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Abstract

Since complete and correct a priori specifications of models for observational data never exist,
model selection is unavoidable in that context. The target of selection needs to be the process generat-
ing the data for the variables under analysis, while retaining the objective of the study, often a theory-
based formulation. Successful selection requires robustness against many potential problems jointly,
including outliers and shifts; omitted variables; incorrect distributional shape; non-stationarity; mis-
specified dynamics; and non-linearity, as well as inappropriate exogeneity assumptions. The aim
is to seek parsimonious final representations that retain the relevant information, are well speci-
fied, encompass alternative models, and evaluate the validity of the study. Our approach to doing
so inevitably leads to more candidate variables than observations, handled by iteratively switching
between contracting and expanding multi-path searches, here programmed in Autometrics.

We investigate the ability of indicator saturation to discriminate between measurement errors
and outliers, between outliers and large observations arising from non-linear responses (illustrated
by artificial data), and apparent outliers due to alternative distributional assumptions. We illustrate
the approach by exploring empirical models of the Boston housing market and inflation for the UK
(both tackling outliers and non-linearities that can distort other estimation methods). We re-analyze
the ‘local instability’ in the robust method of least median of squares shown by Hettmansperger and
Sheather (1992) using indicator saturation to explain their findings.

JEL classifications: C51, C22.
KEYWORDS: Model Selection; Robustness; Outliers; Location Shifts; Indicator Saturation; Automet-
rics.

1 Introduction

Robustness is ‘a certain resilience of conclusions to deviations from assumptions of hypothetical mod-
els’ (Koenker, 1982) using ‘procedures that are not influenced too much by small deviations from the
distributional assumptions of the model’ (Ronchetti, 1985). Both are desirable, but to achieve such
aims, robustness must go beyond just estimating by a ‘robust method’, while assuming omniscience in
all other model aspects. Complete and correct a priori specifications almost never exist for models of
observational data, so model selection is unavoidable. The target of selection must be discovering the
data generating process (DGP) for the variables being modelled while embedding the objective of the
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analysis, which is often a theory-based formulation. Successful selection requires robustifying models
against as many contaminating influences as possible which includes:

C1 omitted variables—tackled by initially including all likely explanatory variables (§3.1);
C2 inadequate dynamics—by including sufficient lags for a sequential factorization (§3.1);
C3 misspecified linearity—by a general low-dimensional non-linear representation (§3.1);
C4 outliers & incorrect distributional assumptions—by impulse-indicator saturation (IIS: §3.3);
C5 location shifts—by step-indicator saturation (SIS: §3.3);
C6 stochastic trends—by cointegration and differencing, which are well-established approaches not

considered here;
C7 invalid conditioning—by checking invariance and exogeneity (§3.4).

Crucially, C1–C7 need to be addressed jointly as much as possible to avoid confounding the problems.
Given this array of possible mistakes, we proceed by starting selection from a model that is sufficiently
general to characterize the target by allowing for these potential problems, yet sustain evaluation of the
objective.

The structure of the paper is as follows. After describing the background in Section 2, we briefly re-
hearse formulating the general unrestricted model (GUM) in Section 3 (problem C1). That requires creat-
ing lags to handle dynamics (problem C2), functional-form transformations for non-linearities (problem
C3), and indicator saturation for outliers and location shifts (problems C4 & C5). §3.2 describes the
evaluation concepts of gauge and potency and §3.3 explains indicator saturation methods, while §3.4 de-
scribes testing invariance and exogeneity (problem C7): see Engle, Hendry, and Richard (1983). Section
4 considers cases when indicator saturation provides robustness in selection, including incorrect dis-
tributional assumptions, namely fat-tailed distributions, and discriminating between non-linearities and
outliers using Autometrics with a simulation illustration (see Stillwagon, 2016, for an empirical applica-
tion). Next, section 5 reconsiders three illustrative case studies, namely re-analyzing the Boston housing
market data (§5.1); how to reveal a theoretical artefact induced by failing to model location shifts (§5.2);
and an application of all our tools to unweave a problematic case study that had revealed an intrinsic
instability in some robust estimation methods (5.3). Finally, section 6 concludes.

2 Empirical model discovery

Empirical modelling of observational data cannot usefully proceed by assuming that ceteris paribus con-
ditions can be taken to hold in reality however easily they may be imposed in theories. Economies,
societies and environmental systems all evolve and are intermittently hit by natural shocks, wars, crises,
policy changes and other, often unanticipated, events. Further, observed time-series data are often un-
certain and can be subject to substantial revisions. Both facets lead to potentially misspecified empirical
models, inducing forecast failure (a significant deterioration in forecast performance relative to the an-
ticipated outcome), and misleading policy implications. Taken together, if not tackled, these difficulties
can cast doubt on the theories used to motivate the objective of modelling, even if those theories are in
fact essentially ‘correct’. The lack of a complete and correct a priori specification of a model for obser-
vational data makes model selection unavoidable. Hence, a method of model selection that is robust to
many directions of potential misspecifications but still retains relevant theory information is needed in
many disciplines.

Hendry and Johansen (2015) provide a solution by merging theory-driven and data-driven approaches
to retain the theory objective while ensuring robustness against possible mistakes and omissions in ap-
plying that theory to non-stationary data. By orthogonalizing the variables deemed irrelevant by the
theory against those thought relevant, when the theory-model is complete and correct, selecting over a
vastly larger initial specification that nests the theory will still result in precisely the same estimates as
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directly fitting that theory to the data. But if the theory is not complete and correct, commencing from
a more general starting point will enable the discovery of a better formulation. Free lunches are rare
in economics but this is a win–win scenario. The modeller will get the same result when the theory is
correct, and an improved model if the theory is incorrect: see Hendry and Doornik (2014) for details.

In this approach, the theory-model is the null hypothesis to be evaluated stringently against a range
of likely alternatives, preferably checking if it simultaneously encompasses all its rivals to ensure severe
testing (see Mayo and Spanos, 2006, and Mayo, 2018). Seen from a philosophy of science perspective,
if it successfully does so, this provides corroboration of the theory-model in the sense of Karl Popper
(1959, 1963), even though that is the null hypothesis. That null could also be strongly rejected if many
of the rival candidate variables are found to be highly significant. Of course, the specification of a theory
by a given model is not necessarily unique, so there may be potential ‘rescue’ strategies to protect it
(see e.g., Lakatos, 1974), but repeated rejection should trigger a rethink. Conversely, after a strong
rejection, an objective researcher may seek to explore why that occurred, and will have immediate access
to information on which of the rival candidate variables led to rejection. Although that does not fully
overcome the objections to ‘accepting the alternative’ when the null is rejected, as an excluded source
may be responsible (see e.g., Harding, 1976), such information does at least point towards an improved
model–and that could be one that may actually still be consistent with the initial theory (see the examples
in Hendry and Mizon, 2011, and Hendry, 2018).

3 Automatic model discovery

In this section we describe the initial model formulation and some relevant aspects of automatic model
selection. At first sight, the initial models that are created look infeasibly large, but very general spec-
ifications are needed if the approach is to be robust to as many forms of potential misspecification as
feasible. Moreover, robustness cannot be achieved unless all the complications are tackled as jointly as
possible, otherwise misspecification in one direction can lead to another aspect of the model proxying that
misspecification and resulting in the wrong inferences. An example is non-modelled outliers (problem
C4) that lead a modeller to detect apparent non-linearities that are just an artifact due to misspecification.
By modelling the outliers jointly with possible non-linearities the modeller can discriminate between the
competing explanations on data evidence rather than ad hoc imposed assumptions. Section 4.2 examines
this particular example further.

3.1 Formulation of the general unrestricted model (GUM)

Given the r variables wt, t = 1, . . . , T , considered by the investigator, three extensions can be auto-
matically implemented to create the GUM, namely dynamics, functional-form transformations for non-
linearities and indicator variables to capture outliers and shifts. Before doing so, partition the candidate
variables into w′t = (x′t : v′t), where r1 xt are theory specified (their parameters are the ‘objective’) and
are not subject to selection, and the remaining r2 variables vt are then orthogonalized with respect to xt.
The addition of vt is to tackle problem C1.

Next, create s lags of wt to implement a sequential factorization (see Doob, 1953) and tackle prob-
lem C2: see Castle, Doornik, and Hendry (2011). Departures of linearity, C3, can be handled using
the approach of Castle and Hendry (2011): including a small set of transformations of the prinicpal
components of wt. We do not use this in the applications below.

Fourth, to tackle problems C4 and C5 of potential outliers and shifts, create T impulse indicators,
1{i=t} which are zero except for unity at observation t for t = 1, . . . , T and/or step indicators (depending
on the problem under analysis), to be added to the set of candidate variables, as discussed further in §3.3.
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The resulting GUM is given by:

yt =

r1∑
i=1

θFi xi,t +

r2∑
i=1

θivi,t +

r∑
i=1

s∑
j=1

φijwi,t−j +

s∑
j=1

ρjyt−j

+ µF +
T∑
i=1

δi1{i=t} +
T−1∑
i=2

γi1{i≤t} + εt, (1)

where εt ∼ IN[0, σ2ε ] after selection. This leads to N = r2 + r(s + 1) + 2T − 2 candidate regressors
when both impulse and step indicators are included, so N > T . The intercept and r1 variables xi,t are
‘fixed’, denoted by the superscript F on the coefficients: they are forced to be present in all estimated
models.

3.2 Evaluation of model selection

Selecting from the GUM can be automated in many ways: here we mainly use Autometrics1 (see Doornik,
2009) which seeks parsimonious well-specified final representations that retain theory insights and en-
compass rival models’ results: see Bontemps and Mizon (2008) for an overview of encompassing, and
Doornik (2008) for its role in Autometrics. Simulations are undertaken to assess the properties of selec-
tion, evaluated based on many draws of the data using the criteria of gauge and potency, as well as mean
square error measures.

For notational simplicity we stack the parameters in the GUM (1) as β =
(
θF ′, θ′, φ′, ρ′, δ′, γ′

)′.
We assume that the DGP is nested within the GUM, so, for a given DGP, let β1 = · · · = βn 6= 0, but
βn+1 = · · · = βN = 0. The estimated coefficient of variable j after selection in replication i is β̃j,i for
i = 1, 2, ...,M replications: β̃j,i = 0 when the corresponding variable is not selected in the final model.
The OLS estimates of the DGP are denoted β̂j,i.

The gauge is defined as the fraction of retained irrelevant variables, and potency as the average
retention frequency of DGP variables. Starting from the retention rate of variable j:

retention rate p̃j = 1
M

∑M
i=1 1(β̃j,i 6=0)

, j = 1, . . . , N,

potency = 1
n

∑n
j=1 p̃j ,

gauge = 1
N−n

∑N
j=n+1 p̃j .

