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Abstract

The Least Trimmed Squares (LTS) estimator is a popular robust regression estima-
tor. It finds a sub-sample of h ‘good’ observations among n observations and applies least
squares on that sub-sample. We formulate a model in which this estimator is maximum
likelihood. The model has ‘outliers’ of a new type, where the outlying observations are
drawn from a distribution with values outside the realized range of h ‘good’, normal ob-
servations. The LTS estimator is found to be h1/2 consistent and asymptotically standard
normal in the location-scale case. Consistent estimation of h is discussed. The model
differs from the commonly used ε-contamination models and opens the door for statisti-
cal discussion on contamination schemes, new methodological developments on tests for
contamination as well as inferences based on the estimated good data.
Keywords: Chebychev estimator, Contamination, LMS, Least squares estimator, Lever-
age, LTS, Maxium Likelihood, Outliers, Regression, Robust statistics.

1 Introduction

The Least Trimmed Squares (LTS) estimator suggested by Rousseeuw (1984) is a popular
robust regression estimator. It is defined as follows. Consider a sample with n observations,
where some are thought to be ‘good’ and others are ‘outliers’. The user specifies that there are
h ‘good’ observations. The LTS estimator finds the h sub-sample with the smallest residual
sum of squares. Rousseeuw (1984) developed LTS in the tradition of Huber (1964) and Hampel
(1971), who were instrumental in formalizing robust statistics. Huber suggested a framework
of i.i.d. errors from an ε-contaminated normal distribution. Hampel formalized robustness and
breakdown points. The present work, with its focus on maximum likelihood, deviates from
this tradition.

Specifically, we propose a model in which the LTS estimator is maximum likelihood, a
new approach to robust statistics. In this model, we first draw h ‘good’ regression errors
from a normal distribution. Conditionally on these ‘good’ errors, we draw n − h ‘outlier’
errors from a distribution with support outside the range of the drawn ‘good’ errors. The
model is semi-parametric, so we apply a general notion of maximum likelihood. We provide an
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asymptotic theory for a location-scale model and find that the LTS estimator is h1/2-consistent
and asymptotically standard normal. More than 50% contamination can be allowed under mild
regularity conditions on the distribution function for the ‘outliers’. Interestingly, the associated
scale estimator does not require a consistency factor. In practice, h is typically unknown. We
suggest a consistent estimator for the proportion of ‘good’ observations, h/n.

The approach of asking in which model the LTS estimator is maximum likelihood is similar
to that taken by Gauss in 1809 (Hald, 2007, §5.5, 7.2). In the terminology of Fisher (1922),
Gauss asked in which continuous i.i.d. location model is the arithmetic mean the maximum
likelihood estimator and found the answer to be the normal model. Maximum likelihood
often brings a host of attractive features. The model provides interpretation and reveals the
circumstances under which an estimator works well in terms of nice distributional results and
optimality properties. Further, we have a framework for testing the goodness-of-fit, which
leads to the possibility of first refuting and then improving a model.

To take advantage of these attractive features of the likelihood framework, we follow Gauss
and suggest a model in which the LTS estimator is maximum likelihood. The model is distinc-
tive in that the errors are not i.i.d. Rather, the h ‘good’ errors are i.i.d. normal, whereas the
n− h ‘outlier’ errors are i.i.d., conditionally on the ‘good’ errors, with distributions assigning
zero probability to the realized range of the ‘good’ errors. When h = n, we have a standard
i.i.d. normal model, just as the LTS estimator reduces to the ordinary least squares (OLS)
estimator. The model is semi-parametric, so we use an extension of traditional likelihoods,
in which we compare pairs of probability measures (Kiefer and Wolfowitz, 1956) and consider
probabilities of small hyper-cubes including the data point (Fisher, 1922; Scholz, 1980).

In practice, it is of considerable interest to develop a theory for inference for LTS. Within a
framework of i.i.d. ε-contaminated errors, the asymptotic theory depends on the contamination
distribution and the scale estimator requires a consistency correction (Butler, 1982; Rousseeuw,
1984; Croux and Rousseeuw, 1992; Vı́̌sek, 2006). Since the contamination distribution is un-
known in practice, inference is typically done using the asymptotic distribution of the LTS
estimator derived as if there is no contamination. This seems fine for an infinitesimal deviation
from the central normal model (Huber and Ronchetti, 2009, §12). However, these approaches
would lead to invalid inference in case of stronger contamination - see §7.1. Within the present
framework, the asymptotic theory is simpler. Specifically, we derive the asymptotic properties
of the LTS estimator for a location-scale version of the presented model and find that the LTS
estimator has the same asymptotic theory as the infeasible OLS estimator computed from the
‘good’ data, when it is known which data are ‘good’. As the asymptotic distribution does not
depend on the contamination distribution, inference is much simpler.

In regression, a major concern is that the OLS estimator may be very sensitive to inclusion
or omission of particular data points, referred to as ‘bad’ leverage points. LTS provides one of
the first high-breakdown point estimators suggested for regression that also avoids the problem
of ‘bad’ leverage. The presented model allows ‘bad’ leverage points.

Another key feature of the LTS model presented here is a separation of ‘good’ and ‘outlying’
errors, where the ‘outliers’ are placed outside the realized range of the ‘good’, normal observa-
tions. This way, the asymptotic error in estimating the set of ‘good’ observations is so small
that it does not influence the asymptotic distribution of the LTS estimator. This throws light
on the discussion regarding estimators’ ability to separate overlapping populations of ‘good’
and ‘outlying’ observations (Riani et al., 2014; Doornik, 2016).

LTS is widely used in its own right and often as a starting point for algorithms such as the
MM estimator (Yohai, 1987) and the Forward Search (Atkinson et al., 2010). Many variants
of LTS have been developed: non-linear regression in time series (Č́ıžek, 2005), algorithms for
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fraud detection (Rousseeuw et al., 2019) and sparse regression (Alfons et al., 2013).
In all cases, the practitioner must choose h, the number of ‘good’ observations. In our

reading, this remains a major issue in robust statistics. We propose a consistent estimator
for the proportion of ‘good’ observations, h/n, in a location-scale model and study its finite
sample properties by simulation. We apply it in the empirical example in §8.

The Least Median of Squares (LMS) estimator, also suggested by Rousseeuw (1984), is
closely related to LTS. The LMS estimator seemed numerically more attractive than LTS un-
til the advent of the fast LTS approximation to LTS (Rousseeuw and van Driessen, 2000).
Nonetheless, LMS remains of considerable interest. Replacing the normal distribution in the
LTS model with a uniform distribution gives a model in which LMS is maximum likelihood.
In the supplementary material, we show that the LMS estimator is h-consistent and asymp-
totically Laplace in the location-scale case. This is at odds with the slow n1/3 consistency rate
found in the context of i.i.d. models.

We start by presenting the LTS estimator in §2. The LTS regression model is given in §3.
The general maximum likelihood concept and its application to LTS are presented in §4 with
details in Appendix A. §5 presents an asymptotic theory for LTS in the location-scale case
with proofs in Appendix B. Estimation of h is discussed in §6. Monte Carlo simulations are
presented in §7. An empirical illustration is given in §8. In a supplement, the LMS estimator
is analyzed and detailed derivations of some some identities in the LTS proof are given.

Notation: Vectors are column vectors. The transpose of a vector v is denoted v′.

2 The LTS estimator

The available data are a scalar yi and a p-vector of regressors xi for i = 1, . . . , n. We consider
a regression equation yi = β′xi + σεi with regression parameter β and scale σ.

The Least Trimmed Squares (LTS) estimator suggested by Rousseeuw (1984) is defined as
follows. Given a value of β, the residuals are ri(β) = yi − β′xi. The ordered squared residuals
are denoted r2(1)(β) ≤ · · · ≤ r2(n)(β). The user chooses an integer h ≤ n. Given that choice, the
sum of the h smallest residual squares is obtained. Minimizing over β gives the LTS estimator

β̂ = arg min
β

h∑
i=1

r2(i)(β). (2.1)

The LTS minimization classifies the observations as ‘good’ or ‘outliers’. The set of indices of
the h ‘good’ observations is an h-subset of (1, . . . , n). We let ζ̂ denote the set of indices i of the
estimated ‘good’ observations satisfying r2i (β̂) ≤ r2(h)(β̂). Rousseeuw and van Driessen (2000)

point out that β̂ is a minimizer over least squares estimators, that is β̂ = β̂ζ̂ , where

ζ̂ = arg min
ζ

∑
i∈ζ

(yi − β̂′ζxi)2 where β̂ζ = (
∑
i∈ζ

xix
′
i)
−1
∑
i∈ζ

xiyi. (2.2)

In the model proposed below, the maximum likelihood estimator for the scale is the residual
variance of the estimated ‘good’ observations

σ̂2 =
1

h

∑
i∈ζ̂

(yi − β̂′xi)2. (2.3)

We show consistency of σ̂2 in the location-scale case. The problem of estimating the scale
is intricately linked to the choice of model for the innovations εi. Previously, Croux and
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Rousseeuw (1992) considered σ̂2 in the context of a regression model with i.i.d. innovations
with distribution function F. For that model, they found that σ̂2 should be divided by a
consistency factor defined as the conditional variance of εi given that |F(εi) − 1/2| ≤ h/(2n).
In practice F is unknown, so the normal distribution is often chosen for the consistency factor.

3 The LTS regression model

We formulate the LTS model where h ‘good’ errors are assumed i.i.d. normal, while n − h
‘outliers’ are located outside the realized range of the ‘good’ errors. This differs from the
ε-contaminated normal model of Huber (1964), where i.i.d. errors are normal with probability
1 − ε and otherwise drawn from a contamination distribution. The supports of the normal
and the contamination distributions overlap in the ε-contamination case, whereas ‘good’ and
‘outlying’ observations are separated in the below LTS model.

Model 3.1 (LTS regression model). Consider the regression model yi = β′xi + σεi for data
yi, xi with i = 1, . . . , n. Let h ≤ n be given. Let x1, . . . , xn be deterministic. Let ζ be a set with
h elements from 1, . . . , n.
For i ∈ ζ, let εi be i.i.d. N(0, 1) distributed.
For j 6∈ ζ, let ξj be independent with distribution functions Gj(z) for z ∈ R, where Gj are
continuous at 0. The ‘outlier’ errors are defined by

εj = (max
i∈ζ

εi + ξj)1(ξj>0) + (min
i∈ζ

εi + ξj)1(ξj<0). (3.1)

The parameters are β ∈ Rdimx, σ > 0, ζ which is any h-subset of 1, . . . , n and Gj which are
n− h arbitrary distributions on R, that are continuous at 0.
Finally, suppose

∑
i∈ζ xix

′
i is invertible for all ζ.

The ‘outlier’ distributions Gj are parameters in the LTS model. They are constrained to
be continuous at zero to avoid overlap of ‘good’ and ‘outlier’ errors. Although the regressors
are deterministic in Model 3.1, randomness of x1, . . . , xn can be easily accommodated by a
conditional model where the set of distributions Gj(z) are replaced by the set of conditional
distributions Gj(z|xj). The likelihood below then becomes a conditional likelihood.

The LTS model allows leverage points, since Gj can vary with j. Informally, an observation
is a ‘bad’ leverage point for the OLS estimator, if that estimator is very sensitive to inclusion
or omission of that observation (Rousseeuw and Leroy, 1987, §1.1). An example is the star
data shown in Figure 8.1 and used in the empirical illustration in §8.

