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Abstract

We show all substitutes (respectively, strong substitutes) preferences can be
represented, and no other preferences can be represented, by appropriate sets of
permitted bids in the corresponding version of the Product-Mix Auction bidding
language. The Product-Mix Auction languages thus also provide new character-
izations of both ordinary substitutes and strong substitutes. This material will
form part of “Implementing Walrasian Equilibrium–the Language of Product-Mix
Auctions” (Baldwin and Klemperer, in preparation).

1 Introduction

1.1 Product-Mix Auctions (PMAs)

This note shows that the Product-Mix Auction (PMA) bidding language1 permits the
specification of precisely the set of preferences that are substitutes.2 That is, any concave
substitutes preferences can be represented by an appropriate set of bids of the kind
permitted by the PMA bidding language. Furthermore, since our proof is constructive,
it can be used to provide an algorithm to generate the set of bids representing the

∗This note generalises and subsumes Baldwin and Klemperer (2021).
We are extremely grateful to Edwin Lock for invaluable help and advice.
†Hertford College, Oxford University, UK; elizabeth.baldwin@economics.ox.ac.uk
‡Nuffield College, Oxford University, UK; paul.klemperer@nuffield.ox.ac.uk
1Free open-source software to run several versions of the PMA is at http://pma.nuff.ox.ac.uk/.
2Baldwin and Klemperer (2016) presented the argument for the proof for strong substitutes. Full

details are in Baldwin and Klemperer (2021). Lin and Tran (2017) showed how any valuation can
be analysed tropical-geometrically and decomposed into a combination of simpler pieces, but if the
valuation is not strong substitutes, these simpler pieces do not correspond to positive and negative
bids. Klemperer (2010) stated the result for strong substitutes with multiple units of each of two
goods.
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valuation.3 Moreover, the representation of any valuation is essentially unique,4 and no
permitted combination of PMA bids represents any other form of preferences.5

PMAs are sealed-bid mechanisms for trading multiple units of multiple differentiated
goods. They implement competitive-equilibrium allocations based on the preferences
that participants express in an easy-to-use-and-understand geometric language. The
PMA was originally developed by Klemperer (2008) for the Bank of England, which
implemented a simplified version of it;6 the results shown in this note are important for
the usefulness of the auction in other contexts.7

A revised version of the material in this note will form a central part of “Imple-
menting Walrasian Equilibrium—the Language of Product-Mix Auctions” (Baldwin and
Klemperer, in preparation).

1.2 Strong substitutes

The results are especially significant for the important special case of strong substi-
tutes. It follows from our more general results that the strong-substitutes PMA bidding
language permits the specification of precisely the set of preferences that are strong
substitutes. We know of no other language with these properties. For example, neither
Hatfield and Milgrom (2005)’s endowed assignment messages nor Milgrom (2009)’s (in-
teger) assignment messages can express all strong substitute valuations (see Ostrovsky
and Paes Leme (2015), and Fichtl (2021b), respectively).8

Strong-substitutes preferences are those that would be ordinary-substitutes prefer-
ences if we treated every unit of every good as a separate good. These preferences have
many attractive theoretical properties.9 They also naturally arise in practical contexts.
For example, bidders’ preferences in the Bank of England’s liquidity auctions seem to
be well-represented by strong substitutes.10

3The algorithm would use knowledge of the valuation’s “weighted LIP” (see Section 2.3). However,
standard software can find this (see Baldwin and Klemperer (2019), Remark A2). Moreover, if the
explicit valuation is not available, it and its weighted LIP can be found using a natural extension of the
methodology described in Goldberg et al. (2020) if either a value oracle or a demand oracle is available.

4That is, the representation is unique after removing redundancies, such as a pair of bids that exactly
cancel each other out.

5Permitted or “valid” combinations of bids are those that satisfy the “law of demand” that the
demand for a good cannot decrease if its price falls while no other price changes. See Definition 2.4
below.

6Klemperer (2008) responded to the Governor of the Bank of England’s 2007 request for a mechanism
to allocate central-bank funds to bidders who would be permitted to offer different qualities of collateral;
the UK suffered its first bank run for 140 years in Sept. 2007 in an early sign of the financial crisis.
Over £200 billion in indexed long-term repos have now been auctioned using the Bank’s auction; it is
currently run weekly.

7See Klemperer (2018) for discussion of variants of the PMA language. Fichtl (2021a) details an algo-
rithm for solving, and Finster et al. (2021) provides further discussion of, “Arctic” (Budget-Constrained)
PMAs.

8Furthermore, Tran (2020) shows that it is not possible to express all strong substitute valuations
as combinations of weighted ranks of matroids on a ground set bounded by the number of goods.

9These preferences mean, for example, that if the price of any one good increases, and the demand for
it decreases, then the demand for all other goods can increase by at most the amount of that decrease.
Strong substitutability is the terminology coined by Milgrom and Strulovici (2009). It is equivalent to
M \-concavity (see Murota and Shioura (1999), Murota (2003) and Shioura and Tamura (2015)).

10See Klemperer (2018), Appendix I(A2a)–strong substitutability allows an agent’s preferences to
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1.3 Outline

We proceed as follows. Section 2 explains the bidding language and states the main
results. It also reviews some key concepts from Baldwin and Klemperer (2019).

Section 3 provides intuition for our results. In particular, Section 3.2 explains the
main ideas by considering a simple example of an agent’s valuation over just two va-
rieties of goods. It shows how to construct the collection of bids that expresses the
agent’s preferences, and explains why our construction works in general. The remaining
subsections of Section 3 explain the generalisation to multiple varieties of goods, and
give intuition for our other main results.

Section 4 develops an “arithmetic” on “pseudo-LIPs”, which are generalisations of
the “locuses of indifference prices (LIPs)” that we introduced in Baldwin and Klemperer
(2019), and relates them to the bidding language.

Section 5 provides the structure of the proofs, and some of the details; further details
are in Appendices.

2 Conventions, Definitions and Summary of Results

2.1 Valuations and Substitutes

This paper concerns the representation of substitutes preferences for indivisible
goods, when utility is quasilinear.

That is, an agent has a valuation v : Av → R on a finite set of bundles x ∈ Av ( Zn≥0.
The bundles are formed of n distinct indivisible goods, and each good is available in
multiple units. We write [n] = {1, . . . , n} for the set of all the goods, and [n]0 for the
set {0, 1, . . . , n}. The 0th good refers to “nothing”; this allows us to refer to the case in
which no good is demanded.

An important special case is when the domain, Av, is a discrete simplex. For I ⊆
[n]0 write ∆I := {ei | i ∈ I}, in which ei is the ith coordinate vector, and we write
e0 := 0. For m ∈ Z we slightly abuse notation by writing m∆I := {mx ∈ Zn | x ∈
conv (∆I)}; note that we include the case m < 0 here. For t ∈ Zn>0 we write t�∆I :=
{(t1x1, . . . , tnxn) ∈ Zn | x ∈ conv (∆I)}.

Prices p ∈ Rn are linear on the n goods, and there are no budget constraints,
so the agent’s quasilinear utility is v(x) − p · x for all x ∈ Av. The agent demands
any bundle that maximises its utility, so that its demand set at price p is Dv(p) =
arg maxx∈Av{v(x) − p · x}. Observe that the demand set need not be a single bundle,
although it will be at a single bundle at a dense set of prices in Rn.

The valuations v considered in this paper will always be concave: the set Av satisfies
conv(Av)∩Zn = Av, and, if conc(v) : conv(Av)→ R is the concave majorant11 of v then
v(x) = conc(v)(x) for all x ∈ Av. Equivalently, every demand set Dv(p) is discrete-
convex.12 And valuations will always be ordinary substitutes, and may also be strong
substitutes, in the following senses:

exhibit one-for-one substitution between goods, but not more general tradeoffs. Baldwin et al. (2019)
and Baldwin et al. (2021a) provide algorithms to solve the strong-substitutes PMA, i.e., find competitive
equilibrium prices and allocations, given any valid sets of bids.

11That is, the minimal weakly-concave function that is everywhere greater than v.
12See, for example, Baldwin and Klemperer (2019), Lemma 2.11.
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Definition 2.1 (See e.g. Ausubel and Milgrom (2002) and Milgrom and Strulovici
(2009)). Let v : Av → R be a valuation.

(1) v is ordinary substitutes if, for any prices p′ ≥ p with Dv(p) = {x} and Dv(p
′) =

{x′}, we have x′k ≥ xk for all k such that p′k = pk.
(2) v is strong substitutes if, when we consider every unit of every good to be a separate

good, it is a valuation for ordinary substitutes.

Both ordinary and strong substitutes valuations are natural extensions of Kelso and
Crawford (1982)’s “gross substitutes” to the multi-unit case. Strong substitutes, which
are automatically concave, guarantee existence of competitive equilibrium, and are also
known as “M \-concave functions” in the literature on discrete convex analysis (see, e.g.
Murota, 2003).

The simplest examples of strong substitutes valuations are the “unit demands” of
Gul and Stacchetti (1999):

Example 2.2. A unit demand valuation is a valuation v with domain ∆[n]0 = {ei | i ∈
[n]0} and such that, for some r ∈ Rn, v(x) = r · x for all x ∈ ∆[n]0 .

When p = r, the agent is indifferent between all the bundles x ∈ ∆[n]0 , as all deliver
utility v(x)− p · x = 0 at that price.

We will show that all strong substitutes valuations can be built up from unit demand
valuations, and that all concave ordinary substitutes valuations can be built up from
unit demand valuations that have undergone a simple deformation, in a sense that will
be made clear below.

2.2 PMA Bids and the Representation Theorems

This section lays out the key concepts and results of the paper. Proofs of all results
stated here will be provided later in the paper.

The bids in our languages are defined as follows. First, recall that an integer vector
t is “primitive” if the greatest common divisor of its entries is 1. Now write:

Definition 2.3. A positive PMA bid b = (r; t;m) with root r = r(b) ∈ Rn, trade-off
t = t(b) ∈ Zn>0 which is a primitive integer vector, and multiplicity m = m(b) ∈ Z>0,
represents valuation vb with domain mt � ∆[n]0 = {(mt1x1, . . . ,mtnxn) ∈ Zn | x ∈
conv

(
∆[n]0

)
} and such that vb(x) = r · x for x in this domain.

A positive SSPMA bid is a positive PMA bid b such that t(b) = 1.

Note that the coordinates of the “root” give the bid’s location in Rn, and also give
the per-unit values for the goods. We call this parameter the root, notated r, rather
than the “value” because we will identify collections of bids with valuations (notated v)
and wish to avoid confusion. Figure 1 shows an example of a positive PMA bid with
n = 2.

We write Db(p) := Dvb(p) to simplify notation. It is easy to see that a SSPMA bid
with multiplicity m is an aggregate of m identical unit demand valuations as in Example
2.2. A PMA bid is a simple generalisation of this, allowing for more general trade-offs
between units of goods: at price r(b) the bidder is indifferent between receiving nothing,
and receiving (up to) ti units of good i ∈ [n] (and so also indifferent between receiving
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p1

p2

(2,0) demanded

(0,3) demanded

(0,0) demanded

6

5

0

1

Figure 1: The bid b = (r; t;m) = [6, 5; 2, 3; 1], expressing the valuation v(0, 0) = 0, v(1, 0) = 6,
v(2, 0) = 12, v(0, 1) = 5, v(0, 2) = 10, v(0, 3) = 15, v(1, 1) = 11. The bundles demanded at prices in
the open regions separated by line segments are labelled; the bundles (0, 0), (1, 0), and (2, 0) are all
demanded on the vertical line segment; the bundles (0, 0), (0, 1), (0, 2), and (0, 3) are all demanded
on the horizontal line segment; the bundles (2, 0) and (0, 3) are both demanded on the diagonal line
segment; and all these bundles together with (1, 1) are demanded at the “root” of the bid, r = (6, 5).
A vector normal to the diagonal line segment is (−t1(b), t2(b)) = (−2, 3).

(up to) ti units of good i, and receiving up to tj units of good j ∈ [n]). For brevity we
will refer to PMA bids as “bids”, and specify SSPMA bids only in that case.

We also write r0(b) := 0, p0 := 0 and t0(b) := 1; these 0th coordinates are under-
stood not to be generally included in r,p and t respectively, unless i ∈ [n]0 is explicitly
stated, but allow us to conveniently refer to the case in which the 0th good 0 is de-
manded.

So I(b,p) := arg maxi∈[n]0 ti(b)(ri(b)− pi) is the set of goods optimal for a bid, and
includes the possibility that the optimal outcome is an assignment of nothing. And

Db(p) = m(b)t(b)�∆I(b,p). (1)

We define the demand DB of a finite collection (i.e., multiset) B of positive bids to be

DB(p) := conv

(∑
b∈B

Db(p)

)
∩ Zn, (2)

that is, the convex hull of the aggregate demand set of these bids. We do this because
we assume that the individual agent’s valuation is concave, so its demand set at any
price is convex.13

It is not true that, for every concave ordinary substitutes valuation v, there is a
collection B of positive bids such that Dv(p) = DB(p) for all p ∈ Rn. So we also
introduce negative bids, for which m(b) ∈ Z<0.

A negative bid b does not correspond to a valuation vb. However, we may, nonethe-
less, define Db(p) for such a bid as in Equation (1) above. Write, for convenience,

13Note the Minkowski sum of individual demand sets with ordinary substitutes need not be convex
(see Example B.1 in Appendix B.1).
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|b| = (r(b); t(b); |m(b)|), and observe that if m(b) < 0 then

Db(p) = −D|b|(p) = {−x | x ∈ D|b|(p)}. (3)

That is, an increase in the price of good i leads to a weak increase in demand Db for
good i, and so Db does not satisfy the “law of demand” in the following sense:

Definition 2.4. For any demand correspondence D, say that D satisfies the law of
demand if, given p and p′ = p + λei ∈ Rn, where i ∈ [n] and λ > 0, such that
D(p) = {x} and D(p′) = {x′}, it holds that x′i ≤ xi, with equality if and only if x′ = x.

By contrast, the demand correspondence Dv of any quasilinear valuation v, does satisfy
the law of demand.14

To assign a demand correspondence to a finite collection B of bids (of either sign),
first recall that, for each b ∈ B, demand Db(p) is single-valued at a dense set of prices
in Rn. So, since there are finitely many b ∈ B, we can identify the set Q of all price
vectors q in a small open neighbourhood of p, such that Db(p) is single-valued for all
q ∈ Q. Now define

DB(p) := conv

{∑
b∈B

Db(q) | q ∈ Q

}
∩ Zn (4)

We are interested in combinations of positive and negative bids whose demand corre-
spondences, DB, do satisfy the law of demand, so we define:

Definition 2.5. Let U be a convex open subset of Rn. The finite collection B of bids
is valid in U if DB satisfies the law of demand restricted to prices p,p′ ∈ U .
B is valid if it is valid in Rn.

Our next proposition tells us that validity (in Rn) is the only condition needed for
bids B to correspond to a concave ordinary substitutes valuation. (We will provide
further characterisations of validity later.15)

Proposition 2.6 (Cf. Baldwin et al. 2019, Theorem 1, for the strong substitutes case).
Let B be a finite collection of bids. The following are equivalent:

(1) B is valid;
(2) there exists a concave ordinary substitutes valuation vB such that DvB(p) = DB(p)

for all p ∈ Rn.

Indeed, the valuation vB is easy to describe. For those bundles x such that there
exists a price px at which DB(px) = {x} and |I(b,px)| = 1 for all b ∈ B,16 we write

14See e.g., Mas-Colell et al. 1995, Proposition 3.E.4. We also show that any valuation satisfies a
stricter property in Lemma B.13.

15See Proposition 4.14 which subsumes Propositions 2.6 and 2.8 of this section. We provide the proof
in Appendix B.3, after developing the necessary technical machinery.

16Such a price px exists for any bundle x that is uniquely demanded at any price, because being
uniquely demanded is an open condition and the condition that |I(b,px)| = 1 for all b ∈ B is generic.
However, the latter condition can fail at some prices at which x is uniquely demanded, because positive
and negative marginal bids may cancel each other out.
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I(b,px) = {ib,x} and set

v̂B(x) =
∑
b∈B

rib,x(b)m(b)tib,x(b).

We can then define the valuation vB as follows:

Definition 2.7. vB : AB → R is the valuation defined via vB(x) = conc(v̂B)(x) for all
x ∈ AB, where AB =

⋃
{DB(p) | p ∈ Rn}.

It is not immediate from this definition that the valuation vB is well-defined, because
it is not clear that v̂B(x) is independent of the choice of px. However, we show that this
is the case when the bids are valid, and:

Proposition 2.8. When B is valid, the valuation vB is well defined and concave, and
satisfies DvB(p) = DB(p) for all p ∈ Rn.

In fact the domain AB of the concave ordinary substitutes valuation corresponding
to B satisfies the following description:

Definition 2.9. A is a Finite Bids Domain (FBD) if:

(1) A is discrete-convex and 0 ∈ A ( Zn≥0;
(2) if x ∈ A then x− xiei ∈ A;
(3) for all i ∈ [n] there exists Wi ∈ Z>0 such that arg maxx∈A{xi} = {Wie

i}.
Any discrete simplex ∆I such that 0 ∈ I satisfies this condition, as does, for example,

the discrete-convex hull of {(0, 0), (3, 0), (2, 1), (0, 2)}.
Lemma 2.10 (cf. Baldwin et al. 2021a, Proposition 3). Let B be a finite valid collection
of bids, and let AB =

⋃
{DB(p) | p ∈ Rn}. Then AB is an FBD.

If B is a finite valid collection of SSPMA bids then AB = W∆[n]0, where W =∑
b∈Bm(b).

The SSPMA case is presented by Baldwin et al. (2021a); the general case can be
shown in a similar way.17

Thus it is easiest to state our representation for valuations whose domain is an FBD.
And our central result is that the PMA bidding language can indeed represent all such
valuations; moreover, the SSPMA bidding language can represent all strong substitutes
valuations whose domain is a discrete simplex.

