fw,pn (ã, b̃, c)− lim

h↓0
Fw,pn (ã, b̃,−c− h),

where we recall ã, b̃ are the rescaled initial estimation errors for σ and β, respectively.
We will be interested in normalized least squares statistics Gxx,0

n (·), Gx,1
n (·), G1,0

n (·), G1,2
n (·),

where the weight indices "xx", "x" and "1" are short hand for nxinx′in, n
1/2xin and 1,

respectively. All Gn functions have argument ã, b̃, c. In this way,

Gxx,0
n (·) = Gxx,0

n (ã, b̃, c) = n−1
∑n

i=1n
1/2Nxi(xiNn

1/2)′1(|ε̃i|≤σ̃c),
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and the normalized least squares statistics (4.1)-(4.2) are

n−1/2N−1(β̂c − β) = {Gxx,0
n (·)}−1{Gx,1

n (·)}, (A.11)

σ̂2
c − σ2 =

τ c0
τ c2
{G1,0

n (·)}−1[G1,2
n (·)− σ2 τ

c
2

τ c0
G1,0
n (·)− Gx′,1

n (·){Gxx,0
n (·)}−1Gx,1

n (·)].

(A.12)

Proof of Theorem 4.1. Consistency of β̂c: We apply Theorem 3.3 to Gxx,0
n and Gx,1

n ,
noting that Assumption 4.1,I implies Assumptions 3.2 with ψ = 2 and win = nxinx

′
in and

p = 0 for Gxx,0
n and win = n1/2xin and p = 1 for Gx,1

n . We get

Gxx,0
n (·) = τ c0Σ̂n + oP(1), Gx,1

n (·) = στ c1 µ̂n + oP(1).

The denominator matrix, Gxx,0
n (·), is invertible for large n by the assumptions on Σ̂n. Also

c ≥ c0 so that τ c0 is bounded away from zero. Therefore,

Gxx,0
n (·) = τ c0Σ̂n{1 + oP(1)}, (A.13)

uniformly in c ≥ c0 > 0. Inserting the two expansions into (A.11) gives

n−1/2N−1(β̂c − β) = (τ c0Σ̂n)−1{στ c1 µ̂n + oP(1)}{1 + oP(1)} = (τ c0Σ̂n)−1στ c1 µ̂n + oP(1).

By Assumption 4.1,I,(ii), (b) then n−1/2N−1(β̂c − β)
D→ (τ c0Σ)−1στ c1µ.

Consistency of σ̂2
c : We apply Theorem 3.3 to G1,0

n and G1,2
n noting that Assumption

4.1,I,II imply Assumptions 3.2 with ψ = 2. We get

G1,0
n (·) = τ c0 + oP(1), G1,2

n (·) = σ2τ c2 + oP(1).

Note that G1,2
n (·)− σ2(τ c2/τ

c
0)G1,0

n (·) = oP(1), while

Gx′,1
n (·){Gxx,0

n (·)}−1Gx,1
n (·) = {στ c1 µ̂′n + oP(1)}(τ c0Σ̂n)−1{στ c1 µ̂n + oP(1)}{1 + oP(1)},

reducing to σ2(µ̂′nΣ̂−1
n µ̂n)(τ c1)2/τ c0 + oP(1). Combine with (A.12) to get the desired result.

Proof of Theorem 4.2. Write γ̂c = 1 − G1,0
n (·) and apply Theorem 3.3 with win = 1

and p = 0 using Assumption 4.2 to get γ̂c
P→ (1− τ c0).
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