A consequence of the model is that the ‘good’ errors must have consecutive order statistics.
Randomly, according to the choice of Gj, some ‘outlier’ errors are to the left of the ‘good’
errors. The count of left ‘outlier’ errors is the random variable

δ =
∑
j 6∈ζ

1(ξj<0) =
∑
j 6∈ζ

1(εj<mini∈ζ εi). (3.2)

Thus, the ordered errors satisfy

ε(1) ≤ · · · ≤ ε(δ)︸ ︷︷ ︸
δ left ‘outliers’

< ε(δ+1) < · · · < ε(δ+h)︸ ︷︷ ︸
h ‘good’

< ε(δ+h+1) ≤ · · · ≤ ε(n)︸ ︷︷ ︸
n=n−h−δ right ‘outliers’

. (3.3)

The set ζ collects the indices of the observations corresponding to ε(δ+1), . . . , ε(δ+h). The diffi-
culty in robust regression is of course that the errors are unknown. We note, that the extreme
‘good’ errors, ε(δ+1) and ε(δ+h), are finite in any realization. As the ‘good’ errors are normal, the
extremes grow at a (2 log h)1/2 rate for large h, see Example 5.1 below. Likewise, the ‘outlier’
errors are also finite, but located outside the realized range from ε(δ+1) to ε(δ+h).
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4 Maximum likelihood estimation in the LTS model

The LTS model is semi-parametric. We therefore start with a general maximum likelihood
concept before proceeding to analysis of the LTS model.

4.1 A general definition of maximum likelihood

Traditional parametric maximum likelihood is defined in terms of densities, which are not
well-defined here. Thus, we follow the generalization proposed by Scholz (1980), which has
two ingredients. First, it uses pairwise comparison of measures, as suggested by Kiefer and
Wolfowitz (1956), see Johansen (1978) and Gissibl et al. (2020) for applications. This way, a
dominating measure is avoided. Second, it compares probabilities of small sets that include
the data point, following the informality of Fisher (1922). This way, densities are not needed.
Scholz’ approach is suited to the present situation, where the candidate maximum likelihood
estimator is known and we are searching for a model.

We consider data in Rn and can therefore simplify the approach of Scholz. Let P be a
family of probability measures on the Borel sets of Rn. Given a (data) point z ∈ Rn and a
distance ε > 0 define the hypercube Cε

z = (z1 − ε, z1]× · · · × (zn − ε, zn], which is a Borel set.

Definition 4.1. For P,Q ∈ P write P <z Q if lim supε→0{P(Cε
z)/Q(Cε

z)} < 1 and P ≤z Q if
lim supε→0{P(Cε

z)/Q(Cε
z)} ≤ 1, where by convention 0/0 = 1.

Following Scholz, define P,Q to be equivalent at z and write P =z Q if P ≤z Q and Q ≤z P.
We get that (i) P =z Q if and only if limε→0{P(Cε

z)/Q(Cε
z)} exists and equals 1; (ii) P <z Q

and Q <z R imply P <z R (transitivity); and (iii) P =z P for all P ∈ P (reflexivity).

Definition 4.2. Let P = {Pθ|θ ∈ Θ} be a parametrized family of probability measures. Then
Lε(θ) = Pθ(C

ε
y) is the ε-likelihood at the data point y. Further, θ̂ is a maximum likelihood

estimator if Pθ ≤y Pθ̂ for all θ ∈ Θ.

The maximum likelihood estimator is unique if P <z P̂ for all P 6= P̂. As for Scholz,
traditional maximum likelihood is a special case. Further, the empirical distribution function
is maximum likelihood estimator in a model of i.i.d. draws from an unknown distribution.

4.2 The LTS likelihood

To obtain the ε-likelihood for the LTS regression Model 3.1, we find the probability that the
random n-vector of observations yi belongs to an ε-cube Cε

z. Throughout the argument the
regressors xi are kept fixed. Conditioning ‘outliers’ on ‘good’ observations, we get

P(y ∈ Cε
z) =

∏
i∈ζ

P(zi − ε < yi ≤ zi)
∏
j 6∈ζ

P(zj − ε < yj ≤ zj | yi for i ∈ ζ). (4.1)

For the first product for ‘good’ observations, we note that εi = (yi − β′xi)/σ is standard
normal and define zβσi = (zi − β′xi)/σ and zβσεi = zβσi − ε/σ. Then, the factors of the first
product in (4.1) are Φ(zβσi )− Φ(zβσεi ), which we denote ∆εΦ(zβσi ).

For the second product, let yβσi = (yi − β′xi)/σ = εi and introduce

z̃βσj = (zβσj −min
i∈ζ

yβσi )1(zβσj <mini∈ζ y
βσ
i ) + (zβσj −max

i∈ζ
yβσi )1(zβσj >maxi∈ζ y

βσ
i )

and a similar expression z̃βσεj for zβσεj , noting that z̃βσεj = 0 if zβσεj falls within the range from
mini∈ζ εi to maxi∈ζ εi. A derivation in Appendix A shows that the factors of the second product
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in (4.1) are ∆εGj(z̃
βσ
j ) = Gj(z̃

βσ
j ) − Gj(z̃

βσε
j ). With this notation, the probability (4.1) of the

ε-cube is
P(y ∈ Cε

z) =
∏
i∈ζ

∆εΦ(zβσi )
∏
j 6∈ζ

∆εGj(z̃
βσ
j ). (4.2)

The ε-likelihood arises from the probability (4.2) evaluated in the data point. That is, we
replace the vector z by the data vector y. We define ỹβσj and ∆εGj(ỹ

βσ
j ) in a similar fashion as

before. Thus, we get the ε-likelihood

Lε(β, σ, ζ,Gj for j 6∈ ζ) =
∏
i∈ζ

∆εΦ(yβσi )
∏
j 6∈ζ

∆εGj(ỹ
βσ
j ). (4.3)

We note that the ‘good’ errors cannot be repeated due to the assumptions that the ‘good’
observations are continuous and that the centered ‘outliers’ are continuous at zero. Thus,
parameter values resulting in repetitions of the ‘good’ errors are to be ignored. As an example,
suppose we have n = 10 observations and we have chosen a β so that the residual yi − β′xi
takes the ordered values: 1,1,1,2,3,6,6,7,8,9. The values 1 and 6 are repetitions and cannot be
‘good’. Thus, for h = 3, we can only select ζ as the index triplet 7,8,9. All other choices are
asigned a zero likelihood. The issue is essentially the same as in ordinary least squares theory,
where the least squares estimator may be useful when there are repetitions, but it cannot be
maximum likelihood, as repetitions happen with probability zero under normality.

4.3 Maximum likelihood estimation

The two products in the ε-likelihood (4.3) resemble a standard normal likelihood and a product
of n−h likelihoods, each with one observations from an arbitrary distribution. We will exploit
those examples using profile likelihood arguments.

First, suppose β, σ, ζ are given. Then, the first product in the LTS ε-likelihood (4.3) is
constant. In the second product, the j-th factor only depends on Gj. Since the Gj functions

vary in a product space, we maximize each factor separately. The maximum value for ∆εGj(y
βσ
j )

is unity for any ε > 0 and regardless of the value of β, σ, ζ. The maximum is attained for any
distribution function that is continuous at zero and that rises from zero to unity over the
interval from yβσεj to yβσj . This set of distribution functions includes the distribution with a

point mass at ỹβσj , which satisfies the requirement of continuity at zero, because the ‘outliers’
are separated from the ‘good’ observations. Moreover, the point mass distribution is unique in
the limit for vanishing ε. Thus, maximizing (4.3) over Gj gives the profile ε-likelihood

LεG(β, σ, ζ) = Lε(β, σ, ζ, Ĝj for j 6∈ ζ) =
∏
i∈ζ

∆εΦ(yβσi ). (4.4)

Second, suppose ζ is given. We argue that the unique maximum likelihood estimator in
the sense of Definition 4.2 is given by

β̂ζ = (
∑
i∈ζ

xix
′
i)
−1
∑
i∈ζ

xiyi and σ̂2
ζ = h−1

∑
i∈ζ

(yi − β̂ζxi)2. (4.5)

We need to show that lim supε→0{LεG(β, σ, ζ)/LεG(β̂ζ , σ̂ζ , ζ)} < 1 for all (β, σ) 6= (β̂ζ , σ̂ζ). Note
that ε−hLεG(β, σ, ζ) converges to a standard likelihood for a regression with normal errors.
Therefore, the condition is satisfied as long as

∑
i∈ζ xix

′
i is invertible. Thus, maximizing (4.4)

over (β, σ) gives a profile ε-likelihood for ζ satisfying, for ε→ 0,

Lεβ,σ,G(ζ) = LεG(β̂ζ , σ̂ζ , ζ) = εh
∏
i∈ζ

{∆εΦ(yβ̂ζ ,σ̂ζ)/ε} = εh{(2πeσ̂2
ζ )
−h/2 + o(1)}. (4.6)
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Third, the profile likelihood is maximized by choosing ζ so that σ̂ζ is as small as possible.
We note that the maximization is subject to the constraint that none of the ‘good’ residuals
are repeated. Apart from the latter constraint, this is the Least Trimmed Squares estimator
described in (2.2). We summarize.

Theorem 4.1. The LTS regression Model 3.1 has ε-likelihood Lε(β, σ, ζ,Gj for j 6∈ ζ) defined

in (4.3). The maximum likelihood estimator is found as follows. For any h-subsample ζ, let β̂ζ
and σ̂ζ be the least squares estimators in (4.5). Let ζ̂ = arg minζ σ̂

2
ζ subject to the constraint

that ε̂i 6= ε̂` for i ∈ ζ, 1 ≤ ` ≤ n and ` 6= i and where ε̂i = yi− β̂′ζxi. Then β̂ = β̂ζ̂ and σ̂ = σ̂ζ̂ .

5 Asymptotic theory for the location-scale model

We present an asymptotic theory of the LTS estimator in the special case of a location-scale
model yi = µ + σεi. In this model, the observations yi and the unknown errors εi have the
same ranks. Thus, the ordering in (3.3) is observable and we only need to consider values of ζ
corresponding to indices of observations of the form y(δ+1), . . . , y(δ+h) for some δ = 0, . . . , n−h.
Following Rousseeuw and Leroy (1987, p. 171), the LTS estimators then reduce to µ̂ = µ̂δ̂ and
σ̂ = σ̂δ̂, where

µ̂δ =
1

h

h∑
i=1

y(δ+i), σ̂2
δ =

1

h

h∑
i=1

{y(δ+i) − µ̂δ}2 and δ̂ = arg min
0≤δ≤n−h

σ̂2
δ . (5.1)

5.1 Sequence of data generating processes

We consider a sequence of LTS models indexed by n, so that hn → ∞ as n → ∞. In this
sequence, the ‘outliers’ have a common distribution G, which is continuous at zero. If hn = n
the LTS estimator reduces to the full sample least squares estimator with standard asymptotic
theory. Here, we choose

hn/n→ λ for 0 < λ < 1, (5.2)

where λ is the asymptotic proportion of ‘good’ observations. The parameters ζn, δn vary with
n, while µ, σ,G are constant in n.

We reparametrize G in terms of separate distributions for left and right ‘outliers’. Let

ρ = G(0), G(x) = (1− ρ)−1{G(x)− ρ}1(x>0), G(x) = 1− ρ−1 lim
ε↓0

G(−x− ε)1(x>0). (5.3)

Thus, as ξj is G-distributed, we have that εj = −ξj is G-distributed when ξj < 0 and εj = ξj
is G-distributed when ξj > 0. This leads to

G(x) = {ρ+ (1− ρ)G(x)}1(x>0) + ρ{1− lim
ε↓0

G(−x+ ε)}1(x≤0).

