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Abstract

Comparisons between alternative scenarios are used in many disciplines from macroeconomics
to climate science to help with planning future responses. Differences between scenario paths are
often interpreted as signifying likely differences between outcomes that would materialise in reality.
However, even when using correctly specified statistical models of the in-sample data generation
process, additional conditions are needed to sustain inferences about differences between scenario
paths. We consider two questions in scenario analyses: First, does testing the difference between
scenarios yield additional insight beyond simple tests conducted on the model estimated in-sample?
Second, when does the estimated scenario difference yield unbiased estimates of the true difference
in outcomes? Answering the first question, we show that the calculation of uncertainties around sce-
nario differences raises difficult issues since the underlying in-sample distributions are identical for
both ‘potential’ outcomes when the reported paths are deterministic functions. Under these circum-
stances, a scenario comparison adds little beyond testing for the significance of the perturbed variable
in the estimated model. Resolving the second question, when models include multiple covariates, in-
ferences about scenario differences depend on the relationships between the conditioning variables,
especially their invariance to the interventions. Tests for invariance based on automatic detection
of structural breaks can help identify in-sample invariance of models to evaluate likely constancy
in projected scenarios. Applications of scenario analyses to impacts on the UK’s wage share from
unemployment and agricultural growth from climate change illustrate the concepts.

1 Introduction

Comparisons between alternative scenarios are used in many disciplines from economics (see e.g., Weale,
2016), climatology, and environmental sciences (see e.g., Webster, Babiker, Mayer, Reilly, Harnisch,
Sarofim, and Wang, 2002, Webster, Forest, Reilly, Babiker, Kicklighter, Mayer, Prinn, Sarofim, Sokolov,
Stone, and Wang, 2003, Burke, Hsiang, and Miguel, 2015, Pretis, Schwarz, Tang, Haustein, and Allen,
2018), to business (see e.g., Flyvbjerg, Holm, and Buhl, 2005) to help with planning future responses.
Many have been produced recently to try and envision the future impacts of the COVID-19 pandemic.
The differences between scenario paths are often interpreted as signifying likely differences between
outcomes that would materialize in reality should that scenario be implemented. We consider two central
questions in scenario analyses when the underlying models are estimated:

1. Does testing the difference between scenarios yield additional insights beyond tests conducted on
the in-sample estimated model? We show that the answer is ‘no’ for simple models that are linear
in a deterministically-perturbed scenario variable.
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20029822) is gratefully acknowledged, as are helpful comments from Jennifer L. Castle, Jurgen A. Doornik, Andrew B. Mar-
tinez and Bent Nielsen. Contact details: david.hendry@nuffield.ox.ac.uk and fpretis@uvic.ca.
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2. When does the estimated scenario difference yield unbiased estimates of the true difference in
outcomes? The answer depends on the validity of the estimated model, the relationships between
its covariates, and its invariance to the scenario perturbations.

Even when using correctly-specified models of the in-sample data generation process, itself an un-
likely possibility in most observational-data disciplines, additional conditions are needed to sustain in-
ferences about differences between scenario paths. Moreover, the calculation of uncertainties around
scenario differences raises the difficult issue that the underlying in-sample distributions are identical for
both ‘potential’ outcomes, and the reported paths are often deterministic functions. There are also a num-
ber of different types of scenario calculation, from deterministic impulse or step shifts applied to either
a ‘given’, or conditioning, variable or the initial conditions of the target variable, or ‘stochastic’ shocks
from some assumed distribution used to perturb either the initial conditions or the conditioning variable.
Adding random numbers drawn from the estimated in-sample error distributions to the scenario, but not
the baseline, would be a further alternative. Different estimates of the uncertainty around each scenario
trajectory will result from these, at most one of which could be correct.

The focus of our paper is on scenarios generated by deterministic shifts perturbing the marginal
distributions of conditioning variables in estimated models. Typical examples would be examining an
increase in interest rates in an economic model which took that policy variable as a given; or the impacts
of climate change under a particular temperature scenario; or of ‘social distancing’ on the rate at which a
pandemic might otherwise spread. However, more ‘extreme’ scenario changes could also be envisaged,
such as considering different conditional models for the alternative scenario. Here possible examples
would be a macroeconomic model still taking interest rates as the given policy instrument but contrasted
with a model where interest rates are at the zero lower bound and quantitative easing (QE) is used
instead as the policy change, involving a different transmission mechanism; or of complete lockdown
on economic outcomes. Manifestly, the requirements for such scenarios to match the later outcome are
considerably more demanding, albeit scenarios might be the only feasible approach to investigate their
possible impacts in advance. Equally, a scenario outcome might generate a policy response, as seen in
the UK when suggestions that half a million deaths might result from the then policy of trying to achieve
‘herd immunity’ to COVID-19 led to a new policy of ‘social isolation’, which changed the parameters of
the spread process, leading to dramatically reduced predictions of deaths. Simultaneously, the new vastly
higher predictions of unemployment induced a greatly increased financial boost from the government.
Our paper analyzes the conditions needed for such scenarios to provide a reliable basis for policy.

Here we focus on inferences about the differences between scenario outcomes using projections
based on models estimated in-sample. Let yt be a policy-relevant variable determined by the conditional
data generation process (DGP):

yt = β0 + β1x1,t + β′2x2,t + λyt−1 + εt with εt ∼ IN
[
0, σ2ε

]
(1)

for t = 1, . . . , T where |λ| < 1 and the {xi,t} are valid conditioning variables, so that in-sample:

E [yt | x1,t,x2,t, yt−1] = β0 + β1x1,t + β′2x2,t + λyt−1 (2)

where x1,t is the variable to be altered by a scenario analysis and x2,t are k conditioning variables with
coefficients β2 also affecting yt. We assume the scenario intervention takes the form of a shift of δx in
the level of x1,t at time T + 1. We denote the DGP outcome at T + 1 in absence of this intervention by
yT+1, while the actual outcome following the intervention is labelled as y∗T+1.

As the DGP is unknown, we consider estimating a model of yt and subsequently creating projections
with and without the scenario intervention δx. Using the estimated model, the predicted baseline in the
absence of the intervention is denoted by ŷT+1, while the predicted scenario projection is labelled ŷ∗T+1.
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We are interested in conducting inference on the difference between the outcomes, [y∗T+1− yT+1], using
the estimated model and subsequently projected scenarios [ŷ∗T+1 − ŷT+1]. We consider two different
general cases. First, when both the DGP and estimated model only include a single policy variable and
no other covariates (beyond autoregressive dynamics), so β2 = 0 in (1). Second, we consider the case
where additional covariates enter the DGP. We then study the properties of scenario projections using
models that match the DGP, as well as models that are mis-specified for the DGP by incorrectly omitting
relevant conditioning variables.

Answering the first question on whether testing the scenario difference yields additional insight be-
yond in-sample testing, we show that, when the model is an invariant linear relation in the policy variable,
and the scenario intervention takes the form of a deterministic shift, then the statistical significance of
the scenario difference is solely a function of the estimated coefficient on the policy variable in sample.
The difference between scenarios will appear significant for any level of intervention δx if the estimated
coefficient β̂1 is itself deemed significantly different from zero. Testing on the scenario difference does
not provide additional information beyond in-sample statistical testing of the estimated model.