Theorem 2.11. If v is a concave ordinary substitutes valuation whose domain is an
FBD, and such that v(0) = 0, then there exists a valid PMA bid collection B such that
vB = v.

If v is a strong substitutes valuation with discrete simplex domain then there exists
a valid SSPMA bid collection B such that vB = v.18

17The proof of Lemma 2.10 is provided in Appendix B.3.
18Our results can also be understood in “tropical algebra” (see, e.g., Maclagan and Sturmfels, 2015).

Each of our positive bids corresponds to a simple “tropical polynomial”, a collection of positive bids
corresponds to the “tropical product” of these tropical polynomials, and negative bids introduce a
form of “tropical division”. So these presentations are a “rational factorisation”. Moreover, SSPMA
bids correspond to “tropical lines” so the case of strong substitutes is a kind of Fundamental Theorem
of Algebra for tropical geometry. Building on our presentation of this case (Baldwin and Klemperer
(2016)), Lin and Tran (2017) have developed and generalised this observation from a mathematical
perspective. Our ordinary substitutes case does not follow from their generalisation.
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If the domain of v is not an FBD, Lemma 2.10 shows us that we cannot globally
represent Dv using a collection of bids B, i.e., Dv(p) = DB(p) will not hold for all
p ∈ Rn. However, we can represent Dv in any sufficiently large bounded region of Rn,
as we now show.

Definition 2.12. The Bounding Box is H := [H,H]n for some H < H, such that
H,H ∈ R.

As is standard, write also H◦ = (H,H)n.

Theorem 2.13. If v is a concave ordinary substitutes valuation then for any H < H
there exists a bid collection B, valid in H◦, such that r(b) ∈ H for all b ∈ B and
Dv(p) = DB(p) for all p ∈ H◦.19

If v is a strong substitutes valuation then B is a collection of SSPMA bids valid in
H◦.20

So by choosing values of H and H, that are, respectively, lower than, and higher
than, any prices we might ever be interested in for any good, we can find a bid collection
B that represents the demand set at all prices of interest.

The bounding box also makes it easy to describe bids such as, for example, that of a
bidder who is interested in units of good 1, but who has no interest in any other good;
this bid will be on the lower faces of the bounding box in every dimension except the
first, that is, it will be rooted at (r1, H,H, . . . , H) for some r1.

We now consider the extent to which these bid collections are unique. Allowing
multiple bids with the same combination (r; t) of root and trade-off would pose problems
for uniqueness, but only in ways that are not interesting, so uniqueness of the valid
bid collection is straightforward to state for Theorem 2.11. However, for Theorem
2.13, uniqueness requires a little more care: we need to remove potentially “redundant”
failures of uniqueness in the following ways:

Definition 2.14. A bid collection B has no redundancies if it contains at most one bid
with any combination (r; t) of root and trade-off. It has no redundancies relative to H
if it has no redundancies, and also, for all b = (r, t,m) ∈ B:

(1) if ri = H then ti = 1;
(2)

∑
ri 6=H tie

i is a primitive integer vector;
(3) r 6= (H, . . . , H).

To see why the additional cases must be excluded, recall that a positive bid b =
(r; t;m) represents the possibility of buying mti units of good i when pi is sufficiently
low relative to ri, but if ri = H, then Theorem 2.13 explicitly excludes such prices from
consideration, so ti is not uniquely defined. Stipulation (1) fixes such ti to be 1, but
leaves ambiguity in the remaining part of t, which could be multiplied by any positive
integer, absent requirement (2). Finally, any bid rooted at (H, . . . , H) is also redundant,
since Db(p) = {0} for such a bid for all p ∈ H◦.

19It can also be shown that there exists a valid PMA bid collection B such that vB equals v in the
following sense: if H and H are sufficiently low and high, respectively, that every bundle in Av is
demanded at some price in H◦ then, if we define our valuation vB using only prices in H◦, and so only
on the domain Av, then it is well-defined and equal to v.

20In the strong substitutes case, it can be shown (see Baldwin and Klemperer (2021), Theorem 2.7)
that the collection B of SSPMA bids is valid (in Rn).
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Theorem 2.15. There is a unique bid collection for Theorem 2.11 with no redundancies.
There is a unique bid collection for Theorem 2.13 with no redundancies relative to

H.

Note that there are alternative conventions that provide uniqueness. Baldwin et al.
(2019), working in the context of SSPMA bids, restrict bid multiplicities to ±1, not
allowing otherwise identical positive and negative bids to coincide. It is straightforward
that Theorem 2.15 implies uniqueness in this case also.21

2.3 LIPs, Balancing, Hods and Fins, and the Valuation-Complex
Equivalence Theorem

We recall several definitions that Baldwin and Klemperer (2019) introduced from
the literature on convex and “tropical” geometry.

Definition 2.16 (The Locus of Indifference Prices (LIP), see Baldwin and Klem-
perer 2019, Definitions 2.1, 2.2 and 2.3, and for the geometric definitions that Bald-
win and Klemperer 2019 repurposed, see, e.g., Maclagan and Sturmfels 2015). Let
v : Av → R be a valuation on a finite set of bundles Av ⊆ Zn.

(1) The Locus of Indifference Prices (LIP) is Lv := {p ∈ Rn | |Dv(p)| > 1}.
(2) A unique demand region (UDR) of a valuation v is the set of all prices at which a

given bundle in Av is uniquely demanded. That is, it has the form {p ∈ Rn | {x} =
Dv(p)} for some x ∈ Av.

(3) A price complex cell of v is a non-empty set C ⊆ Rn such that there exist
x1, . . . ,xk ∈ Av, with k ≥ 1, satisfying C =

{
p ∈ Rn | x1, . . . ,xk ∈ Dv(p)

}
.

(4) The price complex is the set of all price complex cells.
(5) The cells of the LIP are the price complex cells contained in the LIP.
(6) A facet of the LIP is a price complex cell of dimension n− 1.22

(7) Let x,x′ be the bundles demanded in the UDRs on either side of facet F of a LIP.
The weight of F , wv(F ), is the greatest common divisor of the entries of x′ − x.

Our second collection of recalled definitions relate to polyhedral complexes. A mod-
ification made here, relative to Baldwin and Klemperer (2019), is to allow more general
weightings.

Definition 2.17 (standard).

(1) A rational polyhedron in Rn is the intersection of a finite set of half-spaces {p ∈
Rn | p · d ≤ α} for some d ∈ Zn and α ∈ R.

(2) A face of a polyhedron C maximises p · d over p ∈ C, for some fixed d ∈ Rn.
(3) The interior of polyhedron C is C◦ := {p ∈ C | p /∈ C ′ for any face C ′ ( C}.
(4) A rational polyhedral complex Π is a finite collection of cells C ⊆ Rn such that:

(i) if C ∈ Π then C is a rational polyhedron and any face of C is also in Π;
(ii) if C,C ′ ∈ Π then either C ∩ C ′ = ∅ or C ∩ C ′ is a face of both C and C ′.

21See Lemma 4.18 to see how Theorem 2.15 extends to this case.
22The dimension of a set F ⊆ Rn is the dimension of its affine span, i.e. the dimension of the smallest

linear subspace U ⊆ Rn such that F ⊆ {c}+ U for some fixed vector c.
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(5) A k-cell is a cell of dimension k. A facet is a cell of dimension n− 1.
(6) A polyhedral complex is k-dimensional if all its cells are contained in its k-cells.
(7) The support of a polyhedral complex Π is the set

⋃
Π.

(8) For any set X, an X-weighted polyhedral complex is a pair (Π, w) where Π is a
polyhedral complex and w is a function assigning a weight w(F ) ∈ X to each facet
F ∈ Π.

In this paper we will be interested in both Z-weighted and Z>0-weighted polyhedral
complexes.

The notions from Definition 2.16 are related to those from Definition 2.17 via the
following two results.

Fact 2.18 (See, e.g. Baldwin and Klemperer 2019, Proposition 2.7). The price complex
paired with the facet weights is an n-dimensional weighted rational polyhedral complex.

Particularly important is the relationship between facet normals of LIPs and changes
in demand:

Fact 2.19 (Baldwin and Klemperer 2019 Proposition 2.4).
(1) If x, x′ are uniquely demanded on either side of facet F of a LIP, then p · (x′−x)

is constant for all p ∈ F .
(2) The change in demand as price changes between the UDRs on either side of F is

wv(F ) times the primitive integer vector that is normal to F, and that points in
the opposite direction to the change in price.

Definition 2.20 (The Balancing Condition, Mikhalkin 2004, Definition 3). An
(n − 1)- or n-dimensional Z>0-weighted rational polyhedral complex Π is balanced if,
for every (n − 2)-cell C ∈ Π, the weights w(F j) on the facets F 1 . . . F l that contain
C, and primitive integer normal vectors dF j for these facets that are defined by a fixed
rotational direction about C, satisfy

∑l
j=1w(F j)dF j = 0.23

Fact 2.21 (The Valuation-Complex Equivalence Theorem, Mikhalkin 2004, Re-
mark 2.3 and Prop. 2.4; Baldwin and Klemperer 2019, Theorem 2.14). Suppose that
(Π, w) is an (n− 1)-dimensional Z>0-weighted rational polyhedral complex in Rn, that
L is the support of Π, and p is any price not contained in L.

(1) There exists a finite set Av ( Zn and a function v : Av → R such that Lv = L
and wv = w, if and only if (Π, w) is balanced.

(2) If (Π, w) is balanced then there exists a finite set Av ( Zn and a unique concave
valuation v : Av → R such that Dv(p) = {0}, v(0) = 0, Lv = L and wv = w.

Baldwin and Klemperer (2019) introduced “demand types” to classify economic
properties of valuations via the shapes of their facets. First, demand type vector sets
D ⊆ Zn consist of primitive integer vectors and satisfy d ∈ D ⇒ −d ∈ D. Then, for
any demand type vector set, the demand type is the set of valuations v such that every
facet of Lv has normal vector in D. It is not hard to see that the vectors in D describe
how the agent’s demand changes in response to a small generic price change.

23For example, that the balancing condition holds for the example shown in Figure 2 can be seen
by observing 1.(-2,3)+2.(1,0)+3.(0,-1)=0. See note 25 for further examples of checking the balancing
condition.
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The cases of interest for this paper are the ordinary substitutes demand type vector
set given in dimension n by {±ei, tie

i−tjej | i, j ∈ [n], ti, tj ∈ Z>0, ti, tj coprime, i 6= j};
and the strong substitutes demand type vector set, given in dimension n by {±ei, ei −
ej | i, j ∈ [n], i 6= j}. Then:

Fact 2.22 (See Baldwin and Klemperer 2014, 2019, Shioura and Tamura 2015).
(1) A valuation is ordinary substitutes if and only if it is of the ordinary substitutes

demand type.
(2) A valuation is strong substitutes if and only if it is concave and of the strong

substitutes demand type.

Observe that, if tie
i − tje

j is normal to a facet then so is, for example, ti
tj

ei − ej.

The demand type vector set consists of the primitive integer vectors in the relevant
directions, but when we consider normal vectors more generally, it will not always be
necessary or convenient to assume that they have this form.

Limiting our study to concave ordinary substitutes valuations therefore restricts
the possible forms for the facets that will concern us, and we introduce the following
terminology:

Definition 2.23 (Hods and Fins).
(1) For i ∈ [n], a facet of Lv is a i-hod if ei is a normal vector.
(2) For i ∈ [n] with i 6= j, and α ∈ Q, a facet of Lv is a (i, j;α)-fin if αei − ej is a

normal vector.

We use these terms because, when n = 3, the “hods” of a bid appear to form a
builder’s hod, and the “fins” of a bid resemble the fins or blades of a turbine (see
Figures 3a and 3b). Observe that if tie

i − tjej is a normal vector to a facet, then that
facet is an (i, j; ti/tj)-fin. We will refer to hods, to (i, j)-fins, and to fins, where it is not
necessary or convenient to specify i, j or α.

We will see (Lemma 4.9 Part(2)(i)) that all the fins of a bid intersect in a single
1-cell:

Definition 2.24 (Strong Diagonal). The strong diagonal of a bid b = (r; t;m) is the

set {r− λ
∑n

i=1
ei

ti
| λ ≥ 0}, which is the intersection of all the fins of the bid.

Figure 2 shows the facet weights and normal vectors for the two-dimensional bid
b = (r; t;m) = [6, 5; 2, 3; 1] that was illustrated in Figure 1. Figure 3 shows the same
information for the hods (panel (a)) and fins (panel (b)) of the three-dimensional bid
b = (r; t;m) = [6, 6, 5; 2, 2, 3; 1].

3 Intuition for our Main Results

We now describe the intuition for our main results, and defer further technical de-
tail to later sections. Section 3.1 introduces “pseudo-LIPs”, that extend the notion of
Locuses of Indifference Prices (LIPs), to allow us to analyse negative bids. Section 3.2
then illustrates the proof of our most challenging result–that any concave ordinary sub-
stitutes valuation can be represented by PMA bids–in the case of just two goods. We
describe the generalisation to any number of goods in Section 3.3. Sections 3.4 and 3.5
give the intuition for the converse result, and for the result that the representation is
unique.
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2

1

3

6

5

0

1

Figure 2: The facets of the bid b = (r; t;m) = [6, 5; 2, 3; 1] (also shown in Figure 1), together with their
weights (shown in the circles), and normal vectors (shown in the directions of the arrows). The “strong
diagonal”, which for n = 2 is also the “fin”, emanates in direction (−1/2,−1/3) from the “root” at
(6,5). The horizontal and vertical facets are the “hods”. The bundles demanded in the different cells
are listed in Figure 1.

p1
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p3

(6,6,5)

(0,0,1)

(0,0,1)

(0,1,0)
(1,0,0)

2

2

3

(a) (Parts of) the “hods” of bid b = [6, 6, 5; 2, 2, 3; 1].

2

1

1

p1

p2

p3

(6,6,5)

(0,0,1)

(0
,-2
,3
)

(1,-1,0)

(-2,0,3)

(b) (Parts of) the “fins” of bid b = [6, 6, 5; 2, 2, 3; 1].

Figure 3: The four 1-cells of the bid b = (r; t;m) = [6, 6, 5; 2, 2, 3; 1] are shown as thick lines (the axes
are shown as thin lines), together with (panel (a)) (parts of) the bid’s hods, and (panel (b)) (parts of)
its fins. The facets’ weights are shown in the circles, and their primitive integer normal vectors are
shown in the directions of the arrows. The strong diagonal emanates in direction (−1/2,−1/2,−1/3)
from the root, r = (6, 6, 5). Demand is (2, 0, 0), (0, 2, 0), (0, 0, 3), and (0, 0, 0), in the unique demand
regions (UDRs) that are to the left of the left vertical hod, in front of the right vertical hod, below the
horizontal hod, and at higher prices than any of the three hods, respectively. (This reflects the tradeoff,
t = (2, 2, 3).) Demand in every cell (each hod, each fin, each 1-cell, and the root) is the discrete convex
hull of the demands in the cell’s adjacent UDRs.24
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3.1 Pseudo-LIPs

As described in Section 2.3 above, any concave ordinary substitutes valuation induces
a weighted LIP. We will want to show how to build up the identical (weighted) LIP from a
collection of individual PMA bids. The Valuation Complex Equivalence Theorem (Fact
2.21) will then guarantee that our bid collection represents the valuation we want to
express.

To allow for negative bids we will need to allow negative weights in the weighted
rational polyhedral complexes we analyse. So we call a union of (weighted) facets of
a rational polyhedral complex whose weights need not all be positive but are non-zero
integers, and which does still satisfy the standard Balancing Condition (Definition 2.20)
that LIPs satisfy, a weighted pseudo-LIP. (Note that a (weighted) pseudo-LIP does not
in general represent a valid valuation, just as a negative bid does not represent a valid
valuation. Note also that LIPs are also pseudo-LIPs.)

Moreover, we will describe an “arithmetic” of (weighted) pseudo-LIPs: the sum of
two (weighted) pseudo-LIPs is just their superposition (that is, the union of their facets,
with the weight of coincident facets being the sum of their weights), with any resulting
zero-weighted facets then being eliminated. Subtracting one (weighted) pseudo-LIP
from another corresponds to adding them after reversing the signs of the weights of the
one to be subtracted; again, any resulting zero-weighted facets are then eliminated. It
is not hard to see that these operations preserve the balancing property, so that both
the sum and the difference of (weighted) pseudo-LIPs are also (weighted) pseudo-LIPs.

3.2 Any Concave Ordinary Substitutes Valuation can be Rep-
resented by PMA Bids: the Two-Goods Case

With just two goods, finding the bids that represent a concave ordinary substitutes
valuation is relatively straightforward. We illustrate with a specific example.

Consider the valuation whose LIP’s facets are shown as line segments in Figure
4. The facet weights (in circles) show that, starting from the top right unique demand
region (UDR) (Definition 2.16(2)) and moving clockwise, the bundles the agent demands
in the UDRs are (0, 0), (0, 2), (1, 2), (2, 2), and (2, 0), respectively. (The valuation
is v(0, 0) = 0, v(1, 0) = 5, v(2, 0) = 10, v(0, 1) = 4, v(0, 2) = 8, v(1, 1) = 9, v(1, 2) =
12, v(2, 1) = 12, v(2, 2) = 14.25) We want to find the collection of bids, the “sum” of

24In this example, the demand in the hods and fins includes the union of the demands in their adjacent
UDRs and, additionally, (1, 0, 0) is demanded in the left vertical hod, (0, 1, 0) is demanded in the right
vertical hod, (0, 0, 1) and (0, 0, 2) are demanded in the horizontal hod, and (1, 1, 0) is demanded in the
vertical fin, respectively. (Observe that the total number of bundles in each facet is 1 more than the
facet’s weight, reflecting the fact that a facet’s weight times its primitive integer normal vector is the
difference between the bundles demanded on either side of it.) Demand in the 1-cells includes the union
of the demands in their intersecting facets, and (0, 1, 1) and (1, 0, 1) are additionally demanded in the
1-cells in the direction of the 1- and 2-coordinates, respectively. Demand at the root is the union of
all the previously mentioned demands. (In this example, by contrast to that of Figure 2, there are no
additional bundles.)