This way, the ‘outliers’, εj for j 6∈ ζn, can be constructed through a binomial experiment
as follows. Draw n − h independent Bernoulli(ρ) variables. If the jth variable is unity then
εj = mini∈ζ εi − εj. If it is zero then εj = maxi∈ζ εi + εj. Hence, the number of left ‘outliers’ is

δn =
∑
j∈ζn

1(εj<mini∈ζn εi)
, so that δn/(n− hn)

a.s.→ ρ, (5.4)

by the Law of Large Numbers. In summary, the sequence of data generating processes is
defined by µ, σ, ρ,G,G and hn, δn.
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5.2 The main result

We show that the asymptotic distribution of the LTS estimator is the same as it would have
been, if it had been known which observations were ‘good’. Here, we consider the case where
the ‘good’ observations are normal and there are more ‘good’ observations than ‘outliers’. The
result does not require any regularity conditions for the common ‘outlier’ distribution G.

Theorem 5.1. Consider the sequence of LTS location-scale models, where hn/n → λ with
1/2 < λ < 1. Suppose that εi for i ∈ ζn are i.i.d. N(0, 1) distributed. Then, for any η > 0,

δ̂ = δn + oP(hηn), h1/2n (µ̂− µ)/σ
D→ N(0, 1), σ̂2 P→ σ2.

We expect that Theorem 5.1 would generalize to the LTS regression Model 3.1. That
is, the LTS regression estimator will have the same asymptotic theory as if we knew which
observations were ‘good’. The proof of such a result is, however, an open problem.

Theorem 5.1 for the LTS location-scale model differs from the known results for i.i.d.
models. Butler (1982) proved a general result for the model with i.i.d. errors, showing that
n1/2(µ̂− µ) is asymptotically normal when the errors are symmetric with a strongly unimodal
distribution. Further, the asymptotic variance involves an efficiency factor that differs from
unity even in the normal case. He also gives an asymptotic theory for non-symmetric errors.
Further, Vı́̌sek (2006) analyzed the regression estimator for i.i.d. errors. Johansen and Nielsen
(2016b, Theorem 5) provide an asymptotic expansion of the scale estimator under normality.

A corresponding result for the LMS estimator is given in the supplement. The LMS es-
timator is maximum likelihood in a model where the ‘good’ observations are uniform. When
there are no outliers, n = h, the LMS estimator is a Chebychev estimator. Knight (2017)
provides asymptotic analysis of Chebychev estimators in regression models. Coinciding with
that theory, Theorem C.2 shows that the LMS estimator is super-consistent at an n−1 rate
in that model, which constrasts with the well-known n−1/3 rate for i.i.d. models. However,
Theorem C.2 does require regularity conditions for the ‘outliers’ to give sufficient separation
from the ‘good’ observations.

5.3 Extentions of the main result

5.3.1 Non-normal errors

We start by relaxing the normality assumption. In the spirit of OLS asymptotics, we present
sufficient conditions for the ‘good’ errors: 2+ moments, symmetry, and exponential tails.

Assumption 5.1. Suppose εi for i ∈ ζn are i.i.d. with distribution F satisfying
(i) Eεi = 0 and Eε2i = 1 for i ∈ ζn;
(ii) E|εi|2+ω <∞ for i ∈ ζn and some ω > 0;
(iii) F has infinite support: inf{x : F(x) > 0} = −∞ and sup{x : F(x) < 1} =∞;
(iv) ε(δn+1)/ε(δn+hn) + 1 = oP(1);
(v) ∀0 < η < 1, ∃Cη < 1 : ε(δn+h1−η

n )/ε(δn+1), ε(δn+hn−h1−η
n )/ε(δn+hn) ≤ Cη + oP(1).

Example 5.1. The normal distribution satisfies Assumption 5.1.
For (iv) use that an{ε(δn+hn) − bn} converges to a type I extreme value distribution when an ∼
bn ∼ (2 log hn)1/2, see Leadbetter et al. (1982, Theorem 1.5.3). Here, ∼ denotes asymptotic
equivalence. In particular, ε(δn+hn)/bn → 1 in probability.
For (v) use Mill’s ratio Φ(x) ∼ −ϕ(x)/x for x → −∞. Take log to see that Φ−1(1/sn) ∼
−(2 log sn)1/2 for sn →∞. We find Cη ∼ (2 log hη−1n )1/2/(2 log h−1n )1/2 = (1− η)1/2 < 1.
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Example 5.2. Assumption 5.1 is satisfied by the Laplace distribution and the double geometric
distribution with probabilities (1− p)|x|p/(2− p) for x ∈ Z. The latter is not in the domain of
attraction of an extreme value distribution (Leadbetter et al., 1982, Theorem 1.7.13).
Assumption 5.1(iv) is not satisfied by td distributions with d ≥ 1 degrees of freedom. These
are in the domain of attraction of extreme value distributions of type II. Gumbel and Keeney
(1950) show that ε(δn+1)/ε(δn+hn) converges to a non-degenerate distribution with median 1.

Theorem 5.2. Consider the sequence of LTS location-scale models. Let 1/2 < λ < 1 and
suppose Assumption 5.1. Then, the limiting results in Theorem 5.1 apply.

5.3.2 More ‘outliers’ than ‘good’ observations

In this section, we allow for more ‘outliers’ than ‘good’ observations. Although in the traditional
breakdown point analysis there has to be more ‘good’ observations than ‘outliers’ (Rousseeuw
and Leroy, 1987, §3.4), in practice, LTS estimators are sometimes used with more ‘outliers’ than
‘good’ observations, as in the Forward Search algorithm (Atkinson et al., 2010) for instance.
We show that, within the LTS model framework, it is possible to allow for more ‘outliers’ than
‘good’ observations, but in this case we need some regularity conditions on the ‘outliers’ to
make sure the ‘good’ observations can be found.

Let the proportion of ‘good’ observations satisfy 0 < λ < 1. Recall, that δn/(n − hn) →
ρ = G(0) a.s. is the proportion of the ‘outliers’ that are to the left. The number of ‘outliers’
to the right is n = n − hn − δn. Define also the proportion of left and right ‘outliers’ relative
to the number of ‘good’ observations through

δn/hn
a.s.→ ω = ρ(1− λ)/λ, n/hn

a.s.→ ω = (1− ρ)(1− λ)/λ.

Regularity conditions are needed for the ‘outlier’ distribution when ω ≥ 1 or ω ≥ 1. Note
that ω = ω < 1 when the proportion of ‘good’ observations is λ > 1/3 and proportions of left
and right ‘outliers’ are the same, so that ρ = 1/2. The following definition is convenient for
analyzing the empirical distribution function of the ‘outliers’, evaluated at a random quantile.

Definition 5.1. A distribution function H is said to be regular, if it is twice differentiable on
an open interval S =]s, s[ with −∞ ≤ s < s ≤ ∞ so that H(s) = 0 and H(s) = 1 and the
density h and its derivative ḣ satisfy
(a) supx∈S h(x) <∞ and supx∈S H(x){1− H(x)}|ḣ(x)|/{h(x)}2 <∞;
(b) If limx↓s h(x) = 0 then h is non-decreasing on an interval to the right of s.
(c) If limx↑s h(x) = 0 then h is non-increasing on an interval to the left of s.

Example 5.3. The normal distribution is regular. Apply Mill’s ratio to see this. The expo-
nential distribution with H(x) = 1 − exp(−x) is also regular with S = R+ and with H(x){1 −
H(x)}|ḣ(x)|/{h(x)}2 = H(x) ≤ 1 while h(x) is decreasing as x→∞.

The following assumption requires that the ‘outlier’ distribution is regular and that the
‘outliers’ are more spread out than the ‘good’ observations.

Assumption 5.2. Let q > 4. Let ε1 be G-distributed and ε1 be G-distributed, see (5.3).
(i) If ω ≥ 1 suppose G is regular with

∫∞
0
xqdG(x) <∞ and

v = minω−1≤ς≤1 Var{ε1|ς − ω−1 ≤ G(ε1) ≤ ς} > 1.
(ii) If ω ≥ 1 suppose G is regular with

∫∞
0
xqdG(x) <∞ and
v = minω−1≤ς≤1 Var{ε1|ς − ω−1 ≤ G(ε1) ≤ ς} > 1.
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Theorem 5.3. Consider the sequence of LTS location-scale models. Let 0 < λ < 1 and suppose
Assumptions 5.1, 5.2. Then, the limiting results in Theorem 5.1 apply.

Given the novelty (and perhaps at first surprising content) of Theorem 5.3, a discussion
of this result and its relationship with Theorem 5.1 seems in order. Recall that Theorem 5.1
has no regularity conditions on the ‘outliers’. The result exploits that there are more than
50% ‘good’ observations and the thin normal tails of these ‘good’ observations separate them
sufficiently from the ‘outliers’. In Theorem 5.3 we allow less than 50% ‘good’ observations but
require regularity conditions on the outliers to ensure sufficient separation. More specifically,
the proof of Theorem 5.3 covers two situations. First, if the proportions of left and right
‘outliers’ are equal and more than 1/3 of the observations are ‘good’, then ω = ω < 1, so that
Assumptions 5.2 is non-binding. Second, in general, Assumption 5.2 (i, ii) implies that the
‘outliers’ are spread out more than the ‘good’ observations.

This has a potential parallel with the breakdown point analysis of (Rousseeuw and Leroy,
1987, §3.4), which shows that for a given dataset the distribution of the LTS estimator is
bounded with less than 50% contamination of an arbitrary type. It may still be possible
to obtain the same result allowing for more than 50% contamination that satisfies regularity
conditions of the type considered in Theorem 5.3, but we leave this as an open question.

5.4 The OLS estimator in the LTS model

We show that the least squares estimator µ̄ = n−1
∑n

i=1 yi can diverge in the sequence of LTS
models. This implies that the least squares estimator is not robust within the LTS model in
the sense of Hampel (1971). We assume all ‘outliers’ are to the right, so that ρ = 0.

Theorem 5.4. Consider the sequence of LTS location-scale models. Let 0 < λ < 1 and ρ = 0.
Suppose εi for i ∈ ζn are i.i.d. with Eεi = 0, Varεi = 1, and infinite support (Assumption
5.1,i, iii). Suppose G has finite expectation µG =

∫∞
0
{1 − G(x)}dx. Then, µ̄ diverges. Noting

that ε(hn) →∞ in probability, we have that

|ε(hn)|−1(µ̄− µ)/σ
P→ 1− λ > 0.

6 Estimation of h

The LTS regression model takes the number of good observations, h, as given. In practice,
an investigator has to choose h. We will review a commonly used method and discuss its
asymptotic properties. We will also propose some new methods for consistently estimating the
rate of outliers. The best of these methods is consistent at a log h rate.

6.1 The index plot method

A common method for estimating h is to apply a high breakdown point LTS estimator selecting
approximately n/2 observations, then compute scaled residuals for all observations and keep
those observations for which the scaled residuals are less than 2.5 in absolute value. This is
conveniently done using an index plot (Rousseeuw and Leroy, 1987; Rousseeuw and Hubert,
1997). More specifically, scaled residuals ε̂iς are plotted against the index i. Here, the consis-
tency factor ς = 0.615 is the conditional standard deviation of εi given that 1/4 < Φ(εi) < 3/4
(Croux and Rousseeuw, 1992). Bands on ±2.5 are displayed on the plot and observations
corresponding to scaled residuals ε̂iς beyond these bands are declared outliers. Hence, the
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estimator of h is ĥIP =
∑n

i=1 1(|ε̂iς|>2.5). We note that when scaling the residuals, one has to
take a stand on the model for the data. Further, with the index plot method, the choice of
consistency factor is based on the assumption that all errors are i.i.d. normal.