Turning to the second question of when the estimated scenario differences yield unbiased estimates,
in the more general case of multiple conditioning variables, the accuracy of scenario projections depends
on the relationships between conditioning variables, and especially on their invariances to the interven-
tion. In the absence of invariance, a well-specified model in-sample does not necessarily yield unbiased
estimates of the scenario difference. Conversely, if there exists an invariant causal relationship between
the policy variable and the additional conditioning variables, a mis-specified model omitting condition-
ing variables may be preferred unless the causal relationships between conditioning and policy variables
are modelled. Crucially, invariance is not known a-priori, but can be tested in-sample as we discuss.

The structure of the paper is as follows. Section 2 considers scenario differences in a one-explanatory
variable model to set the scene for testing differences between scenarios. Section 3 analyzes scenario
differences under different model specifications and relationships between the policy and conditioning
variables. Section 4 considers the applications of scenario analyses to wage share changes from un-
employment, and agricultural impacts of climate change. Section 5 concludes. The appendix derives
approximate variances of multi-period scenario outcomes. First, we consider an example to motivate our
study.

1.1 A motivating example

Interval projections are regularly reported to encapsulate future uncertainties around a multi-period tra-
jectory, as with the Bank of England’s ‘fan charts’. In such a setting, outcomes lying outside the interval
projections, say 95% regions calculated from in-sample data, are taken to be significant deviations. Fig-
ure 1 illustrates this using artificial data where we know the DGP, which is the bivariate vector autore-
gression (VAR):

yt = β0 + β1x1,t + λyt−1 + εt (3)

x1,t = γ + νt (4)

where (εt, νt)
′ ∼ IN2 [0,Ω], and Ω is diagonal with |λ| < 1. For numerical calculations, the parameters

(β0, β1, λ, γ) are given the values(0, 0.5, 0.3, 0), and ω11 = ω22 = 1 with t = 1, . . . , T, where T = 50
defines the forecast origin, computing 10-steps ahead.

Figure 1 (panel a, top) records ten multi-step forecasts from the conditional model of the first variable,
yt (blue and dashed), matching the artificial DGP and taking the future values of x1,T+1 . . . x1,T+10 as
known, with fan charts based on ±1 and ±2 forecast standard errors, denoted σ̂f,h. The particular
outcome for yT+1 . . . yT+10 drawn from that DGP is shown in black. In red and solid, we show a
scenario trajectory for yT+1 . . . yT+10 where the variable x1, controlled by an agency, is perturbed by the
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magnitude δx = 2ω22 from γ to γ+δx, so is shifted up by that amount at each future observation relative
to the baseline. One issue of concern is when can this new trajectory be deemed to be significantly
different from the unperturbed outcomes? We will shortly consider the light grey line denoted ‘DGP
shifts with intervention’.
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Figure 1: (a) Scenario projections with ±2σ̂,fh and ±1σ̂f,h for h = 1, . . . , 10; and (b) the differences in
the outcomes both under two states of nature.

Figure 1 (panel b) reports the differences between the baseline and scenario trajectories ten steps
ahead (red). Because the comparison is between two trajectories based on the same in-sample estimated
model, elements in common cancel, so the scenario difference is very smooth, always above zero, and is
close to the difference the scenario perturbation would generate in the data (shown in dark gray).

However, Figure 1 also illustrates a setting where the scenario intervention unknowingly changes the
parameters of the DGP (3) for yT+1 . . . yT+10 because of a failure of invariance to the intervention. This
takes the form of reducing the forecast period β1 by 0.2ω11, which here is chosen to offset the agency’s
shift in x1,T+1 . . . x1,T+10, so the original yT+1 . . . yT+10, and perturbed outcomes ŷ∗T+1 . . . ŷ

∗
T+10, are

essentially the same for all error draws. This offset could be interpreted as an extreme response of
the ‘private sector’ to nullify a policy agency’s intervention. The net effect is that, despite the projected
difference in Figure 1(b), the scenario intervention does not lead to a different outcome, so the apparently
significantly different trajectory is misleading. Consequently, had the agency implemented δx = 2ω22

and forecast the future path as its scenario calculation in Figure 1(a), forecast failure would have resulted
when the intervention was found to be ineffective. An important lesson from this analysis, emphasised
below, is the key role of invariance of the model’s parameters to the intervention if the outcome is
to resemble the scenario. Fortunately, it may be feasible to test beforehand whether or not the model’s
parameters were altered on past occasions where earlier interventions were implemented (see e.g., Castle,
Hendry, and Martinez, 2017). Discovering a lack of invariance could allow scenario calculations to be
modified to more closely represent the outcome that will materialize.
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2 Does testing the scenario difference provide insight beyond in-sample
tests on an estimated univariate model?

First, we consider the simple case of a model matching the DGP in (3)–(4) where Ω is diagonal but now
need not be the unit matrix. Then assuming constant parameters in-sample:

E [yt] =
β0 + β1γ

1− λ
= µ

and using V [·] to denote a variance:

V [yt] =

(
ω11 + β21ω22

)
1− λ2

= σ22

with E [x1,t] = γ, V [x1,t] = ω22 and

E [(x1,t − γ) (yt−1 − E [yt−1])] = 0 (5)

The well-known limiting distribution of the estimates β̂1 and λ̂ of the coefficients β1 and λ is: √T (β̂1 − β1)√
T
(
λ̂− λ

)  →
D

N2

[
0, σ2εΣ

−1] = N2

[(
0
0

)
, σ2ε

(
σ−111 0

0 σ−122

)]
(6)

where ω22 = σ11 here, and to highlight the key issues in scenario comparisons, we simplify by assuming
that the sample size T is sufficiently large that Σ̂ ≈ Σ.

For given values of x1,T+1 and yT , the next period’s baseline projection without a scenario perturba-
tion is:

ŷT+1|T = β̂0 + β̂1x1,T+1 + λ̂yT (7)

so that:
E
[
ŷT+1|T | xT+1, yT

]
≈ β0 + β1xT+1 + λyT .

After a scenario perturbation by δx, with parameters that are invariant to the intervention (a lack of
invariance is considered in §3.3.3), the projected scenario outcome (denoted by ∗) is given by:

ŷ∗T+1|T = β̂0 + β̂1 (x1,T+1 + δx) + λ̂yT (8)

so that the estimated scenario is difference is given by:

ŷ∗T+1|T − ŷT+1|T = β̂1δx (9)

with:
E
[
ŷ∗T+1|T − ŷT+1|T

]
≈ β1δx

and:

V
[
ŷ∗T+1|T − ŷT+1|T

]
= V

[
β̂1

]
δ2x =

σ2εδ
2
x

Tσ11

as there is no correlation between the regressors. Then the t-statistic for the scenario difference is:

tβ1δx =
β̂1δx

√
Tσ11

σεδx
=

β̂1

SE
[
β̂1

] = t
β̂1

(10)
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which holds at all values of δx so does not depend on its magnitude. When β̂1 is judged significantly
different from zero (or not) in (10), all scenario changes at 1-step are significant (or not). This follows
because the standard error of the difference ŷ∗T+1|T − ŷT+1|T is linear in δx, so the confidence interval
around the scenario either never (or always) overlaps the origin for the chosen significance level (§2.2
considers stochastic scenario simulations).