25The (weighted) facets of the LIP are identified by considering the agent’s marginal values for
additional units. (See Klemperer (2018), Appendix I(A2a) for an example.) It can easily be checked
that the (weighted) LIP is balanced (Definition 2.20). The normal vectors of the fins with weights 1 and
2 are (1,−2) and (1,−1), respectively, so for example, going clockwise around (2, 2), the facets satisfy
1.(1,−2) + 1.(−1, 0) + 2.(0, 1) = 0; going anti-clockwise around (4, 3), the facets satisfy 1.(1,−2) +
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Figure 4: The LIP of a valuation, with its facet weights shown in circles.

whose (weighted) facets matches this (weighted) LIP. With just two goods, bids have
a single “fin” (Definition 2.23(2)) and two “hods” (Definition 2.23(1)), as illustrated in
Figure 2.

We proceed by first finding bids whose fins “cover” the facets of the LIP26 that are
fins, starting from the “top right”. We will then be able to create any facets that are still
needed (these will be hods), by adding bids on the edges of a “bounding box” (Definition
2.12)). (We choose a bounding box large enough to include all prices we might ever be
interested in.)

We begin by creating a grid from (i) the affine spans of the fins of the LIP, (ii) the
affine spans of the horizontal hods, and (iii) the edges of the bounding box, here chosen
as [−1, 6]2.27 We show these grid lines as dashed lines in Figure 5. We then also add any
additional horizontal lines that pass through any 0-cell of this grid, to this grid—in our
current example, we need to add three lines, which we show as dotted lines in Figure
5. Next, along each distinct affine-span-of-fin in the grid, we define a “candidate bid”
at every 0-cell of the grid on that affine-span-of-fin.28 The “tradeoff”, t, of a candidate
bid is chosen so that the fin of the bid covers part of that affine-span-of-fin.29 So the
candidate bids for the (affine span of the) fin with normal (1,−2) have tradeoff t =(1, 2),
and the candidate bids for the (affine span of the) fin with normal (1,−1) have tradeoff
t =(1, 1).

We now take all candidate bids that are located in a fin (not merely in the fin’s

1.(1, 0) + 2.(−1, 1) = 0.
26For ease of reading, we largely omit the adjective “weighted” on LIPs and pseudo-LIPs, where this

cannot result in any ambiguity.
27The bounding box (in two dimensions) is any square that contains part or all of every cell of the

LIP (see Definition 2.12 and Assumption 4.15). So we could choose a smaller (or larger) box, but wish
our figure to be clear.

28Our proof does not, in fact, define candidate bids at the 0-cells on the bottom edges of the bounding
box, since we will never need such candidates.

29That is, the bid’s pseudo-LIP’s “strong diagonal” (Definition 2.24) is in that affine-span-of-fin.
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Figure 5: The “grid”. “Candidate bids” are located at the intersections of the dotted and dashed
horizontal and vertical lines (hods) with the dashed diagonal lines. (Light solid lines that are not axes
are facets of the original LIP.)

affine span) of our LIP, and for which no other candidate bid that is in a fin of our LIP
with the same affine span is located at higher coordinates. In this case, there are two
such candidates, located at (4, 3) on the LIP fin with normal (1,−2), and at (5, 4) on
the LIP fin with normal (1,−1). For each candidate, we choose the multiplicity that
matches the weight of its corresponding fin, here 1 and 2 respectively. So we have now
created two bids, namely (4,3; 1,2; 1) and (5,4; 1,1; 2), that will be part of the set of
bids representing our valuation.

We now subtract the pseudo-LIPs of the bids we have just created from our original
LIP. This yields the pseudo-LIP in Figure 6. We see that subtracting the bid located at
(5, 4) removed all the facets that emanated from that 0-cell, but created a new pair of
contiguous fin facets below (4, 3). (This new pair of fins would be a single facet if they
did not cross the vertical facet that starts at (2, 2) and which was also thereby divided
into two separate facets.) Meanwhile, subtracting the bid located at (4, 3) removed the
fin that originally started at that 0-cell, but created a new fin starting at (2, 2); it also
created two new hods starting at (4, 3). Importantly, although the number of facets
remaining is no smaller than before (it is actually larger) the remaining fins are “lower
down” in their affine spans than previously.

We now repeat the procedure of the previous two paragraphs, except that we apply it
to the pseudo-LIP in Figure 6. There are now two candidate bids that did not previously
satisfy our conditions for conversion into actual bids, but are now each in a fin of the
current pseudo-LIP (that of Figure 6) with no other candidate in this pseudo-LIP above
them in the affine span of their respective fin.30 These candidates are located at (2, 2)
on the pseudo-LIP fin with normal (1,−2), and at (4, 3) on the pseudo-LIP fin with
normal (1,−1). The multiplicities that match the weights of the corresponding fins, are

30Since the affine spans of the fins and horizontal hods of the bids we subtract are always among
those we used to create the original grid, we need never concern ourselves with the possibility of new
candidate bids.
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Figure 6: The pseudo-LIP remaining after subtracting the pseudo-LIPs of the bids (4, 3; 1, 2; 1) and
(5, 4; 1, 1; 2) from the LIP of Figure 4 is shown as solid and dashed lines; its facet weights are shown in
circles. The facets added to the LIP of Figure 4 are the dashed lines; the facets removed from the LIP
of Figure 4 are shown as light dotted lines.
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Figure 7: The pseudo-LIP remaining after subtracting the pseudo-LIPs of the bids (2, 2; 1, 2;−1) and
(4, 3; 1, 1;−2) from the pseudo-LIP of Figure 6 is shown as solid, dashed, and dotted-solid lines; its
facet weights are shown in circles. The facet that is in the pseudo-LIP of Figure 6, but whose weight
is different is shown as the dotted-solid line. The facets added to the pseudo-LIP of Figure 6 are the
dashed lines; the facets removed from the pseudo-LIP of Figure 6 are shown as light dotted lines.

now negative; they are −1 and −2, respectively. So we have specified two new actual
bids, (2,2; 1,2; -1) and (4,3; 1,1; -2), to add to the list of bids that will represent the
valuation we started with.

Subtracting the pseudo-LIPs of the bids we have just found from the current pseudo-
LIP (that of Figure 6) yields the pseudo-LIP shown in Figure 7. The new subtraction
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has removed all the remaining facets except the hods to the left of (2, 2), below (2, 2),
and below (4, 3) (which latter hod is now divided into two). Moreover, it has added +2
to the weight of the hod facet extending vertically upwards from (4, 3), thus giving it the
same weight as the hods below (4, 3), and it has also added new hod facets extending
above, and to the right of, (2, 2).

There are now no remaining candidate bids satisfying our conditions for conversion
into actual bids.

Observe that we considered candidate bids that were “higher” in the affine span of
a LIP or pseudo-LIP fin before any that were lower in the same affine span. The reason
is that the fins of bids located on higher facets affect the weights of lower facets, but not
vice versa. So considering candidates in this order (but not, e.g., in the opposite order)
guarantees that, when our consideration of candidate bids terminates, we will have
selected a collection of bids for which the sum of their pseudo-LIPs exactly matches the
fins of our original LIP. That is, it is a general result that there will then be no fins in
the remaining pseudo-LIP that we still need to match.

Observe also that, having eliminated the LIP fins, the remaining hods with the same
affine span have the same weights and, moreover, their union “continues indefinitely”,
that is, coincides with its affine span. The reason for this is that our “editing” of
our original LIP has always respected the balancing condition (Definition 2.20), so our
remaining (weighted) pseudo-LIP must also obey the balancing condition, so when only
horizontal and vertical facets remain, they cannot “stop dead”, or change weight, at any
point. So it is also a general result that, as here, there can be no isolated hod-segments,
and no weight changes along any affine span of hods, in the pseudo-LIP that remains
after eliminating all the fins.

It therefore follows that the hods remaining after eliminating the fins all correspond
to bids located at extreme prices, i.e., bids that we will place at edges of the bounding
box (one bid for each union of hods with the same affine span). In our example, since
we chose [−1, 6]2 as our bounding box, the three required additional bids are located at
(2,−1) and (4,−1), with multiplicity 1, and (−1, 2) with multiplicity 2.31

In sum, our original (weighted) LIP is generated by the seven bids (4, 3; 1, 2; 1),
(5, 4; 1, 1; 2), (2, 2; 1, 2;−1), (4, 3; 1, 1;−2), (2,−1; 1, 1; 1), (4,−1; 1, 1; 1), (−1, 2; 1, 1; 2), re-
calling that the format for each bid is b = (r(b); t(b);m).

3.3 Any Concave Ordinary Substitutes Valuation can be Rep-
resented by PMA Bids: the General Case

We show the general result by induction.32 We need to show that for any LIP of a
concave ordinary substitutes valuation in n dimensions, there exists a collection of valid
bids for which the sum of their pseudo-LIPs is identical to the given LIP, within any
bounding box we define.33 So we assume the result is true in n− 1 dimensions:

As in the two-goods case, the harder facets of a n-dimensional valuation’s LIP to
replicate with pseudo-LIPs of bids are the LIP’s fins. We proceed by considering the

31By convention we set t(b) = 1 for bids on lower faces of the bounding box.
32As in two dimensions, the proof is constructive, so it implies a recursive algorithm to find the

collection of bids that represents the valuation.
33If the valuation’s domain is an FBD (Definition 2.9), we do not need any bounding box (Theorem

2.11); otherwise the bounding box can be arbitrarily large (Theorem 2.13).
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fins that are normal to just one pair of dimensions, say dimensions n and (n− 1), and
then successively consider fins normal to other pairs of dimensions.

So we first form a grid that is a natural generalisation of the one we formed in two
dimensions.34 Then, exactly as we described for the two-dimensional case, we define a
“candidate bid”, for each 0-cell of the grid, and separately for every 1-cell in the grid
starting at that 0-cell and going down in all coordinates. The candidate bid’s root, r, is
located at the 0-cell, and its tradeoff, t, is such that the candidate bid’s pseudo-LIP’s
strong diagonal contains the 1-cell.35 A distinction from the two-dimensional case is that
there are also additional candidate bids on the lower faces of the bounding box (with
respect to some coordinates other than (n − 1, n)); for simplicity we ignore these–this
simplification affects only this paragraph (and its footnotes). Then, again as in two
dimensions, we choose multiplicities for successive sets of candidate bids36 so that, in
each set of candidate bids, part of each candidate bid’s pseudo-LIP matches an (n−1, n)
fin of our remaining pseudo-LIP.37 (For the first set of candidate bids, the “remaining
pseudo-LIP” is just our original LIP.) For each successive set of candidate bids, we
deduct their pseudo-LIPs from our remaining pseudo-LIP.

As in the two-dimensional case, it can be shown that the procedure of the previous
paragraph will leave a pseudo-LIP with no (n − 1, n) fins.38 Crucially, it follows from
this that any cross-section perpendicular to dimension n− 1 of any of its (i, n) fins, for
i 6= n− 1, is independent of the value of pn−1 at which it is taken. To demonstrate this,
we first observe that the fin contains lines parallel to the n − 1 axis. Second, similarly
to our discussion of the two-dimensional case, we observe that because the pseudo-LIP
must obey the balancing condition, the fin cannot “stop dead” at any pn−1, except at a
particular class of intersections with two other fins, and it is not too hard to check that
this cannot happen.39 That is, if the fin ends at some pn−1, another fin with the same
affine span, and same weight, must start at pn−1. So a contiguous series of such fins,

34We create an initial grid consisting of (i) the affine spans of the LIP’s (i, n) fins, (ii) the affine spans
of the n−hods, and (iii) the edges of the bounding box. We then add additional n−hods that pass
through particular (n− 2)-cells of the initial grid.

35As in two dimensions, these 1-cells are all in the affine spans of (i, n) fins for all i.
36Choosing an order in which to consider candidates, that ensures that bids chosen later do not upset

matches made earlier, is harder than in the two-dimensional case, but Appendix B shows how to create
a partial ordering of candidates (given in Definition B.22), which we can use to select the successive
sets of bids. (Note that Appendix B uses a nomenclature opposite to that of Section 3.2, describing
the bids we want to select earlier as “lower”, as is perhaps more natural in multiple dimensions.)

37Precisely: the candidate bid has its root in the (n − 1, n) fin of our remaining pseudo-LIP; its
tradeoff, t, is such that part of its pseudo-LIP’s strong diagonal is in the (n− 1, n) fin of our remaining
pseudo-LIP; and its multiplicity is the weight of the (n− 1, n) fin of the remaining pseudo-LIP divided
by the greatest common divisor of t(n−1) and tn (see Lemma 4.9, part (2)(ii), illustrated in Figure 3b).

38As in our two-dimensional example, “covering” the (n−1, n) fins in this way will in fact find all the
bids we need, except those for which at least one root coordinate is on the bounding box. The reason
is that the 1-cells that we use to define the tradeoffs of the candidate bids contain all the information
needed to mimic the full structure of the original LIP at the corresponding 0-cells, and we use all that
information, so that that structure is indeed respected in all coordinate directions.

39If the fin stops at an intersection with a single other facet, the balancing condition can only hold if
there is another fin with the same affine span and weight extending in the opposite direction from the
intersection. So if there were no such fin extending in the opposite direction from the intersection, the
fin stopping at the intersection would have to meet both an (n− 1, n) fin and an (i, n) fin. (Corollary
A.3 gives details.) But we are now working with a pseudo-LIP which has no (n − 1, n) fins, so this is
not possible.
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continuing in direction n−1 to the bounding box, must be contained in the pseudo-LIP.
It follows that projecting the (i, n) fins of our remaining pseudo-LIP into n − 1

dimensions by deleting (what was) the n − 1th coordinate loses no information about
the (i, n) fins. By the inductive hypothesis, in n− 1 dimensions we can find bids whose
pseudo-LIPs exactly replicate the intersection of our remaining pseudo-LIP with the
lower face of the bounding box in coordinate direction (n − 1). So, viewing these bids
as n-dimensional bids (where rn−1 is on the lower face of the bounding box) they also
exactly replicate the (i, n) fins. Moreover the bids we found in this way can have no
(i, n−1) fins within the bounding box, for any i, so will not recreate any of the (n−1, n)
fins that we had previously deleted. We therefore delete these bids’ pseudo-LIPs from
our remaining pseudo-LIP, to yield a pseudo-LIP with no (i, n) fins, for any i.

We now handle the (i, j) fins of our remaining pseudo-LIP, for i, j ∈ [1, n − 1], in
a similar way. We project these, by deleting (what was) their nth coordinate, to find
bids whose pseudo-LIPs replicate them. For the same reason that we created no new
(n− 1, n) fins when we eliminated the (i, n) fins in the step of the previous paragraph,
no (i, n) fins are created when eliminating the (i, j) fins for i, j ∈ [1, n− 1]. So this now
gives us a collection of bids whose pseudo-LIPs together exactly replicate all the fins of
the original valuation’s (weighted) pseudo-LIP.

As in two dimensions, the remaining pseudo-LIP therefore consists of a set of con-
tiguous series of hods, with each series consisting of hods with the same affine spans and
weights, and with each series running from one face of the bounding box to the opposite
face. And, as we illustrated in the two-dimensional case, it is straightforward to create
these hods by adding additional bids located on the faces of the bounding box.40

So given that our result is true in n− 1 dimensions, it is true in n dimensions, and
it is easy to see that it holds in one dimension (or indeed, from Section 3.2, in two
dimensions).

3.4 Any Valid Collection of PMA Bids Describes a Concave
Ordinary Substitutes Valuation

The converse of the preceding result, i.e., that any valid collection of bids describes
a concave ordinary substitutes valuation, is relatively straightforward. The sum of the
bids’ pseudo-LIPs is itself a pseudo-LIP. Moreover, this pseudo-LIP’s facets must all have
positive weights (because an increase in a good’s price across a negatively weighted
facet would increase demand for the good, violating validity). So, by the Valuation
Complex Equivalence Theorem (Fact 2.21), there exists a (unique) concave valuation
corresponding to this (weighted) pseudo-LIP (with demand set at the bounding box’s
highest price including 0, and valuation v(0) = 0). That is, this pseudo-LIP is in fact
a LIP. Furthermore, since each individual bid (or its negative) represents an ordinary
substitutes valuation, the normals to the bids’ pseudo-LIP’s facets are all vectors of the
ordinary substitutes demand type, from which it follows easily that the normals to the
LIP that is the sum of the bids’ pseudo-LIPs are also vectors of the ordinary substitutes
demand type. So the (weighted) LIP corresponds to a concave ordinary substitutes
valuation (Fact 2.22), and the collection of bids therefore describes a concave ordinary

40The additional bids will in fact be located on lowest 1-cells of the bounding box, so they create no
new fins in the interior of the bounding box.
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substitutes valuation.

3.5 Uniqueness of the Representation of a Valuation by PMA
Bids

Finally, consider two (weighted) LIPs, each of which is the sum of the pseudo-LIPs of
a collection of (valid) bids with no redundancies (including no redundancies relative to
the bounding box—see Definition 2.14). If the two collections of bids are different, then
either one of the LIPs has a facet that the other LIP does not have (this can be shown
to be the case if any of the bids’ roots or strong diagonals differ between the collections),
or one of the LIPs has a facet with greater weight than the otherwise identical facet
in the other LIP (this is the case if any of the bids’ multiplicities differ between the
collections). In either case, considering a change in price across this facet shows that
the valuations corresponding to the LIPs are different on at least one side of this facet.
So the two collections of bids cannot both correspond to the same valuation, and it
follows that the representation of a valuation by bids is essentially unique.