We also calculate the following mean-square error (MSE) measures after model selection:

MSEj = M−1
∑M

i=1

(
β̃j,i − βj

)2
,

CMSEj = p̃−1j M−1
∑M

i=1

(
β̃j,i − βj

)2
1
(β̃j,i 6=0)

, (CMSEj = β2j if p̃j = 0).

The first is unconditional because it includes β̃j,i = 0 when a variable is not selected. The second is the
conditional MSE that is computed over retained variables only.

As measures of success, a gauge close to α, the significance level for selection, and potency close
to the DGP power are sought, as are small MSEs. Hendry and Doornik (2014) discuss these concepts
extensively and Johansen and Nielsen (2016) derive the distribution of the estimated gauge.

1The Autometrics algorithms are available in Doornik and Hendry, 2018 (www.doornik.com), the Excel add-in XLMod-
eler (www.xlmodeler.com), and in R (Pretis, Reade, and Sucarrat, 2018) All results reported below were obtained with
OxMetrics 8.2.
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A GUM like (1) is inevitably highly over-parametrized. Indeed, for r = 10, s = 2, T = 100 and
r1 = 4, there are N = 224 regressors in the GUM. ‘Conventional wisdom’ might suggest that selection
from such a large GUM must be inefficient as the non-null retention frequency of the procedure will be
excessive. The average number of null variables retained, k, assuming n = 0, is given by:

k =

N∑
i=0

i
N !

i! (N − i)!
αi (1− α)N−i = Nα. (2)

Provided α is appropriately controlled, the probability of retaining irrelevant variables can be small.
Assuming 150 irrelevant variables and using α = 0.0025, gives k = 0.375, so few will be significant
despite 1045 possible models. The theoretical gauge is given by k/N = α, matching the nominal
significance level on average (see Johansen and Nielsen, 2016). Adopting a smaller α reduces potency,
but does not affect theory variables as they are always retained.

3.3 Indicator saturation methods

Indicator saturation methods are a general class seeking robust inference in the presence of unknown
outliers, shifts, breaks and parameter changes by designing indicators appropriate to the problem. Such
methods do not require the signs, timings, magnitudes or durations of the breaks to be known in advance,
and shifts can occur at any point in the sample (including the last observation). Five techniques within
the indicator-saturation class that have seen empirical applications are:
IIS impulse-indicator saturation for outliers (Hendry, Johansen, and Santos, 2008, and Johansen and

Nielsen, 2009);
SIS step-indicator saturation for location shifts (Castle, Doornik, Hendry, and Pretis, 2015);
TIS trend-indicator saturation for trend breaks (Castle, Doornik, Hendry, and Pretis, 2019, with an

application in Walker, Pretis, Powell-Smith, and Goldacre, 2019);
DIS designed-indicator saturation for specific shapes (matching volcanic eruption impacts on tempera-

ture in Pretis, Schneider, Smerdon, and Hendry, 2016);
MIS multiplicative saturation for changes in other parameters (Ericsson, 2012, Kitov and Tabor, 2015).

All saturation methods lead to models with more variables than observations. Feasible estimators
select from the variables in blocks. In the simplest case of IIS this is the same as partitioning the estima-
tion sample. But, when combined with selection over other variables, it is more convenient to treat the
impulse dummy as just another variable. Selection over the blocks proceeds iteratively until convergence
under the constraint that fewer than 0.75T (say) are selected in total. After this a final model selection
step can be undertaken. Appendix C provides details of the Autometrics implementation. In general,
different ordering of the blocks can lead to different selected models. Efficient implementation of the
estimation algorithm is useful considering the huge search space. Random search would also be possible,
but has no practical advantage, except perhaps for asymptotic analysis.

Johansen and Nielsen (2009) develop IIS theory for both stationary and unit-root autoregressions,
and Johansen and Nielsen (2016) link IIS to robust statistics by showing it is an iterated 1-step Huber-
skip M-estimator. They show that for a parameter of interest β in a regression equation, the loss of
efficiency of the IIS estimator, β̃, under the null, with respect to the least squares estimator, β̂, depends
on the selection critical value, cα, and the error distribution. When the error distribution is symmetric, in
a stationary regression with r variables that have coefficient β and scaled asymptotic second moment Σ,
selecting from T impulse indicators under the null of no outliers leads to:

T 1/2(β̃ − β)
D→ Nr

[
0, σ2εΣ

−1Ωα

]
The efficiency of the IIS estimator β̃ with respect to OLS β̂ measured by Ωα depends on cα and the
distribution, but is close to (1 − α)−1Ir for small α. Thus even with N > T , the usual

√
T stationary

5



convergence rate to a normal distribution holds, correctly centered on β and with almost the standard
asymptotic variance matrix σ2εΣ

−1 but weighted by the efficiency matrix. Despite T extra candidates,
there is only a small loss of efficiency under the null for small α, against potentially large gains under
alternatives of multiple outliers and shifts.

3.4 Testing the validity of conditioning using IIS

IIS applied to models of the regressors regarded as marginal processes can be used to test parameter
constancy and valid conditioning in the conditional equation of interest. To illustrate the procedure,
consider the bivariate Normal:(

yi
zi

)
∼ IN2

[(
µy,i
µz,i

)
,

(
ω11 ω12

ω21 ω22

)]
= IN2 [µi,Ω] ,

where µy,i = β0 + β1µz,i is the theory model of interest. Then the conditional expectation is:

E[yi | zi] = µy,i + ω−122 ω12 (zi − µz,i) = β0 + (β1 − γ)µz,i + γzi. (3)

Thus, unless β1 = γ(= ω−122 ω12), the conditional expectation E[yi|zi] depends on µz,i, and will shift
whenever the mean of zi changes. Valid conditioning and parameter constancy in the regression of yi on
zi depend on the absence of µz,i from (3), which hypothesis can be tested by discovering all the shifts in
the marginal model of zi and testing their relevance in the conditional regression. IIS provides a means
of doing so: see Hendry and Santos (2010).

4 Robustness to two misspecifications

First we assess the ability of IIS to provide robustness to incorrect distributional assumptions (§4.1) and
misspecification due to unknown outliers and non-linearities (§4.2). Monte Carlo simulations are used
to examine both cases. Castle and Hendry (2014) consider model selection in under-specified equations
when there are location shifts.

4.1 IIS in fat-tailed distributions

Often normality is assumed in economic modelling, but a procedure that is robust to potentially incorrect
distributional assumptions would be preferable if its inefficiency under the null was small. IIS can pro-
vide robustness to some incorrect distributional assumptions: in particular, a fat-tailed error distribution
such as a Student-t distribution with small degrees of freedom can be designed to be closer to normal with
impulse indicators capturing the fat tails. The advantage of such a procedure when the fat-tail form is
unknown is that approximately ‘correct’ critical values are used for selection of the regressors. Consider
the relationship:

yt = β1T
−1/2z1,t + · · ·+ β12T

−1/2z12,t + εt, t = 1, ..., T,

zt ∼ IN12 [0, I12] , (4)

εt ∼ t(3), (5)

where z′t = (z1,t, · · · , z12,t), is fixed across replications, and common random numbers are used between
settings to reduce simulation variance. We create 3 different DGPs for this relationship:

DGP-A : β1 = · · · = β12 = 0;

DGP-B : β1 = 1;β2 = 2;β3 = 3;β4 = 4;β5 = 6;β6 = 8;β7 = · · · = β12 = 0;

DGP-C : as DGP-B, except (4) replaced by zj,t ∼ t(3), j = 1, . . . , 12.
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Design A(IIS) A(IIS+Z) B(IIS) B(IIS+Z) C(IIS) C(IIS+Z)

Retention rate (impulses) 0.028 0.032 0.028 0.029 0.028 0.029
MCSD (impulses) 0.018 0.020 0.018 0.018 0.018 0.018

Table 1: Average retention rate and MCSD of impulse indicators for t(3) in IIS with selection at α =
0.005. See the main text for the designs. MCSE = MCSD/M1/2 for M = 5000 replications.

DGP-B(.) NONE IIS Z IIS+Z Z IIS+Z Z IIS+Z

Unconditional MCSD (z) Conditional MCSD (z) Retention rate (z)

Relevant 0.18 0.15 0.22 0.19 0.18 0.12 0.394 0.454
Irrelevant 0.18 0.15 0.06 0.04 0.30 0.36 0.032 0.009

Table 2: MCSD and average retention rate of z variables in DGP-B, with and without IIS, and with or
without variable selection. Conditional MCSD is measured for variables having been selected; retention
amounts to potency for relevant variables, gauge for irrelevant; M = 5000, α = 0.005.

Four experiments are considered for these DGPs, based on the initial model

yt = µF + γ1z1,t + · · ·+ γ12z12,t + ut,

(IIS) forces the 12 variables to be retained in all estimated models and selection is conducted for
IIS, applied at a significance level α = 0.005;

(IIS+Z) applies selection at α = 0.005 for both the variables and impulse indicators;
(NONE) no selection (and no IIS);

(Z) selection over the zi variables but without IIS.
The intercept is included in all estimated models, but omitted from the evaluation. We use M = 5000
replications with T = 100, so β1T−1/2 = 0.1 in DGP-B.

Table 1 records the average retention rates of impulse indicators.2 The simulations are very precise
and show a relatively constant mean retention rate, little affected by the presence of variable selection,
and null or alternative. However, the Monte Carlo standard deviation (MCSD) of the average retention
rate is quite large, so the distribution of retention rates across replications varies considerably, with a
maximum of around 14%. DGP-C with t(3) distribution for all zi,t demonstrates that IIS does not get
confused by irrelevant variables having the same error distribution as the conditional model of interest.

Table 2 records the unconditional and conditional MCSDs for the z variables in DGP-B, which has the
first six variables non-null, using selection at α = 0.005. Results are averaged separately across relevant
and irrelevant variables (with the constant term and impulses ignored in the retention statistics). If the
DGP distribution is incorrectly assumed to be normal when it is in fact t(3), the gauge of 3.2% is too
high for a significance of α = 0.5%. With IIS the gauge falls to 0.9%, achieved at a higher potency: IIS
removes the fat tails, bringing the error distribution closer to normality. The simulations therefore suggest
that selection is not too ‘over-gauged’ with IIS and yet there is little effect on the potency. Although the
MCSDs for the irrelevant variables seem large conditional on their selection at 0.36 on average, they are
only selected when they are far from the population value of zero, which happens rarely even for t(3)
errors.