Four other important points to note from this simple case are that:
(i) the stochastic error {εt} cancels in (9);
(ii) a vector of super-strong exogenous regressors x2,t as in (1) (namely super exogenous as in Engle,
Hendry, and Richard, 1983, and with no Granger causality from yt−i or x1,t−i, i ≥ 1), would not affect
(9), as such variables in common also cancel irrespective of whether or not they are included in the
model;
(iii) the initial condition, yT , cancels;
(iv) which still holds even if yT is just an estimated initial condition ŷT .
Thus, noise, omitted or included super-strong exogenous variables and mis-measured initial conditions
do not affect the validity of the scenario analysis.

2.1 Scenario outcomes at T + n for δx
The above results generalise to extending the previous case beyond a single time period for known future
{x1,T+i}, as the scenario projection n-periods out is:

ŷ∗T+n|T = β̂0

(
n−1∑
i=0

λ̂
i

)
+ β̂1

(
n∑
i=1

λ̂
n−i

x1,T+i

)
+ β̂1

(
n−1∑
i=0

λ̂
i

)
δx + λ̂

n
yT (11)

whereas the baseline would be calculated as:

ŷT+n|T = β̂0

(
n−1∑
i=0

λ̂
i

)
+ β̂1

(
n∑
i=1

λ̂
n−i

x1,T+i

)
+ λ̂

n
yT (12)

which on the same assumptions as in the previous Section, leads to the scenario difference:

ŷ∗T+n|T − ŷT+n|T = β̂1

(
n−1∑
i=0

λ̂
i

)
δx (13)

since as before, all common elements cancel. The DGP scenario difference outcomes would be:

y∗T+n|T − yT+n|T = β1

(
n−1∑
i=0

λi

)
δx

so their variances would be zero. A scenario difference like (13) is a non-linear function of the in-sample
parameter estimates, so the variance calculations are only approximate, and are derived in the Appendix
for the model with a single policy variable in (3), showing that the intervention magnitude δx again
cancels in a simple t-test of the scenario difference.

To simplify the formulae although the result holds more generally, we note the special case when
ω11 = ω22 = σ2ε = 1, β1 = 1:

V
[
ŷ∗T+n|T − ŷT+n|T

]
≈

(
(1− λn)2 (1− λ)2 +

((
1−

(
nλn−1 (1− λ) + λn

))2))
T (1− λ)4

δ2x (14)
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so for large n when λn ≈ nλn−1 ≈ 0:

V
[
ŷ∗T+n|T − ŷT+n|T

]
≈ δ2x

T (1− λ)4

(
1 + (1− λ)2

)
(15)

Then combining (13) and (15), the t-statistic for the scenario difference is:

tβ1δx =
β̂1

(∑n−1
i=0 λ̂

i
)
δx√

δ2x
T (1−λ)4

(
1 + (1− λ)2

)
so again the significance will not depend on the magnitude of the perturbation δx as it cancels.

In the practical setting where stochastic {x1,T+i} will not be known into the future, a model thereof
will need to be developed for multi-period forecasting, or direct forecasting must be used (see Chevillon
and Hendry, 2005), where there will be a considerable increase in uncertainty the larger n is.

2.2 Stochastic scenario intervention

The above analysis focused on a deterministic perturbation δx. If the scenario intervention δx is itself
stochastic, the mean scenario difference could be estimated using δ̄x = L−1

∑L
i=1 δx,i where L is the

number of scenario draws (e.g., draws across temperature outcomes in a climate-impacts model as in
Pretis et al. 2018) with the resulting average scenario difference given by β̂1δ̄x. When δi,x ∼ IID[δx, σ

2
δ ]

and δ̄x and β̂1 are independent, then the variance of the estimated scenario difference can be approxi-
mated by V[β̂1δ̄x] ≈ E[δ̄

2
x]V[β̂1] + E[β̂

2

1]V
[
δ̄x
]
. In the absence of non-linear effects of x1,t, or non-zero

covariances between δx and β1, a joint test, or joint sampling over δx and β̂1, to assess the significance
of scenario deviations will not be more informative than a single test on β1. If β1 6= 0 then for any value
of δx the scenario difference will be non-zero. Thus, sampling over both δx and β1, or δy and λ, will not
add information beyond testing on β1 or λ. However, using independent stochastic perturbations with
means of δx and δy will increase the variances around ŷ∗T+1|T and ỹ∗T+1|T (corresponding to perturb-
ing the dependent variable directly), so scenario differences could be insignificant even when t

β̂1
or t

λ̂

rejected their nulls.

2.3 Scenario outcomes at T + n for δy
Next, we consider a scenario intervention perturbing the forecast-origin value of the dependent variable
yT by δy and assess the variance for the n-step ahead projection. For a single step ahead, consider
retaining (7) but changing (8) to:

ỹ∗T+1|T = β̂0 + β̂1x1,T+1 + λ̂ (yT + δy) (16)

so that:
ỹ∗T+1|T − ŷT+1|T = λ̂δy (17)

then a similar analysis results at T + 1 replacing β̂1δx by λ̂δy.
The multi-period baseline (12) is unchanged but the perturbed scenario (11) becomes:

ŷ∗T+n|T = β̂0

(
n−1∑
i=0

λ̂
i

)
+ β̂1

(
n∑
i=1

λ̂
n−i

xT+i

)
+

(
n∑
i=1

λ̂
i

)
δy + λ̂

n
yT (18)
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so that:

ŷ∗T+n|T − ŷT+n|T =

(
n∑
i=1

λ̂
i

)
δy (19)

Using the same approximations for multi-step variances as above, but now only depending on λ̂:

V
[
ŷ∗T+n|T − ŷT+n|T

]
≈

σ2ελ
2 (1− λn)2 δ2y

Tσ11 (1− ρ2) (1− λ)2
(20)

In the special case σ11 = σ22 = 1, β1 = 1, σ12 = ρ = 0:

V
[
ŷ∗T+n|T − ŷT+n|T

]
≈
λ2 (1− λn)2 δ2y

T (1− λ)2
(21)

As above, the intervention δy cancels when testing the scenario difference. For λ = 0.85 and n = 8,
(21) equals 0.17δ2y ≈ 11.0 for δ2y = 9σ2y at T = 100 whereas (14) equals 2.56δ2x ≈ 23.0, even though at
β1 = 1, (13) and (19) only differ by a factor of λ̂. Thus, the degree of persistence mediates the multi-step
outcomes both from the cumulative impact of a perturbation, and whether yT or xT+1 is changed.

2.4 Recommendations

In summary, for the single regressor dynamic model, testing the scenario difference does not yield ad-
ditional insight beyond testing the significance of the estimated in-sample parameters when the model
is linear in the perturbed known future scenario variable. This result holds for both single and multiple
periods ahead, and for perturbations in both the lagged dependent as well as independent variable. We
now consider scenario differences in processes with additional covariates and analyze the four possible
ways in which the invariance to the intervention of relationships between covariates might fail.

3 When do estimated scenario differences yield unbiased estimates of the
true differences in outcomes?

We now consider the case where the DGP includes both the policy variable perturbed by an intervention
as well as k additional covariates x2 as in (1). Such interventions would correspond to counter-factual
experiments when the agency controls x1,t to influence yt, but can be more general where an agency
wishes to explore possible futures. In this section, we consider the cases where the estimated model
coincides with the DGP (1) as well as where the model is mis-specified for the DGP by omitting con-
ditioning variables. A crucial factor affecting the differences in scenario outcomes is the relationship
between the policy variable x1,t and the covariates x2, even when the x2,T are independent of the DGP
error on the equation of interest.