We can analyze the asymptotic properties of the index plot method using Theorems 4, 5, 7
in Johansen and Nielsen (2016b). This will show, that in a clean, normal sample, the index plot
method, asymptotically, finds γ̂IP = ĥIP/n→P γ = P(|εi| > 2.5) = 2Φ(−2.5) = 1.24% outliers.
In the terminology of Hendry and Santos (2010); Castle et al. (2011), γ is the asymptotic gauge
of the procedure. Thus, the index plot method will on average estimate a non-zero proportion
of outliers, even in uncontaminated samples.

6.2 Methods based on the LTS model

We consider methods for consistent estimation of the proportion of ‘good’ observations in the
LTS model. This is a semi-parametric model selection problem where the dimension of the
parameter space increases with decreasing h, since the number of Gj functions increases when
the number of ‘outliers’ increases. We consider three estimation methods. In all cases, suppose
h ≥ h where h > dimxi is a lower bound chosen by the user.

Maximum likelihood. We argue that ĥ = h is maximum likelihood estimator for h. Let
Lε(β, σ, ζ,Gj, h) be the ε-likelihood given in (4.3) for each h. Let σ̂h denote the maximum
likelihood estimator in Theorem 4.1 for each h. By (4.6), the profile likelihood for h is

L̂εβ,σ,ζ,G(h) = εh{(2πeσ̂2
h)
−h/2 + o(1)}.

We note that σ̂2
h > 0 for all h ≥ h, so that εh−hL̂εh/L̂

ε
h is bounded uniformly in h. Thus,

L̂εh/L̂
ε
h → 0 as ε→ 0 whenever h > h, so that ĥ = h.

An information criteria. Penalizing log σ̂2
h gives the information criteria

ICh = log(σ̂2
h) + f(n){(n− h)/n}, (6.1)

for a penalty f . Let ĥIC be the minimizer. Then λ̂IC = ĥIC/n estimates the proportion of
‘good’ observations, λ◦ say. Below, we argue, for the location-scale case, that λ̂IC is consistent
if the penalty is chosen so that f(n) → ∞ for increasing n, but f(n) < λ−1◦ log log n, where
0 < λ◦ ≤ 1. If, for instance, it is expected that more than half of the observations are ‘good’,
so that λ◦ > 1/2, the penalty can be chosen as f(n) = 2 log log n. The intuition is as follows.

Consider data generating processes as in §5.1 and let h◦n denote the number of ‘good’
observations, so that h◦n/n → λ◦. We want to show that λ̂IC = λ◦ in the limit. Theorem
5.1 shows that σ̂2

h◦n
is consistent for σ2 when h = h◦n. Thus, we consider sequences hn so that

hn/n→ λ 6= λ◦ and argue that IChn − ICh◦n ∼ log(σ̂2
hn
/σ2) + f(n)(λ◦−λ) has a positive limit,

so that the minimizer λ̂IC = λ◦ in the limit.
Suppose λ < λ◦. In that case, one could expect that, asymptotically, the estimated set of

‘good’ observations is a subset of the good observations, so that ζ̂h ⊂ ζ. Further, σ̂2
h converges

to σ2
λ, say, the variance of a truncated normal distribution as analyzed by Butler (1982). Then,

IChn − ICh◦n ∼ log(σ2
λ/σ

2) + f(n)(λ◦ − λ), which is positive in the limit when f(n) diverges.

Thus, λ̂IC ≥ λ◦ in the limit.
Suppose λ > λ◦. Then IChn − ICh◦n ∼ log(σ̂2

hn
/σ2) − f(n)(λ − λ◦), where the penalty

terms is negative, so that f(n) must be chosen carefully. With the normal LTS model, σ̂2
hn

must diverge. The reason is that, for λ > λ◦, the estimated set of ‘good’ observations ζ̂h
includes both ‘good’ observations and ‘outliers’. The ‘outliers’ diverge at a (2 log h◦n)1/2 rate,
see Example 5.1, so that σ̂2

hn
must diverge at a 2 log h◦n rate. Noting that h◦n ∼ nλ◦, we get
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IChn − ICh◦n ∼ log log n− f(n)(λ− λ◦). When 1/2 < λ◦ < λ ≤ 1, we have λ− λ◦ < 1/2, and

the log log n term dominates when f(n) ≤ 2 log log n. Thus, λ̂IC ≤ λ◦ in the limit.
Combining these arguments indicates that λ̂IC = λ◦ in the limit. Unfortunately, in simu-

lations that are not reported here, we find that a 2 log log n penalty grows so slowly in n that
for some specifications the consistency is only realized for extremely large samples.

Cumulant based normality test. A more useful estimator for the proportion of ‘good’ ob-
servations λ is the minimizer ĥT , say, of the normality test statistic

Th = hκ̂23,h/6 + hκ̂24,h/24, (6.2)

based on third and fourth cumulants of the estimated ‘good’ residuals. We argue that ĥT/n is
consistent for λ◦. This is supported by a simulation study in §7.2.

The intuition of the consistency argument is similar to that for the information criteria.
First, for h = h◦n, Theorem 5.1 may be extended to show that Th0 is asymptotically χ2

2. For
h < h◦n, the sample moments may converge to the moments of a truncated normal distribution,
see Berenguer-Rico and Nielsen (2017). Thus, Th would diverge as it is normalized using the
normal distribution. For h > h◦n, the estimated set of ‘good’ observations ζ̂h contains both
‘good’ and ‘outlying’ observations, so that Th diverges at a logarithmic rate, instead of the
iterated logarithmic rate for the information criteria. A formal proof is left for future work.

7 Simulations

7.1 Inference in the location-scale model

In the location-scale model yi = µ + σεi, we study the finite sample properties of tests for
µ = 0 using four different tests statistics and six different data generating processes, which we
describe below. We consider sample sizes n = 25, 100, 400, 1600 and let h/n = λ = 0.8.

Tests. We consider four different estimators: LTS, LMS, OLS and SLTS (scale-corrected
LTS estimator). For each estimator, s say, we compute t-type statistics, ts = (µ̂s − µ)/ses,
with associated asymptotic 95% quantiles qs.

For the OLS estimator, we have µ̂OLS = n−1
∑n

i=1 yi and se2OLS = σ̂2
OLS/n with σ̂2

OLS =
n−1

∑n
i=1(yi − ȳ)2. The asymptotic quantile qOLS is standard normal.

For the LTS estimator, we apply the estimators µ̂LTS and σ̂LTS given in (5.1). By Theorem
5.2 we get that se2LTS = σ̂2

LTS/h. The asymptotic quantile qLTS is standard normal.
For the LMS estimator, we apply the estimators µ̂LMS and σ̂LMS given in (C.4). Theorem

C.2 gives that se2LMS = σ̂2
LMS/h

2. The asymptotic quantile qLMS is standard Laplace.
Finally, SLTS uses the usual approach to LTS estimation with consistency and efficiency

correction factors arising from truncation in a standard normal distribution as outlined in the
end of §2. Let ς2h/n =

∫ c
−c x

2ϕ(x)dx/
∫ c
−c ϕ(x)dx with c chosen so that

∫ c
−c ϕ(x)dx = h/n, which

gives ς20.8 = 0.438. Then, we have estimators µ̂SLTS = µ̂LTS and σ̂2
SLTS = σ̂2

LTS/ς
2
h/n, while

se2SLTS = σ̂2
SLTS/(nς

2
h/n). The asymptotic quantile qSLTS is standard normal.

Data Generating Processes (DGPs). Table 7.1 gives an overview of the DGPs. The first
three DGPs are examples of the LTS Model 3.1 and the LMS Model C.1. The proportion of
‘good’ observations is λ = 80%. The ‘good’ errors εi are i.i.d. normal N(0, 1) in DGP1 and
DGP2 and i.i.d. uniform U[−1, 1] in DGP3. The ‘outlier’ errors are defined as in (3.1), so that
εj = (maxi∈ζ εi + ξj)1(ξj>0) + (mini∈ζ εi + ξj)1(ξj<0), where ξj − ν+1(ξj>0) + ν−1(ξj<0) are i.i.d.
normal N(0, 1) and ν+ and ν− separate ‘good’ and ‘outlying’ observations. The separators are
ν+ = ν− = 0 in DGP1 and ν+ = 3, ν− = 1 in DGP2 and DGP3.
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Model MLE ‘good’ error ‘outliers’
DGP1 LTS LTS N(0, 1) ν+ = ν− = 0
DGP2 LTS LTS N(0, 1) ν+ = 3, ν− = 1
DGP3 LMS LMS U(−1, 1) ν+ = 3, ν− = 1
DGP4 ε-contamination OLS N(0, 1) N(0, 1)
DGP5 ε-contamination — N(0, 1) N(0, 3)
DGP6 ε-contamination — N(0, 1) N(2, 1)

Table 7.1: Data generating processes. The proportion of good errors is λ = 0.8. Columns 2
and 3 show the model and indicate which estimator is maximum likelihood. Columns 4 and 5
indicate how the ‘good’ and the ‘outlying’ errors are chosen.
For DGP1 – DGP3: λn ‘good’ observations,‘outliers’ have ξj − ν+1(ξj>0) + ν−1(ξj<0) is N(0, 1).
For DGP4 – DGP6: distribution is λN(0, 1) + (1− λ)H.

OLS LTS

n DGP1 2 3 4 5 6 DGP1 2 3 4 5 6

25 0.092 0.084 0.084 0.067 0.066 0.359 0.255 0.081 0.072 0.371 0.337 0.388

100 0.083 0.129 0.199 0.054 0.054 0.887 0.180 0.058 0.055 0.383 0.345 0.518

400 0.100 0.321 0.664 0.051 0.051 1.000 0.110 0.052 0.051 0.389 0.349 0.827

1600 0.159 0.745 0.998 0.050 0.050 1.000 0.071 0.050 0.050 0.390 0.349 0.998

LMS SLTS

n DGP1 2 3 4 5 6 DGP1 2 3 4 5 6

25 0.720 0.489 0.070 0.641 0.631 0.702 0.011 0.000 0.000 0.034 0.027 0.063

100 0.961 0.785 0.054 0.836 0.831 0.901 0.002 0.000 0.000 0.041 0.028 0.116

400 0.999 0.936 0.051 0.931 0.929 0.982 0.000 0.000 0.000 0.047 0.031 0.373

1600 1.000 0.992 0.050 0.972 0.971 0.999 0.000 0.000 0.000 0.049 0.032 0.941

Table 7.2: Simulated rejection frequencies for nominal 5% tests on intercept.

The last three DGPs are examples of ε-contamination (Huber, 1964). We draw n observa-
tions from the distribution function 0.8Φ + 0.2H, where Φ is standard normal and H represents
contamination. In DGP4, H = Φ, giving a standard i.i.d. normal model. In DGP5 and DGP6,
H is N(0, 3) and N(2, 1), giving symmetric and non-symmetric mixtures, respectively.

We have different maximum likelihood estimators for the different models. These are LTS
for DGP1 and DGP2, LMS for DGP3, and OLS for DGP4. None of the considered estimators
are maximum likelihood for DGP5 and DGP6.

Table 7.2 reports results from 106 repetitions. The Monte Carlo standard error is 0.001.
The OLS statistic is maximum likelihood with DGP4 and performs well. It performs equally

well with the symmetric, i.i.d. DGP5. For DGP1 it is slowly diverging, possibly because the
absolute sample mean is diverging with n. OLS performs poorly with the non-symmetric
DGP2, DGP3 and DGP6.

The LTS statistic is maximum likelihood with DGP1 and DGP2. The asymptotic theory
also applies for DGP3. The convergence is slow for DGP1, where there is no separation. The
LTS statistic does not perform well with ε-contamination in DGP4, DGP5 and DGP6.