Figure 1 plots the unconditional distributions of two parameter estimates for DGP-B. In the first
case, the solid line, the errors are standard normal. The second case, the dashed line, is for DGP-

2Because the standard algorithm for N > T is somewhat over gauged from the retention of insignificant variables caused
by backtesting, we have backtesting in the final model selection switched off. See Appendix C.
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β5 normal, no IIS 
β5 t(3), no IIS 
β5 t(3), IIS α=0.005 
β5 t(3), LTS(0.25) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1

2

3

Density
β5 normal, no IIS 
β5 t(3), no IIS 
β5 t(3), IIS α=0.005 
β5 t(3), LTS(0.25) 

β7 normal, no IIS 
β7 t(3), no IIS 
β7 t(3), IIS α=0.005 
β7 t(3), LTS(0.25) 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

1

2

3

Density
β7 normal, no IIS 
β7 t(3), no IIS 
β7 t(3), IIS α=0.005 
β7 t(3), LTS(0.25) 

Figure 1: Estimated distribution of coefficients of z5,t and z7,t, normal errors (solid line) and t(3) errors.

B(NONE), showing that neglected t(3) errors make inference less precise. Using IIS, as shown in the
dashed line, moves the density towards that with normal errors. If the error distribution were known,
then selection could use criteria based on the relevant distribution. In practice, with unknown error
distributions, selection with IIS offers some robustness using critical values based on normality as a
reasonable approximation.

4.1.1 Least trimmed squares

Least trimmed squares (LTS) and Least median of squares (LMS) are robust estimators introduced by
Rousseeuw (1984). LTS(0.5) finds that half of the observations that minimizes the residual sum of
squares (LMS does the same for the median). LTS is regularly used as a starting point for more efficient
robust methods, because it does not require a preliminary estimate of the scale. LMS has a lower rate
of convergence, and is less used. Vı́šek (1999) provides asymptotic analysis, while Beringuer-Rico,
Johansen, and Nielsen (2019) derive settings where LTS and LMS are the maximum likelihood estimator.

Both IIS and LTS classify observations as outliers. The thin lines in Figure 1 show the distribution
of the estimated coefficients when estimating by LTS(0.25), i.e. removing a quarter of the observations.
While the objectives are the same, IIS and LTS have a very different impact on the estimated coefficients
in this setting: LTS exacerbates the problem caused by t(3) errors.

4.2 Non-linearities and outliers

We next investigate whether IIS is able to discriminate between non-linearities and outliers. We seek
robustness in both directions, so if the DGP contains non-linearities, these should be modelled by selected
non-linear functions rather than impulse indicators, and, if there are outliers, we wish to avoid retaining
non-linear functions that proxy them.

Two sources of misspecification are considered, truncation and contamination. Truncation occurs due
to missing observations. This could result in non-linear functions appearing to be linear with outliers, or
linear functions with outliers that are discrepant from the DGP in such a way as to give the impression
of non-linearity. Figure 2a shows a quadratic function with no outliers, while panel b is a linear function
with observations 1, 2, 3, as outliers, given by a 3 standard deviation shift in the mean of the linear
function. In both cases observations 4, . . . , 13 are missing

Contamination occurs when some observations are discrepant relative to the DGP. Figure 3 illustrates
this by interacting ten consecutive observations with a step dummy. In Figure 3a observations 41, . . . , 50
of a quadratic DGP are subject to a 3 standard deviation shift in the mean of the function. In panel b such
contamination is applied to a linear DGP.
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Non-linear yt (σ=0.08)  

0 20 40 60 80 100

0.25

0.50

0.75
Non-linear yt (σ=0.08)  Linear yt (σ=1, δ=3) 

0 20 40 60 80 100

0.0

2.5

5.0

Linear yt (σ=1, δ=3) 

Figure 2: Data from a quadratic DGP (panel a, left) and a linear DGP with outliers in the first three observations
(panel b, right), in both cases with observations 4, . . . , 13 missing.

Non-linear yt (σ=0.08, δ=0.3) 

0 20 40 60 80 100

0.25

0.50

0.75 Non-linear yt (σ=0.08, δ=0.3) Linear yt (σ=1, δ=3) 

0 20 40 60 80 100

0.0

2.5

5.0

Linear yt (σ=1, δ=3) 

Figure 3: Data from a quadratic DGP (panel a, left) and a linear DGP (panel b, right) with 10 contaminated
observations shown in elipses, given by a 3 standard deviation downward shift of observations 41, . . . , 50.

The quadratic and linear DGPs, using zi = i/T , are given by:

y∗i = β0 + β1zi + β2z
2
i + σui, ui ∼ IN[0, 1], i = 1, . . . , T,

DGP-Q : β0 = 0.25, β1 = 1, β2 = −1, (6)

DGP-L : β0 = 5, β1 = −5, β2 = 0. (7)

DGP-Q can be written as y∗i = 0.5− (zi − 0.5)2 + σui. Two comparisons are considered:
1. DQP-Q with truncation: y′ = (y∗1, y

∗
2, y
∗
3, y
∗
14, ..., y

∗
100) versus DGP-L with truncation and outliers:

y′ = (y∗1 + 3, y∗2 + 3, y∗3 + 3, y∗14, ..., y
∗
100).

The truncated sample is obtained by dropping observations i = 4, . . . , 13, leaving T = 90.
2. DQP-Q with contamination versus DGP-L with contamination, so in both cases:

yi = y∗i + δσ(1{41} + ...+ 1{50}).

The GUM consists of the intercept (fixed as usual), zi, z2i , and IIS. Table 3 reports the retention
rates, biases, and MSEs for selection using Autometrics with α = 0.01 and M = 5000. Two signal-to-
noise ratios are considered for each DGP and δ = −3. Average retention is reported over the first three
indicators, which correspond to outliers added to DGP-L, so are reflecting potency (bold in the table),
but gauge for DGP-Q (italic). Figure 4 demonstrates the results for one draw of the experiment, where
retained indicators are labelled.
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Rate Bias RMSE Rate Bias RMSE Rate Bias RMSE Rate Bias RMSE

σ = 0.08 σ = 0.04 σ = 1 σ = 0.5

DGP-Q with truncation DGP-L with truncation and three outliers

zi 0.997 −.0066 0.154 1.000 −.0017 0.073 0.755 1.355 2.607 0.912 0.537 1.543
z2i 0.999 .0061 0.139 1.000 .0015 0.066 0.254 −0.967 2.085 0.102 −0.365 1.268
11,12,13 0.016 0.014 0.520 0.559

DGP-Q with contamination DGP-L with contamination

zi 0.959 −0.175 0.285 1.000 −0.073 0.106 0.998 −0.388 1.552 1.000 −0.191 0.762
z2i 0.966 0.180 0.285 1.000 0.075 0.106 0.099 0.460 1.539 0.096 0.226 0.754
1j , j∈S1 0.483 0.492 0.528 0.520
1j , j 6∈S1 0.006 0.004 0.005 0.004

Table 3: Truncation experiments: observations i = 4, . . . 13 missing. Contamination: observations
S1 = {41, . . . 50} shifted by δ = −3. Rate is the retention rate of variables and impulse indicators: bold
denotes potency and italic gauge. Bias and RMSE are unconditional. M = 5000, α = 0.01.
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Figure 4: Top row records one truncated experiment and bottom row a contaminated experiment. Model fit from
Autometrics with IIS and the quadratic function when the DGP is non-linear with no outliers (left panels) or linear
with outliers (right panels).

For the non-linear DGP, the quadratic function is retained with unit probability for both large and
small signal-to-noise ratio, and the bias and MSE on the quadratic term are small. Hence, accurate
estimates of the non-linearity can be obtained despite inclusion of more variables than observations. The
three irrelevant impulse indicators in DGP-Q are retained too frequently but still close to the 1% target
size. For the linear DGP, the quadratic function is retained too often with a large signal-to-noise ratio
(at 25% for σ = 1), resulting in the indicators not always being retained (at around 50% retention).
However, a smaller σ is able to distinguish between the two hypotheses more clearly, and the precision
with which the trend and outliers are picked up is much improved.

The second part of Table 3 records the results with contamination. For DGP-Q, the quadratic function
is almost always retained and is precisely estimated. The contaminated data is picked up by about half
of the outliers modelled by indicator variables. A joint test of equal coefficients would reveal that these
could be replaced with a step dummy, increasing power, or SIS could be applied initally. The irrelevant
indicators are retained very infrequently, at a lower probability than α, so ‘overfitting’ is not a concern.
For the linear DGP the quadratic function is almost always excluded, so joint selection is not costly.
Retention of the indicators for the contaminated data matches that of the non-linear DGP, demonstrating
that the properties of IIS do not depend on the functional form of the DGP.
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Rate Bias RMSE Rate Bias RMSE Rate Bias RMSE

DGP-Q contaminated DGP-L contaminated DGP-L double
σ = 0.08, (SIS+Z) σ = 1, (SIS+Z) σ = 1, (SIS+Z)

zi 0.693 −0.306 0.631 0.711 1.304 3.496 0.684 1.272 3.466
z2i 0.800 0.271 0.547 0.085 −0.244 1.798 0.110 −0.064 2.478
S1 0.794 0.787 0.770
S1 ± 1 0.951 0.942 0.922
S2 0.017 0.018 0.773
S2 ± 1 0.907
gauge SIS 0.023 0.024 0.023

Table 4: SIS estimates. Contamination: observations {41, , ..., 50} shifted by δ = −3, with correspond-
ing steps S1 = {S40, S50}. Double contamination also has {98, . . . 100} shifted by δ = −3, with
S2 = {S97}. Rate is the retention rate of variables and impulse indicators: bold denotes potency and
italic gauge. Bias and RMSE are unconditional. M = 5000, α = 0.01.

Bias RMSE Bias RMSE

OLS LTS

zi −6.163 6.320 5.828 6.416
z2i 6.800 6.932 −4.072 4.931

Table 5: OLS and LTS estimates without selection over variables for experiment DGP-L with double
contamination.

Overall, the results indicate that jointly selecting impulse indicators and non-linear functions does
enable selection to discriminate accurately between the two hypotheses. The costs of testing for both
forms of specification are small, particularly with diminishing noise.

In the final set of experiments we investigate how SIS performs in the contaminated setting. The first
two cases are for DGP-Q and DGP-L, contaminated as in Table 3 using the higher variance, and fixed
intercept. The third and fourth case adds a second contamination of −δσ to the last three observations.
The steps Si for SIS are constructed with unity up to a designated endpoint i, and zero thereafter. The
contamination over observations {41, . . . 50} can be captured by selecting S1 = {S40, S50}. Table 4
shows the average potency of detecting these two steps in the line labelled S1. In general, there is some
uncertainty about the exact timing of the break, therefore we add S1 ± 1 for the average retention when
allowing the start and end to be out by one period. The doubly contaminated experiments have the last
three observations contaminated as well: S2 = {S97}.