In the absence of any scenario intervention at time T + 1 the DGP outcome from (1) would be:

yT+1 = β0 + β1x1,T+1 + β′2x2,T+1 + λyT + εT+1 (22)

The scenario intervention is again one where x1,T+1 is perturbed by δx for invariant parameters in (22),
leading to:

y∗T+1 = β0 + β1 (x1,T+1 + δx) + β′2x
∗
2,T+1 + λyT + εT+1 (23)

where x∗2,T+1 reflects any impact of δx on x2,T+1 through its links to x1,T+1. The linkage between x2

and x1 is described by the projection:

x2,t = π0 + π1x1,t + π2yt−1 + ut with ut ∼ INk
[
0, σ2uΩ

]
(24)
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which may, but need not, be the DGP for {x2,t} (in practice, x2,t−1 is likely to be relevant). Then,
comparing (22) with (23), the scenario difference in the DGP is:

y∗T+1 − yT+1 = β1δx + β′2
(
x∗2,T+1 − x2,T+1

)
(25)

where x∗2,T+1 = x2,T+1 reproduces the earlier result that other super-strongly exogenous regressors
cancel. Even if the conditional DGP (22) remains invariant to the scenario intervention, the outcome
depends on the reaction of x2,T+1 to an intervention on x1,T+1. For example, the Bank of England
uses interest rates (x1) to change inflation (y), and that operates though the impact of interest rates on
aggregate demand (x2), which in turn affects inflation, and as (25) shows, does not require β1 6= 0. As
before, the direct impacts from yT and the error εT+1 from (22) with (23) cancel between the scenarios,
so do not affect (25) for 1-step ahead, but that will change if any DGP parameters are not invariant to
the intervention, and at multi-steps ahead, especially when there are feedbacks from yt−1 onto any of the
xi,t.

A possible situation is one of co-breaking between x2,t and x1,t such that β′2π1 = 0: see Hendry
and Massmann (2007). As:

x∗2,T+1 = π0 + π1 (x1,T+1 + δx) + π2yT + uT+1 = x2,T+1 + π1δx

then:
y∗T+1 − yT+1 =

(
β1 + β′2π1

)
δx = β1δx (26)

leading to the same outcome for y∗T+1 − yT+1 in (25) as if x∗2,T+1 = x2,T+1 even though x∗2,T+1 has
shifted. Partial co-breaking would lead to some cancellation. A test of in-sample co-breaking is to add
any impulse and step indicators for outliers and shifts in x1,t detected in estimates of (24) to (1) and
check their significance: if β′2π1 = 0, they should be irrelevant. However, unless k is very small,
it seems unlikely that all regressors would co-break precisely with shifts in x1,t given their different
parameter values.

3.1 Model matching the DGP

When the model matches the DGP, in an optimistic scenario where the x2,T+1 are known, the projected
values are given by ŷT+1 and ŷ∗T+1 for the unperturbed and perturbed scenario respectively, so the esti-
mated scenario difference is the same as in Section 2.

3.2 Mis-specified model

A more likely setting is for the model to be mis-specified for the DGP, crucially by omitting relevant
variables. We focus on the omitted variable case where we let the mis-specified model omit all x2,t:

yt = φ0 + φ1x1,t + ψyt−1 + et assuming et ∼ IN
[
0, σ2e

]
(27)

with |ψ| < 1. Using (1) and assuming the link between variables in (24) holds in-sample, the mapping
between the DGP parameters and the model’s coefficients is:

yt =
(
β0 + β′2π0

)
+
(
β1 + β′2π1

)
x1,t +

(
β′2π2 + λ

)
yt−1 +

(
β′2ut + εt

)
(28)

so that:
φ0 =

(
β0 + β′2π0

)
; φ1 =

(
β1 + β′2π1

)
; and ψ =

(
β′2π2 + λ

)
.
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These correspond to the standard results for omitted variable biases in linear models. From a sample
of t = 1, . . . , T , and having taken deviations from sample means, an investigator again estimates the
coefficients φ1 and ψ as φ̂1 and ψ̂ where for large T : √T (φ̂1 − φ1)√

T
(
ψ̂ − ψ

)  ∼ N2

[
0, σ2eΣ

−1] (29)

and we assume Σ̂ ≈ Σ. Subsequently, the estimated mis-specified model is used to create projections,
where the scenario projected values of the mis-specified model are denoted by ỹ∗T+1 and ỹT+1 with and
without perturbation.

3.2.1 Mis-specified projection in the absence of intervention

For given values of x1,T+1 and yT with invariant parameters, the baseline projection for the next period
using the mis-specified model is:

ỹT+1|T = φ̂0 + φ̂1x1,T+1 + ψ̂yT (30)

We assume that T is sufficiently large that:

E
[
ỹT+1|T | x1,T+1,x2,T+1, yT

]
≈ φ0 + φ1x1,T+1 + ψyT

because finite-sample biases will be small compared to the effects of mis-specification and shifts. Using
(30) in the absence of a scenario intervention, from (28) the mis-specification of the model (27) for the
DGP (1) leads to a mean prediction error in the level relative to the DGP outcome:

E
[(
yT+1 − ỹT+1|T

)
| x1,T+1,x2,T+1, yT

]
= (β0 − φ0) + (β1 − φ1)x1,T+1 + β′2x2,T+1 + (λ− ψ) yT

= β′2 (x2,T+1 − π0 − π1x1,T+1 − π2yT ) = β′2uT+1

which will be distributed around zero. As shown in Clements and Hendry (1998), in a constant-parameter
world, omitted variables do not induce serious problems, here merely augmenting the usual forecast-error
variance with an additional variance of σ2uβ

′
2Ωβ2.

3.2.2 Mis-Specified projection with an intervention

Undertaking a scenario study in the mis-specified model where x1,T+1 is perturbed by δx leads to:

ỹ∗T+1|T = φ̂0 + φ̂1 (x1,T+1 + δx) + ψ̂yT (31)

The impact from changing x1,T+1 by δx entails calculating the estimated scenario difference as ỹ∗T+1|T −
ỹT+1|T = φ̂1δx, with an expected value E[φ̂1δx] ≈ φ1δx =

(
β1 + β′2π1

)
δx. Comparing the baseline

(30) with the scenario intervention (31) yields the expected difference:

E
[(
ỹ∗T+1|T − ỹT+1|T

)
| x1,T+1

]
= φ0 + φ1 (x1,T+1 + δx) + λyT − φ0 − φ1x1,T+1 − ψyT

=
(
β1 + β′2π1

)
δx (32)

Importantly, this is a unique counter-factual prediction of the 1-step ahead difference between the sce-
narios when x2,T+1 and the link (24) between x2 and x1 (or generalizations thereof) are unknown to the
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agency but nevertheless invariant to the intervention. Then, the variance V[·] of the scenario difference
ỹ∗T+1|T − ỹT+1|T = φ̂1δx between (31) and (30) is estimated under the null of correct specification as:

V
[
ỹT+1|T − ŷT+1|T

]
= δ2xV

[
φ̂1

]
=

σ2εδ
2
x

Tσ11
(
1− ψ2

) (33)

While the investigator may anticipate a scenario difference of φ̂1δx with the variance in (33), the actual
outcome will differ depending on the actual links between covariates x1,T+1 and x2,T+1 as we now
consider.