4 Bids and Weighted Pseudo-LIPs

4.1 Pseudo-LIPs

Recall from Section 2.2 that we introduce both positive bids and negative bids, using
both in our representation of valuations. The “multiplicity” of these bids is closely
associated with the weights of the facets of the valuation’s LIP.

As we explained in Section 2.2, if m(b) /∈ Z>0 then bid b does not correspond to
a meaningful economic valuation. But, considering our definition of their demand sets
(Equation (3)) and the properties of weights of facets of LIPs (Definition 2.16 part (7)
and Fact 2.19), it is natural to associate this bid with the set Lv|b| , where we recall
that we write |b| = (r(b); t(b); |m(b)|), but then multiply the weight of each facet by
−1. We will indeed do so (see Section 4.3). However, because there is no corresponding
economic valuation, and in particular because the law of demand (Definition 2.4) is not
satisfied, this is not a true “locus of indifference prices”. Thus we must widen our class
of objects of study. Moreover, because we will work with collections of both positive
and negative bids, we allow combinations of facets of either sign.

The “pseudo-LIPs” L which we will now work with can differ from true LIPs not only
in weighting, but also in shape. In particular, it will not in general be as straightforward
to identify polyhedral facets directly from the set L, as it is from a true LIP, as we discuss
below. However, we recall that a LIP Lv is associated with its price complex, a balanced
Z>0-weighted rational polyhedral complex whose support is Rn; the facets of the LIP
are also the facets of the price complex. We therefore similarly define a pseudo-LIP from
such a complex, but now allow a Z-weighting.

Definition 4.1. Fix (Π, w), where Π is a balanced Z-weighted rational polyhedral com-
plex with support Rn. The weighted pseudo-LIP of (Π, w) is the pair (L, w), where L is
the union of the facets F of Π such that w(F ) 6= 0, and the weight w on facets F ⊆ L
is inherited from (Π, w).
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Here, Π is analogous to the price complex of a standard LIP (Definition 2.16 Part (4)). It
is implicitly n-dimensional because its support is Rn. Because we only define a weighted
pseudo-LIP of a balanced complex (Π, w), and we only remove 0-weighted facets, it
follows that every weighted pseudo-LIP is balanced.

We do not allow 0-weighted facets because we will want to associate a “demand” with
the connected components of the complement of the pseudo-LIP; we will be interested
in how demand changes across facets (by analogy with Fact 2.19, it would not change
across a 0-weighted facet).41

By definition, the facets of a pseudo-LIP L are inherited from Π. The facets of a
true LIP Lv are the faces of the maximal (n-dimensional) price complex cells of v, and
so the facets are the maximal (n − 1)-dimensional subsets of Lv that only intersect in
their boundaries. This is not the case for pseudo-LIPs.42 We cannot define such sets to
be the facets of the pseudo-LIP, because such sets need not be convex, and so need not
be polyhedra.43 However, none the less, such sets do have a consistent weighting in our
pseudo-LIPs:

Lemma 4.2. If F, F ′ are facets of the weighted pseudo-LIP (L, w) such that F ∩ F ′ is
(n−2)-dimensional and no other facets of (L, w) contain F ∩F ′ in their boundary, then
F and F ′ share a common affine span and w(F ) = w(F ′).

Proof. The balancing condition (Definition 2.20) holds around F ∩ F ′. So, if d and d′

are the respective primitive integer normal vectors to F and F ′, chosen with respect to
a coherent rotational direction, then w(F )d + w(F ′)d′ = 0. Since F and F ′ are not
coincident, we reject d′ = d, and so d′ = −d, showing their affine spans are the same,
and w(F ) = w(F ′).

If L = L′ (as sets) and if w(F ) = w(F ′) whenever F ∩ F ′ is (n− 1)-dimensional for
a facet F of L and a facet F ′ of L′, then, when there is no ambiguity, we will abuse
notation and say that (L, w) = (L′, w′). Similarly, for an open subset U ⊆ Rn, we will
write (L∩U,w) = (L′∩U,w′) to mean that L∩U = L′∩U and w(F ) = w(F ′) whenever
F ∩ F ′ ∩ U is (n− 1)-dimensional for a facet F of L and a facet F ′ of L′.

A positive-integer-weighted pseudo-LIP is a “true” LIP of a valuation. Using the
abuse of notation just described, we may show:

Proposition 4.3. (L, w) is a weighted pseudo-LIP such that w(F ) ∈ Z>0 for all facets
F of L if and only if (L, w) = (Lv, wv) for some concave valuation v.

Proof. If v is a valuation then, by Fact 2.18 the price complex is a rational polyhedral
complex with support Rn, and the induced weighting wv on the facets is balanced and
takes values in Z>0. Such a complex defines a pseudo-LIP (Definition 4.1). Conversely,
let (Π, w) be the underlying complex defining (L, w), and suppose that w(F ) ∈ Z≥0 for

41See Lemma 4.13 later for the case of pseudo-LIPs induced by bids.
42For example, let Π be the set of quadrants of R2, together with their faces, and define w to be 0 on

the vertical facets and 1 on the horizontal facets. Then L is just given by {p ∈ R2 | p2 = 0}. However,
its facets, as inherited from Π, are {p ∈ R2 | p1 ≤ 0, p2 = 0} and {p ∈ R2 | p1 ≥ 0, p2 = 0}.

43For example, the set {p ∈ R3 | p3 = 0; 0 ≤ p1 ≤ 1 or 0 ≤ p2 ≤ 1} is not convex. However, it is the
maximal (n − 1)-dimensional subset of a pseudo-LIP, as is shown in Example B.11 in Appendix B.3.
(Note that this example rests on an understanding of the pseudo-LIPs defined by bid collections, as
developed in Section 4 below.)
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all facets F . Observe that the set Π̂ of all facets F of Π such that w(F ) > 0, taken
together with all faces of these facets, is a rational polyhedral complex of dimension
(n−1). Restricting the weight w to the facets of Π̂, we see that the balancing condition

(Definition 2.20) is still satisfied, as all facets in Π that are not in Π̂ have weight 0. We
can now invoke the Valuation-Complex Equivalence Theorem (Fact 2.21 above) to see

that L, which is the support of Π̂, is the LIP of a concave valuation v which induces the
same weighting.

Finally, we extend the definition of demand types to pseudo-LIPs in the natural way:

Definition 4.4. If D is demand type vector set then a weighted pseudo-LIP (L, w) is of
demand type D if all of the facets of the underlying complex (Π, w) have normal vectors
in D.

Note that in this way we can refer to a pseudo-LIP as being “of the ordinary sub-
stitutes demand type” despite it not corresponding to any valuation (concave ordinary
substitutes or not).

4.2 Arithmetic of Pseudo-LIPs

Recall that we seek to express the demand arising from a concave ordinary substitutes
valuation as the demand defined by a bid collection. While bids are all positive, the
demand set defined by a bid collection is just given by the convex hull of the Minkowski
sum of demands from individual bids (Equation (2)). So demand is unique for the
collection B if and only if it is unique for every b ∈ B: the LIP LB corresponding to B
of positive bids will be the union of the individual LIPs. Similarly, the weight of a facet
in LB will be the sum of the weights of the facets of the LIPs of individual bids which
contain this facet. (We give more details on the LIPs and pseudo-LIPs associated with
bids in the subsequent subsections.)

Fundamental to our proofs will be presenting this construction as an “addition”,
which we notate as �. And, since we allow negative-weightings in our weighted pseudo-
LIPs, this naturally extends to subtraction, notated �.44

Intuitively, then, we add two weighted pseudo-LIPs by: taking their union; calculat-
ing the weight on their facets; and then removing the zero-weighted facets. To construct
this formally, we recall that weighted pseudo-LIPs are defined by the non-zero-weighted
facets of n-dimensional polyhedral complexes. To combine two such complexes, we con-
sider intersections of their cells: where a facet of one meets an n-cell of the other, we
obtain a piece of the union of their facet sets, and if two facets have (n−1)-dimensional
intersection, we similarly obtain a piece of this union. So we define:

Definition 4.5. Let (Π1, w1) and (Π2, w2) be the balanced Z-weighted rational polyhe-
dral complexes of dimension n with support Rn, and let (L1, w1) and (L2, w2) be their
respective weighted pseudo-LIPs.

(1) (Π1, w1) � (Π2, w2) is the Z-weighted complex (Π, w) where Π has cells C1 ∩ C2

for C1 ∈ Π1, C2 ∈ Π2 and, for each facet F of Π, w(F ) is the sum of the weight
of all facets of Π1 and Π2 which contain F .

44This construction is conceptually very similar to “tropical intersection theory”; see Allermann and
Rau (2010).
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(2) (L1, w1) � (L2, w2) is the weighted pseudo-LIP of (Π1, w1) � (Π2, w2).
(3) (L1, w1) � (L2, w2) := (L1, w1) � (L2,−w2)

Again, we will slightly abuse notation and, for an open set U , write (L1 ∩ U,w1) �
(L2 ∩ U,w2) for the set L ∩ U , and weighting w restricted to this set, where (L, w) =
(L1, w1) � (L2, w2). We will notate subtraction of subsets of weighted pseudo-LIPs
similarly.

The meaning of � and � is also clear from:

Lemma 4.6. Let (L1, w1) and (L2, w2) be weighted pseudo-LIPs. Then (L1, w1) �
(L2, w2) is the weighted pseudo-LIP (L, w) where

(1) L is the closure of the set of points p such that either p is in the interior of a facet
F 1 of L1, or p is in the interior of a facet F 2 of L2, or both; and if indeed both
hold then w1(F 1) + w2(F 2) 6= 0;

(2) the weight of a facet Fof L is the sum of the weights of the facets of L1 and L2

containing F .

Once addition “�” of Z-weighted pseudo-LIPs is understood, the subtraction opera-
tion “�” is clear, as it is simply addition of the weighted pseudo-LIP whose facets have
the opposite sign.

We see that � and � have the following standard properties, which allow us to
indeed think of them as an “arithmetic” of weighted pseudo-LIPs.

Lemma 4.7. If (L1, w1), (L2, w2) and (L3, w3) are weighted pseudo-LIPs, then so are
(L1, w1)�(L2, w2) and (L1, w1)�(L2, w2), and the usual rules of addition and subtraction
hold, with (∅, 0) playing the role of the identity element. That is:

(1) (L1, w1) � (L2, w2) = (L2, w2) � (L1, w1);
(2) (L1, w1) � ((L2, w2) � (L3, w3)) = ((L1, w1) � (L2, w2)) � (L3, w3);
(3) (∅, 0) � (L1, w1) = (L1, w1) � (∅, 0) = (L1, w1);
(4) (L1, w1) � (L2, w2) = (∅, 0) � ((L2, w2) � (L1, w1));
(5) (L1, w1) � (L1, w1) = (∅, 0).

4.3 The LIP from a Single Positive or Single Negative Bid

Recall, from Section 2.2, that a single bid b = (r; t;m) with root r(b) = r, trade-off
t(b) = t and positive integer multiplicity m = m(b) ∈ Z>0 represents the valuation vb
with vb(x) = r · x for x in its domain, mt �∆[n]0 . To simplify notation, we notate its
weighted LIP (Lb, wb). We recall from Equation (1) that the demand set for such a bid
is Db(p) = m(b)t(b)�∆I(b,p), where I(b,p) = arg maxi∈[n]0 ti(b)(ri(b)− pi). We can
now define the corresponding weighted pseudo-LIP for negative-weighted bids:

Definition 4.8. The weighted pseudo-LIP (Lb, wb) of a bid b where m(b) < 0 is defined
by Lb := L|b| and wb(F ) = −w|b|(F ) for all facets F of Lb.

Now:

Lemma 4.9. If b = (r; t;m) then the weighted pseudo-LIP (Lb, wb) has weighted facets:

(1) an i-hod for each i ∈ [n], which we write F i
b, and such that:
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(i) F i
b = {p ∈ Rn | pi = ri; pj ≥ rj for j 6= i}

(ii) wb(F i
b) = mti;

(iii) prices p are in F i
b if and only if {0, i} ⊆ I(b,p), with equality for prices in

the interior of F i
b.

(2) an
(
i, j; ti

tj

)
-fin (equivalently, a

(
j, i;

tj
ti

)
-fin) for each i, j ∈ [n] with i 6= j, which

we write F ij
b , and such that:

(i) F ij
b = {p ∈ Rn | pi ≤ ri, ti(pi − ri) = tj(pj − rj) ≤ tk(pk − rk) for k 6= i, j}

(ii) wb(F ij
b ) = m gcd(ti, tj);

(iii) prices p are in F ij
b if and only if {i, j} ⊆ I(b,p), with equality for prices in

the interior of F ij
b .

Because m plays no role in the description of the sets F i
b and F i,j

b we will also write
these as F i

(r;t) and F i,j
(r;t) respectively, where it is more convenient to do so.

4.4 The weighted pseudo-LIP of a bid collection

We formally define our collections of bids, and the associated weighted pseudo-LIPs:

Definition 4.10.

(1) A bid collection B is a finite collection of bids b = (r; t;m) where r ∈ Rn, t ∈ Zn>0

and m ∈ Z \ {0}.
(2) For a bid collection B define (LB, wB) := �b∈B(Lb, wb).

We do not need to specify the order of arithmetic � in Definition 4.10 Part (2) by
Lemma 4.7, which also affirms that (LB, wB) is a weighted pseudo-LIP. It immediately
follows that bid collections may be combined in the following ways:

Lemma 4.11. Let B1 and B2 be bid collections. Write B3 = {(r(b); t(b);−m(b)) | b ∈
B2}.

(1) (LB1 , wB1) � (LB2 , wB2) = (LB1∪B2 , wB1∪B2).
(2) (LB1 , wB1) � (LB2 , wB2) = (LB1∪B3 , wB1∪B3).

It is immediate from Definitions 4.4, 4.5, and 4.10, and Lemma 4.9 that:

Corollary 4.12. If B is a bid collection then (LB, wB) is of the ordinary substitutes
demand type.

Recall that we defined DB(p) in Section 2.2 (Equation (4)). This corresponds to the
weighted pseudo-LIP (LB, wB) exactly in the same way as a demand correspondence for
a quasilinear valuation corresponds to a LIP (Fact 2.19):

Lemma 4.13. Let B be a bid collection (not necessarily valid).

(1) LB = {p ∈ Rn | |DB(p)| > 1}.
(2) DB(p) is constant (and a singleton set) for prices in the connected components of

the complement of LB.
(3) The change in DB(p) between prices on either side changes of a facet F of LB is

wB(F ) times the primitive integer vector that is normal to F , and points in the
the opposite direction to the change in price.
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Recall from Section 2.2 that we defined a bid collection B as valid if the demand
correspondence DB(p) satisfies the law of demand (Definition 2.4). Lemma 4.13 allows
us a comprehensive view on validity that subsumes Propositions 2.6 and 2.8:45

Proposition 4.14 (Cf. Baldwin et al. 2019, Theorem 1, for the strong substitutes
case46). Let B be a finite collection of bids. The following are equivalent:

(1) B is valid;
(2) (LB, wB) is a (positive-) weighted LIP;
(3) For every p ∈ Rn and every i ∈ [n], the set B′ of bids b ∈ B such that p ∈ F i

b

satisfies
∑

b∈B′m(b)ti(b) ≥ 0; and for every distinct pair i, j ∈ [n] the set B′ of

bids b ∈ B such that p ∈ F ij
b satisfies

∑
b∈B′m(b) gcd(ti(b), tj(b)) ≥ 0.

(4) there exists a concave ordinary substitutes valuation v such that (Lv, wv) = (LB, wB);
(5) there exists a concave ordinary substitutes valuation v such that Dv(p) = DB(p)

for all p ∈ Rn.

Moreover, when B is valid, the valuation vB of Definition 2.7 is well defined and satisfies
DvB(p) = DB(p) for all p ∈ Rn.

There is an analogous version of Proposition 4.14 for the strong substitutes case. If
we assume that B is a finite collection of SSPMA bids, then validity of B is equivalent
to (2), to a version of (3) in which t = 1 in every case, and to (4) and (5) modified
to specify that v is a strong substitutes valuation. This may be seen by combining
Proposition 4.14 with Baldwin et al. (2019, Theorem 1).

4.5 The Bounding Box

Recall from Lemma 2.10 that if B is a finite valid collection of bids, then the domain
AB of the corresponding valuation is an FBD. Recall from Section 2.2 that, to handle
bids with other domains, we introduced a “bounding box” H = [H,H]n (Definition
2.12), within which we will match the required demand set using our bids.

We will generally assume that H,H satisfy the following relative to a pseudo-LIP L:

Assumption 4.15. H < H are respectively sufficiently small and large that H◦∩C 6= ∅
for every cell of the polyhedral complex Π defining L.

Such H,H always exist because there are only finitely many cells of any polyhedral
complex.

Recall from Lemma 2.10 that any valuation vB generated by valid bids must have a
finite bids domain, and that, conversely, we show in Theorem 2.11 that concave ordinary
substitutes valuations whose domain is an FBD can be generated by a valid set of bids.
Crucial to our proof of this result will be the following lemma, demonstrating that in
this case bids are strictly inside the bounding box. Recall from Definition 2.14 that a bid
set has no redundancies relative to H if contains at most one bid with any combination
of root and trade-off, as well as bids on the boundary of H satisfying certain criteria.

45Proving Proposition 4.14 also enables us to prove Lemma 2.10, whose proof is therefore presented
at this point in the appendix.

46Baldwin et al. (2019) define validity as concavity of an indirect utility function, which they associate
to any set of SSPMA bids. This is more convenient for their purposes, and is equivalent to our definition
in the SSPMA case, as they show in their Theorem 1 (their Part 2 is equivalent to our Part (3), and
their Part 3 is our Part (5)).
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Lemma 4.16. If v is a concave ordinary substitutes valuation with an FBD, if H,H
satisfy Assumption 4.15 for Lv, and if B is a bid collection with no redundancies relative
to H and as described in Theorem 2.13, then r(b) ∈ H◦ for all r ∈ B.