Comparing Tables 4 and 3, we see that the potency of SIS is higher than IIS, improving from around
50% to almost 80%, and well over 90% when allowing some leeway. However, this is at the expense
of a higher gauge for steps than impulses, and some reduction in potency for zi, z2i . This last effect is
reflected in the biases and RSMEs, but as the experiment without SIS (or IIS) shows, there remain large
improvements over ignoring the contamination.

Without saturation, the quadratic term is almost always selected into the model for the linear DGP: in
that case the results are almost identical to those without selection in Table 5. LTS estimates are a small
improvement over OLS without selection, but not as good as using SIS: compare the last two columns
of Table 5 to Table 4.
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5 Empirical applications of robust model selection

A range of case studies are reviewed to illustrate various aspects of robust model selection, including a
demonstration of the importance of SIS to isolate subsample effects in Boston housing market (§5.1),
and saturation techniques resulting in a rejection of theory in §5.2.

5.1 Re-analyzing the Boston Housing Market data

The Boston Housing Market data were originally from Harrison and Rubinfeld (1978), also used by Kuh,
Belsley, and Welsh (1980) and most recently by Peña (2019). They are summarized in Appendix A. The
data consists of 506 observations, and Kuh, Belsley, and Welsh (1980) notes that observations 357–
488 correspond to Boston, whereas the rest correspond to the suburbs. Peña (2019) finds very different
regression estimates in those sub-samples.

As a baseline for a non-robust equation, we first record in (B1) the regression of the log of the median
value of owner-occupied homes, denoted LmedVal, on the 13 regressors listed in the appendix:

̂LmedVal = 4.1
(0.20)

− 0.010
(0.001)

Crime + 0.117
(0.055)

Zone + 0.002
(0.002)

Industry + 0.101
(0.034)

Charles

− 0.778
(0.153)

NOx + 0.091
(0.017)

Rooms + 0.0002
(0.0005)

Age− 0.049
(0.008)

Distance + 0.014
(0.003)

Radial (B1)

− 0.063
(0.015)

Tax− 0.038
(0.005)

PTratio + 0.041
(0.011)

BlkPop− 0.029
(0.002)

LowStat

σ̂ = 0.190 R2 = 0.79 FHet(25, 480) = 7.24∗∗ χ2
nd(2) = 92.5∗∗ FReset(2, 490) = 15.4∗∗

All the misspecification tests3 strongly reject, and three of the regressors would not be judged significant
at any reasonable level, shown in bold. The first row in Figure 5 shows respectively the scatter plot of
actual against fitted values, the residuals, scaled to unit variance, and the QQ plot. These confirm the
serious mismatch.

Applying IIS with Autometrics at α = 0.001 to (B1), while fixing all its regressors, found 58 outliers
with σ̂ = 0.11 — many of these are insignificant, but retained because of backtesting or diagnostic
testing in the final selection. The scaled residuals showed no further outliers, but revealed blocks of
zeroes, mainly occurring over the subsample corresponding to Boston. The three misspecification tests
also still rejected, so the formulation remained unsatisfactory. Consequently, an investigator might try
combining IIS and SIS to capture the steps, albeit that such a modelling order is from simple to general.
Doing so at 0.001 selected 9 impulse indicators and 32 step indicators despite commencing from 1010
candidates, with σ̂ = 0.09.

As two misspecification tests rejected, we next discriminate between Boston and the suburbs. The
isBoston indicator is unity for the Boston subsample, and the Bos prefix denotes the interaction of that
variable with isBoston. There is no interaction for Zone, Industry, Radial, Tax, and PTratio, because they
are constant within Boston. Adding the additional Boston variables to (B1), and selecting at 5%, but

3Estimated coefficient standard errors are shown in parentheses below estimated coefficients, σ̂ is the estimated residual
standard deviation, R2 is the coefficient of multiple correlation, FHet is a test for residual heteroskedasticity (see White, 1980),
χ2
nd(2) is a test for normality (see Doornik and Hansen, 2008), and FReset is the RESET test (see Ramsey, 1969). Results are

obtained with PcGive’s models for cross-section in OxMetrics 8.20.
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Figure 5: Graphical results for the three models of Boston house prices. In rows: (B1), (B2), (B3). In columns:
scatter plots of actual against fitted values, scaled residuals, QQ plots against the normal distribution.

without any saturation, leads to:

̂LmedVal = 2.02
(0.186)

+ 0.285
(0.019)

Rooms− 0.0023
(0.0005)

Age− 0.027
(0.005)

Distance + 0.012
(0.005)

Radial

− 0.059
(0.011)

Tax− 0.027
(0.004)

PTratio + 0.075
(0.022)

BlkPop− 0.009
(0.002)

LowStat

− 0.010
(0.001)

BosCrime + 0.327
(0.064)

BosCharles− 1.79
(0.257)

BosNOx− 0.377
(0.028)

BosRooms (B2)

+ 0.006
(0.001)

BosAge− 0.057
(0.024)

BosBlkPop− 0.034
(0.004)

BosLowStat + 3.62
(0.280)

isBoston

σ̂ = 0.159 R2
d = 0.79 FHet(30, 475) = 4.76∗∗ χ2

nd(2) = 108.1∗∗ FReset(2, 487) = 8.23∗∗

R2
d is the R2 relative to all deterministic terms, i.e. the intercept with all impulses and steps, which is the

constant and isBoston in (B2). Although the fit is substantially improved, all the misspecification tests
still strongly reject, and consequently it is difficult to judge which variables really influence house prices.
There are noticeable differences from (B1): the overall negative effect of Crime has been replaced by
BosCrime; Charles by BosCharles and NOx by BosNOx, both with much larger coefficients. As five of
the Boston interactive variables are constant over the subsample, their effects relative to the full sample
are all captured by isBoston. The middle row of Figure 5 shows that there is little improvement over
(B1).

Finally, and what in a general to specific modelling exercise should have been the starting point, the
outcome when selecting over all variables with IIS+SIS is recorded in (B3). With the overall and Boston
intercepts fixed, selection (at 1%) commences from 506 impulse indicators, 504 step indicators, and 21
free regressors, so 1031 candidates in total. The initial block search for more variables than observations
reduced this to 113 candidates, and the final selection, after adding all the regressors back, to 81. The
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Figure 7: Graph of Crime in Boston (shaded area) and suburbs.

entire procedure took just over two minutes, and found (indicators not reported):

̂LmedVal = 1.39
(0.12)

− 0.046
(0.012)

Crime + 0.071
(0.025)

Zone + 0.267
(0.009)

Rooms− 0.0023
(0.0002)

Age− 0.033
(0.004)

Distance

+ 0.012
(0.003)

Radial− 0.038
(0.007)

Tax− 0.018
(0.003)

PTratio + 0.069
(0.007)

BlkPop− 0.0083
(0.0012)

LowStat

+ 0.043
(0.012)

BosCrime− 0.724
(0.176)

BosNOx− 0.227
(0.016)

BosRooms + 1.79
(0.17)

isBoston (B3)

σ̂ = 0.074 R2
d = 0.88 FHet(66, 413) = 1.32 χ2

nd(2) = 3.71 FReset(2, 424) = 1.64

No misspecification test now rejects, so no outliers, or hidden shifts, remain. Hence inference should
be more reliable and the residual standard deviation is very much smaller. The bottom row of Figure 5
confirms the major improvements in the residual distribution.

The overall effects for the Boston subsample can be calculated from the combination of the whole
sample and subsample coefficients: the effects of crime and house size on house prices is essentially
zero in the city, whereas Age, Distance and BlkPop are the same as the whole sample. The large positive
coefficient for isBoston reflects higher mean house prices in the city not accounted for by other subsample
regressors, whose separate effects cannot be disentangled as they are constant over the subsample. More
than half of the indicators fall in the Boston area. The presence of so many step indicators is likely to
reflect geographical clustering or other unmeasured aspects. Figure 6 shows the combined magnitude of
the intercept and impulses for each observation.

The cancellation of the influences of crime between the overall effect and Boston’s is a surprise as
Figure 7 shows it is high in the city and much lower elsewhere. To test the validity of conditioning on
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BosCrime, as there is a possibility that more valuable housing may attract that crime, we apply the method
described in §3.4 to test for super exogeneity. First we modelled BosCrime by the Boston regressors and
IIS+SIS at 1%, finding thirteen indicators in the marginal model that are not in (B3). Adding them in the
conditional model (B3), yielded the insignificant outcome Fvalcond(13, 413) = 1.5. Thus, we conclude
that BosCrime is super-exogenous and therefore a valid conditioning variable.

This empirical application demonstrates how SIS can reveal important differences in subsamples of
data that are essential to model to obtain a congruent specification. Selection with saturation ensured a
model specification that was robust to the different data properties of subsamples of the cross section and
resulted in a well-specified and economically interpretable model.

5.2 Undoing a theoretical artefact: UK inflation

Many models of inflation, denoted ∆pt, such as the New-Keynesian Phillips curve (NKPC), include
expected future inflation to explain current inflation, written as:

∆pt = γ1
≥0
Et [∆pt+1 | It] + γ2

≥0
∆pt−1 + γ3

≥0
st + ut, (8)

where Et [∆pt+1|It] denotes expected inflation one-period ahead given today’s information, denoted It,
and the real marginal costs facing firms, denoted st, where lower case letters are in logs. The anticipated
signs of the coefficients from the theory model are shown: see Galı́ and Gertler (1999), Galı́, Gertler, and
Lopez-Salido (2001), and Castle, Doornik, Hendry, and Nymoen (2014).

To make (8) operational, the expectations are replaced by actual future inflation plus an error:

Et [∆pt+1 | It] = ∆pt+1 + νt+1. (9)

Taking expectations on both sides of (9):

Et [∆pt+1|It] = Et [∆pt+1|It] + Et[νt+1 | It], (10)

so Et[νt+1 | It] = 0, and hence νt+1 must be unpredictable from available information. Then, substitut-
ing (9) into (8):

∆pt = γ1∆pt+1 + γ2∆pt−1 + γ3st + εt, (11)

where εt ∼ D[0, σ2ε ]. Although it is unpredictable from It, the error νt+1 in (9) is not independent of
∆pt+1, so neither is εt in (11), and hence instrumental variables estimation is required, based on a set of
valid exogenous and predetermined variables zt.