3.3 Linkages between covariates and their impacts on scenario projections

We now investigate four possible forms of linkage between x1,T+1 and x2,T+1 when creating scenario
projections using a model that matches the DGP, as well as the above model being mis-specified for
the DGP. First, we consider the case where x2,T+1 is unaffected by an intervention in x1,T+1. Second,
the case when there exists an invariant causal link between x2,T+1 and x1,T+1. Third, there exists an
in-sample relationship between x2,T+1 and x1,T+1, however, this relationship is not invariant to inter-
ventions. Fourth, the relationship between yt and x1,t itself is not invariant to interventions. The analysis
here just considers scenario projections for one-period ahead, as for two-periods ahead and beyond, most
formulae cease to yield useful insights.

3.3.1 Covariates x2 unaffected by the intervention on x1

DGP outcome: When all x2,T+1 are unaffected by the intervention, so that x∗2,T+1 = x2,T+1, then
from (25) the scenario difference in the DGP is identical to the univariate case in section 2:

y∗T+1 − yT+1 = β1δx (34)

This is often the assumption under which scenarios are calculated, basically assuming ceteris paribus.

Model matches the DGP: Again when x∗2,T+1 = x2,T+1 in (25), even if (24) is merely an in-sample
projection, then the actual effect will also be β1δx, which is estimated without bias using the model
matching the DGP.

Model does not match the DGP: Now the scenario prediction using the mis-specified model will be
incorrect on average by β′2π1δx. This could have either sign and potentially any magnitude. This directly
corresponds to the well-known result of omitted variable bias in linear models.

3.3.2 Invariant causal relation between x1 and x2

DGP outcome: When the in-sample linkage between x1 and x2 is the invariant causal relation given
by (24) then x∗2,T+1 = x2,T+1 + π1δx, and the correct outcome (25) becomes:

y∗T+1 − yT+1 =
(
β1 + β′2π1

)
δx (35)

As noted above, co-breaking by β2 may lead to some or all elements of β′2π1 being zero.
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Model matches the DGP: In the absence of correctly modelling the causal relation between x1 and
x2,t the model matching the pre-intervention DGP results in a biased estimate of the scenario difference:

E
[(
ŷ∗T+1 − ŷT+1

)
−
(
y∗T+1 − yT+1

)
| x1,T+1

]
= (β1δx)− (β1 + β′2π1)δx = β′2π1δx (36)

This is the same as the error on the outcome in §3.3.1 when the model does not match the DGP. To
correctly calculate the future outcomes would require taking account of the relationship in (24), via a
system dynamic simulation. Replacing x1,t in (24) by x1,t−1 would just alter the timing at which (35)
affected the outcome.

Model does not match the DGP: The impact from changing x1,T+1 by δx entails calculating the sce-
nario difference as ỹ∗T+1|T−ỹT+1|T = φ̂1δx, with an expected value E[φ̂1δx] ≈ φ1δx =

(
β1 + β′2π1

)
δx,

as comparing (30) with (31):

E
[(
ỹ∗T+1|T − ỹT+1|T

)
| x1,T+1

]
= φ0 + φ1 (x1,T+1 + δx) + λyT − φ0 − φ1x1,T+1 − ψyT

=
(
β1 + β′2π1

)
δx (37)

which matches the DGP outcome in (35). When (24) is an invariant causal relation, so x1,T+1 and x2,T+1

co-break in the constant relation (24) with x∗2,T+1 = x2,T+1 + π1δx, and maintaining the assumption
of parameter invariance in (1), then the difference between the projected scenario and the true scenario
outcome is on average:

E
[(
y∗T+1 − ỹ∗T+1|T

)
| x1,T+1,x2,T+1, yT

]
= β0 + β1 (x1,T+1 + δx) + β′2x

∗
2,T+1 + λyT

− φ0 − φ1 (x1,T+1 + δx)− ψyT
= β′2uT+1

Consequently, despite the mis-specification, given invariant parameters in the rest of the system DGP
under the scenario change, and a constant causal link between the included and unknowingly excluded
variables in both states of nature, the correct scenario calculation of (β1 + β′2π1)δx in (37) results.
This finding that a mis-specified model leads to an unbiased scenario prediction is closely related to the
concept of conditioning on a post-treatment variable in the causal-inference literature, and to deliberately
omitting exogenous variables from an open forecasting model as explained in Hendry and Mizon (2012).
As the outcome of interest is the effect of x1 onto yt, if x2,t itself is affected by x1, then x2,t should
not be included in a projection model for yt unless the relationship between x1 and x2,t is also formally
modelled. While causality is difficult to establish in empirical models, invariance can be tested using the
approach discussed in §3.5 and applied below.

3.3.3 In-sample projection and no invariant causal relation between x1 and x2

The requirements of an invariant causal relationship are very strong and most unlikely to hold in a wide-
sense non-stationary world facing intermittent shifts of distributions. When the relationship between x1
and x2,t in (24) holds in-sample merely as a projection based on inter-correlations, rather than as an
invariant relation, then in the absence of any intervention, (24) would produce:

x2,T+1 = π0 + π1x1,T+1 + π2yT + uT+1

but this link is in fact not invariant to the intervention on x1,T+1 of δx, so alters the parameters of (24)
to:

x∗2,T+1 = π∗0 + π∗1 (x1,T+1 + δx) + π∗2yT + uT+1 (38)
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Then using (38):

x∗2,T+1 − x2,T+1 = π1δx + (π∗0 − π0) + (π∗1 − π1) (x1,T+1 + δx) + (π∗2 − π2) yT (39)

Consequently, from (25):

y∗T+1 − yT+1 =
(
β1 + β′2π1

)
δx + β′2 (π∗0 − π0)

+ β′2 (π∗1 − π1) (x1,T+1 + δx) + β′2 (π∗2 − π2) yT (40)

so the scenario difference now depends on the initial condition as well as on all the parameter shifts and
could be badly mis-estimated by β1δx.

Model does not match the DGP: When the relation in (24) is merely an in-sample projection, and
instead (38) occurs, either because of the shift in δx or from other changes, then a major difference
emerges between the responses (β1+β′2π1)δx predicted by the model and that from the DGP as (y∗T+1−
yT+1) in (40) leads to (β1 + β′2π1)δx + β′2(π

∗
0 − π0) + β′2(π

∗
1 − π1)(x1,T+1 + δx). Thus:

E
[(
y∗T+1 − ỹ∗T+1|T

)
| x1,T+1,x2,T+1, yT

]
= β′2 (π∗0 − π0) + β′2 (π∗1 − π1) (x1,T+1 + δx) (41)

so the calculated and actual scenario responses could be wildly different. Consequently, in the absence
of an invariant causal relationship, both the well-specified and mis-specified models yield unreliable
estimates for the scenario difference.