Moreover, if we are only interested in the pseudo-LIP we generate within the bound-
ing box, then it is sufficient to consider bids in the box and on its boundary:

Proposition 4.17. If B is a bid collection and H < H then there exists a bid collection
B′ of bids rooted in H such that {b ∈ B | r(b) ∈ H◦} = {b′ ∈ B′ | r(b′) ∈ H◦}, such that
there is a 1-1 correspondence between {b ∈ B | r(b) /∈ H◦} and {b′ ∈ B′ | r(b′) /∈ H◦},
and such that (LB ∩H◦, wB) = (LB′ ∩H◦, wB′).

4.6 Uniqueness for Bid Collections

Recall from Section 2.2 that, in order to avoid ambiguity, we adopt the convention
that ti(b) = 1 whenever ri(b) = H and that

∑
ri(b)6=H eiti(b) is a primitive integer

vector. With this understood, different bid collections define the same pseudo-LIP only
in the following natural way:

Lemma 4.18. If B1 and B2 are bid collections then the following are equivalent:

(1) (LB1 , wB1) = (LB2 , wB2);
(2) the sum of multiplicities of bids at any root with the same trade-off are the same

in B1 and in B2;
(3) there exist H,H such that (LB1 ∩H◦, wB1) = (LB2 ∩H◦, wB2) and such that, for

all b ∈ B1,B2, we have r(b) ∈ H and
(i) if ri(b) = H then ti(b) = 1;

(ii)
∑

ri(b)6=H eiti(b) is a primitive integer vector.

(iii) Lb ∩H◦ 6= ∅.

Lemma 4.18 shows that there is “essentially” only one bid collection giving rise to
any weighted pseudo-LIP, or, by Proposition 4.3, to any LIP; it therefore allows us to
infer Theorem 2.15 from Theorems 2.11 and 2.13. As we discuss in Section 2.2, bid
collections are unique under either of two possible conventions; for the purposes of this
paper we are agnostic between these conventions and so bid collections will only be
unique up to the description of Lemma 4.18 Part (2).

5 Proof of Main Theorems

5.1 The Fundamental Result

Our main theorems rest on the following fundamental result:

Theorem 5.1. For any n′ ≥ 1, if (L, w) is a weighted pseudo-LIP in Rn′, of the
ordinary substitutes demand type, and H = [H,H]n

′
for any H < H ∈ R, then there

exists a bid collection B rooted in H, with no redundancies relative to H, such that
(L ∩H◦, w) = (LB ∩H◦, wB).

If (L, w) is of the strong substitutes demand type then the bids B are SSPMA bids.
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Note that, in Theorem 5.1, we do not assume that H,H satisfy Assumption 4.15.
It is not necessary, as the statement holds for any H < H, and, because we prove the
theorem by induction, it is more convenient not to have to check that this condition
holds.

5.2 Proofs of the Main Theorems, Contingent on Theorem 5.1

Theorem 5.1 is very close to giving us the representation result inside the bounding
box (Theorem 2.13). We sought a bid collection B such that, at every price p ∈ H◦, the
demand set DB(p) is equal to Dv(p). However, there is a little ambiguity in the bids
identified by Theorem 5.1. This is because bids b rooted at the vertices of H with the
form r(b) = Hei +

∑
j 6=iHej (for i ∈ [n]) satisfy Lb ∩H◦ = ∅. However, the presence

of such bids affects DB(p) throughout H. So we need to fine-tune the multiplicities of
the bids at these points, in order to achieve a perfect match in demand sets.

Proof of Theorem 2.13. By Theorem 5.1, there exists a bid collection B′ rooted in
H such that (Lv ∩H◦, wv) = (LB′ ∩H◦, wB′). By Lemma 4.13 and Definition 2.16, it
follows that |Dv(p

0)| = 1 if and only if |DB′(p0)| = 1 for prices p0 ∈ H◦; fix some such
p0. Write {x} = Dv(p

0) and {xB′} = DB′(p
0), and let y = x− xB′ .

Now, for i ∈ [n], let bi = (Hei +
∑

j 6=iHej,1, yi). It follows that Dbi(p) = {yiei}
for all p ∈ H◦. Thus, if we let B := B′ ∪

⋃
i∈[n]{bi} then DB(p0) = {xB′ + y} = {x} =

Dv(p
0).

By Fact 2.19 Part (2) and Lemma 4.13 Part (3), it follows that DB(p) = Dv(p) for
all p ∈ H◦ such that |Dv(p)| = |DB′(p)| = 1. Because the sets of prices at which any
one bundle is demanded are closed, and because all demand sets under DB and Dv are
discrete-convex, it follows that DB(p) = Dv(p) for all p ∈ H◦.

In particular this implies that DB(p) satisfies the law of demand for all suitable
p,p′ ∈ H◦, since this is true of Dv(p). So the bids B are valid in H◦.

If v is a strong substitutes valuation then B′ is a collection of SSPMA bids, by
Theorem 5.1. The additional bids bi are also SSPMA bid for all i ∈ [n], so B is a
SSPMA bid collection.

Recall that Theorem 2.11 handled the special case in which the domain of the valu-
ation is an FBD (or a discrete simplex, if the valuation is strong substitutes). This case
is simpler if one does not wish to also prove Theorem 2.13: see Remark 5.13. However,
given that we have included a proof of that case, it is more efficient to show that this
follows from Theorem 2.13, together with Proposition 4.17 and Lemma 4.16.

Proof of Theorem 2.11. Let H,H satisfy Assumption 4.15 for Lv. Applying Theo-
rem 5.1 and Lemma 4.16, it follows that there exists a bid collection B with no redundan-
cies relative to H and such that r(b) ∈ H◦ for all r ∈ B and (LB∩H◦, wB) = (L∩H◦, w).
Recall that 0 ∈ Av, and so, by Assumption 4.15, 0 ∈ Dv(p) for some p ∈ H◦. Since
Av ⊆ Zn≥0, it follows that {0} = Dv(p) for prices p ∈ H◦ close to (H, . . . , H). But if

r(b) ∈ H◦ for all b ∈ B, then {0} = DB(p) for prices p ∈ H◦ close to (H, . . . , H). So,
by Fact 2.19 Part (2) and Lemma 4.13 Part (3) (and as argued in the proof of Theorem
2.13 above), it follows that DB(p) = Dv(p) for all p ∈ H◦.

We now show that demand also matches for prices not in H◦, so suppose that p1 /∈
H◦. Fix H ′ < H and H

′
> H so that p1 ∈ H′◦ where we write H′◦ := (H ′, H

′
)n. It
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follows again that there is a bid collection B′, with no redundancies relative to H′, such
that r(b′) ∈ H′◦ for all r ∈ B′ and Dv(p) = DB′(p) for all p ∈ H′◦, and satisfying
(LB′ ∩H′◦, wB′) = (Lv ∩H′◦, w).

Now apply Proposition 4.17 to B′: there exists a bid collection B′′ of bids rooted in
H, such that {b ∈ B′ | r(b) ∈ H◦} = {b ∈ B′′ | r(b) ∈ H◦}, such that there is a 1-1
correspondence between {b ∈ B′ | r(b) /∈ H◦} and {b ∈ B′′ | r(b) /∈ H◦} and such
that (LB′′ ∩H◦, wB′′) = (LB′ ∩H◦, wB′). But by Lemma 4.16 again, it also follows that
r(b′′) ∈ H◦ for all b′′ ∈ B′′. So ∅ = {b ∈ B′′ | r(b) /∈ H◦} = {b ∈ B′ | r(b) /∈ H◦} and
thus B′ = {b ∈ B′ | r(b) ∈ H◦}. That is, we have shown that b′ ∈ H◦ for all b′ ∈ B′.

Moreover, since H◦ ( H′◦, it follows by definition of B′ that (LB′ ∩ H◦, wB′) =
(Lv ∩H◦, w) = (LB ∩H◦, wB). Since we know both sets of bids are rooted in H◦, we
know by Lemma 4.18 that (LB, wB) = (LB′ , wB′). We also already know that DB(p) =
Dv(p) = DB′(p) for all p ∈ H◦, and so it follows by Fact 2.19 that DB(p) = DB′(p) for
all p ∈ R. In particular, since p1 ∈ H′◦ and so DB′(p

1) = Dv(p
1), we can conclude that

DB(p1) = Dv(p
1). But p1 ∈ Rn was arbitrary, so we can conclude DB(p) = Dv(p) for

all p ∈ Rn. Now, since Dv satisfies the law of demand (for all prices, see Definition 2.4)
so does DB, and so the bids B are valid.

Proposition 2.8 now tells us that DvB(p) = Dv(p) for all p ∈ Rn. Applying Fact
2.21, and the fact that v(0) = 0 = vB(0), allows us to conclude that vB = v.

The case of strong substitutes here now follows immediately from the case of strong
substitutes in Theorem 2.13.

Proof of Theorem 2.15. The case of Theorem 2.11 is now straightforward. Given
bids B satisfying Theorem 2.11, simply: replace any subset of bids that have the same
root and trade-off with a single bid whose multiplicity is the sum of the multiplicities
of the bids it replaces; or remove them all if this sum is zero. This gives existence of
a suitable bid collection with no redundancies; uniqueness is immediate from Lemma
4.18.

To prove the case of Theorem 2.13, we first combine bids which have the same root
and trade-off, as above. Next, setting ti(b) = 1 when ri(b) = H does not affect the
demand set at any price in H◦. And if gcd{ti | ri 6= H} = g > 1 then replacing ti with
ti
g

and replacing m(b) with gm(b), will similarly not affect demand at any price in H◦.

Finally, if r(b) = (−H, . . . ,−H) then removal of b does not affect demand at any price
in H◦. So we obtain a bid collection B with no redundancies (Definition 2.14).

To show uniqueness of this set, first restrict attention to the subset B′ of bids b
such that Lb ∩ H◦ 6= ∅. Lemma 4.18 provides uniqueness of this subset B′ of any
such set B. Finally, we must consider bids b such that Lb ∩ H◦ = ∅, but such that
b 6= (−H, . . . ,−H). The bids bi in the Proof of Theorem 2.13 meet this description:
recall that they satisfy Dbi(p) = yie

i for all p ∈ H◦. Given uniqueness of B′, the only
way to adjust demand DB(p0) at a given price p0 ∈ H◦ to match Dv(p

0) is by the
inclusion of such bids, and because bi uniquely adjusts the ith coordinate of demand,
there is a unique such set. This completes the proof.

5.3 Proving Theorem 5.1

Our proof of Theorem 5.1 proceeds by induction on n′, as follows. First, we provide
a trivial base case:
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Lemma 5.2. Theorem 5.1 holds when we restrict to the case n′ = 1.

5.3.1 Lemmas for the Inductive Step in proving Theorem 5.1

Our use of induction rests on identifying (n− 1)-dimensional weighted pseudo-LIPs
associated with a given n-dimensional weighted pseudo-LIP. Recall, for any set X ⊆ Rn,
we denote by 〈X〉 the affine span of X, that is, the set 〈X〉 := {λ(x−x′) | λ ∈ R,x,x′ ∈
X}.

For any i ∈ [n] write Hi := {p ∈ H | pi = H} and Hi := {p ∈ H | pi = H}. Now,
for any i ∈ [n], the hyperplane 〈Hi〉 can be identified with Rn−1 under the standard
projection πi : Rn → Rn−1 which deletes the ith coordinate. Write ρi for the restriction
of πi to 〈Hi〉, so that we can also refer to its inverse ρ−1

i : Rn−1 → 〈Hi〉. Also write
〈Hi〉

+ := {p ∈ Rn | pi > H}.

Definition 5.3. If (L, w) is a weighted pseudo-LIP, we write Lρi for the union of sets
F ′ := ρi(F ∩ 〈Hi〉), where F is a facet of L and F ∩ 〈Hi〉

+ 6= ∅. If dimF ′ = n− 2 then
we set wLρi (F

′) :=
∑
w(F ), where the sum is taken over all facets F of L such that

F ∩ 〈Hi〉
+ 6= ∅ and F ′ = ρn−1(F ∩ 〈Hi〉).47

Lemma 5.4. If (L, w) is an ordinary substitutes weighted pseudo-LIP in Rn then
(Lρi , wLρi ) is an ordinary substitutes weighted pseudo-LIP in Rn−1.

Under an inductive hypothesis on Theorem 5.1, then, there exist (n−1)-dimensional
bids B rooted in ρi(Hi) such that (Lρi ∩ ρi(Hi)

◦, wLρi ) = (LB ∩ ρi(Hi)
◦, wB).

Now observe that if b = (r; t;m) is an (n− 1)-dimensional bid, we can associate an
n-dimensional bid σi(b) := (ρ−1

i (r); t′;m) where π(t′) = t and t′i = 1. Write σi(B) :=
{σi(b) | b ∈ B}.

Lemma 5.5. If B is an (n− 1)-dimensional bid collection rooted in ρi(Hi) then σi(B)
is an n-dimensional bid collection rooted in Hi, and F is a facet of Lσi(B) if and only if
F ∩H◦ = (ρ−1

i (F ′) + Rei) ∩H◦ where F ′ is a facet of LB, also satisfying wσi(B)(F ) =
wB(F ′). In particular, Lσi(B)∩H◦ has no i-hods and no (i, j)-fins for any j ∈ [n], j 6= i.

For any set X ⊂ Rn, we will refer to the set X + Rei as the extrusion of X in
direction ei.

5.3.2 The Structure of the Inductive Step of the proof of Theorem 5.1

The most substantive technical result in proving the inductive step, comes in finding
bids in H which exactly cover all (n− 1, n)-fins of L in H◦:

Proposition 5.6. If (L, w) is an ordinary substitutes weighed pseudo-LIP in Rn, and
H is any product of intervals in Rn, then there exists a bid collection B′ rooted in H
such that (L ∩H◦, w) � (LB′ ∩H◦, wB′) has no (n− 1, n)-fins.

This is significant because if a pseudo-LIP has no (n− 1, n)-fins in H◦ then, for any
i ∈ [n− 2], its (i, n)-fins all can be extruded in direction en−1 and still stay within the
pseudo-LIP intersection of the pseudo-LIP and H◦.

47If L is a LIP then this is the “stable intersection” of L and 〈Hi〉, in the terminology of tropical
geometry.
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Lemma 5.7. Suppose n ≥ 2 and that (L, w) is an ordinary substitutes weighted pseudo-
LIP such that L ∩H◦ contains no (n − 1, n)-fins. Then, for any i ∈ [n − 2] and any
(i, n)-fin F of L such that F ∩H◦ 6= ∅, it holds that (F + Ren−1) ∩H ⊆ L. Moreover,
for any facet F ′ of L such that dim(F ′ ∩ (F + Ren−1) ∩ H◦) = n − 1 it follows that
w(F ′) = w(F ).

It follows that we obtain full information about these (i, n)-fins by taking a cross-
section perpendicular to en−1. We therefore use Lρn−1 , as in Definition 5.3. Now a
consequence of Lemmas 5.5 and 5.7 is:

Corollary 5.8. Suppose n ≥ 2 and (L, w) is an ordinary substitutes weighted pseudo-
LIP on n goods such that L∩H◦ contains no (n−1, n)-fins. Suppose also the statement
of Theorem 5.1 holds for n′ ≤ n− 1. Then there exist bids B′ rooted in Hn−1 such that
(L, w) � (LB′ , wB′) has no (i, n)-fins meeting H◦ for any i ∈ [n− 1].

The (i, j)-fins for i, j ∈ [n−1] remain, but we can now handle these in a similar way,
by considering direction en and applying the inductive step again:

Lemma 5.9. Suppose n ≥ 2 and that (L, w) is an ordinary substitutes weighted pseudo-
LIP such that L∩H◦ contains no (i, n)-fins for any i ∈ [n−1]. Then, for any j, k ∈ [n−1]
and any (j, k)-fin F of L, it holds that (F + Ren) ∩H◦ ⊆ Lv. Moreover, for any facet
F ′ of Lv such that dim(F ′ ∩ (F + Ren−1)) = n− 1 it follows that w(F ′) = w(F ).

Corollary 5.10. Suppose n ≥ 2 and (L, w) is an ordinary substitutes weighted pseudo-
LIP on n goods such that L ∩H◦ contains no (i, n)-fins for any i ∈ [n − 1]. Suppose
also the statement of Theorem 5.1 holds for n′ ≤ n− 1. Then there exist bids B′ rooted
in Hn such that (L, w) � (LB′ , wB′) has no fins meeting H◦.

Thus all fins have been dealt with. The hods remain, but this is simple for a pseudo-
LIP with no fins:

Lemma 5.11. Suppose n ≥ 2 and that (L, w) is an ordinary substitutes weighted pseudo-
LIP such that L∩H◦ contains no fins. If F is a i-hod for any i ∈ [n] then 〈F 〉∩H ⊆ Lv,
and all facets F ′ of L with (n− 1)-dimensional intersection with 〈F 〉∩H have the same
weight.

Corollary 5.12. Suppose n ≥ 2 and (L, w) is an ordinary substitutes weighted pseudo-
LIP on n goods such that L ∩ H◦ contains no fins. Suppose also the statement of
Theorem 5.1 holds for n′ ≤ 1. Then there exist bids B′ rooted in

⋃
i∈[n] Hi such that

(L ∩H◦, w) = (LB′ ∩H◦, wB′).