The LMS statistic is maximum likelihood with DGP3 and perform well with that DGP,
but poorly with all other DGPs. The SLTS statistic is not maximum likelihood for any of the
considered models. It is calibrated to be asymptotically unbiased for DGP4 and performs well
for that model, but poorly with all other DGPs.

Overall, we see that it is a good idea to apply maximum likelihood but this does require that
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DGP1 DGP2

λ = 0.7 λ = 0.8 λ = 0.7 λ = 0.8

n ĥbias ĥsd ĥr ĥbias ĥsd ĥr ĥbias ĥsd ĥr ĥbias ĥsd ĥr

25 1.2 2.5 -1.0 2.5 0.3 2.1 -1.5 2.1

100 9.6 8.6 3.7 6.0 -0.2 4.3 -1.1 3.0

400 41.3 35.8 4.5 12.4 -0.8 2.1 X -0.8 2.0 X
1600 92.8 143.1 -0.4 3.5 X -0.8 2.0 X -0.8 2.0 X
12800 -0.7 4.2 X -0.6 4.4 X -1.2 3.2 X -1.3 3.2 X

Table 7.3: Estimating h by minimizing the Th statistic in (6.2). Here, ĥbias and ĥsd report the
simulated bias and standard deviation for ĥ, while ĥr is ticked if all simulated values of ĥ are
interior to the range from 60% to 90%.

the model specification is checked. In particular, the LTS estimator is best in DGP1–DGP3,
although with some finite sample distortion with DGP1 where ‘good’ and ‘outlying’ observa-
tions are not well-separated. The LTS estimator does not work well for the ε-contaminated
models, where a model dependent scale correction is needed. The usual approach of using the
normal scale correction as in SLTS does not work well in general. All estimators are poor for
asymmetric ε-contamination.

7.2 h estimation

Next, we study the finite sample properties of estimating h using the cumulant based normality
test statistic Th in (6.2). Results are reported in Table 7.3, based on 103 repetitions.

In each repetition, we compute the Th statistic for each h in the range from 60% to 90% of
n. The estimator of h is the minimizer of Th over that range.

The data generating processes are DGP1 and DGP2 from above. These are examples
of the LTS model, so that DGP1 has symmetric ‘outliers’ that are not separated from the
‘good’ observations, while DGP2 has asymmetric ‘outliers’ that are separated from the ‘good’
observations. For each DGP, we consider cases with 70% or 80% ‘good’ observations.

Table 7.3 reports three quantities for each of the DGPs. First, ĥbias and ĥsd are the Monte
Carlo average and standard deviation of the estimation error ĥ − h. Further, ĥr is a binary
variable, which is checked if ĥ is in the interior of the range from 60% to 90% of n for all 103

simulations. The theory suggests that the proportion h/n of ‘good’ observations is consistently
estimated, whereas h is not consistently estimated. Thus, we would expect ĥbias and ĥsd to
grow slower than linearly in n, but not to vanish.

For all the four setups, the simulations confirm that ĥ/n is consistent for λ. In DGP1, where
there is only little separation between ‘good’ and ‘outlying’ observations, the performance
differs substantially between the cases λ = 0.7 and λ = 0.8. We do not have an explanation for
this difference. Nonetheless, the estimation works much better for DGP2, with its separation
between ‘good’ observations and ‘outliers’, in both cases λ = 0.7 and λ = 0.8, matching the
theoretical discussion in the above sections.

We also considered the information criteria Φh in (6.1), but omit the results. The perfor-
mance of Φh is poor, quite possibly due to the log log n rates involved.

8 Empirical illustrations
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Figure 8.1: Star data and fit by LTS with different values of h. Log light intensity against log
temperature. Solid dots are estimated ‘good’ observations for h = 42.

We provide two empirical illustrations using the stars data of Rousseeuw and Leroy (1987) and
the state infant mortality data of Wooldridge (2015). Both analyses illustrate the estimation of
h. The second case also illustrates inference in the LTS model. Therefore, we must determine
empirically if the LTS model is appropriate. Indeed, there could be a contamination pattern
that is consistent with the ε-contamination, with the LTS model, or with neither of those. For
both illustrations, we study the source of the data to arrive at reasonable empirical models.

Throughout, we use R version 4.0.2 (R Core Team, 2020) estimating LTS using ltsReg

from the Robustbase package. Before each LTS call we apply set.seed(0).

8.1 The stars data

For this empirical illustration, we consider the data on log light intensity and log temperature
for the Hertzsprung-Russell diagram of the star cluster CYG OB1 containing n = 47 stars
as reported by Rousseeuw and Leroy (1987, Table 2.3). Figure 8.1 shows a cross plot of the
variables, where the log temperature axis is reversed. The majority of observations follow a
steep band called the main sequence. Rousseeuw and Leroy (1987) refer to the four stars to
the top right of Figure 8.1 as outliers.

By consulting the original source of the data in Humphreys (1978), see also (Vansina and
De Grève, 1982, Appendix A), we found that the 4 stars to the right of Figure 8.1 are of M-type
(observations 11, 20, 30, 34) and they are red supergiants. Further, the fifth star from the
right is of F-type (observation 7, called 44 Cyg). The next 31 stars (1 doublet) from the right
are of B-type and the remaining 11 stars (1 doublet) furthest to the left are of the O-type.
The doublets are not exact doublets in Humphreys’ original data, so this in itself should not
be seen as evidence against a normality assumption.

We fitted the linear model log light = β1 + β2log temperature + σεi. Table 8.1, left panel,
shows LTS estimates for different h values. For h = n = 47 the LTS estimator is the full
sample OLS estimator. The β estimates are the ‘raw coefficients’ found by ltsReg while σ̂ is
computed directly from (2.3) without any consistency correction. Figure 8.1 shows LTS fits
for selected values of h. It is seen that the fits rotate when h increases. Table 8.1 also reports
the Th criterion as a function of h. It is minimized for h = 42 pointing at five ‘outliers’: The
four M-stars and the F-star. This is supported by a traditional index plot, see §6.1. Figure 8.1
indicates estimated ‘good’ observations and ‘outliers’ with solid and open dots.

The estimation of h by the statistic Th appears a little shaky in Table 8.1, left panel. The
lowest value is obtained for h = 42, while the value for h = 44 is nearly as low. Table 8.1, right
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Full sample Sub sample

h β̂1 β̂2 σ̂ Th β̂1 β̂2 σ̂ Th
25 -13.62 4.22 0.18 1.72 -13.62 4.22 0.18 1.72
36 -11.49 3.71 0.27 1.98 -11.49 3.71 0.27 1.98
37 -9.00 3.16 0.28 2.49 -9.00 3.16 0.28 2.49
40 -8.58 3.07 0.31 2.13 -8.58 3.07 0.31 2.13
41 -8.50 3.05 0.33 1.26 -8.50 3.05 0.33 1.26
42 -7.40 2.80 0.37 0.39 -7.40 2.80 0.37 0.39
43 -4.06 2.05 0.40 0.69 7.88 -0.65 0.49 2.57
44 1.89 0.70 0.49 0.49 7.74 -0.62 0.51 2.76
45 7.34 -0.53 0.51 2.94 7.58 -0.59 0.53 2.73
46 6.92 -0.44 0.53 2.74 7.12 -0.49 0.55 2.83
47 6.79 -0.41 0.55 2.75

Table 8.1: Estimates by LTS and Th criterion for selecting h. Left panel has full sample. Right
panel excludes the F-type star.
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Figure 8.2: Scaled LTS residuals for h = 25, 42, 47. Kernel densities for all residuals (black,
thin) and for ‘good’ residuals (red dashed) with fitted standard normal density (blue, thick).

panel, presents results corresponding to those in the left panel when dropping the F star from
the sample. The results are the same for h ≤ 42 as for the full sample. We see that h = 42
is now a clear minimum identifying the four M-type stars as ‘outliers’. The M stars appear to
have a masking effect, where after their deletion, the F star emerges as very influential in the
sense of Rousseeuw and Leroy (1987, p. 81).

Figure 8.2 shows kernel density plots for the scaled residuals for h = 25, 42, 47. The black,
thin lines gives kernel densities for the full sample. The red, dashed lines gives kernel densities
for the estimated ‘good’ observations. The standard normal distribution is shown with a blue,
thick line. For h = 42, the red, blue and part of the black lines coincide, which indicates the
normality of the ‘good’ observations. The full sample kernel density has a probability mass in
the right tail corresponding to the four giants. There is a slight discrepancy between the full
sample and the ‘good’ kernel densities in the region from 2 to 4 corresponding to the F star. By
construction this 43rd residual will be outside the range of the 42 ‘good’ residuals, but not by
far. Kernel densities are very sensitive to the choice of kernel and bandwidth. For illustration
we chose a Gaussian kernel and bandwidth 1.5h−1/5 to get the best match of the red and blue
curves for h = 42. With that choice, we can more clearly see discrepancies between the kernel
density for the ‘good’ observations and the normal curve for h = 25, 47, that is, for the LTS
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Figure 8.3: State infant mortality rates. Th criterion as function of h.
Model for infmrt shown with (black) circles. Model for loginfmrt shown with (blue) squares.

with a high breakdown point and the OLS estimator, respectively.

8.2 State infant mortality rates

We consider 1990 data for the the United States on infant mortality rates by state, including
Washington DC, which has a particularly high infant mortality rate (Wooldridge, 2015, p.
299). The data are available as infmrt in the R package wooldridge and are taken from U.S.
Bureau of the Census (1994). We analyze two models.

The first model follows Wooldridge. It is a linear regression of the number of deaths within
the first year per 1,000 live births, infmort, on the log of per capita income, lpcinc, the log of
physicians per 100,000 members of the civilian population, lphysic, and the log of population
in thousands, lpopul. In Figure 8.3, the graph using circle symbols shows the cumulant based
criteria Th as function of h. The OLS regression is obtained for h = n = 51 and has a rather
large value of Th - notice the gap in the Th-axis - indicating that the full sample model is
mis-specified. Choosing h = 50 would lead to one ‘outlier’, which is Washington DC. However,
the Th function is minimized at h = 45 indicating six ‘outliers’: Delaware, Washington DC,
Georgia, Texas, California and Alaska (U.S. Bureau of the Census, 1994, Table 123). The
interpretation is not obvious and could be due to a missing regressor.

The second model differes in two respects. It applies logarithms to the regressand to
stabilise rates close to zero as well as for Washington DC. It also includes a regressor for the
log proportion of black people in the population, lblack (U.S. Bureau of the Census, 1992, Table
255), since infant mortality is quite different for white and black infants in most states (U.S.
Bureau of the Census, 1994, Table 123). In Figure 8.3, the graph using square symbols shows
Th versus h for this model. The minimizer is h = 50 with Washington DC as the ‘outlier’.
The minimum of 0.08 is small compared to a χ2

2 distribution, so no evidence against the LTS
model. We note that the Th function is also quite low for h in the left side of the plot, albeit
not as low as for h = 50. The estimated LTS model for h = 50 is

̂log infmrt
(s.e.)

= 4.91
(0.98)

− 0.104
(0.128)

lpcinc− 0.251
(0.093)

lphysic− 0.012
(0.019)

lpopul + 0.093
(0.014)

lblack,

σ̂ = 0.0973. (8.1)

The standard errors are the usual OLS standard errors as the LTS model appears to apply.
We conclude that the variables lpcinc and lpopul are not significant.

Changing the regressand to be measured on the original scale introduces a second ‘outlier’,
South Dakota, which has one of the lowest infant mortality rates for the black population.
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9 Discussion

Other models of the LTS type. New models and estimators can be generated by replacing the
normal assumption in the LTS models with some other distribution. For instance, the uniform
leads to the Least Median of Squares (LMS) estimator analyzed in Appendix C, while the
Laplace distribution leads to the Least Trimmed sum of Absolute deviations (LTA) estimator
(Hawkins and Olive, 1999; Hössjer, 1994; Dodge and Jurečková, 2000, §2.7). Ron Butler
has suggested to us that the approach in this paper could also be applied to the Minimum
Covariance Determinant (MCD) estimator for multivariate location and scale (Rousseeuw,
1985; Butler et al., 1993).