Lacking accurate data on aggregate real marginal costs, we use real unit labour costs, ct = (w− p−
g + l)t, for st, where w, g, l are respectively the wage bill, GDP, and employment. st is also equal to the
wage share and, being contemporaneous, treated as endogenous. Appendix B reports the data measures.
Figure 8 shows the historical annual time series for ∆pt, ct = (w − p − g + l)t, ∆(g − l)t, measuring
changes in labour productivity (output per person per year), and the long-term bond rate RL,t.

The estimates of (11) use as additional instruments ct−1, ct−2, ∆(g − l)t−1, ∆(g − l)t−2, RL,t−1,
and RL,t−2, which delivers:

∆̂pt = 0.63
(0.08)

∆̂pt+1 + 0.025
(0.06)

ĉt + 0.51
(0.08)

∆pt−1 − 0.11
(0.07)

∆pt−2 − 0.02
(0.06)

(U1)

σ̂ = 2.89% Far(2, 141) = 1021∗∗ FHet(8, 139) = 5.61∗∗ χ2
nd(2) = 69∗∗ χ2

Sar(4) = 9.59

Estimation is over 1866–2013 (T = 148), Far is the test for up to second order residual autocorrelation,
and χ2

Sar(k) is a test of the validity of the instruments (see Sargan, 1964), with a p-value of 4.8% here.
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Figure 8: From left to right: UK annual inflation, real unit labour costs (in logs), changes in output per person per
year, long-term bond rate.

The signs of coefficients are as anticipated from (8), although the coefficients of the inflation variables
reveal considerable inertia and add to more than unity, and the coefficient of ct is insignificant. Both
the normality and heteroskedasticity tests strongly reject, which reveals that the residuals have those
problems, but there are many possible sources thereof, including unmodelled location shifts given the
turbulence in the middle of the 20th century. Despite the very different sample period and data frequency,
such estimates are similar to those reported using more recent quarterly data and for other countries.

To check for robustness to possible location shifts, SIS was applied at 1%, fixing the three regressors
in (U1). Then 22 significant step indicators, denoted {Si,t}, are selected:

∆̂pt = 0.50
(0.05)

∆̂pt+1 + 0.40
(0.09)

ĉt + 0.35
(0.05)

∆pt−1 − 0.04
(0.05)

∆pt−2 − 0.40
(0.09)

+ {Si,t} (U2)

σ̂ = 1.67% Far(2, 120) = 3.3∗ Fhet(18, 118) = 1.1 χ2
nd(2) = 4.4 χ2

Sar(15) = 31∗∗

Now γ̂1 is smaller, ct is highly significant, and inflation inertia has fallen. The misspecification tests are
also insignificant. The rejection at 1% on χ2

Sar(15) is largely alleviated by removing the insignificant
∆pt−2. The important determinants of inflation found in Hendry (2015, Ch. 6), reduce σ̂ to 1.1%.

As Castle, Doornik, Hendry, and Nymoen (2014) report for their analysis of NKPC models fitted
to more recent quarterly data and using IIS, the apparent significance of ∆pt+1 in equations like (U1)
appears to be an artefact due to the future value acting as a proxy for the unmodelled shifts. It would have
taken remarkable prescience for anyone during 1914 to have anticipated the dramatically higher inflation
of 1915, or even in 1916 anticipating a doubling during 1917, as well as foreseeing the introduction of
price controls restraining inflation during the Second World War and their later removal, not to mention
the Oil Crises of the 1970s.

5.3 Avoiding fragility of robust methods: Engine knock data

While scoring high on robustness, both LTS and LMS have a certain fragility or ‘local instability’,
whereby a small change to one value recorded for a centrally-located observation can cause large changes
in the estimates. This phenomenon can occur when two ‘half-samples’ correspond to different ‘regimes’,
but nevertheless have approximately the same criterion-function value, so small changes to some obser-
vations can make the LMS or LTS solution jump from the estimates of one half sample to the other.
Hettmansperger and Sheather (1992) note this issue with LMS when they accidentally made a mistake
in transcribing data that seemed quite innocuous. Doornik (2016) gives an example for LTS.

We use robust model selection, rather then just applying a robust method to a ‘known’ model, to
gain deeper insight into the empirical question. By discovering more about the underlying data, we can
explain and avoid the noted fragility.
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Correct air Wrong air

LMS LTS(0.5) LMS LTS(0.5)

air 2.9 3.1 (0.13) 1.2 1.1 (0.23)
intake 0.56 0.43 (0.05) 1.5 1.6 (0.05)
spark 0.21 0.06 (0.11) 4.6 3.9 (0.36)
exhaust −0.01 −0.005(0.002) 0.07 0.05 (0.01)
Constant 30.1 30.9 (3.3) −86.5 −68.7 (9.2)

σ̂ 0.12 0.21

Table 6: LMS estimates from Hettmansperger and Sheather. Our LTS(0.5) estimates with standard errors
in parentheses.

Hettmansperger and Sheather (1992) took data from Mason, Gunst, and Hess (1989, p. 529), aimed to
predict ‘engine knock’ from a constant and four regressors called ‘spark timing’, ‘Air/fuel ratio’, ‘intake
temperature’, and ‘exhaust temperature’, where italic denotes the legend below. There are 16 observa-
tions on each. However, on inputting the data, they had inadvertently entered the second observation for
Air as 15.1 rather than the correct 14.1 (denoted WAir, for wrong air), and found very different estimates
from those initially reported for LMS, as shown in Table 6.

Using Air, LTS drops observations (2, 3, 5, 7, 9, 12, 13, 15), whereas, using the miscoded WAir,
LTS drops (3, 4, 5, 7, 11, 12, 14, 16), where bold denotes deletions in common. In the first case, LTS
drops the mismeasured observation 2, but with wrong air it is kept. LMS and LTS are close within each
measurement of ‘Air’, but both differ considerably between measures, so lie on different planes. This
difference will persist if the estimates are used as a starting point for reselection of observations.

We start by applying IIS selection at 5% to the initial model with all variables, first using correct air,
then wrong air. The constant is fixed, so all estimated models have an intercept. For correct air IIS finds
four outliers, retaining Air and intake:

k̂nocki = 3.2
(0.3)

Airi + 0.35
(0.09)

intakei + 6.5
(0.5)

1{5} + 1.6
(0.5)

1{9} + 3.0
(0.5)

1{13} + 3.4
(0.5)

1{15} + 28.4
(2.4)

(E1)

σ̂ = 0.5 R2
d = 0.99 FHet(4, 7) = 0.6 χ2

nd(2) = 2.8 FReset(2, 7) = 5.0∗ Fnl(2, 7) = 0.3

where the indicator 1{5} reveals that observation 5 is selected as an outlier.4 None of the diagnostic
tests is significant at 5%, except for RESET which has a p-value of 4.5%. For 20 candidates, using (2):
20α = 1, so we expect to retain one by chance, which could be 1{9}, as that disappears when running
IIS at 2.5%.

Using the incorrect measure WAir yields:

k̂nocki = 2.1
(0.6)

WAiri + 0.9
(0.2)

intakei + 6.3
(1.5)

1{5} + 27.3
(6.8)

(E2)

σ̂ = 1.4 R2
d = 0.90 FHet(4, 10) = 1.4 χ2

nd(2) = 0.2 FReset(2, 10) = 1.6 Fnl(6, 6) = 1.5

The two regression estimates are now similar, and both detect that observation 5 is an outlier. Figure 9
records actual and fitted values by OLS and IIS for the two measures of ‘Air’ showing their closeness
for the former. In the IIS case, the fitted values are close in the first half of the sample, but different
in the second half. It is obvious visually that observation 5 is an outlier in OLS. In all cases, the fit for
observation 9 is (almost) exact, but (E1) achieves that through 1{9}.

4See footnote 7 for details of regression output and tests, with Fnl a test for non-linearity (see Castle and Hendry, 2010).
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Figure 9: Actual and fitted values from OLS (left), and IIS (right) (E1) and (E2) for the two measures of ‘Air’
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Figure 10: 3D plot of the data (a) knock against spark & intake; (b) knock against exhaust & Air/WAir.

5.3.1 Unweaving the findings

What actually caused the instability in LMS and LTS, and has IIS resolved it? The upper 3D plot in
Figure 10(a) of knock against spark & intake shows that the data split into two ‘regimes’: the first 8
observations on knock are less than 90, the last 8 greater (inside the ellipse), and are associated with wide
and narrow spreads respectively. However, that split does not coincide with the observations selected
by either LMS or LTS. The lower 3D graph in Figure 10(b) of knock against exhaust and Air, with
the incorrect second observation for WAir also shown, is surprisingly revealing given the irrelevance of
exhaust. Observation 5 is a marked outlier, and the misrecorded observation 2 on Air is also now seen to
be an outlier within the first ‘regime’ despite the apparent small magnitude of the mismeasurement.

The two ‘regimes’ apparent in the upper graph (Figure 10a) can entail a sudden switch between
which subset is selected when one observation is moved between them. However, facing such a knife-
edge result, it is somewhat arbitrary to decide that the selected set must be the ‘good set’, and the rest the

18



Correct air Wrong air

air 2.7 (0.30) 3.2 (0.31)
intake 0.61(0.11) 0.38(0.13)
spark 0.49(0.27) 0.22(0.25)
Constant 21.1 (6.5) 25.4 (5.3)

σ̂ 0.34 0.35

Table 7: LTS(0.5) estimates without exhaust.

‘bad set’, even when the former has a smaller variance. Here, we consider both sets by creating a step
indicator S{i≥9} equal to unity for i ≥ 9 and zero otherwise, corresponding to the observations in the
ellipse in Figure 10a. S{i≥9} is interacted with the four regressors other than exhaust. The general model
then comprises the fixed intercept, four regressors, the four interactions and sixteen impulse indicators
from IIS. Selecting at 2.5% includes Air and AirS{i≥9} with coefficients of almost equal magnitude with
opposing sign. Imposing this simplification we find:

k̂nocki = 3.3
(0.3)

AiriS{i≤8} + 4.3
(0.4)

sparkiS{i≥9} + 6.6
(0.6)

1{5} + 38.2
(4.5)

(E3)

σ̂ = 0.54 R2
d = 0.98 FHet(4, 10) = 0.7 χ2

nd(2) = 2.9 FReset(2, 10) = 1.6 Fnl(6, 6) = 2.4

This equation describes the whole data set, but where Air only matters in the first half and spark only in
the second. Apart from the outlier 1{5}, the intercept is constant across both halves. There is a serious
non-constancy in the impacts of spark and Air on knock matching the two regimes visible in Figure 10(a).
As other factors are known to influence engine knock (carbon deposits in cylinders, cleanliness of spark
plugs, etc.), missing information may account for this finding.