Finally, we need to show:

Proof of Theorem 5.1. The existence of B in the ordinary substitutes case follows
from Proposition 5.6 and Corollaries 5.8, 5.10 and 5.12. That is, we first identify a bid
set B1 as in Proposition 5.6 and so a weighted pseudo-LIP (L1, w1) := (L ∩H◦, w) �
(LB1 ∩ H◦, wB1) that has no (n − 1, n)-fins. We then apply Corollary 5.8 to (L1, w1)
to find additional bids B2 such that (L2, w2) := (L1 ∩ H◦, w1) � (LB2 ∩ H◦, wB2) has
no (i, n)-fins; apply Corollary 5.10 to (L2, w2) to find additional bids B3 such that
(L3, w3) := (L2 ∩ H◦, w2) � (LB3 ∩ H◦, wB3) has no fins; and finally apply Corollary
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5.12 to (L3, w3) to find additional bids B4 such that (L3 ∩H◦, w3) = (LB4 ∩H◦, wB4).
So, by Lemmas 4.7 and 4.11, it follows that if we set B′ = B1 ∪ B2 ∪ B3 ∪ B4 then
(L ∩H◦, w) = (LB′ ∩H◦, wB′).

We now adjust B′ to remove redundancies. Whenever there exist b,b′ ∈ B′ with
(r(b), t(b)) = (r(b′), t(b′)) then replace both b and b′ in B with (r(b), t(b),m(b) +
m(b′)), unless m(b)+m(b′) = 0, in which case b and b′ may simply be removed. Next,
if ri(b

′) = H for any i ∈ [n] then t(b′) may be adjusted to satisfy conditions (1) and
(2) of Definition 2.14; we also need to scale up m(b′) by gcd{ti | ri 6= H}. Finally, any
bid b′ such that r(b) = (H, . . . , H) may simply be removed. Completion of these steps
yields a bid collection B with no redundancies relative to H, and, by Lemma 4.18, such
that (LB ∩H◦, wB) = (LB′ ∩H◦, wB′) = (L ∩H◦, w).

If B contains any bid with trade-off not equal to 1 then it must contain a fin whose
normal is not a strong substitutes demand type vector. So if L is of the strong substitutes
demand type then B is a collection of SSPMA bids.

Remark 5.13. When (L, w) is the LIP of a concave ordinary substitutes valuation v
with domain an FBD then it is possible to prove a stronger form of Theorem 5.1: that
there exists a bid collection B such that (L, w) = (Lv, wv) = (LB, wB). Moreover, B is
the bid collection found in Proposition 5.6.

First, one shows that in this case, the analogue of Proposition 5.6 says that there
exist bids B′ such that (Lv, wv) � (LB′ , wB′) (globally) has no (n− 1, n)-fins.

Second, one shows that for any Lv where v has an FBD, and for any LB, every
i-hod is bounded below in coordinates j 6= i, and every (i, j)-fin is bounded above in
coordinates i, j and bounded below in coordinates k 6= i, j. As this holds for both Lv
and LB′ , it also holds for (Lv, wv) � (LB′ , wB′).

Then, a version of Lemma 5.7 shows that for a pseudo-LIP with (globally) no (n−
1, n)-fins, any (i, n)-fin can be (globally) extruded in coordinate (n − 1). But since
(Lv, wv) � (LB′ , wB′) can have no (i, n)-finsthat can be globally extruded in coordinate
(n− 1), it follows that (Lv, wv) � (LB′ , wB′) has no (i, n)-fins at all.

Similarly, a version of Lemma 5.9 shows that for a pseudo-LIP with (globally) no
(i, n)-fins, any (j, k)-fin can be (globally) extruded in coordinate n. Again, it follows
that (Lv, wv) � (LB′ , wB′) has no fins of any kind.

Finally, a version of Lemma 5.11 shows that for a pseudo-LIP with (globally) no
fins, if it contains a hods then it contains the affine span of that hod. Yet again this is
impossible for (Lv, wv)�(LB′ , wB′), which we therefore conclude has no facets at all. We
can therefore deduce that (Lv, wv) = (LB′ , wB′). That is, the bids found in Proposition
5.6 are all that are needed.

We do not take this approach because it either complicate the statements and proofs
of lemmas required for the general case, or necessitate a considerable amount of near
replication in proofs. Given that we wish to prove Theorem 2.11 in any case, it is more
efficient to derive the FBD case Theorem 2.11 from that more general result.
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Appendices

A The Geometry of Substitutes Pseudo-LIPs

This appendix develops results which will be used in our proofs in Appendix B. Recall that if C is
a polyhedral set, we write 〈C〉 for the affine span of C.

Definition A.1. For any distinct indices i, j, k, l ∈ [n], we say that an (n− 2)-cell C of a pseudo-LIP
L is:

(1) Type 1 with indices (i, j), if 〈C〉 = {p ∈ Rn | pi = ri; pj = rj} for some r ∈ Rn;
(2) Type 2 with indices (i, j, k) and trade-off (ti, tj , tk), if 〈C〉 = {p ∈ Rn | ti(pi− ri) = tj(pj − rj) =

tk(pk − rk)} for some r ∈ Rn;
(3) Type 3 with indices (i; j, k) and trade-off (tj , tk) if 〈C〉 = {p ∈ Rn | pi = ri; tj(pj − rj) =

tk(pk − rk)} for some r ∈ Rn;
(4) Type 4 with indices (i, j; k, l) and trade-off (ti, tj ; tk, tl) if 〈C〉 = {p ∈ Rn : ti(pi − ri) = tj(pj −

rj); tk(pk − rk) = tl(pl − rl)} for some r ∈ Rn.

Note that we do not insist here that the trade-off vectors are primitive integer, and so these vectors
are only uniquely defined up to multiplication by a positive scalar: for any α ∈ Q>0, if C is Type 2
with trade-off (ti, tj , tk) then it is also Type 2 with trade-off (αti, αtj , αtk), and similar results hold for
Types 3 and 4. This will not concern us.

Lemma A.2. Let L be a pseudo-LIP of the ordinary substitutes demand type, let F be a facet of L and
let C ( F be an (n− 2)-cell. Then C is one of Types 1, 2, 3 and 4 from Definition A.1. The possible
form of F depends on the Type of C as follows:

(1) If C is Type 1 with indices (i, j) then F is an i-hod, a j-hod, or a (i, j)-fin.
(2) If C is Type 2 with indices (i, j, k) and trade-off (ti, tj , tk) then F is an (i, j; ti/tj)-fin, an

(i, k; ti/tk)-fin or a (j, k; tj/tk)-fin.
(3) If C is Type 3 with indices (i; j, k) and trade-off (tj , tk) then F is an i-hod or a (j, k; tj/tk)-fin.
(4) If C is Type 4 with indices (i, j; k, l) and trade-off (ti, tj ; tk, tl) then F is a (i, j; ti/tj)-fin or a

(k, l; tk/tl)-fin.

Proof. An (n − 2)-cell of (L, w) is an (n − 2)-cell of the underlying complex (Π, w) and so is the
intersection of (at least) two non-parallel facets F 1, F 2 of (Π, w). As there are limited possible facet
normals, we may break this down into 6 cases. Consideration of these cases together proves the Lemma.

Case 1: F 1 has normal ei and F 2 has normal ej where i 6= j. Here C is Type 1 with indices (i, j).
Case 2: F 1 has normal ei and F 2 has normal tie

i − tjej , for j 6= i. The space of vectors normal to
〈C〉 is spanned by {ei, ej}, so again C is Type 1 with indices (i, j).

Case 3: F 1 has normal ei and F 2 has normal tje
j − tkek for i, j, k distinct. The space of vectors

normal to 〈C〉 is spanned by {ei, tjej − tkek}, and so C is Type 3 with indices (i; j, k) and trade-off
(tj , tk).

Case 4. F 1 has normal tie
i − tjej and F 2 has normal t′ie

i − t′jej . For these to intersect in an

(n− 2)-cell, we must have ti
tj
6= t′i

t′j
. The space of vectors normal to 〈C〉 is spanned by {ei, ej}, so that

again C is Type 1 with indices (i, j).
Case 5. F 1 has normal tie

i−tjej and F 2 has normal t′je
j−t′kek where i, j, k are distinct. The space

of vectors normal to 〈C〉 is spanned by {tit′jei− tjt′jej , tjt′jej− tjt′kek} and also contains tit
′
je
i− tjt′kek,

so C is Type 2 with indices (i, j, k) and corresponding trade-off (tit
′
j , tjt

′
j , tjt

′
k).

Case 6. F 1 has normal tie
i − tjej and F 2 has normal tke

k − tlel where i, j, k, l are distinct. The
space of vectors normal to 〈C〉 is spanned by {tiei − tjej , tkek − tlel}, so C is Type 4 with indices
(i, j; k, l) and trade-off (ti, tj ; tk, tl).

Recall that every LIP is balanced, when paired with the facet weights (Definition 2.20 and Fact
2.21). It follows that, in many cases, when a facet F of an ordinary substitutes weighted pseudo-LIP
has an (n− 2)-cell, there is another facet on the “other side” of that (n− 2)-cell with the same normal
and weight as F . That is, we recall that a rational polyhedron, such as a facet, is the intersection of
a finite set of half-spaces (Definition 2.17). An (n − 2)-cell is then defined by the intersection of the
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boundary of one of these half-spaces with the facet itself; the intersection between the affine span of
the facet and the other half-space associated with that “boundary” provides the “other side” of the
(n− 2)-cell.

Corollary A.3. Let L be a weighted pseudo-LIP of the ordinary substitutes demand type, and let C be
an (n− 2)-cell such that either:

(1) C is of Type 1 or 2, but there are at most two distinct affine spans to the facets containing C;
or (2) C is of Type 3 or 4.

Then if L has a facet F with normal d containing C in its boundary, it follows that L also has a facet
F ′ 6= F with weight wv(F

′) = wv(F ) and normal d containing C in its boundary.

Proof. Observe from Lemma A.2 that in all of the cases listed, there are at most two possible normal
vectors for facets containing such C in their boundary. These normal vectors are linearly independent.
The balancing condition therefore tells us that for each facet on one side of the bounding (n − 2)-cell
there must exist another facet on the “other” side of the cell normal to the same vector and with equal
weight.

Regarding Type 2 (n − 2)-cells, in fact the balancing condition implies an additional condition
relating the weights of the facets to their trade-offs.

Lemma A.4. Suppose weighted pseudo-LIP (L, w) has a Type 2 (n−2)-cell C with indices (i, j, k) and
primitive integer trade-off (ti, tj , tk). Suppose also that C is contained in exactly one (i, j; ti/tj)-fin F
of L. Then gcd(ti, tj) | w(F ), that is, gcd(ti, tj) divides w(F ).

Proof. The primitive integer normal vector to F is
tie

i−tjej
gcd(ti,tj)

. By the contrapositive of Corollary A.3

there must be three distinct affine spans to the facets containing C; by Lemma A.2 the other facets are
(i, k; ti/tk)- and (j, k; tj/tk)-fins, whose primitive integer vectors may be presented similarly to that of
F ; there are at most two fins with each of these index and trade-off combinations. If all four of these
fins are present, label them as F ik and F̂ ik, and F jk and F̂ jk respectively, such that the balancing
condition around C may be written

w(F )(tie
i − tjej)

gcd(ti, tj)
+

(
w(F jk)− w(F̂ jk)

)
(tje

j − tkek)

gcd(tj , tk)
−

(
w(F ik)− w(F̂ ik)

)
(tie

i − tkek)

gcd(ti, tk)
= 0;

if any of these fins are not present we simply set their weight to zero. Taking coefficients of ei, dividing
through by ti, and multiplying through by the denominators, we obtain:

gcd(ti, tk)w(F ) = gcd(ti, tj)
(
w(F ik)− w(F̂ ik)

)
. (5)

In particular, both sides of Equation (5) are positive integers. Finally, we show that gcd(ti, tj) | w(F ).
Consider any prime number q such that q` | gcd(ti, tj) for some maximal exponent ` ≥ 1. Since

(ti, tj , tk) is a primitive integer vector, we know that q - tk and hence q - gcd(ti, tk). But q` divides the
right-hand side of Equation (5), and hence also its left-hand side. Thus q` | w(F ). As this is true for
all primes q in the prime factorisation of gcd(ti, tj), it follows that gcd(ti, tj) | w(F ), as required.

Finally, we will only need the following result for (true) LIPs. Recall that the Euclidean ordering
≤ for Rn defines that x ≤ y if xi ≤ yi for all i ∈ [n]. Then:

Lemma A.5. If v is a concave ordinary substitutes valuation then every price complex cell for v is a
lattice with respect to the Euclidean ordering.

Proof. This follows by straightforward consideration of the possible bounds on such sets and the limited
range of facet normals permitted in an ordinary substitutes LIP. Alternatively, it also follows from the
well-known result that, for any ordinary substitutes valuation, the set of prices for which any given
bundle lies in the convex hull of the demand set form a lattice (see, e.g., Milgrom and Strulovici, 2009),
together with the fact that the intersection of two lattices in Rn is another lattice (in Rn).
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B Extra Examples and Proofs of Results in the Text

B.1 General Conventions

Example B.1. Suppose we have two positive bids: b1 = ((4, 2), (1, 2), 1) and b2 = ((2, 0), (1, 1), 1),
and consider demand at p = (2, 1). We calculate that I(b1, (2, 1)) = {1, 2} and so Db1(1, 2) =

{(1, 0), (0, 2)}, while I(b2, (2, 1)) = {0, 1} and so Db2(1, 2) = {(0, 0), (1, 0)}. Thus
∑2
j=1Dbj (1, 2) =

{(1, 0), (0, 2), (2, 0), (1, 2)}. But this set is not discrete-convex: (1, 1) ∈ conv
(∑2

j=1Dbj (1, 2)
)

. This

illustrates why, at Equation (2), we must define DB(p) to be the convex hull of the Minkowski sum of
the demands from individual positive bids, to ensure that the corresponding valuation is concave.

B.2 Arithmetic of Pseudo-LIPs

Recall (Definition 4.5) that we defined addition � for balanced Z-weighted rational polyhedral
complexes with support Rn. As with weighted pseudo-LIPs, we define:

Definition B.2. (Π1, w1) � (Π2, w2) := (Π1, w1) � (Π2,−w2).

Lemma B.3. If (Π1, w1) and (Π2, w2) are balanced Z-weighted rational polyhedral complex with support
Rn then so are (Π1, w1) � (Π2, w2) and (Π1, w1) � (Π2, w2).

Proof. It is well-known that the set of intersections of cells from two polyhedral complexes forms
a polyhedral complex Π (see, e.g. Grünbaum, 1967, Chapter 3, Section 3.2, Exercise 7). It clearly
inherits support Rn from Π1 and Π2. To show that the balancing condition holds (Definition 2.20),
consider an (n − 2)-cell G of Π. If G ⊆ Gi where Gi is an (n − 2)-cell of Πi for i = 1 or 2, then the
balancing condition is satisfied around Gi by all facets of Πi containing Gi. On the other hand, if the
minimal cell of Πi containing G is a facet F , then if we isolate F and split it into two facets along the
(n− 2)-cell defined by 〈G〉 ∩F , then the balancing condition is clearly satisfied around G by these two
facets. And if the minimal cell of Πi containing G is an n-cell then there are no facets of Πi containing
G and the balancing condition on Πi is trivial. Putting these cases together and noting that weights
are just added across the two complexes, yields the balancing condition for (Π1, w1) � (Π2, w2).

Finally, if (Π2, w2) is a balanced Z-weighted rational polyhedral complex with support Rn then so
is (Π2,−w2) and so the result for (Π1, w1) � (Π2, w2) follows from that for (Π1, w1) � (Π2,−w2).

We now show that we can use the usual rules of addition and subtraction on balanced Z-weighted
rational polyhedral complex with support Rn.

Lemma B.4. � and � satisfy the usual rules of addition and subtraction, with (Rn, 0) playing the role
of identity element. That is, for balanced Z-weighted rational polyhedral complexes (Π1, w1), (Π2, w2)
and (Π3, w3) with support Rn we have:

(1) (Π1, w1) � (Π2, w2) = (Π1, w2) � (Π1, w1)
(2) (Π1, w1) � ((Π1, w2) � (Π3, w3)) = ((Π1, w1) � (Π1, w2)) � (Π3, w3)
(3) (Rn, 0) � (Π1, w1) = (Π1, w1) � (Rn, 0) = (Π1, w1)
(4) (Π1, w1) � (Π2, w2) = (Rn, 0) � ((Π2, w2) � (Π1, w1))

Additionally, (Π1, w1) � (Π1, w1) = (Π1, 0).

Proof. (1) follows immediately from noting that the order of (Π1, w1) and (Π2, w2) is immaterial in
Definition 4.5. (2) is similarly clear when we note that both can be written as the polyhedral complex
with cells C1∩C2∩C3 where Ci ∈ Πi, with w(F ) similarly adding the weights of all facets from any of
these three complexes which contain F . (3) holds because C1 ∩Rn = C1 for any cell of Π1, and (Rn, 0)
contains no facets to alter the weighting.

To show (4), re-write the right hand side as (Rn, 0) � ((Π2, w2) � (Π1,−w1)). But this is equal
to (Rn, 0) � (Π3, w3) where Π3 is equal to the complex of intersections of cells in Π2 and Π1, and
w3 is defined on facets F of this complex by w3(F ) being equal to (−1) times the weight of this
facet in (Π2, w2)� (Π1,−w1), that is, −1×

(∑
F ′∈F2 w2(F ′) +

∑
F ′∈F1 −w1(F ′)

)
=
∑
F ′∈F1 w1(F ′)−∑

F ′∈F2 w2(F ′), in which F i is the set of all facets of Πi containing F , for i = 1, 2. So we have shown
that (Π3, w3) = (Π1, w1) � (Π2, w2), which by application of (3) completes the proof.

Finally, the complex of (Π1, w1) � (Π1, w1) is just Π1, and it is clear that the weight of every facet
is zero.
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The definition of � for weighted pseudo-LIPs is inherited directly from � for balanced Z-weighted
rational polyhedral complex with support Rn. For �, we similarly see

Lemma B.5. If (Li, wi) is the weighted pseudo-LIP of (Πi, wi) for i = 1, 2 then (L1, w1)� (L2, w2) is
the weighted pseudo-LIP of (Π1, w1) � (Π2, w2).