Inference requires a model for both ‘good’ and ‘outlying’ observations. In the presented
theory, the ‘good’ and the ‘outlying’ observations are separated. The traditional approach, as
advocated by Huber (1964), is to consider mixture distributions formed by mixing a reference
distribution with a contamination distribution. Any subsequent inference on the regression
parameter β would require a specific formulation of the ε-contaminated distribution. This is
a non-trivial practical problem. Instead, there has been a focus on showing that the bias of
estimators is bounded under contamination (Huber and Ronchetti, 2009, §4) while inference
is conducted using the asymptotic distribution that assumes all observations are i.i.d. normal,
implying that the ‘good’ observations are truncated normal. This gives a different distribution
theory for inference compared to the one presented here and simulations in §7.1 indicate that
this will not control size in general. It is therefore of interest to formulate models allowing
‘outliers’ under which consistency can be proved. The LTS model in this paper does so.
The presented simulations show that the two inferential theories are really very different. In
practice, LTS estimation should therefore be evaluated in the context of a particular model
and inference should be conducted accordingly.

Estimation of h. The suggested procedure for estimation of h seems to work well in the two
empirical illustrations. It helps in finding a satisfactory LTS model for the data. It is designed
to be consistent within the framework of LTS models where, once ‘outliers’ have been removed,
the remaining ‘good’ observations look normal. We suspect that it will not be so helpful in
situations where the data do not adhere to the LTS model, like ε-contamination models where
the error follow some non-normal, but regular distribution.

Alternative estimators of h. We have proposed consistent estimators for h/n, but it would
be useful to investigate their performance further. In a regression context, it may be worth
considering the Forward Search algorithm (Atkinson et al., 2010). Omitted regressors and
‘outliers’ may confound each other, so a simultaneous search over these may be useful as in
the Autometrics algorithm (Hendry and Doornik, 2014; Castle et al., 2020). Some asymptotic
theory for these algorithms are provided in Johansen and Nielsen (2016a,b).

Misspecification tests can be developed for the present model. The asymptotic theory
developed here shows that standard normality tests can be applied to the set of estimated ‘good’
observations. Other tests could also be investigated, in particular those that are concerned
with functional form or omission of regressors.

More ‘outliers’ than ‘good’ observations. This is allowed in the LTS model and supported by
the asymptotic analysis under regularity conditions for the ‘outliers’. This lends some support
to the practice of starting the Forward Search algorithm by an LTS estimator for fewer than
half of the observations (Atkinson et al., 2010). Whether it makes more sense to model the
‘outliers’ or the ‘good’ observations as normally distributed in this situation must rest on a
careful consideration of the data and the substantive context.
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A Derivation of the LTS likelihood

We prove that P(zj − ε < yj ≤ zj|yi for i ∈ ζ) = ∆εGj(z̃
βσ
j ) = Gj(z̃

βσε
j )− Gj(z̃

βσ
j ).

First, we prove that P0 = P(yj ≤ zj|·) = G(z̃βσj ), where the dot indicates the conditioning

set. Since εj = (yj − β′xj)/σ and zβσj = (zj − β′xj)/σ, we have that P0 = P(εj ≤ zβσj |·).
Recall that the ‘outlier’ errors are εj = (maxi∈ζ y

βσ
i +ξj)1(ξj>0) +(mini∈ζ y

βσ
i +ξj)1(ξj<0), see

(3.1) and since yβσi = εi. Further, ξj has distribution function Gj, which is continuous at zero.

As a consequence, P(mini∈ζ y
βσ
i ≤ εj ≤ maxi∈ζ y

βσ
i |·) = 0 and P(εj ≤ mini∈ζ y

βσ
i ) = P(ξj <

0) = Gj(0). Thus, P0 = P(εj ≤ zβσj |·) = Gj(0) for mini∈ζ y
βσ
i ≤ zβσj ≤ maxi∈ζ y

βσ
i .

Let P0 = P1+P2, where P1 = P{(εj ≤ zβσj )∩(ξj < 0)|·} and P2 = P{(εj ≤ zβσj )∩(ξj > 0)|·}.
By (3.1), we have (εj ≤ zβσj ) = (ξj ≤ zβσj − mini∈ζ y

βσ
i ), so that P1 can be written as

P{ξj ≤ min(zβσj −mini∈ζ y
βσ
i , 0)|·}. Hence,

P1 =

{
Gj(z

βσ
j −mini∈ζ y

βσ
i ) if zβσj < mini∈ζ y

βσ
i ,

Gj(0) if zβσj > mini∈ζ y
βσ
i .

Similarly, P2 = P{(ξj ≤ zβσj − maxi∈ζ y
βσ
i ) ∩ (ξj > 0)|·} by (3.1). If zβσj < maxi∈ζ y

βσ
i ,

then the intersection is empty. If instead zβσj > maxi∈ζ y
βσ
i , then, the intersection is the set

(0 < ξi ≤ zβσj −maxi∈ζ y
βσ
i ). Hence,

P2 =

{
0 if zβσj < maxi∈ζ y

βσ
i ,

Gj(z
βσ
j −maxi∈ζ y

βσ
i )− Gj(0) if zβσj > maxi∈ζ y

βσ
i .

Note also that if zβσj < mini∈ζ y
βσ
i , then zβσj < maxi∈ζ y

βσ
i . And, if zβσj > maxi∈ζ y

βσ
i , then

zβσj > mini∈ζ y
βσ
i . In combination, we have

P0 = P1 + P2 =


Gj(z

βσ
j −mini∈ζ y

βσ
i ) if zβσj < mini∈ζ y

βσ
i ,

Gj(0) if mini∈ζ y
βσ
i ≤ zβσj ≤ maxi∈ζ y

βσ
i ,

Gj(z
βσ
j −maxi∈ζ y

βσ
i ) if zβσj > maxi∈ζ y

βσ
i .

Recall the notation z̃βσj = (zβσj −mini∈ζ εi)1(zβσj <mini∈ζ εi)
+ (zβσj −maxi∈ζ εi)1(zβσj >maxi∈ζ εi)

. We

then get P0 = P(yj < zj|·) = Gj(z̃
βσ
j ).

Second, similarly, P(yj < zj − ε|·) = Gj(z̃
βσε
j ). Combining, the desired result follows.

B Proofs of asymptotic theory for the LTS model

We start with some preliminary extreme value results, which then allows analysis of the case
with more ‘good’ observations than ‘outliers’. Then some results on empirical processes follows,
which are needed for the general case.

B.1 Extreme values

For a distribution function F define the quantile function Q(ψ) = inf{c : F(c) ≥ ψ}.

Lemma B.1. Suppose F(c) = 0 for c < 0. Let ψn = oP(1). Then Qn(ψn) = OP(1).
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Proof. Let a small ε > 0 be given. Then a finite x ≥ 0 exists to that f = F(x) ≥ 1−ε. We show
Pn = P(An) ≤ 2ε where An = {Qn(ψn) ≥ x}. Applying Fn, we get An = {ψn ≥ Fn(x)}. By the
Law of Large Numbers, Fn(x) = f+oP(1). Hence, if Bn = {Fn(x) > f−ε} then Pn(Bn) > 1−ε
for large n. Since An = (An ∩Bn)∪ (An ∩Bc

n), we have An ⊂ (An ∩Bn)∪Bc
n. Here, P(Bc

n) ≤ ε
by construction. Moreover, An ∩Bn ⊂ (ψn > f − ε) where P(ψn > f − ε) ≤ ε for large n since
ψn = oP(1) by assumption. Thus, Pn ≤ 2ε.

Lemma B.2. Suppose ε1, . . . , εn are i.i.d. with E|εi|q <∞ for some q > 0. Then ε(n) = oP(n1/p)
for any p < q.

Proof. We show Pn = P{ε(n) ≥ εn1/p} → 0 for any ε > 0. Write Pn = P ∪ni=1 (εi ≥ εn1/p).
Boole’s inequality gives Pn ≤

∑n
i=1 P(εi ≥ εn1/p) = nP(ε1 ≥ εn1/p). Markov’s inequality gives

Pn ≤ n1−q/pE|εi|q, which vanishes for p < q.

B.2 Fewer ‘outliers’ than ‘good’ observations

We consider the LTS estimator under the sequence of data generating processes defined in
§5.1. The main challenge is to show that δ̂ is close to the Binomial(n − hn, ρ)-distributed
variable δn =

∑
j∈ζn 1(εj<mini∈ζn εi)

. In the following lemmas, we condition on the sequence δn,
so that the randomness stems from ‘good’ errors ε(δn+1), . . . , ε(δn+hn) and the magnitudes of
the ‘outliers’, ε(δn+1−j) for j ≤ δn and ε(j−δn−hn) for j > δn +hn. The unconditional statements

in the Theorems about δ̂ are then derived as follows. If P(δ̂ − δn ∈ In|δn) → 1 for an interval
In and a sequence δn then by the law of iterated expectations

P(δ̂ − δn ∈ In) = E{P(δ̂ − δn ∈ In|δn)} → 1, (B.1)

due to the dominated converges theorem, because P(δ̂ − δn ∈ In|δn) is bounded.
We give detailed proofs for the case δ̂ > δn, so that some of the small ‘good’ observations

are considered left ‘outliers’ and some of the small right ‘outliers’ are considered ‘good’. The
case δ̂ < δn is analogous, since we can multiply all observations by −1 and relabel left and
right. When considering δ̂ > δn we note that δ̂ − δn ≤ n. Due to the binomial construction of
δn then n = 0 a.s. when ρ = 1, so that the event δ̂ > δn is a null set. Thus, when analysing
(δ̂ − δn)/hn it suffices to consider δ̂ > δn and ρ < 1.

The next lemma concerns cases where ŝ = δ̂−δn is small. We show that the LTS estimators
are close to the infeasible OLS estimators for the ‘good’ observations. We note that, by
Lemma B.2 and Assumption 5.1(ii) that E|εi|2+ω < ∞, we can find a small η > 0 so that

ε(δn+1), ε(δn+hn) = oP(h
1/2−η
n ). We write εp

(δ̂+i)
for {ε(δ̂+i)}p.

Lemma B.3. Consider the LTS estimator under Assumption 5.1(ii). Let δ̂ = δn + OP(hηn) for

some small η > 0 defined above. Then, h
1/2
n (µ̂− µ̂δn) and σ̂2 − σ̂2

δn
are oP(1).

Proof. The estimators µ̂ and σ̂2 are formed from the sample moments of ε(δ̂+1), . . . , ε(δ̂+hn). Let

Enp =
∑hn

i=1 ε
p

(δ̂+i)
−
∑hn

i=1 ε
p
(δn+i)

. We show that En1 = oP(h
1/2
n ) and En2 = oP(hn). As remarked

above, we condition on δn and consider δ̂ > δn while assuming ρ < 1. Then

Enp =
hn+δn−δ̂∑

i=1

εp
(δ̂+i)

+
hn∑

i=hn+δn−δ̂+1

εp
(δ̂+i)
−

δ̂−δn∑
i=1

εp(δn+i) −
hn∑

i=δ̂−δn+1

εp(δn+i).
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The first and the fourth sum cancel. In the second sum, change summation index j = i−hn−
δn + δ̂, so that δ̂n + i = δn + hn + j, and replace ε(δn+hn+j) = ε(δn+hn) + ε(j). This gives

Enp =
δ̂−δn∑
i=1

{εp(δn+hn+i) − ε
p
(δn+i)

} =
δ̂−δn∑
i=1

[{ε(δn+hn) + ε(i)}p − εp(δn+i)].