3.3.4 Scenario intervention shifts the DGP itself

The situation where changes in x1,t not only shift x2,t and also alter the DGP parameters in (1) is more
complicated still. In place of (23), to illustrate, we just consider the special case:

y∗T+1 = β∗0 + β∗1 (x1,T+1 + δx) + β′2x
∗
2,T+1 + λyT + εT+1 (42)

where δx not only changes the parameters in the model equation for y but also all of the parameters in
the relationship with x2 as in (38) so that:

y∗T+1 − yT+1 = (β∗0 − β0) + β1δx + (β∗1 − β1) (x1,T+1 + δx) + β′2
(
x∗2,T+1 − x2,T+1

)
=
(
β1 + β′2π1

)
δx + β′2 (π∗0 − π0) + (β∗0 − β0)

+
(
β∗1 − β1 + β′2 (π∗1 − π1)

)
(x1,T+1 + δx) + β′2 (π∗2 − π2) yT (43)

Other parameter changes would make (43) more complicated still, but the principle that all failures of
invariance add yet more terms is clear. Indeed, even if the linkage in (24) was an invariant causal relation,
(43) would become:

y∗T+1 − yT+1 =
(
β1 + β′2π1

)
δx + (β∗0 − β0) + (β∗1 − β1) (x1,T+1 + δx) (44)

still leading to a complicated outcome very different from might be anticipated.

Model does not match the DGP: The problem seen in (41) is of course magnified by any shifts in
the DGP parameters themselves. The calculated scenario remains

(
β1 + β′2π1

)
δx whereas the DGP

difference will be (43), so the two need not be alike in any way.
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3.4 Recommendations

Overall, even if the in-sample conditional DGP equation for the target variable is known, the outcomes
of scenario interventions will depend on the links between the perturbed policy variable and any other
relevant variables, as well as the dynamics, and will reflect all failures of invariance in both the DGP
equation and the DGPs for the regressor variables.

Table 1 summarises the main cases, where # simply denotes too complicated to be recorded in detail,
but differing across the columns. In short, if conditioning variables are unaffected by the policy variable,
then a model matching the DGP is preferred. However, if there is an invariant causal link between
the variables, then a mis-specified model omitting all other regressors can yield unbiased estimates of
the scenario difference, while a model matching the DGP may not. Noting that scenario differences
essentially correspond to total effects, whereas just perturbing the policy variable and not including its
impacts on other regressors just delivers a partial effect, clarifies what might otherwise seem an odd
result. When some but not all of the other relevant variables are unknowingly omitted, biased estimates
of the scenario difference will usually result.

Table 1: Actual and Predicted Difference between perturbed and unperturbed outcomes.
Case DGP Scenario Difference Model=DGP Mis-specified Model

1: x2 unaffected β1δx β̂1δx ( ˜β1 + β′2π1)δx

2: x1,x2 invariant
(
β1 + β′2π1

)
δx β̂′2π1δx ( ˜β1 + β′2π1)δx

3: x1,x2 not invariant # # #
4: DGP not invariant # # #

As invariance properties are generally unknown from the outset, a key lesson from this analysis
is the crucial requirement to model all the in-sample linkages and test for any previous shifts in such
relationships. The challenge of assessing invariance is not insurmountable, as considered by automatic
testing of interventions in marginal models proposed in Hendry and Santos (2010) and Castle, Hendry,
and Martinez (2017). While that will not be possible for any variables in x2,t that are either deliberately
or inadvertently omitted from the model, formally testing for parameter invariance remains viable unless
such omitted variables are both orthogonal to all included ones and have zero population means.

3.5 Testing for parameter invariance in the marginal models

A feature of these analyses is the need for models to be invariant to the intervention if the scenario is
to match reality. The marginal variable above is x1,t and although building a complete model thereof is
usually infeasible, the most deleterious failures of invariance concern induced location shifts captured in
(43) by β′2 (π∗0 − π0). Thus, consider detecting interventions (location shifts or impulses) in a marginal
model of x1,t as in (45) where m could be 0 or 1 depending on the exogeneity status of x2,t:

x1,t = γ0 +
s∑
j=0

(
γ1,j−1x1,t−j−1 + γ2,jyt−j−1 + Γ2,j−1x2,t−j−m

)
+

T∑
i=1

τ i1{i≤t} + ut (45)

where 1{i≤t} is a step-indicator equal to unity till time t then zero thereafter. Selection at a chosen level of
significance pα reduces the set of T indicators to a subset of m detected shifts at times ti. Subsequently
these detected shifts are entered in conditional models of x2,t in (46):

x2,t = π0 +

s∑
j=0

(π1,jx1,t−j + π2,jyt−j−1 + Π2,jx2,t−j−1) +

m∑
i=1

τ i1{i≤ti} + ηt (46)
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with ηt ∼ INk [0,Ωη]. If the relation between x2,t and x1,t is invariant, including the detected shifts
should not lead to rejection in the conditional model, which can be tested by an F-test on τ i in (46).

The marginal model (45) is saturated by step indicators, as proposed by Castle, Doornik, Hendry,
and Pretis (2015) and implemented in Autometrics (see Doornik and Hendry, 2018). Although (45) has
many more candidate variables than observations, model selection based on expanding and contracting
multi-path block searches has proved a viable approach following the analyses in Hendry, Johansen,
and Santos (2008) and Johansen and Nielsen (2009, 2013) leading to the automatic tests of invariance
in Hendry and Santos (2010) and Castle, Hendry, and Martinez (2017). The former develops impulse-
indicator saturation (IIS) tests and the latter step-indicator saturation (SIS). When k + 3 is not too large,
an explanation of a feasible approach is the split-half analysis of IIS and SIS, where all the regressors are
retained without selection and half the indicators are included and tested for significance, then replaced
by the second half and finally any significant indicators are jointly included and all remaining significant
ones retained. These are then included in the equation being used for the scenario study and tested for
significance as in (46). Should any of the indicators that shift (45) also shift the conditional model, then
invariance is rejected. In practice, Autometrics uses a multi-path block search and not just one split
sample for reasons discussed by Ericsson (2017). IIS and SIS can also be applied directly to the policy
equation to check its specification. The first application in Section 4 applies SIS for the level of the UK
wage share, whereas the second uses IIS as it concerns growth rates, and hence the differences of steps.

4 Illustrative applications

Our two applications illustrate the top two rows of Table 1. The first relates to economics and the second
to climate. In the former, the scenario variable in a mis-specified model of the UK wage share fails a test
of invariance, whereas in the second, the in-sample invariant link between the scenario variable and the
other conditioning variable allows the mis-specified model to better estimate the scenario difference.

4.1 Wage share example

Our first example illustrates a setting where invariance of the omitted variable with respect to shifts in
the included is strongly rejected. The dependent variable is the log of the UK wage share Wt, being
explained by its previous value, Wt−1, the unemployment rate, Ur,t, and inflation, ∆pt, where the mis-
specified model (labelled as sub model) drops ∆pt. The data are from 1861 to 2006 with the observations
over the Great Recession 2007–2014 retained for the scenario and forecast evaluation: Castle and Hendry
(2014b) provide data sources. We consider a scenario of reducing unemployment by 2 percentage points
in each year. Figure 2 plots the time series of the three variables and the scatter plot of inflation against
unemployment (aka the Phillips curve–shown to be a non-constant relation in Hendry, 2015).