Proof of Lemmas 4.6 and B.5. Clear from Definitions 4.1 and 4.5.

Proof of Lemma 4.7. First observe that the weighted pseudo-LIP of (Rn, 0) is (∅, 0). Then the
weighted pseudo-LIP property for the � and � of two weighted pseudo-LIPs follow from Definitions
4.5 and B.2 and Lemmas B.3 and B.5, and results (1)-(4) of Lemma 4.7 follow from Definition 4.5 and
Lemmas B.4 and B.5. It remains to show property (5). But, by Lemma B.5, and the final result of
Lemma B.4, we know that (L1, w1) � (L1, w1) is the weighted pseudo-LIP of (Π1, 0); since all facets of
(Π1, 0) have weight 0 it follows that (L1, w1) � (L1, w1) = (∅, 0).

B.3 Bids and Geometry

Fact B.6 (Baldwin and Klemperer (2019) Lemma 2.9(2)). The cells of the price complex are the
intersections of closures of UDRs.

Lemma B.7. Write b = (r; t; 1). The valuation vb has UDRs as follows:

(1) {0} = Db(p) iff p ∈ {p ∈ Rn | pj > rj for j = 1, . . . , n};
(2) {tiei} = Db(p) iff p ∈ {p ∈ Rn : pi < ri, ti(pi − ri) < tj(pj − rj) for j = 1, . . . , n}.

Proof. To show (1), observe that 0 is uniquely demanded at p iff for all x ∈ t�∆[n]0 \ {0} we have

0 = vb(0)− p · 0 > vb(x)− p · x = (r− p) · x (6)

due to quasilinearity of demand. In particular, Equation (6) is required to hold for x = ej for any
j ∈ [n], which reveals that rj < pj for all j ∈ [n]. On the other hand, rj < pj for j ∈ [n] is clearly
sufficient for (6) to hold for all x ∈ t�∆[n]0 \ {0}.

To show (2), observe that tie
i is uniquely demanded at p iff ti(ri − pi) = vb(tie

i) − p · (tiei) >
vb(0) = 0 and, for all x ∈ t�∆[n]0 with x 6= tie

i, we have

ti(ri − pi) = vb(tie
i)− p · (tiei) > vb(x)− p · x = (r− p) · x. (7)

In particular, (7) must hold when x = tje
j for any j 6= i, whence ti(pi − ri) < tj(pj − rj)for all j 6= i,

which is clearly also sufficient for (7) to hold for all x ∈ t�∆[n]0 .
Finally, the UDRs described already are dense in Rn, so no other UDRs are possible.

Proof of Lemma 4.9. Immediate from Facts 2.19 and B.6, and Lemma B.7.

It is useful to identify the “strong diagonal 1-cell”
⋂n
i=1 F

ij
b discussed in Section 3. However, we are

only interested in this if it stays within the bounding box; for cases in which a bid lies on the boundary
of H, we identify a 1-cell of the union of L with the faces of this box, which also lies within L. First
define:

Definition B.8. If (r; t) ∈ H × Zn>0 then write inv(r; t) :=
∑
k∈[n],rk 6=H

ek

tk
. If b = (r; t;m) is a bid

then write Cb := {r− λ inv(r; t) | λ ≥ 0}.

Corollary B.9. Suppose b = (r; t;m) and b′ = (r; t′;m′) are bids such that r(b) = r(b′) = r, and
that ri, rj 6= H. Then:

(1) Cb ⊆ F ijb ;

(2) Cb ⊆ F i,jb′ if and only if
tj
ti

=
t′j
t′i

and tk
ti
≥ t′k

t′i
for all k ∈ [n] such that rk 6= H; otherwise

Cb ∩ F ijb′ = {r}
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Proof. If p ∈ Cb then p = r−λ inv(r; t) for some λ ≥ 0. Observe pi ≤ ri. If rk 6= H then pk−rk = − λ
tk

;
if rk = H then pk − rk = 0.

Part (1) now follows immediately from Lemma 4.9, since ti(pi−ri) = −λ = tj(pj−rj) ≤ tk(pk−rk) ∈
{−λ, 0}.

For part Part (2), apply Lemma 4.9 to see that p ∈ F ijb′ if and only if −t′i λti = −t′j λtj ≤ −t
′
k
λ
tk

for

all k 6= i, j such that rk 6= H. This always holds when λ = 0, but this holding for any, and hence all,

λ > 0 is equivalent to
tj
ti

=
t′j
t′i

and tk
ti
≥ t′k

t′i
for all k ∈ [n] such that rk 6= H.

These results, in particular, allow us to easily show:

Corollary B.10. Suppose B is a bid collection with no redundancies relative to H, and fix i, j ∈ [n]
with i 6= j. If r∗i := max{ri(b) | b ∈ B, rj(b) > H} > H, then there exists an (i, j)-fin F of LB ∩H◦

and a bid b ∈ B such that ri(b) = r∗i and r(b) ∈ arg maxp∈F {pi}.

Proof. Identify r ∈ Rn such that ri = r∗i and rj > H and r = r(b) for some b ∈ B, and r is minimal
with respect to the Euclidean ordering with these properties.

Fix b = (r; t;m) ∈ B. Without loss of generality, assume that there does not exist b′ ∈ B such

that r(b′) = r and tk(b
′)

ti(b′)
≤ tk

ti
for all k ∈ [n] such that rk 6= H. For if such b′ did exist then, because

B has no redundancies, one such inequality must be strict, and we could then replace b with such b′.
Consider b′ ∈ B such that r(b′) 6= r. By assumption we know either ri(b

′) < r∗i ; or ri(b
′) = r∗i but

r(b′) 6≤ r(b); or ri(b
′) = r∗i but rj(b

′) = H < rj(b). In each of these cases, by Lemma 4.9, it follows

that r /∈ F ijb′ . It follows that there exists an open neighbourhood Ub′ of r in F ijb which is not contained

in F ijb′ .
Now consider b′ ∈ B such that r(b′) = r but b′ 6= b. By our assumptions on b, we know that

tk
ti
< tk(b

′)
ti(b′)

some k ∈ [n] such that rk 6= H. By Corollary B.9 Part (2) we know that Cb ∩ F ijb′ = {r},
but by Corollary B.9 Part (1), we know that Cb ⊆ F ijb . Since facets are closed, it follows that there

exists an open subset Ub′ of F ijb , containing Cb \ {r}, which is not contained in F ijb′ .
As these cases cover all the (finitely many) b′ ∈ B, we may take the intersection of all such Ub′

to obtain an open subset U of F ijb , containing an open neighbourhood of {r} in Cb \ {r}, which is not

contained in F ijb′ for any b′ ∈ B for b′ 6= b. It follows from Lemma 4.6 that U ⊆ LB. And, as Cb ⊆ H,

it therefore also follows that U ∩H◦ 6= ∅; as this set is an open subset of an (i, j)-fin of F ijb , and so itself
has dimension (n − 1), we can conclude that there is an (i, j)-fin F of LB ∩H◦; as r is in the closure
of U ∩H◦, we can conclude that r is contained in such a fin; and as, by assumptions on b, there can
be no (i, j)-fin of LB containing p with pi > ri, we conclude that r ∈ arg maxp∈F {pi}.

Example B.11. Let n = 3 and consider bids B = {(0, 0, 0; 1, 1, 1; 1), (1, 1, 0; 1, 1, 1;−1),
(2, 2, 0; 1, 1, 1; 1)}. Then the set {p ∈ R3 | p3 = 0; 0 ≤ p1 ≤ 1 or 0 ≤ p2 ≤ 1} is a maximal 1-dimensional
subset of LB, but is not a polyhedron.

Proof of Lemma 4.13. First observe that if B = {b} then parts (1)–(3) are all immediate from
Lemmas B.7 and 4.9 and by definition of Db(p). Additionally, observe that (Πb, wb) associated with
the weighted pseudo-LIP (Lb, wb) is simply given by the closures of the UDRs described in Lemma
B.7, together with all their faces.

Now, (LB, wB) = �b∈B(Lb, wb). By repeated application of Definition 4.5 and Lemma B.4, this
is the weighted pseudo-LIP associated with (ΠB, wB) = �b∈B(Πb, wb). We know that |Db(p)| = 1 for
p in the interior of an n-cell of Πb, and so |DB(p)| = 1 and is constant for p in the interiors of the
n-cells of (ΠB, wB); such p are simply away from the facets of ΠB. Observe that such prices are dense
in Rn, and at them DB(p) =

∑
b∈BDb(p). Away from these prices, DB(p) is defined to be the discrete

convex hull of demand at nearby prices (Equation (4)). So |DB(p)| = 1 at a price in the interior of a
facet of (ΠB, wB) if and only if the same bundle is demanded at prices in the interior of the n-cell of
ΠB on either side. But we know Part (3) holds for each singleton set {b}, where b ∈ B. Moreover,
DB(p) =

∑
b∈BDb(p) for prices in the interior of the n-cells of ΠB, while wB is defined by adding

weights of facets in the individual Πb. It follows that the same bundle is demanded on either side of a
facet of ΠB if and only if the weight of that facet is 0. As LB is the union of non-zero weighted facets of
ΠB, this demonstrates both (1) and (2). Part (3) similarly follows by definition of (LB, wB) and from
the fact that it holds for each individual bid.
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Proof of Propositions 2.6, 2.8 and 4.14. We need simply prove Proposition 4.14, which sub-
sumes Proposition 2.6 and 2.8.

Suppose that a facet F of (LB, wB) has negative weight. Let i be a coordinate represented in
the normal of F , so that either F is an i-hod or an (i, j)-fin for some j ∈ [n]. There exist p and
p′ = p + λei that lie on either side of F , such that DB(p) = {x} and DB(p′) = {x′}. The primitive
integer vector that is normal to F and points in the opposite direction to the change in price is either
−ei or −tiei + tje

j for some ti, tj ∈ Z. Then, by Lemma 4.13 Part (3), we know x′ − x = −wB(F )ei

or x′ − x = wB(F )(−tiei + tje
j). Since wB(F ) < 0, in both cases x′i > xi: DB fails to satisfy the law

of demand. So (1) =⇒ (2).
Next, we use Lemma 4.9 to convert statement (2) into a statement about bids. If we consider any

one i-hod of LB passing through a price p, then this hod having positive weight is equivalent to the
set B′ of bids b ∈ B such that p ∈ F ib satisfying

∑
b∈B′ m(b)ti(b) ≥ 0; and if we consider any one

(i, j;α)-fin passing through p, then this having positive weight is equivalent to the set B′α of bids b ∈ B
such that p ∈ F ijb and such that ti(b)/tj(b) = α, satisfying

∑
b∈B′α m(b) gcd(ti(b), tj(b)) ≥ 0. But if

this holds for every (i, j)-fin, then it holds for any α ∈ Q, and so by taking the sum over the union of
such B′α, we see that Part (2) =⇒ (3). Conversely, if (3) holds, then in particular it holds at prices in
the interior of exactly one facet, and so (3) =⇒ (2).

That (2)⇐⇒(4) follows from Fact 2.22, Proposition 4.3 and Corollary 4.12. But if (4) holds, then
by Fact 2.21 we can moreover choose v such that Dv(p) = {0}, where p is a sufficiently high price
that DB(p) = {0}. By Lemma 4.13 and Fact 2.19, it follows that Dv(p) = DB(p) for all p ∈ Rn such
that |DB(p)| = 1. Finally, since such prices are dense, and since both Dv(p) and DB(p) are given by
the convex hull of their values at such prices in a sufficiently small open neighbourhood (the former
because v is concave, the latter by definition at Equation (4)), it follows that Dv(p) = DB(p) for all
p ∈ Rn; that is, we know (4) =⇒ (5). But if (5) holds then clearly B satisfies the law of demand, that
is, (5) =⇒ (1).

The final statement is Proposition 2.8. We work with ΠB as in the proof of Lemma 4.13. Let v
satisfy Dv(p) = DB(p), whose existence has been established above, since Part (1) =⇒ Part (5). For
prices p′,p′′ in the interior of an n-cell of ΠB, we know that I(b,p′) = I(b,p′′), and so the choice
between p′ and p′′ does not affect ib,x.

Let p be in a facet of ΠB, and let p′ and p′′ be prices in the interiors of the n-cells on either
side, so that |I(b,p′)| = |I(b,p′′)| = 1 for all b ∈ B; write these goods as i(b,p′) and i(b,p′′),
respectively. Let x′,x′′ satisfy {x′} = DB(p′) and {x′′} = DB(p′′). By continuity we know that
I(b,p′), I(b,p′′) ⊂ arg maxi∈[n]0 ti(b)(ri(b)− pi) for all b ∈ B, from which it follows that

∑
b∈B

m(b)ti(b,p′)
(
ri(b,p′)(b)− pi(b,p′)

)
=
∑
b∈B

m(b)ti(b,p′′)
(
ri(b,p′′)(b)− pi(b,p′′)

)
⇐⇒

∑
b∈B

m(b)ti(b,p′)ri(b,p′)(b)− p · x′ =
∑
b∈B

m(b)ti(b,p′′)ri(b,p′′)(b)− p · x′′ (8)

Consider first the case that x′ = x′′. Then Equation (8) demonstrates that∑
b∈B

m(b)ti(b,p′)ri(b,p′)(b) =
∑
b∈B

m(b)ti(b,p′′)ri(b,p′′)(b).

For quasilinear valuations, the set of all prices at which x is demanded is convex; this holds here since
the existence of v has been established. So we can apply this equality repeatedly between pairs of n-cells
of ΠB at which x′ is demanded, allows us to demonstrate that v̂B is well-defined, as it is independent
of the choice of px.

Now suppose x′ 6= x′′. Equation (8) demonstrates that in this case v̂B(x′)−p ·x′ = v̂B(x′′)−p ·x′′.
But, since x′,x′′ ∈ DB(p) = Dv(p), we know that v(x′) − p · x′ = v(x′′) − p · x′′. Subtracting
the second of these equations from the first and applying repeatedly across price space allows us to
conclude that v̂B(x)− v(x) is constant for all x which are uniquely demanded for any price. But then
v̂B(x) = v(x) + k for all bundles x uniquely demanded under v, where k is some constant. As v is
concave, we can conclude that vB = v+ k. As addition of a constant does not affect the demand set of
a valuation, this demonstrates that DvB(p) = Dv(p) = DB(p) for all p ∈ R. Finally, concavity of vB is
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immediate by definition.

To prove Lemma 2.10, we require a slight strengthening of the law of demand:

Definition B.12. For any demand correspondence D, say that D satisfies the strict law of demand if,
given p,p′ = p + λei ∈ Rn, where i ∈ [n] and λ > 0, such that x ∈ D(p) and x′ ∈ D(p′), it holds that
x′i ≤ xi, with equality iff x′ ∈ D(p) and x ∈ D(p′).

Lemma B.13 (See also Baldwin et al. 2021b, Lemma A.1). If v : Av → R is a valuation then Dv

satisfies the strict law of demand.

Proof. Let p,p′ and x,x′ be as in Definition B.12. x′ ∈ Dv(p
′) implies that v(x′)−p′ ·x′ ≥ v(x)−p′ ·x,

that is, v(x′) − (p + λei) · x′ ≥ v(x) − (p + λei) · x, and so v(x′) − p · x′ − λx′i ≥ v(x) − p · x − λxi.
Meanwhile, x ∈ Dv(p) implies that v(x′) − p · x′ ≤ v(x) − p · x. Subtracting the previously derived
inequality and recalling that λ > 0 yields that x′i ≤ xi. Moreover, equality holds here if and only if it
holds in both of the original equalities, which in turn holds if and only if x ∈ Dv(p

′) and x′ ∈ Dv(p).

Proof of Lemma 2.10. To show Part (1) of Definition 2.9, observe that, since the bids B are valid,
by Proposition 4.14 Part (5), there exists a concave ordinary substitutes valuation v such that, in
particular, AB =

⋃
{Dv(p) | p ∈ Rn}. But, since v is concave, the latter object is precisely the domain

of v and is therefore discrete-convex (see, e.g., Baldwin and Klemperer 2019 Definition 2.10 and Lemma
2.11) . To show that 0 ∈ AB, observe that, if we set pi � 0 for all i ∈ [n] then I(b,p) = {0} for all
b ∈ B and so DB(p) = {0}. To show that AB ⊆ Zn≥0, suppose not, and that x ∈ AB with xi < 0 for

some i ∈ [n]. By definition of AB there exists p such that x ∈ DB(p). Let R� 0 and set p′ = p +Rei.
Then, as long as R has been chosen to be sufficiently large, it follows that i /∈ I(b,p′) for all b ∈ B,
and so that if x′ ∈ DB(p′) then x′i = 0. But then x′i > xi, which contradicts the law of demand, hence
validity of B, showing that indeed AB ( Zn≥0 as required.

To show Part (2), fix x ∈ AB and write x̂ = x − xiei. We wish to show that x̂ ∈ AB. As in the
preceding paragraph, we know there exists p such that x ∈ DB(p) and we can choose p′ = p +Rei for
R� 0 such that if x′ ∈ DB(p′) then x′i = 0. However, x′ 6= x̂ in general.

Assume at first that there exists p such that DB(p) = {x}. Recalling that the set of prices meeting
this condition is dense in Rn, we can choose p so that |DB(p′)| = 1, and so {x′} = DB(p′) is uniquely
defined. Again applying Proposition 4.14 Part (5), and Definition 2.1 for ordinary substitutes, we
observe that x′j ≥ xj = x̂j for all j ∈ [n] with j 6= i. So, since x̂i = 0 = x′i, we know that x′ ≥ x̂.