Returning to the robust estimators LMS and LTS now also applied without exhaust reveals that the
difference between the two measures of Air is no longer very large, as Table 7 records. Consequently,
it seems that LTS can be affected by including empirically irrelevant variables in the model, suggesting
that there are real benefits from variable selection jointly with tackling outliers. For estimates with
Air, LTS(0.5) now dropped (4, 5, 7, 9, 12, 13, 14, 15) and with WAir, dropped (2, 3, 5, 7, 9, 12, 13,
15) so six of the 8 dropped observations are in common (in bold), drawn more from the second half.
Moreover, (E3) suggests there is no constant-parameter relation to be found. Indeed, from Table 6, the
LTS estimates using Air had a coefficient for that variable close to that of AiriS{i≤8}, but an insignificant
coefficient for spark, whereas with WAir, its own coefficient was small but that for spark was close
to that of sparkiS{i≥9}. Thus, the mismeasurement happened to precipitate a switch between the two
regimes. Consequently, a method like Autometrics with IIS may be preferred because it selects over
both observations and regressors and so provides some protection against knife-edge and non-constancy
situations.

5.3.2 Valid conditioning

We next test for valid conditioning using the method described in §3.4. Modelling spark by Air, exhaust,
intake and a fixed constant (but not the dependent variable knock in the models above) using IIS at 5%
yields significant values for exhaust, 1{4} and 1{14}, so these two impulse indicators which are absent
from (E3) can be used to test the validity of conditioning. Moreover, replacing Air by WAir in these
regressions for spark yields the same two impulse indicators.

Adding 1{4} and 1{14} to (E3) yields Fvalcond(2, 10) = 0.46, which does not reject either the validity
of conditioning or the exclusion of data on spark for the first half of the sample. However, replacing Air
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by WAir in (E3) leads to rejection on FHet and FReset. Fixing all the regressors without selection when
redoing IIS at 1% yields:

k̂nocki = 3.2
(0.23)

WAiriS{i≤8} + 4.1
(0.26)

sparkiS{i≥9} + 6.4
(0.42)

1{5} + 40.2
(3.2)
− 4.0

(0.47)
1{2} − 1.3

(0.41)
1{11}

σ̂ = 0.37 R2
d = 0.99 FHet(4, 8) = 0.37 χ2

nd(2) = 2.6 FReset(2, 8) = 0.7 (E4)

As can be seen, the coefficients in common between (E3) and (E4) are closely similar, and 1{2} reveals
the measurement error! Dropping 1{11} as being adventitiously significant makes the match even closer,
including for σ̂ = 0.50. Adding 1{4} and 1{14} to (E4) delivers Fvalcond(2, 8) = 0.33, and also does not
reject super exogeneity once 1{11} is omitted.

In this setting where LMS and LTS delivered very different estimates when a ‘small’ mismeasure-
ment of one observation on one variable occurred, model selection using IIS detected the important
outlier, the removal of which helped stabilize the results. It led us to notice that the mismeasurement also
created a potential outlier, and that coefficients were not constant over the sample. There appear to be
advantages in selecting empirically significant regressors jointly with removing outliers and tackling po-
tential non-constancies. Indeed, the LTS results were more similar between the correct and mismeasured
variable once an apparently irrelevant regressor was eliminated.

5.3.3 Lasso estimation

Because the engine knock data is cross section with possible outliers, we could also consider using
the adaptive Lasso (adaLasso) of Zhou (2006) for model selection. Here we select using the Bayesian
information criterion, and always estimate the final model by OLS, so the Lasso is just a selection device.

To start, adaLasso selects Air and intake from the correct set of variables, but just intake when using
WAir. So the coding error gives different models.

To allow for outliers, and using correct Air, we could saturate with all possible impulses, just like IIS.
In that case the procedure does not know when to stop, selecting Air and intake together with impulses for
observations 1, 2, 4, 5, 7, 9, 13, 14, 15, 16. Appendix C confirms this problem in simulation experiments.
Reducing this set with Autometrics at 2.5% finds the following model:

k̂nocki = 3.2
(0.28)

Airi + 0.35
(0.09)

intakei + 6.5
(0.52)

1{5} − 1.6
(0.54)

1{9} − 3.0
(0.51)

1{13} − 3.4
(0.52)

1{15} + 28.4
(2.4)

σ̂ = 0.47 R2
d = 0.99 FHet(4, 8) = 0.63 χ2

nd(2) = 2.8 FReset(2, 8) = 5.9∗ (E5)

This model is an alternative candidate to (E3). An encompassing test cannot distinguish between them,
but (E3) is a more concise description of the data.

The appendix suggests that the autoLasso provides a better approach to adaLasso estimation of mod-
els that have more variables than observation. The first step applies the block learning algorithm (as used
in Autometrics for IIS) with adaLasso as the selection device. The final stage is Autometrics, or another
adaLasso step for the final model selection. Assuming that inspection also led to the discovery of the two
regimes, we can apply autoLasso to the same general model that yielded (E3). The block learning yields
Air, AirS{i≥9}, sparkiS{i≥9} and impulses for (2, 5, 10, 11). Then selection at 1% and combining the air
variables gives (E3). In this particular case, two different approaches give the same result, provided the
crucial discovery of the two different regimes is made.

6 Conclusion

There are various concepts of ‘robustness’ within econometrics and statistics. We seek a general notion
of robustness in model selection which requires that methods used to select models have acceptable
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performance when there are possible outliers and shifts leading to an incorrect distributional shape,
omitted variables, misspecified dynamics, non-linearity, and non-stationarity, as well as checking the
validity of exogeneity assumptions. This extends the notion of robustness from an approach to delivering
good statistical properties under just one form of potential misspecification to a more general sense of
robust model discovery. As a consequence, to tackle all these forms of potential misspecification jointly,
general methods are needed, while at the same time retaining relevant subject matter insights. Hendry
and Doornik (2014) call this empirical model discovery and theory evaluation. In this review paper, we
describe that approach to achieving robustness against the seven potential problems just noted, all of
which are empirically testable: see Hendry (1995).

The paper outlines that model selection approach, and the role of indicator saturation methods therein
as designed to match the likely problem. A range of empirical examples demonstrates how the approach
delivers robust selection and, hence, viable inference. Robustness can only be achieved if all mod-
elling decisions are implemented jointly. The definition of an outlier requires a congruent, well-specified
model. If a discrepant observation in a regression context is due to misspecification of the regression,
then the interpretation of the outliers is different to if there are contaminated observations in the DGP,
which can only be detected if the model is well-specified. Distinguishing the model from the DGP allows
for robust inference on the selected model when it is well-specified. Automatic model selection which
also tests for congruence and encompassing in the reduction procedure will satisfy this requirement given
a congruent initial specification, which a large GUM should help ensure.
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A Data definitions for the Boston Housing example

The Boston Housing Market data are available at lib.stat.cmu.edu/datasets/boston with
some transformations used in the table on pp. 244–261 of Kuh, Belsley, and Welsh (1980). The data
consists of variables and 506 observations. To standardize estimated coefficient values, Zone, Tax and
BlkPop (and the corresponding Boston subsample variables) were all rescaled by 100.

Name Variable

LmedVal Log of the median value of owner-occupied homes in $1000s (regressand)
Crime per capita crime rate by town
Zone proportion of residential land zoned for lots over 25,000 sq.ft.
Industry proportion of non-retail business acres per town
Charles Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOx nitric oxides concentration (parts per 10 million)
Rooms average number of rooms per dwelling
Age proportion of owner-occupied units built prior to 1940
Distance weighted distances to five Boston employment centres
Radial index of accessibility to radial highways
Tax full-value property-tax rate per $10,000
PTratio pupil-teacher ratio by town
BlkPop 1000(Bk− 0.63)2 where Bk is the proportion of black persons by town
LowStat % lower status of the population.

B Data definitions for the UK inflation example

Sources for the annual UK inflation data are reported in www.timberlake.co.uk/
macroeconometrics.html.

Name Variable

Pt implicit deflator of GDP, (1860=1)
Gt real GDP, £ million, 1985 prices
Wt average weekly wage earnings index, (1860=1)
Lt employment count (thousands)
RL,t long-term bond interest rate
∆xt (xt − xt−1) for any variable xt
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C Estimation of short data models

The aim is to extend the estimation of regression models to the situation where there are more variables
than observations. At the same time we assume sparsity: not all variables matter, and we wish to select
those that do. We assume that the final models are sufficiently small to be estimated using standard
regression methods. In practice, we wish to start using our method already when the number of candidate
variables, N , gets close to the sample size T . Doornik and Hendry (2015) identify three basic shapes
of the design matrix for ‘big data’, namely ‘tall’ (not so many variables but many observations, with
T � N ), ‘fat’ (many variables, but not so many observations, N > T ) and ‘huge’ (many variables and
many observations, T > N ). This note discusses the fat design case, noting that the sample size need
not be large for this to occur. For convenience, we refer to the fat big-data design as ‘short data’, which
better reflects the setting.

There is a potential for short data in many settings, e.g. when modelling developing economies,
or allowing for many effects with generous lag lengths (our main interest is in models for time series).
They also naturally arise with saturation estimators, e.g. when adding an impulse indicator (‘dummy’)
for every observation. The full model can then not be estimated. However, feasible estimates exist if
combined with selection of indicators. This is called impulse indicator saturation (IIS).

When selection is jointly over indicators and variables, it is more convenient to treat them in the same
way. Unfortunately, the standard split sample algorithm can no longer be used. An alternative is proposed
below. The candidate set is still partitioned in blocks; expanding and contracting searches then alternate
until convergence. Selecting blocks of impulses in a regression model with IIS amounts to dropping
observations. This is not the case in more general settings where we also select over variables. Hendry
and Krolzig (2005) and Hendry and Krolzig (2004) propose algorithms for short data, but provide no
evidence on their practical performance.

With saturation estimation the number of regressors grows with the sample size. When T is large,
say T > 512, it could be useful to divide the problem into smaller separate sections. With each at 256,
e.g., the operation count is reduced from order T 3 to a multiple of 256T 2.

C.1 A learning algorithm for short data

C.1.1 Setup

The basic setup consists of a T ×P multivariate dependent variable Y = (yit), made up of P individual
variables, each of T observations. There are N potential explanatory variables, collected in the T × N
matrix X = (xit). To describe the selection of columns of X, we consider this to be our set of candidate
variables X = {x1, ..., xN}.

At our disposal is a selection method M . Assume that some part of X is retained in the model, say
XF , then the presence of XF is fixed, but not their coefficients. Write X for the free variables, i.e. X
with XF removed: X = X/XF . M is used to select (the target Y is fixed throughout):

S = M(X | XF ).