Table 2 records the estimates for known values of Ur,t, and ∆pt over the forecast horizon. The
second column (called [1] ‘Full Model’), records the estimates of the regression of the wage share Wt on
a constant, Wt−1, Ur,t, and ∆pt, which shows a negative, but insignificant, coefficient for unemployment
and a positive and highly significant one for inflation. The third column ([2] ‘Sub Model’) reports the
estimates when ∆pt is excluded, showing a jump in the (negative) coefficient of unemployment which is
now significant at 1%.1

As Wt and Ur,t are levels, step-indicator saturation is the appropriate approach for detecting location
shifts, and the fourth column shows the selection outcomes for the marginal model of Ur where four
location shifts are detected at 0.5% significance selection to assess invariance. With 146 observations,

1∗, ∗∗, ∗∗∗ denote significant at 5%, 1% and 0.1% respectively using conventional tests that assume well-behaved Normal
errors.
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Figure 2: (a) UK log wage share Wt; (b) UK rate of unemployment Ur,t with the scenario shift shown as
dashed; (c) UK rate of inflation ∆pt; (d) scatter-plot of inflation against unemployment.
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Table 2: Estimation Results: Modelling UK Wage Share Wt

Dep. Var: Wt Ur,t ∆pt
[1] Full Model [2] Sub Model [3] SIS [4] testing ∆pt model

Constant -0.17 (0.04)∗∗∗ -0.16 (0.04)∗∗∗ 0.08 (0.003)∗∗∗ 0.11 (0.017)∗∗∗

Wt−1 0.83 (0.04)∗∗∗ 0.83 (0.04)∗∗∗ - -
Ur,t -0.11 (0.06) -0.18 (0.06)∗∗ - -0.82 (0.19)∗∗∗

∆pt 0.11 (0.04)∗∗ - - -
St=1920 - - -0.03 (0.007)∗∗∗ 0.04 (0.02)∗

St=1929 - - -0.03 (0.010)∗∗∗ -0.07 (0.02)∗∗

St=1938 - - 0.10 (0.008)∗∗∗ 0.02 (0.02)
St=1977 - - -0.06 (0.005)∗∗∗ -0.04 (0.02)∗

F-Test for St - - [p<0.001] [p<0.001]
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there are 145 step indicators to select from, so on average less than one step will be significant by chance
under the null (145 × 0.005 ≈ 0.7). Three of those four location shifts detected for unemployment are
significant at 5% when entered in the marginal model for inflation on Ur,t, and the F-test of their joint
relevance strongly rejects its invariance to shifts in unemployment at less than 0.1%: see Table 2 column
5. Thus, shifts to unemployment shift the relationship between unemployment and inflation (consistent
with a non-constant Phillips curve), so a scenario of changing unemployment will not have the outcome
anticipated from the sub-model.

Figure 3: (a) Baseline forecasts of Wt with ±σ̂f bars and scenarios with ±σ̂f bands from the ‘full
model’; (b) baseline forecasts of Wt with±σ̃f bars and scenarios with±σ̃f bands from the ‘sub model’;
(c) baseline and scenario forecasts derived from the Castle-Hendry real-wage model; (d) the three sets of
scenario differences from their own baselines in (a), (b) and (c).
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Compared to the more comprehensive model for real wages in Castle and Hendry (2014b), from
which the wage share can be derived, even the ‘full model’ in Table 2 is badly mis-specified, with several
diagnostic tests rejecting, and an error standard deviation of 2.2%, as against their model’s 1.04%. AsWt

is (the log of) the nominal wage bill (i.e., average wages times employment) divided by nominal output
(i.e., real output times the price level), it will be affected by productivity as a key determinant as well as
unemployment and inflation (both of which have non-linear effects in their model). Another test of the
specification of the column 2 model is to apply SIS directly, which selects 6 step indicators at 0.1%, and
now unemployment is significantly negative at 1% whereas inflation is completely insignificant.

Nevertheless, Figure 3 illustrates a scenario of lower unemployment over the Great Recession, re-
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ducing it by 2 percentage points to remain close to the level of 5.4% in 2007. As the coefficients of Ur,t
in Table 2 are relatively small, the differences between scenarios and baselines for the wage share are
not large in (a) and (b), with a somewhat greater increase predicted by the sub model. Both purport to
correctly show a higher wage share under the scenario of lower unemployment, even though they are in
fact generally lower than the actual outcome despite the large stimulus to employment. However, the
difference between scenario and baseline is large for the wage share derived from the Castle–Hendry
real-wage model, which encompasses most earlier models and passes tests of invariance to interventions.

4.2 Climate Impacts on Agriculture

The second example illustrates a case when invariance is not rejected empirically. Evaluation of the
economic impacts of climate change commonly use scenario analyses, such as assessing economic or
agricultural outcomes conditional on a particular climate path. Similarly, climate outcomes are com-
monly studied conditional on emission scenarios. Here we consider a simple scenario analysis of the
growth in agricultural production conditional on climate variability. Burke, Hsiang, and Miguel (2015)
and Pretis, Schwarz, Tang, Haustein, and Allen (2018) use the observed growth in value-added of agricul-
tural production across countries to estimate the impacts of climate variability on agricultural outcomes
across countries over time. Both temperature variability and precipitation are found to be significant
factors affecting the growth in agricultural production. Here we use a single country (Indonesia) out of
the panel analysis in Pretis et al. (2018) to consider a simple scenario analysis.

Figure 4: Application data for Indonesia: Growth in agricultural value-added (top-left), temperature vari-
ability (top-right), precipitation (bottom-left), and precipitation against temperature variability (bottom-
right) with IIS fit.
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In particular, we are interested in a scenario of increasing temperature variability. This is consis-
tent with future climate change projections of a rise in variability in the tropics (see Bathiany et al.
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2018). We estimate a simple model of growth in agricultural production, and subsequently use the esti-
mated model to study a scenario of increased temperature variability. Annual data on agricultural output
growth for Indonesia is taken from the World Bank data on growth in agricultural value-added (World
Bank, 2017). Climate observations of temperatures and precipitation are obtained from the Matsuura and
Wilmot (2015) dataset (v.4) and mapped to countries as used in Pretis et al. (2018). Time series of the
country-level data are shown in Figure 3.

We estimate the simple linear model of growth in agricultural value-added from 1962 until 2012 as
a function of temperature variability and precipitation (labelled as [1] ‘Full Model’), as well as a mis-
specified model omitting precipitation ([2] ‘Sub Model’). Model estimation results are shown in Table 3.
Results of the simple model suggest a negative impact of increased temperature variability and a positive
impact of precipitation.

We consider a scenario of agricultural growth impacts when temperature variability is increased by
two standard deviations (δx = 0.23). Figure 5 and Table 4 show the projected impacts and scenario
differences, suggesting a reduction of agricultural growth of approximately 1.7% per annum when using
the full model [1] in Table 3 which includes both temperature variability and precipitation. Using the
full model [1], however, risks under-stating the projected impacts due to a potential relationship between
precipitation and temperature variability. As described in Section 3, the relationship between covariates
affects the accuracy of the estimated scenario difference. In the present application, there is an observed
negative relationship between precipitation and temperature variability shown by [4] in Table 3 and
Figure 3. While it is difficult to establish a formal causal relationship between the scenario variable and
the conditioning variables, we can, however, assess whether the relationship is invariant in-sample.

To test invariance we estimate a marginal model of temperature variability (using just a constant), and
detect shocks using impulse indicator saturation (IIS) – Model [3] in Table 3 (with IIS being applied at a
significance level of 5% given 51 observations). The detected impulses (in the years 1963, 1982, 1994,
and 1997) are then included in the conditional model of precipitation and tested for their joint signifi-
cance. If the relationship between precipitation and temperature variability is invariant to interventions,
then any shock to temperature variability should feed onto precipitation solely through the coefficient
on temperature variability itself, and thus appear insignificant in the conditional model. An F-test for
joint significance of the impulses fails to reject invariance (p = 0.41). Thus, the projected impact of an
increase in temperature variability on agricultural growth likely under-states the actual impact because
of the negative relationship between the scenario variable and the conditioning variable.