Here ε(δn+hn) is the maximum and ε(δn+i) is the ith order statistic of the ‘good’ errors.
For p = 1 we find ε(δn+i) ≥ ε(δn+1) and ε(i) ≤ ε(δ̂−δn), so that

En1 ≤ (δ̂ − δn){ε(δn+hn) − ε(δn+1) + ε(δ̂−δn)}.

Here, ε(δ̂−δn) is the (δ̂− δn)/n empirical quantile in the G distribution. By assumption δ̂− δn =

OP(hηn) and n/hn → ω = (1 − λ)(1 − ρ)/λ > 0 so that (δ̂ − δn)/n = OP(hη−1n ) = oP(1).
Lemma B.1 then shows ε(δ̂−δn) = OP(1). Further, Lemma B.2 using Assumption 5.1(ii) that

E|εi|2+ω < ∞ shows that ε(δn+1), ε(δn+hn) are oP(h
1/2−η
n ) for some η < 0. In combination,

En1 = OP(hηn){oP(h
1/2−η
n ) + OP(1)} = oP(n1/2).

For p = 2 we find similarly, using the inequality (x+ y)2 ≤ 2(x2 + y2),

En2 ≤
δ̂−δn∑
i=1

{2ε2(δn+hn) + 2ε2(i) − ε2(δn+i)} ≤ 2(δ̂ − δn){ε2(δn+hn) + ε2
(δ̂−δn)

}.

Apply the above bounds δ̂ − δn = OP(hηn), ε(δn+hn) = oP(h
1/2−η
n ) and ε(δ̂−δn) = OP(1) to get

that En2 = OP(hηn)[oP{h(1/2−η)2n }+ OP(1)] = oP(hn).

The next Lemma is the main ingredient to showing consistency of δ̂, when less than half
of the observations are ‘outliers’. By Assumption 5.1(iii) we have ε−1(δn+hn)

= oP(1). It is
convenient to define sequences

sn = hηn, sn = |ε(δn+hn)|−1/2hn. (B.2)

We note that for large hn then 0 < sn < sn where sn/hn = oP(1).

Lemma B.4. Suppose Assumption 5.1(i, iii, iv, v) and let ρ < 1. Then, for some constant
C > 0, we have minsn≤s≤hn−sn h

η
n(σ̂2

δn+s
− σ̂2

δn
)→∞ in probability.

Proof. We condition on δn, which is the number of left ‘outliers’. Recall that the ordered ‘good’
observations are ε(δn+1), . . . , ε(δn+hn). As ρ, λ < 1 then n/n → ω = (1 − ρ)(1 − λ) > 0. Let
ε(δn+hn+j) = ε(δn+hn) + ε(j) for 1 ≤ j ≤ n. Expand, see §D in Supplementary material,

Ss = (σ̂2
δn+s − σ̂

2
δn)/σ = (s/hn){1− (s/hn)}ε2(δn+hn) + An, (B.3)

with coefficients An = An1 − An2 + 2An3 − 2An4 where

An1 =
1

hn

s∑
j=1

ε2(j) − {
1

hn

s∑
j=1

ε(j)}2, An3 =
1

hn

s∑
j=1

ε(j)
1

hn

hn∑
i=s+1

{ε(δn+hn) − ε(δn+i)},

An2 =
1

hn

s∑
i=1

ε2(δn+i) − {
1

hn

s∑
i=1

ε(δn+i)}2, An4 =
1

hn

hn∑
i=s+1

ε(δn+i)
1

hn

s∑
i=1

{ε(δn+hn) − ε(δn+i)}.
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We find a lower bound for An. Notice An1, An3 ≥ 0. Further, An2 ≤ h−1n
∑s

i=1 ε
2
(δn+i)

= Bn2 say.
For An4, use Jensen’s inequality, add further summand and use the Law of Large Numbers
using Assumption 5.1(i) for the unordered normal ‘good’ εδn+i to get

| 1

hn

hn∑
i=s+1

ε(δn+i)|2 ≤
1

hn

hn∑
i=s+1

ε2(δn+i) ≤
1

hn

hn∑
i=1

ε2(δn+i) =
1

hn

hn∑
i=1

ε2δn+i
P→ 1. (B.4)

Further, we have h−1n
∑s

i=1{ε(δn+hn) − ε(δn+i)} ≤ (s/hn){ε(δn+hn) − ε(δn+1)} = Bn4 say, so that
|An4| ≤ Bn4{1 + oP(1)}, where the remainder term from (B.4) is uniform in s. In combination,

Ss ≥ (s/hn)(1− s/hn)ε2(δn+hn) −Bn2 − 2Bn4{1 + oP(1)}, (B.5)

where the oP(1) term is uniform in s. We analyze separately for s ≤ sn and sn ≤ s.
1. Consider sn ≤ s ≤ hn − sn where sn/hn = |ε(δn+hn)|−1/2. Since the function x(1 − x)

is concave with roots at x = 0 and x = 1, so that, for x0 < x < 1 − x0 with 0 < x0 < 1/2,
we get x(1 − x) ≥ x0/2. Thus, 2(s/hn)(1 − s/hn) ≥ sn/hn = |ε(δn+hn)|−1/2 on the considered
range. We bound Bn2 ≤ 1 + oP(1) uniformly in s as in (B.4). For Bn4, we use s/hn ≤ 1. Thus,
(B.5) reduces to 2Ss ≥ |ε(δn+hn)|−1/2ε2(δn+hn) − 2{1 + 2ε(δn+hn) − 2ε(δn+1)}{1 + oP(1)}. Since

ε(δn+hn) → ∞ in probability and ε(δn+1)/ε(δn+hn) = −1 + oP(1) by Assumption 5.1(iv) we get
that minsn≤s≤hn−sn 2Ss ≥ |ε(δn+hn)|3/2{1 + oP(1)}. In particular, minsn≤s≤hn−sn h

η
nSs → ∞ in

probability.
2. Consider sn ≤ s ≤ sn where sn = h1−ηn for any η > 0 and sn = |ε(δn+hn)|−1/2hn, see

(B.2). We find lower bounds for the Bn` terms in (B.5).
First, Bn2 = h−1n

∑s
i=1 ε

2
(δn+i)

. Write Bn2 = h−1n {
∑rn

i=1 ε
2
(δn+i)

+
∑s

i=rn+1 ε
2
(δn+i)

}, where rn =

h1−2ηn . Since the squared order statistics decrease with increasing index we can bound Bn2 ≤
h−1n {rnε2(δn+1) + (s − rn)ε2(δn+rn)}. Bounding (s − rn) ≤ s and rn/s ≤ rn/sn = h−ηn we get

Bn2 ≤ (s/hn){h−ηn ε2(δn+1)+ε
2
(δn+rn)

}. By Assumption 5.1(iv, v) then ε(δn+1)/ε(δn+hn) = −1+oP(1)

and ε(δn+rn)/ε(δn+1) ≤ Cη+oP(1) for some Cη < 1. Then, Bn2 ≤ (s/hn)ε2(δn+hn)[h
−η
n {1+oP(1)}+

{Cη + oP(1)}{1 + oP(1)}], which reduces to (s/hn)ε2(δn+hn){Cη + oP(1)}.
Second, Bn4 = (s/hn){ε(δn+hn) − ε(δn+1)} by definition.
Insert bounds for Bn2, Bn4 in (B.5) along with s/hn ≤ sn/hn = |ε(δn+hn)|−1/2 to get

Ss ≥ (s/hn)[ε2(δn+hn) − |ε(δn+hn)|
3/2 − ε2(δn+hn){Cη + oP(1)} − 2{ε(δn+hn) − ε(δn+1)}{1 + oP(1)}].

Using that ε(δn+1)/ε(δn+hn) = −1+oP(1) and ε−1(δn+hn)
= oP(1) by Assumption 5.1(iii) gives that

Ss ≥ (s/hn)ε2(δn+hn){1−Cη+oP(1)}. Further s ≥ sn where sn/hn = h−ηn . Thus, minsn≤s≤sn h
η
nSs →

∞ in probability.

Proof of Theorem 5.2. First, we show that ŝ = δ̂ − δn = oP(hηn) for any η > 0. It suffices to
show ŝ = OP(hηn) for each η. We consider ρ < 1 and 1/2 < λ < 1 so that ω = (1− ρ)(1−λ)/λ.

Choose sn = hηn and s̄n = |ε(δn+hn)|1/2 as in (B.2). We have ŝ ≤ n ≤ n − hn, since there
are n right ‘outliers’ and n − hn ‘outliers’ in total. Here, hn satisfies hn/n → λ by (5.2),
while n/hn → ω. Thus, for large n, we have that ŝ/hn ≤ 1 − sn/hn and it suffices to show
P(sn ≤ ŝ ≤ hn− sn) vanishes. Now, ŝ is the minimizer of Ss = σ̂2

δn+s
− σ̂2

δn
. Since S0 = 0, then

P(sn ≤ ŝ ≤ hn − sn) → 0 if minsn≤s≤hn−sn h
η
n(σ̂2

δn+s
− σ̂2

δn
) → ∞ in probability. This follows

from Lemma B.4 using Assumption 5.1(i, iii, iv, v).

Second, since δ̂−δn = oP(hηn) then Lemma B.3 using Assumption 5.1(ii) shows that h
1/2
n (µ̂−

µ̂δn), σ̂2 − σ̂2
δn

are oP(1).
Third, the i.i.d. Law of Large Numbers and Central Limit Theorem using Assumption

5.1(i) show that h
1/2
n (µ̂δn − µ)/σ is asymptotically normal while σ̂2

δn
is consistent for σ2.
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B.3 Marked empirical processes evaluated at quantiles

We start with some preliminary results on marked empirical processes evaluated at quantiles.
Consider random variables εi for i = 1, . . . , n and define the marked empirical distribution

and its expectation, for c ≥ 0, by

Fpn(c) = n−1
n∑
i=1

εpi 1(εi≤c), F
p
(c) = EFpn(c) = Eεp11(ε1≤c). (B.6)

For p = 0, let F0
n = Fn. We also define the quantile function Q(ψ) = inf{c : F(c) ≥ ψ} and

the empirical quantiles Qn(ψ) = inf{c : Fn(c) ≥ ψ}. The first result follows from the theory of
empirical quantile processes.

Lemma B.5. Suppose F is regular (Definition 5.1). Then, for all ζ > 0,
(a) n1/2[Fn{Q(ψ)} − ψ] converges in distribution on D[0, 1] to a Brownian bridge;
(b) sup0≤ψ≤1 |n1/2[F{Qn(ψ)} − ψ] + n1/2[Fn{Q(ψ)} − ψ]| a.s.= o(nζ−1/4).

Proof. (a) This is Billingsley (1968, Theorem 16.4).
(b) Let D(ψ) = f{Q(ψ)}n1/2{Qn(ψ)−Q(ψ)} and write the object of interest as the sum of

n1/2[F{Qn(ψ)} − ψ] − D(ψ) and n1/2[Fn{Q(ψ)} − ψ] + D(ψ). These two terms are o(nζ−1/4)
a.s. by Csörgő (1983, Corollaries 6.2.1, 6.2.2), uniformly in ψ.

We need the following Glivenko-Cantelli result.

Lemma B.6. Let εi be i.i.d. continuous, positive random variables with E|εi|p < ∞. Then
supc>0 |Fpn(c)− F

p
(c)| = oP(1).