M selects a subset of X that is not already retained, so the complete final model is S ∪ XF .
It is often the case that M needs more observations than variables to be operational. Then a way

around this restriction is to partition the candidate set in B smaller blocks:

X = X 1 ∪ ... ∪ XB, (12)

and apply model selection to each block:

S = ∪Bi=1M(X i | XF ). (13)
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E1(X | C; α,NB):
1. Partition X = X 1, ...,XB and select: S = ∪Bi=1M(X i | C; α).
2. Sort the elements of S by their significance, most significant first.
3. Return the sorted set. �

E(X | C; α,Nmin, NB , λ):
1. Let S = E1(X | C; α,NB).
2. If dimS < Nmin reselect S = E1(X | C; f(α, λ), NB);

else if dimS > NB reselect S = E1(S | C; α,NB).
3. Return the first NB variables of S. �

Table 8: Algorithms for the expansion step

L(X | C; C̃, αe, αr, N
min, NB , Nmax, jmax, λ):

1. Set C(0) = C, C̃(0) = C̃, j = 0. If dimC(j+1) ≥ Nmax terminate, else go to expansion:

2. Expansion Set X (j)
= X/C(j) and S(j) = E(X (j) | C(j); αe, N

min, NB , λ); then:
3. Reduction C(j+1) = E1(S(j) ∪ C(j); αr, N

max) and set C̃(j+1) = C̃(j) ∪ C(j+1); then:
4. Termination if j = jmax or C̃(j+1) = C̃(j) or dimC(j+1) ≥ Nmax: finish with C(j+1), C̃(j+1),

else increment j and return to expansion. �

Table 9: Learning from expansion and reduction

Now (13) enables ‘short data’ estimation with N ≥ T , provided we keep dim(X i ∪ XF ) < ηT , which
allows for the use of a standard estimation method (0 < η < 1).

An algorithm for estimating short data models can be built upon (12) and (13). Some form of iteration
will be needed, e.g. when the most important variable is in the final block, all previous block estimates
are effectively voided. We will propose an algorithm that learns from previous rounds of estimation, and
investigate its properties through some Monte Carlo experiments.

In short, we propose to alternate between ‘expansion’ and ‘reduction’ steps while the selected set
changes. The expansion step selects from all blocks, while the reduction consolidates this into a candidate
model. The main practical consideration, namely how to choose the blocks, is deferred.

C.1.2 Expansion step

Let α be the adopted significance level (or more generally, model selection settings for M ), and NB

the target block size. The first part of the expansion step in Table 8 is a procedure E1 that splits the
free candidates X into blocks and selects given the currently fixed set C. The partitioning procedure is
described later. The selection from blocks in step 1 could be run in parallel.

Procedure E is built around E1. The size of the selected set is limited: we reselect, and then, if still
too large, select the NB most significant variables. The significance is based on the estimates in each
block. On the other hand, if the selection is too small, an optional boost of size λ is applied (only if
Nmin > 0) and selection repeated with a more relaxed significance level.5 This offers some protection
against missing a factor that may matter, possibly at the expense of raising the gauge under the null that
nothing matters.

C.1.3 Expansion and reduction

The ‘learning’ algorithm alternates between expansion and reduction until no new variables are discov-
ered. The expansion step is given as E, the reduction can be done using E1, both given in Table 8. As

5f(α, s) = sα if 0.94 ≤ 1 + α(s− 1) ≤ 1.06; f(α, s) = sα[1 + α(s− 1)]−1 otherwise.
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A. [CA, C̃A] = L(X | ∅; ∅, α, α,Nmin = min(NB/8, 8), NB , Nmax, 1, λ);
B. [CB , C̃B ] = L(X | CA; C̃A, α, α,Nmin = min(NB/8, 8)∗, NB , Nmax, 10, λ);
C. [CC , C̃C ] = L(X | CB ; CB , f(α, 2), f(α, 1/2), 0, NB , Nmax, 1, λ);
D. [CD, C̃D] = L(X | CC ; C̃C , α, α, 0, NB , Nmax, 10, λ).

Table 10: Block search algorithm with learning

part of the learning process we wish to keep track of two sets. The first is the current model C after
each expansion/reduction pair, the second is C̃: the history of variables that have been selected. Note
that variables in the history need not be in the current model anymore. The learning process can now be
expressed as in Table 9.

A separate significance level is specified for expansion and for reduction, αe and αr, respectively, but
they are usually the same. A maximum number of iterations is set through jmax. Note that, in general,
the outcome will be sensitive to the ordering of the variables. To facilitate replication, we always sort the
expansion step by database index of the variable, and within that by lag length. Many other permutations
are possible, but there seems to be some a priori benefit of keeping lags of a variable together, as these are
often close substitutes. Random search would also be possible, but seems to have no practical advantage,
except perhaps for asymptotic analysis.

To have more control over the algorithm, and provide some speed-up, we divide the iterations in
procedure L into four stages. Stage A is just the first iteration, starting from the empty model and
history. It has the expansion boost if the initial selection is too small. The first iteration of stage B also
has this boost, provided the selection is too small and it was not used in A. Otherwise Nmin = 0. Stage
B is the continuation of A, up to ten iterations or convergence, whichever comes first. Then stage C is
another single iteration with a small boost (unless stage B hits the iteration upper limit), as the expansion
significance level is approximately doubled, offset in the reduction. The history at that point is reset to
the current model. Finally, stage D continues for up to ten iterations. This leads to our block search
algorithm with learning, see Table 10.

The default block size is set to NB = min(d0.2T e, 128), although another value can be specified.
The largest model size is set to

Nmax = bδ(T −NF − [P − 1])c − d0.2T e,

where δ = 0.8 by default, leaving space for the largest expansion set based on the default NB . NF is
the variables that are fixed throughout. When the candidate model size reaches Nmax at any stage the
algorithm terminates prematurely. The value of λ is 8 for αe ≤ 0.01, 4 for αe ≤ 0.02, 2 for αe ≤ 0.03,
and 1 otherwise. In the last case, the boost at the start of C is also omitted. The boost at the start of B is
only applied in the first iteration, provided stage A did not receive a boost.

There are a few additional adjustments that are specific to using Autometrics for the selection pro-
cedure M : diagnostic testing is switched off in expansion of stages C and D; the maximum number of
terminals for expansion is set to one in stage A; backtesting is switched off in stages A and B, as there
is no clear GUM to test against. Diagnostic testing is postponed if the model from the reduction step
passes the tests. These choices make the procedure faster, at the cost of increased complexity. Finally,
there is no lag presearch, and the model obtained by Autometrics is the union of the terminal models that
it found: there does not seem to be a reason to select the best (penalized) fitting at this stage. The final
union C̃D is the input to a normal selection using the default Autometrics settings. However, because the
procedure is somewhat overgauged from backtesting and boosts, a better gauge is achieved if this final
step is run without backtesting.
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C.2 Experiments with independence

Monte Carlo experiments are used to compare the power of the algorithm described above:

DGP:L yLt = µ+ γ (IτT+1 + ...+ IT ) + ut, ut ∼ N(0, 1), (14)

DGP:S ySt = µ+ γ (I1 + I1+S + I1+2S + ...) + ut, ut ∼ N(0, 1), (15)

DGP:Z yZt = µ+ βT−1/2 (z1t + ...+ z12,t) + ut, zt, ut ∼ N(0, 1). (16)

Setting T = 100 and τ = 0.8 in DGP:L means that twenty percent of the sample is in the break period.
Defining S = b(1 − τ)−1c then DGP:S with T = 100 and τ = 0.8 has its mean shifted by γ at
observations t = 1, 6, 11, ..., 96. This is 20% of the observations, just as for DGP:L with τ = 0.8. When
γ = 0, the experiments are under the null of no break.

The initial model for DGP:L and S consists of the T dummies and a forced intercept. The model for
DGP:Z includes all z’s and y up to lag m, with the intercept always included:

MOD:L yt = αF + α1I1 + ...+ αT IT + εt, (17)

MOD:Z yt = αF +

m∑
i=1

αmyt−m +

12∑
i=1

m∑
i=0

αimzi,t−m + εt. (18)

DGP:L corresponds to the type of structural breaks that we may observe in time series data. DGP:S
is less realistic, looking more like neglected seasonality, but is harder for some approaches, because each
subsample looks like the other.

Several other approaches that are feasible in this setting are included in the comparison:
1. Stepwise regression at significance level pa;
2. IIS algorithm of Johansen and Nielsen (2009) at significance level pa;
3. Lasso of Efron, Hastie, Johnstone, and Tibshirani (2004) with optimal model selected by SC

(Schwarz criterion, the same as Bayesian information criterion, BIC), subject to an upper limit
of T/2 nonzero coefficients;

4. Backward elimination in blocks, followed by Autometrics at significance level pa;
5. Standard Autometrics: block search algorithm with learning at pa (Table 10), followed by Auto-

metrics at pa;
6. Reduced Autometrics: block search algorithm with learning (Table 10) at pa, followed by Auto-

metrics at pa but without backtesting.
Table 11 gives the gauge and potency for selected values of γ, i.e. the size of the break in standard

deviations. Stepwise regression selects the impulses in the break at a high rate when the significance is
set to 5%, but at the expense of also including many irrelevant dummies. At lower significance there
is no power. The Lasso does not use a significance level, and termination is based on an information
criterion. The potency is low, except for larger γ, but then the gauge shoots up as well. The termination
decision for Lasso is problematic in this design. An alternative is to use cross validation, but that does
not work here either.

IIS and backward elimination are similar, with the former having best control of the size when there
is no break, courtesy of the bias correction that is used. The proposed learning algorithm, as used by
Autometrics, is close to IIS and backward elimination for DGP:L. It is somewhat more overgauged, but
the benefit is that it has better potency in DGP:S. When γ = 0, both the reduced and the standard version
are overgauged. Seriously so for the latter, which is caused by the large initial boost at pa = 0.05 (the
reduced version has it switched off at 5%, but not for pa = 0.01). The standard version retains too many
insignificant variables that are kept in backtesting, and these are counted in the gauge.