Table 3: Estimation Results: Modelling growth in agricultural value-added (Indonesia)
Dep. Var: Agr.Gr.t Var(Temp)t Precipt

[1] Full Model [2] Sub Model [3] IIS Model [4] Precip. Model
Constant 0.015 (0.03) 0.076 (0.01)∗∗∗ 0.34 (0.012)∗∗∗ 24.20 (1.5)∗∗∗

Agr.Gr.t−1 -0.062 (0.12) -0.066 (0.12) - -
Var(Temp)t -0.072 (0.031)∗ -0.11 (0.03)∗∗∗ - -15.84 (4.25)∗∗∗

Precipt 0.0025 (0.001)∗ - - -
It=1963 - - 0.35 (0.09)∗∗∗ 2.93 (2.95)
It=1982 - - 0.26 (0.09)∗∗∗ 2.09 (2.76)
It=1994 - - 0.24 (0.09)∗∗∗ -2.26 (2.73)
It=1997 - - 0.31 (0.09)∗∗∗ -2.76 (2.86)

F-Test for It - - [p <0.001] [p = 0.41]
IIS p-value - - 0.05 -

Obs. T 51 51 51 51
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Following Section 3, two approaches allow us to account for this relationship. First, the under-
specified model omitting precipitation (model [2] in Table 3) implicitly captures the relationship between
precipitation and agricultural growth through the bias in the estimated coefficient—the negative impact
of temperature variability is larger in the model omitting precipitation. Thus, using the under-specified
model to project the impact of a 2SD increase in variability leads to a larger projected negative effect of
−2.6% (as seen in Figure 5) due to the omitted relationship between temperatures and precipitation.

Figure 5: Projected impact of a two standard deviation increase in temperature variability on Indonesian
growth in agricultural value-added. Observations are shown in black, baseline projections shown in solid
colours, scenario projections with an increase in temperature variability are shown as dashed colours.
Left panel shows mis-specified model omitting precipitation. Middle panel shows projections using the
full model not accounting for precipitation–temperature links (blue) as well as accounting for the link
(green). Scenario differences are shown in the right panel for the under-specified model (red), the model
including both temperature and precipitation but failing to account for any links (blue), and the full model
estimating the link (green). Shading and error bars denote ±1 standard error of the scenarios.
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Second, the effect can be recovered by considering the joint impact of an increase in temperature
variability using the estimated model linking precipitation and temperatures [4]. A two standard devi-
ation increase in temperature variability has the estimated effect of −1.7% from [1] plus the indirect
effect through precipitation which can be recovered using equation [4] and subsequently included in the
projection using [1]. The combined projection in Table 4 taking the relationship between conditioning
variable and policy variable into account matches that of the under-specified model with an impact of
−2.6% (estimated standard errors in parentheses).

Table 4: Scenario Projections for a 2σ̂ Increase in Var(Temp)
Projection Full Model [1] Sub Model [2] Full Model [1] (Adjusted)
ŷT+1|T 0.042 (0.004) 0.036 (0.003) 0.042 (0.004)
ŷ∗T+1|T 0.025 (0.009) 0.011 (0.006) 0.016 (0.006)
ŷ∗T+1|T − ŷT+1|T -0.017 (0.007) -0.026 (0.006) -0.026 (0.006)

Consequently, an under-specified model can provide accurate estimates of a policy impact in some
settings, but not in others. In both cases, if the data are available, careful modelling of the links between
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covariates is required to establish whether the relationships are indeed invariant to interventions or merely
in-sample correlations that will prove to be unstable following interventions. Such results for scenarios
are closely similar to the findings in Castle and Hendry (2014a) for selecting models in DGPs with
breaks.

5 Conclusion

We considered inference on the difference between scenarios when using estimated models of an un-
known data generation process (DGP). For univariate models, our results show that when the model is
linear in the single variable perturbed by the scenario intervention of a deterministic shift, then the sig-
nificance of the difference between a scenario intervention and a baseline of no intervention depends
only on the significance of the in-sample t-test of that variable. Under these circumstances, a scenario
comparison adds little beyond testing for the significance of the variable in the estimated model. When
models are more general and include multiple covariates together with a variable perturbed by a scenario
analysis, then inference on the scenario difference crucially depends on the relationship between the
conditioning variables and the policy variable. If there exists an invariant causal relationship between
variables, a simple model omitting control variables may be preferred over a well-specified model that
matches the DGP, but not otherwise. These results were illustrated by two empirical examples, the re-
action of the wage share to a reduction in unemployment and of an increase in temperature variability
on agricultural growth, but apply more widely to scenarios of the health and economic impacts from the
SARS-CoV-2 virus that causes COVID-19.

The recommendations are thus mixed—an estimated conditional model matching its DGP equation
does not automatically yield an unbiased estimate of the true outcome. Only if there is no relation-
ship between the covariates and the perturbed variable is the scenario analysis informative, unless the
relationships between conditioning variables and policy variable are explicitly modelled. If there ex-
ists an invariant causal relationship between the conditioning variables and the policy variable, then a
mis-specified model omitting additional covariates may be preferred, similar to the problem of condi-
tioning on a post-treatment variable in causal inference, or deliberately omitting exogenous variables
from an open forecasting model. However, if the relationship between covariates and the policy variable
is merely an in-sample projection that is not invariant to an intervention, then the resulting parameter
changes following a scenario intervention can render that scenario analysis uninformative.

Thus, although a model-based scenario is unique, the ‘real-world outcome’ is not, and will vary in
unknown ways with unknown omitted influences and parameter changes. The recommended approach in
Hendry and Doornik (2014) of seeking a large information set to nest the DGP, selecting the significant
effects therefrom and testing for parameter invariance to past large changes would help avoid problems
of mis-specification and non-invariance by selecting a model that was a good approximation to the local
DGP. Nevertheless, there are situations noted above when the model is mis-specified for the DGP but the
scenario difference is correct: omitting variables from linear models will bias parameter estimates but
may not distort calculations of scenario differences and forecasts.
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Appendix: Approximate variances of multi-period scenario outcomes

To illustrate for the model with a single policy variable in (3), let θ = (β1 : λ)′ so the scenario path
depends on f(θ̂) for which we need V[f(θ̂)]. Using a linear expansion where ξ = (θ̂ − θ):

f
(
θ̂
)

= f (θ + ξ) ≈ f (θ) +
∂f (θ)′

∂θ
ξ = f (θ) +

∂f (θ)′

∂θ

(
θ̂ − θ

)
(47)

with from (6):

θ̂ ∼ N2

[
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[
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[(
β1
λ

)
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V
[
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[
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] ∂f (θ)
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which can be generalized depending on the model and scenario under analysis. When:

E
[(
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= 0

then (47) also entails that:
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[
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[
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so using (48):
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As the scenario difference here depends on f
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), we have:
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so:
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Thus, the variance, V[ŷ∗T+n|T − ŷT+n|T ] of the estimator
(
ŷ∗T+n|T − ŷT+n|T

)
is then approximately:
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and as expected, will be larger than at 1-step, reflecting the dynamics. Using:
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