Proof. We note that F
p

is non-decreasing with F
p
(∞) < ∞. Since F

p
is continuous, then for

any δ > 0 exists a finite integer K ∈ N and chaining points −∞ = c0 < c1 < · · · < cK =∞ so
that max1≤k≤K{F

p
(ck)− F

p
(ck−1)} ≤ δ.

Since Fpn and F
p

are both non-decreasing we get for ck−1 < c ≤ ck the bounds

Fpn(c)− F
p
(c) ≤ {Fpn(ck)− F

p
(ck)}+ {Fp(ck)− F

p
(ck−1)},

Fpn(c)− F
p
(c) ≥ {Fpn(ck−1)− F

p
(ck−1)} − {F

p
(ck)− F

p
(ck−1)}.

In combination, |Fpn(c) − F
p
(c)| ≤ maxk−1,k |Fpn(ck) − F

p
(ck)| + {F

p
(ck) − F

p
(ck−1)}. The last

term is bounded by δ, so that supc>0 |Fpn(c) − F
p
(c)| ≤ max1≤k≤K |Fpn(ck) − F

p
(ck)| + δ. For

each k then Fpn(ck) − F
p
(ck) = oP(1) by the Law of Large Numbers, requiring εi to be i.i.d.

with E|εi|p < ∞. Since K is finite then the maximum over k also vanishes almost surely. By
choosing δ sufficiently small the overall bound is seen to be oP(1).

The next result is inspired by Johansen and Nielsen (2016a, Lemma D.11).

Lemma B.7. Let p ∈ N0. Suppose εi is positive, regular and Eεqi <∞ for some q > 2p. Then,
sup1/(n+1)≤ψ≤n/(n+1) |Fpn{Qn(ψ)} − F

p{Q(ψ)}| = oP(1).

Proof. For p = 0, then φn = n1/2[Fpn{Qn(ψ)} − F
p{Q(ψ)}] satisfies φn = n1/2[F{Qn(ψ)} − ψ].

Lemma B.5 shows that φn converges in distribution to a Brownian bridge as a process in ψ. By
Billingsley (1968, p. 142-143) then sup0≤ψ≤1 φn converges in distribution so that sup0≤ψ≤1 φn =

OP(1) and the result follows. For p ∈ N, add and subtract F
p

n{Qn(ψ)} to get

Fpn{Qn(ψ)} − F
p{Q(ψ)} = [Fpn{Qn(ψ)} − F

p{Qn(ψ)}] + [F
p{Qn(ψ)} − F

p{Q(ψ)}].
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Term 1. This is oP(1) since supc>0 |Fpn(c)− F
p
(c)| = oP(1) by Lemma B.6.

Term 2. Write Sn(ψ) = F
p{Qn(ψ)}−F

p{Q(ψ)} as integral. First, change variable u = F(c),
du = f(c)dc, so that c = Q(u). Then apply the mean value theorem, so that

Sn(ψ) =

∫ Qn(ψ)

Q(ψ)

cpf(c)dc =

∫ F{Qn(ψ)}

ψ

{Q(u)}pdu = {Q(ψ∗)}pn−1/2φn.

for an intermediate point ψ∗ so that Q(ψ∗) belongs to the interval from Q(ψ) to Qn(ψ). Since
sup0≤ψ≤1 φn = OP(1), we must show that {Q(ψ∗)}p = oP(n1/2). It suffices to show that Q(ψ)

and Qn(ψ) are oP{n1/(2p)} for ψ = n/(n+ 1).
Consider Qn(ψ). Write Qn(ψ) = max1≤i≤n εi. Lemma B.2 shows Qn(ψ) = oP{n1/(2p)} for

2p < q since Eεqi <∞ by assumption.
Consider Q(ψ). Bound |Q(ψ)| ≤ cn, where cn satisfies (n + 1)−1 = P(ε1 > cn). We must

show cn = o{n1/(2p)}. It suffices that cqn = O(n) for q > 2p. By the Markov inequality P(|ε1| >
cn) ≤ c−qn Eεqi , so that cqn ≤ (n+ 1)/Eεqi = O(n).

B.4 More ‘outliers’ than ‘good’ observations

The next lemma is needed when there are more than half of the observations are ‘outliers’. As
σ̂2
δ is not diverging, additional regularity conditions are needed to ensure that σ̂2

δ > σ̂2
δn
.

Lemma B.8. Suppose Assumption 5.2(i) holds. Let 1 ≤ ω = (1 − ρ)(1 − λ)/λ < ∞. Re-
call sn = (2 log hn)−1/4hn from (B.2). Then, conditional on δn, an ε > 0 exists so that
minhn−sn≤s≤n(σ̂2

δn+s
− σ̂2

δn
) ≥ ε+ oP(1) for large n.

Proof. The errors ε(δn+i) are standard normal order statistics for 1 ≤ i ≤ hn and ε(δn+hn+j) =

ε(δn+hn) + ε(j) for 1 ≤ j ≤ n, where εj is G-distributed. We let ε0 = 0.
It suffices to show that σ̂2

δn+s
/σ2 ≥ 1 + ε + oP(1) uniformly in s, since σ̂2

δn
/σ2 = 1 + oP(1)

by the Law of Large Numbers using Assumption 5.1(i) applied to the sample variance of the
‘good’ errors. We consider separately the cases hn ≤ s ≤ n and hn − sn ≤ s < hn.

1. Consider hn ≤ s ≤ n. In this case, σ̂2
δn+s

is the sample variance of ε(δn+s+j) = ε(δn+hn) +
ε(s−hn+j) for 1 ≤ j ≤ hn. Sample variances are invariant to the location, so that σ̂2

δn+s
=

h−1
∑h

j=1 ε
2
(s−hn+j) − {h

−1∑h
j=1 ε(s−hn+j)}2. Let As/n = {s/n− ω−1 < G(ε1) ≤ s/n}.

We argue that minhn≤s≤n σ̂
2
δn+s

/σ2 ≥ v, where v = minω−1≤ς≤1 Var(ε1|Aς). This suffices, as

v > 1 by Assumption 5.2(i). Write
∑hn

j=1 ε
p
(s−hn+j) =

∑n
k=1 ε

p
k1{ε(s−hn)<εk≤ε(s)} and let G

p

n(c) =

n−1
∑n

i=1 ε
p
i 1(εi≤c) and G

−1
n (ψ) = inf{c : G(c) ≥ ψ}, so that ε(k) = G

−1
n (k/n). Then,

n−1
hn∑
j=1

εp(s−hn+j) = G
p

n{G
−1
n (s/n)} − G

p

n[G
−1
n {(s− hn)/n}].

Apply Lemma B.7 with F = G, n = n, requiring the 4+ moments and regularity of Assumption
5.2(i), so that, uniformly in hn ≤ s ≤ n,

n−1
hn∑
j=1

εp(s−hn+j) = Eεp11{s/n−hn/n<G(ε1)≤s/n} + oP(1).

Now, hn/n→ ω−1, where ω ≥ 1 by construction. Then, Eεp11{s/n−hn/n<G(ε1)≤s/n} = Eεp11As/n +

oP(1) uniformly in hn ≤ s ≤ n. Noting that hn/n = n−1
∑hn

j=1 ε
0
(s+j) = E1As/n + oP(1), we get

h−1n

hn∑
j=1

εp(s+j) =
Eεp11As/n
E1As/n

+ oP(1) = E(εp1|As/n) + oP(1),
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so that σ̂2
δn+s

/σ2 = E(ε21|As/n) + oP(1)−{E(ε1|As/n) + oP(1)}2. Since Eε11As/n ≤ Eε1 <∞ and

E1As/n = ω−1 > 0 uniformly in s, we get E(ε1|As) ≤ ωEε1 <∞. Thus,

σ̂2
δn+s/σ

2 = E(ε21|As/n)− {E(ε1|As/n)}2 + oP(1) = Var(ε1|As/n) + oP(1).

Since the errors are uniform in s, we get minhn≤s≤n σ̂
2
δn+s

/σ2 ≥ v + oP(1) as desired.
2. Consider hn − sn ≤ s < hn where sn = (2 log hn)−1/4hn, see (B.2). In this case, we have

hn − sn ‘outliers’ and sn ‘good’ observations. Expand,

σ̂2
δn+s/σ

2 = An = An1 + An2 + An3 + 2An4, (B.7)

see §D in Supplementary material, where

An1 = h−1n

hn∑
i=s+1

{ε(δn+i) − ε(δn+hn)}2 − [h−1n

hn∑
i=s+1

{ε(δn+i) − ε(δn+hn)}]2,

An2 = (
s

hn
)2[

1

s

s∑
j=1

ε2(j) − {
1

s

s∑
j=1

ε(j)}2], An3 =
s

hn
(1− s

hn
)
1

s

s∑
j=1

ε2(j)

An4 = [h−1n

hn∑
i=s+1

{ε(δn+hn) − ε(δn+i)}]{h−1n
s∑
j=1

ε(j)}.

We note that An1, An2, An3, An4 ≥ 0. Therefore, σ̂2
δn+s

/σ2 ≥ An2.
We argue, as in part 1, that An2 ≥ v + oP(1). Indeed, since 1 > s/hn ≥ 1 − sn/hn → 1,

then n−1
∑hn−sn

j=1 εp(j) ≤ n−1
∑s

j=1 ε
p
(j) ≤ n−1

∑hn
j=1 ε

p
(j). Both bounds equal Eεp11Aω̄−1 + oP(1), so

that we can proceed as in part 1.

Proof of Theorem 5.3. We will show that ŝ = δ̂ − δn = oP(hαn) for any α > 0. It suffices to
consider the case where P(δ̂− δn > hαn)→ 0 and where ρ < 1 as remarked in §5.1. We consider
λ, ρ < 1 so that ω = (1− ρ)(1− λ)/λ satisfies 0 < ω. The case ω < 1 was covered in the proof
of Theorem 5.2. Thus, suppose ω ≥ 1.

Recall sn, sn from (B.2). In particular, hαn > sn for large n, so that P(ŝ > hαn) ≤ P(ŝ ≥ sn).
We show, that the latter probability vanishes. Note that ŝ ≤ n.

We have that ŝ is the minimizer to σ̂2
δn+s
−σ̂2

δn
, which is zero for s = δ−δn = 0. The Lemmas

B.4, B.8 using Assumption 5.2(i) show that σ̂2
δn+s
− σ̂2

δn
, asymptotically, has a uniform, positive

lower bound on each of the intervals sn ≤ ŝ ≤ hn− sn and hn− sn ≤ ŝ ≤ n. Thus, σ̂2
δn+s
− σ̂2

δn

is bounded away from zero on s ≥ sn so that P(ŝ ≥ sn)→ 0.
A similar argument applies for δ̂− δn < −hαn using Assumption 5.2(ii). The limiting results

for µ̂, σ̂2 then follow as in the proof of Theorem 5.2.

B.5 The OLS estimator in the LTS model

Proof of Theorem 5.4. The sample average satisfies (µ̄−µ)/σ = n−1
∑n

i=1 εi. Since ρ = 0 there
are only right ‘outliers’. Separate the ‘good’ observations εi for i = 1, . . . , hn with maximum
ε(hn) and ‘outliers’ εhn+j = ε(hn) + εj for j = 1, . . . , n− hn, to get

µ̄− µ
σ

=
1

n

hn∑
i=1

εi + (
n− hn
n

)ε(hn) +
1

n

n−hn∑
j=1

εj. (B.8)

Under Assumption 5.1(i, iii) the first sum vanishes by the Law of Large Numbers, while ε(hn) →
∞ in probability. Further, (n − hn)/n → 1 − λ. The second sum converges to (1 − λ)µG by
the Law of Large Numbers. Combine to see that |ε(hn)|−1(µ̂OLS − µ)/σ = 1− λ+ oP(1).
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