Table 12 provides more insight by varying the length of the break. DGP:L is used with a break in
mean of size four, but the duration of the break is for 2,10, and 20 observations respectively. The Lasso
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5% target DGP:L 1% target DGP:L 1% DGP:S

γ=0 γ=2 γ=4 γ =0 γ =3 γ =4 γ =4 γ =5

Stepwise regression
Gauge % 15.5 10.5 14.6 1.4 0.1 0.0 0.0 0.0
Potency % — 51.7 99.1 — 9.5 12.0 10.3 10.7

Lasso (BIC, Nmax = 50)
Gauge % 1.2 0.2 2.3 2.0 14.2
Potency % — 6.1 16.5 14.5 77.9

IIS (Johansen and Nielsen, 2009)
Gauge % 5.3 3.6 3.3 1.2 0.5 0.7 0.0 0.0
Potency % — 39.5 96.6 — 49.4 88.1 5.8 4.5

Backward elimination, then Autometrics
Gauge % 7.1 3.4 2.4 1.2 0.1 0.3 0.0 0.0
Potency % — 43.3 98.1 — 24.9 82.4 7.5 6.8

Block learning with Autometrics, reduced
Gauge % 9.0 4.8 8.2 1.6 0.2 0.4 0.5 0.5
Potency % — 47.9 98.5 — 52.0 86.2 34.7 53.0

Block learning with Autometrics, standard
Gauge % 20.0 8.3 9.2 4.0 0.4 0.5 0.6 0.5
Potency % — 56.6 98.7 — 68.9 90.3 39.2 57.9

Table 11: DGP:L and DGP:S have a break in mean of size γ in 20% of observations. The estimated model is
MOD:L, consisting of a constant and T dummies. T = 100 observations,M = 1000 replications, pa = 0.05, 0.01.

τ=0.02 τ=0.1 τ=0.2 τ=0.02 τ=0.1 τ=0.2

Stepwise regression (pa = 0.01)
Gauge % 1.4 1.2 0.0
Potency % 92.4 89.2 12.0

Lasso (BIC, Nmax = 50) Lasso (5-fold CV)
Gauge % 0.9 3.9 2.3 54.5 48.3 40.6
Potency % 85.5 79.4 16.0 100.0 99.9 99.7

Lasso (BIC, no Nmax)
Gauge % 94.9 95.5 95.3
Potency % 100.0 100.0 99.7

Autometrics, reduced (pa = 0.01) Autometrics, standard (pa = 0.01)
Gauge % 0.8 0.7 0.4 1.3 1.0 0.5
Potency % 92.6 90.1 86.2 95.6 93.1 90.3

Table 12: DGP:L with break in last τT observations of size γ = 4. The estimated model is MOD:L, consisting
of a constant and T dummies. T = 100 observations, M = 1000 replications.

and stepwise regression both have the gauge falling as the length increases. The block learning algorithm
is less sensitive to this. Because structural breaks in time series often persist for extended periods, this is
a useful practical aspect of the algorithm.

Table 13 looks at short data settings involving variables. In the first set β = 0, so the empty model
is the correct model. The second model has β = 10, corresponding to an expected t-value of 10. In that
case, the significant regressors are so significant (except at pa = 0.001) that their presence should make
little difference. We see this for the reduced version of Autometrics. The standard version is somewhat
overgauged, more so when the correct model is empty, because then the initial boost is likely to be
used. Lasso selects models that are much too large when T = 40, which will to a large extent be the
consequence of using an information criterion. It also has more difference between β = 0 and β = 10.
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T m α=0.05 0.025 0.01 0.001 α=0.05 0.025 0.01 0.001

Autometrics reduced β = 0 β = 10
40 4 0.080 0.043 0.026 0.0056 0.077 0.035 0.012 0.0024
100 8 0.042 0.023 0.014 0.0026 0.044 0.022 0.009 0.0013
250 20 0.032 0.018 0.009 0.0014 0.033 0.018 0.009 0.0006

Autometrics standard
40 4 0.104 0.060 0.032 0.0057 0.087 0.038 0.013 0.0028
100 8 0.087 0.060 0.027 0.0028 0.065 0.041 0.018 0.0015
250 20 0.087 0.066 0.030 0.0017 0.066 0.056 0.029 0.0010

Lasso (BIC, Nmax = 50) β = 0 β = 10
40 4 0.459 0.514
100 8 0.010 0.046
250 20 0.004 0.012

Lasso (CV, 5 fold) β = 0 β = 10
40 4 0.518 0.447
100 8 0.482 0.404
250 20 0.205 0.154

Table 13: Gauge of the Autometrics algorithm. T = 100 observations, M = 1000 replications, M = 10 000 for
pa = 0.001. DGP:Z with MOD:Z.

C.3 Experiments with correlation

Further experiments are based on models 7 and 8 from Hoover and Perez (1999), denoted HP7 and HP8
respectively. The regressors are quarterly macro-economic variables, where unit roots are removed by
differencing. The DGPs for these experiments are:

HP7: y7,t = 0.75y7,t−1 + 1.33x11,t − 0.9975x11,t−1 + 6.44ut, ut ∼ N [0, 1],

HP8: y8,t = 0.75y8,t−1 − 0.046x3,t + 0.0345x3,t−1 + 0.073ut, ut ∼ N [0, 1].

HP7 hasR2 = 0.58, and HP8 hasR2 = 0.93; all coefficients have very high t-values (in excess of 8). We
create versions that have more variables than observations by adding 10 IIN(0, 1) regressors z1, ..., z10
up to lag 4 to the initial model, making 145 regressors in total. Only 3 matter, and the constant is always
included. These experiments are labelled HP7big and HP8big in Table 14.

The tables now include the adaptive Lasso (adaLasso, Zhou, 2006), where the coefficients in the L1
penalty are scaled down by the OLS estimates. This is undefined for short data: when there are more
than T/2 regressors, we use coefficients from a ridge regression that implies T/2 coefficients.

C.4 Lasso for short data

The experiments in this paper focus on selection. The Lasso both shrinks and selects, but is used here
only for selection, with the final model estimated by OLS. Because the Lasso is based on a forward
search, it can be applied to short data. However, it has not performed so well in these settings, to a large
extent because it is difficult to know when to stop: whether using cross validation or an information
criterion, there are usually several minima. Very large models are often selected, moreover it defeats the
purpose of machine learning to have to select the model by visual inspection of a plot of the criterion.

Modelling with more variables than observations is practically relevant, and our block algorithm
could be useful here. One example is the adaLasso, where the coefficients in the L1 penalty are scaled
down by the OLS estimates. With too many variables, there are no OLS estimates. In that case, we could
use ridge estimates, but instead we propose to run selection in blocks, collecting a set of regressors for
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HP7 HP8 HP7big HP8big HP7 HP8 HP7big HP8big

Stepwise regression (pa = 0.01)
Gauge % 1.4 1.2 0.9 1.7
Potency % 92.4 89.2 99.9 50.9

Lasso (BIC, Nmax = 50) Lasso (10-fold CV)
Gauge % 19.5 35.1 2.9 2.0 64.5 89.3 36.8 36.5
Potency % 94.4 86.3 71.8 58.0 99.7 99.9 99.3 76.5

adaLasso (BIC, Nmax = 50) adaLasso (10-fold CV)
Gauge % 4.5 3.3 2.9 6.2 70.7 38.9 92.1 63.7
Potency % 99.7 100.0 72.2 98.9 99.1 98.0 94.3 92.3

Autometrics, reduced (pa = 0.01) Autometrics, standard (pa = 0.01)
Gauge % 1.6 1.6 0.7 0.9 1.6 1.6 1.3 2.2
Potency % 99.2 100.0 99.4 100.0 99.2 100.0 99.5 100.0

Table 14: T = 139, M = 1000, pa = 0.01, 3 relevant variables. HP7 and HP8 have 37 irrelevant variables, the
big versions have 141.

HP7 HP8 HP7big HP8big HP7 HP8 HP7big HP8big

adaLasso (BIC, Nmax = 50) adaLasso (10-fold CV)
Gauge % 4.5 3.3 2.9 6.2 70.7 38.9 92.1 63.7
Potency % 99.7 100.0 72.2 98.9 99.1 98.0 94.3 92.3

blockLasso (BIC, Nmax = 50) autoLasso (BIC, p = 0.001)
Gauge % 3.5 3.0 4.1 3.0 0.9 0.8 2.0 1.5
Potency % 100.0 100.0 99.6 100.0 99.3 100.0 99.6 100.0

Table 15: T = 139, M = 1000, pa = 0.01, 3 relevant variables. HP7 and HP8 have 37 irrelevant variables, the
big versions have 141.

the final run. The final run could be another adaLasso, or Autometrics if better control of the gauge is
required. The leads to two new versions of adaLasso:
blockLasso Uses the block search algorithm with learning from Table 10, with adaLasso (BIC) as the

selection device for the algorithm, as well as for the final selection step.
autoLasso Uses the block search algorithm with learning from Table 10, with adaLasso (BIC) as the

selection device for the algorithm. Autometrics at pa is used to select the final model.
In both cases the ordering in each block is based on significance in the OLS model using the selected
variables.

Table 15 shows that this improves the standard adaLasso: the gauge and potency are now less affected
by the addition of the many irrelevant variables.

As a final experiment, we use the JEDC setting as discussed in Hendry and Doornik (2014, §17.2.2).

DGP:J yJt = µ+
5∑
i=1

βiT
−1/2zit + ut, ut ∼ N(0, 1), (z1t, ..., zNt) ∼ N(0, Cz), (19)

MOD:J yt = αF +

m∑
i=1

αmyt−m +

N∑
i=1

m∑
i=0

αimzi,t−m + εt, , t = 1, ..., 100, (20)

where Cz = (ci,j) = ρ|i−j| and (β1, ..., β5) = (8, 4, 6, 3, 2). The standard experiment has lag length
of one (m = 1) and eleven irrelevant variables (N = 10, so irrelevant are yt−1, z6t, ..., z10,t, z1,t−1, ...,
z10,t−1). The large experiment has m = 8, N = 12, adding 111 irrelevant variables when the sample
size is T = 100.
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Figure 11: JEDC experiment, standard version on left, large version on right.

Figure 11 shows the result for values of ρ = −0.95,−0.9,−0.8, 0.4, 0, 0.4, 0.8, 0.9, 0.95. The left
panel is the standard version (m = 1, N = 10), while on the left is the large version (m = 8, N = 12).
Both gauge and potency are plotted, with gauge always at the bottom. For the standard experiment
we see that the gauge of Autometrics is close to the target size. The adaLasso gauge is close to the
of Autometrics at 5%, but then the latter largely dominates in terms of potency. Lasso struggles with
negative correlations, possibly for the same reason why stepwise regression fails: two variables need to
enter jointly but do not matter much individually.

The large case shows that the potency of Autometrics is little affected by the many irrelevant vari-
ables. The adaLasso is improved by the block search algorithm in the form of blockLasso, at the expense
of the gauge — but performance is now more similar to the small case. Adding an Autometrics step at the
end, as in autoLasso, reduces the gauge, while at the same time increasing potency. This is only possible
if the block search retains some relevant variables that the final adaLasso selection removed.

Both the blockLasso and the autoLasso improve the Lasso results when using IIS, but they remain
quite strongly overgauged.
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