Now, x̂ ∈ AB will hold iff, for all d ∈ Rn there exist yd ∈ AB such that d · x̂ ≤ d · yd. Given
d ∈ Rn, write d+ :=

∑n
j=1 max(di, 0)ei and d− :=

∑n
j=1 max(−di, 0)ei. Then d = d+ − d− and so

d · x̂ = d+ · x̂− d− · x̂ ≤ d+ · x̂ ≤ d+ · x′, (9)

the first inequality holding since d− ≥ 0 and x̂ ≥ 0, and the second holding since x′ ≥ x̂ and d+ ≥ 0. If
d+ = d then we are done. Otherwise, let pd = p′ +Rd

∑
dj<0 ej where Rd � 0, adjusting p and p′ if

necessary so that |DB(pd)| = 1, and write {yd} = DB(pd) ⊆ AB, noting that if Rd is sufficiently large
then, for all j such that dj < 0, we know j 6= I(b,pd) for all b ∈ B and so ydj = 0; thus d− · yd = 0.

However, again applying the definition of ordinary substitutes (Definition 2.1), we know that ydj ≥ x′j
for all j such that dj ≥ 0. It follows that

d · yd = d+ · yd − d− · yd = d+ · yd ≥ d+ · x′. (10)

Combining Equations (9) and (10) demonstrates that d · x̂ ≤ d · yd.
Finally, if there does not exist p such that DB(p) = {x}, then DB(p) is the discrete-convex hull

of a finite set {xk | k ∈ K} of bundles in AB, for each of which there exists a price pk such that
DB(pk) = {xk}. So x =

∑
k∈K λkx

k for some weights λk ∈ [0, 1] such that
∑
k∈K λk = 1. But, by the

argument above, we know that xk −xki ei ∈ AB for all k ∈ K. So
∑
k∈K λk(xk −xki ei) = x−xiei ∈ AB

also, as required.
Finally, to show part (3), let i ∈ [n] and suppose that x′ ∈ arg maxx∈AB{xi}. By definition of AB

there exists p′ such that x′ ∈ DB(p′). Let R � 0 and set p = p′ − Rei, so that p′ = p + Rei. Then,
as long as R has been chosen to be sufficiently large, it follows that I(b,p) = {i} and so Db(p) =

38



{m(b)ti(b)ei} for all b ∈ B. So, letting Wi =
∑

b∈Bm(b)ti(b), we have that {Wie
i} = DB(p). By

definition of x′ we know that x′i ≥ Wi. However, the strict law of demand also holds (Lemma B.13),
so x′i ≤ Wi, so x′i = Wi. Now the strict law of demand dictates that x′ ∈ DB(p) = {Wie

i}. That is, if
x′ ∈ arg maxx∈AB{xi} then x′ = Wie

i, so arg maxx∈AB{xi} = {Wie
i}.

The case of SSPMA bids is given by Baldwin et al. (2021a) Proposition 3.

We write Hi := {p ∈ H | pi = H} and Hi := {p ∈ H | pi = H}.

Proof of Lemma 4.16. Let i ∈ [n]. As Av is an FBD, if x ∈ Av then x′ := x−xiei ∈ Av (Definition
2.9); by construction x′i = 0. Then if pixi > v(x) − v(x′) it follows that v(x′) − p · x′ > v(x) − p · x,
that is, x′ is preferred to x. So, for any p such that pi is large enough to satisfy this condition for
all (finitely many) x ∈ Av, it follows that yi = 0 for all y ∈ Dv(p). In particular, note that the ith
coordinate is the same for all such bundles. Thus, by Lemma 4.9, there exists H ′i > 0 such that for all
p ∈ Rn with pi > H ′i, and for all j ∈ [n] there does not exist an (i, j)-fin F satisfying p ∈ F .

So, if F is an (i, j)-fin of Lv, then it is bounded above in coordinate i: there exists a set C =
arg max{pi | p ∈ F}. But C is a face of F , and so is a price complex cell for v (Definition 2.17 Part
(4)(i) and Fact 2.18). By definition of H it follows that C ∩ H◦ 6= ∅; by definition of C and H◦ it
follows that pi < H for all p ∈ F , that is, F ∩Hi = ∅. Note that this holds for any (i, j)-fin of Lv, for
any i, j ∈ [n].

Now, if there exists any bid b ∈ B such that ri(b) = H and rj(b) > H for any i, j ∈ [n], then, by
Corollary B.10, there exists an (i, j)-fin F of LB ∩H◦ such that H = max{pi | p ∈ F}. So if b ∈ B
and ri(b) = H for any i ∈ [n] then rj(b) = H for all j ∈ [n], j 6= i.

Now we turn to the lower faces of H. Consider a (j, k)-fin F of Lv, and for any p0 ∈ F ◦, the slice
of this fin, F0 := {p ∈ F | pj = p0j}. We show that F0 is bounded below in coordinate i 6= j, k. Let

y ∈ Dv(p
0), so that also (without loss of generality) y+ tje

j− tkek ∈ Dv(p
0) ⊆ Av, for some trade-offs

tj , tk.
Since Av is an FBD, there exists Wi ∈ Z>0 such that {Wie

i} = arg max{xi | x ∈ Av}. In particular,
since there is only one bundle maximising xi, we know that y 6= Wie

i and yi < Wi. Now, if R ∈ R
satisfies R(W −yi) > v(y)−v(Wei)−p ·y+Wpi then v(y)− (p−Rei) ·y < v(Wei)− (p−Rei) ·Wei,
that is, the bundle Wei is preferred to y at p−Rei, and so in particular p−Rei /∈ F0.

So there must exist an (n − 2)-cell C ′ of F between p and p − Rei. Now by Definition A.1 and
Corollary A.3, if C ′ is not Type 2 with indices (i, j, k), there is another j-hod F ′ for Lv on the opposite
side of C ′ with respect to coordinate i. Moreover, then, if F ′ is bounded below in coordinate i, then
so is F . Since Lv has finitely many facets, we can apply this process repeatedly. So assume that
C ′ = C which is indeed of Type 2 with indices (i, j, k). But, by Assumption 4.15, it follows that C has
non-empty intersection with H◦. It follows that, if pj ∈ arg maxp∈F pj , then pji > H.

Now let B′ := {b ∈ B | ri(b) = H}, and let B′′ := B \ B′. By Corollary B.10, if r∗j :=
max{rj(b′) | b′ ∈ B′, rk(b′) > H} > H, then there exists a (j, k)-fin F of LB′ ∩ H◦ such that
r ∈ arg max{pj | p ∈ F}, where r = r(b′) for some b′ ∈ B′ and rj = r∗j . So this provides the required
contradiction, unless the part of F closest to Hi is contained in a facet of LB′′ of equal and opposite
weight to that of F , in which case it is “deleted” in LB itself. However, in that case, because LB is itself
balanced, and positive-weighted within H◦, there must exist another (j, k)-finF ′, meeting F along an
(n− 2)-cell of Type 1, and providing the required contradiction.

Now we rule out bids b for which H < rj(b) < H for some j ∈ [n] and ri(b) = H for all i ∈ [n]
with i 6= j. But in such cases, the fact that B has no redundancies relative to H implies that t(b) = 1
and hence that b is the only bid in B rooted at r(b). Then, Lemma 4.9 implies that LB has a non-zero
weighted j-hod F passing through r and such that F ∩H◦ 6= ∅. In exactly the same way as we did for
the (j, k)-fin, we can see that this provides a contradiction with the domain of v being an FBD.

So, for all r ∈ B, if r(b) ∈ H\H◦ then r = Hei+
∑
j∈[n],j 6=iHej for some i ∈ [n]. But if such a bid

b exists, then, if we set p =
∑
i∈[n](H − ε)ei for any small ε > 0, we find that Db(p) = {ti(b)m(b)ei}.

If r(b′) ∈ H◦ and we choose ε small enough then Db′(p) = {0}, and so we conclude that the ith
coordinate of DB(p) is given by ti(b)m(b) for the bid as described. But v is a concave ordinary
substitutes valuation with domain an FBD, and so 0 ∈ Av; it follows that Dv(p

′) = {0} for sufficiently
large prices, and in particular, by Assumption 4.15, that Dv(p) = {0} = DB(p). So the bid b described
cannot exist, and r(b) ∈ H◦ for all b ∈ B.
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Proof of Proposition 4.17. Let b ∈ B and suppose ri(b) ≤ H. Define r′ by setting r′j = rj(b) for
j 6= i and r′i = H. Write b′ := (r′; t(b);m(b)). Then one may check that Lb ∩H◦ = Lb′ ∩H◦ by
verifying that this holds for all facets of these LIPs, using the description of Lemma 4.9.

Now suppose ri(b) ≥ H. Define r′ by setting r′j = rj − ti
tj

(riH) for all j ∈ [n]. Write b′ :=

(r′; t(b);m(b)). Again one may check that Lb ∩H◦ = Lb′ ∩H◦ by verifying that this holds for all
facets of these LIPs, using the description of Lemma 4.9 (in this case all the hods have empty intersection
with H◦).

Thus, by adjusting each coordinate in turn as necessary, we obtain b′′ such that r(b′′) ∈ H and
such that Lb′′ ∩H◦ = Lb ∩H◦. Repeating this procedure for every b ∈ B, and noting that there is
nothing to do for bids b ∈ B for which r(b) ∈ H◦, while every bid for which r(b) /∈ H◦ is mapped to
exactly one new bid rooted on H \H◦, completes the proof.

Proof of Lemma 4.18. First we show that (2) =⇒ (1). Suppose bids b1,b2 satisfy r(b1) = r(b2)
and t(b1) = t(b2). Define b by r(b) = r(b1), t(b) = t(b1) and m(b) = m(b1) + m(b2). Now
Lb1 � Lb2 = Lb. By extension over the whole bid collection, if the sum of multiplicities of bids with
any root and trade-off are the same in B1 as in B2 then both (LB1 , wB1) and (LB2 , wB2) are equal to
the weighted LIP of a bid collection with only one bid at each root, whose multiplicity is this sum of
multiplicities. So (LB1 , wB1) = (LB2 , wB2) in this case.

That (1) =⇒ (3) is evident: we may simply choose suitable H,H so that r(b) ∈ H◦ for all b ∈ H◦.
The additional conditions are then automatically satisfied.

Finally, we assume that (3) holds for some H,H, and show that this implies (2). By Lem-
mas 4.6, 4.7 and 4.11, we know that LB′ ∩ H◦ = ∅ where B′ := B1 ∪ {(r(b); t(b);−m(b)) | b ∈
B2}. Write B for the bid collection consisting of nonzero sums of multiplicities of bids in B′ with
the same root and trade-off, that is, B = {(r; t;m) | (r; t) = (r(b); t(b)) for some b ∈ B′, m =∑

b′∈B′,r(b′)=r(b);t(b′)=t(b)m(b′), m 6= 0}. By construction, and by the conditions given on B1 and B2,

we know B has no redundancies relative to H. Observe that LB = LB′ , because (2) =⇒ (1), and that
if LB′ = ∅ then (2) holds, by Lemmas 4.7 and 4.11. We will show this is so by showing that B = ∅.
Suppose, for a contradiction, that B 6= ∅.

First suppose that there exists some b ∈ B such that ri(b) > H, rj(b) > H for some i, j ∈ [n] with
i 6= j. Then Corollary B.10 applies, and shows that LB ∩H◦ has a (i, j)-fin. This is a contradiction.

Next suppose that there exists i ∈ [n] and b ∈ B such that H < ri(b) < H and such that rj(b) = H
for all j ∈ [n] with j 6= i. Observe that our conventions enforce that t(b) = 1 and so that b is the only
bid in B rooted at r(b). Then, considering Lemma 4.9 we see that LB has a non-zero weighted i-hod
F passing through r such that F ∩H◦ 6= ∅, providing another contradiction.

Finally, observe that in either the case ri(b) = H for all i ∈ [n], or the case ri(b) = H for some
i ∈ [n] and rj(b) = H for all j 6= i, result in Lb ∩H◦ = ∅. But by assumption there are no such bids
in B1 or B2, and hence no such bids in B. So all possible cases lead to contradiction. This completes
the proof.

B.4 Proof of the main result

This section contains the proofs of results in Section 5 except for Proposition 5.6, the key technical
result, which is proved in Section B.5 below.

Proof of Lemma 5.2. When n′ = 1 then a weighted pseudo-LIP is just a finite collection of points,
each assigned a weight in Z. Setting every trade-off equal to 1, these points and their weights define
the bids directly.

Proof of Lemma 5.4. Since (L, w) is a weighted pseudo-LIP, there exists an associated balanced
Z-weighted rational polyhedral complex with support Rn (Π, w) of dimension n. Let Πρi be the image
under ρi of the set of intersections between cells C of Π and 〈Hi〉. This is also a rational polyhedral
complex, of dimension (n− 1) with support Rn−1; the defining properties are inherited from Π.

If F ′ is a facet of Πρi (so it has dimension n− 2), then F ′ = ρi(C ∩ 〈Hi〉), where C is a cell of Π,
which must be: either a facet of Π, meeting 〈Hi〉 in its interior; or C is an (n− 2)-cell of Π contained
in 〈Hi〉. But in the latter case, C is contained in facets F of Π, and since Π is balanced around C, at
least one such facet F must satisfy F ∩ 〈Hi〉

+ 6= ∅. So we can define a weighting on Πρi exactly as in
Definition 5.3.
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To show that Πρi is balanced, we first define a similar complex, for which the intersection that we
take is “transverse”.48 Write Ki := 〈Hi〉 + εei, where ε > 0 is small and chosen such that no cells of
Π are contained in Ki; this is possible as Π has finitely many cells. Let Σ be the image under ρi of
the set of intersections C ∩Ki, where C is a cell of Π. Again, this is a rational polyhedral complex,
of dimension (n − 1), with support Rn−1. By choice of ε, all facets of Π with non-empty intersection
with 〈Hi〉 and with 〈Hi〉

+
will have an (n−2)-dimensional intersection with Ki and these intersections

meet only on their boundaries; and these are the only facets of Σ. For each such facet F ′, set w′(F ′)
to be the weight w(F ) of the corresponding facet F of Π. Similarly, the (n − 3)-cells of Σ are exactly
the intersections with Ki of (n − 2)-cells of Π which have non-empty intersection with 〈Hi〉 and with
〈Hi〉

+
. So the weighting w′ on Σ inherits the balancing property from w, and (Σ, w′) is a balanced

Z-weighted rational polyhedral complex with support Rn in Rn−1.
Now observe that if C is an (n−3)-cell of Πρi , then it has one of two forms. It may be the projection

under ρi of the intersection of prices in the relative interior of an (n−2)-cell of Π with 〈Hi〉 – with that
cell having non-zero intersection with 〈Hi〉

+
. In this case, all facets F of Π containing C correspond

to facets of Πρi , and are in each case the unique facet to do so. Then the weighting wLρi is clearly
balanced around C. Alternatively, C may be the projection under ρi of an (n− 3)-cell Ĉ of Π that lies
within 〈Hi〉. In this case, Ĉ must be the intersection of a set of (n − 2)-cells of Π that meet 〈Hi〉

+
.

Each of these gives rise to an (n − 2)-cell in Σ, around which the weighting w′ is balanced. As ε → 0
these (n−2)-cells converge, meaning that any facets containing more than one of these (n−2)-cells will
disappear, but it is not hard to check that the sum of the balancing conditions around these (n−2)-cells
in Σ imply the balancing condition is satisfied around C.

Thus (Πρi , wLρi ) is a balanced Z-weighted rational polyhedral complex with support Rn. By
definition, (Lρi , wLρi ) is the corresponding weighted pseudo-LIP.

Finally we observe that (Lρi , wLρi ) is an ordinary substitutes weighted pseudo-LIP by noting from
Lemma A.2 that if F is a facet of Lρi then it has the form of: either a Type 1 (n− 2)-cell of L� 〈Hi〉
with indices (i, j) for some j ∈ [n], j 6= i; or a Type 3 (n − 2)-cell of L � 〈Hi〉 with indices (i; j, k)
and trade-off (tj , tk) for some j, k ∈ [n] distinct from each other and from i. In the former case F is
a j-hod of Lρi and in the latter it is a (j, k)-fin of Lρi . It follows that Lρi is an ordinary substitutes
pseudo-LIP.

Proof of Lemma 5.5. It is clear by definition that σi(B) is an n-dimensional bid collection rooted
in Hi.

First suppose that B = {b} for b rooted in ρi(Hi). The result follows straightforwardly in this
simple case, by considering the descriptions of Lemma 4.9.

Now, recall that LB = �b∈BLb and Lσi(B) = �b∈BLσ(b). So the result follows from the simple
case above, by repeatedly applying the definition of �.

Note that Proposition 5.6 is proved in Appendix B.5 below. We proceed with the remaining proofs
for this section.

Proof of Lemma 5.7. Let i ∈ [n− 2], let F be an (i, n)-fin of L, and let F be the set of (i, n)-fins F ′

of L such that dim(F ′ ∩ (F + Ren−1) ∩H◦) = n− 1 and such that w(F ′) = w(F ). We will show that
(F + Ren−1) ∩H◦ ⊆

⋃
F . Since

⋃
F ⊆ L by definition, it follows that (F + Ren−1) ∩H◦ ⊆ L, and

since F +Ren−1 is a closed and convex set, and L is a closed set, it follows that (F +Ren−1)∩H ⊆ L.
The condition on weights of facets follows because (F + Ren−1) ∩H◦ ⊆

⋃
F , and we defined F to be

a set of fins whose weight matches that of F .
Fix p ∈ F ∩H◦. Assume for a contradiction that {λ′ > 0 | p + λ′en−1 ∈ H◦ \

⋃
F} 6= ∅ and let λ

be the infimum of this set. Observe that r := p + λen−1 ∈ H◦.
Now r ∈

⋃
F ∩H◦, since facets are topologically closed, so r ∈ F ′ for some F ′ ∈ F ; but r+εen−1 /∈⋃

F ∩H◦ for all ε > 0, so r + εen−1 /∈ F ′. It follows that r is in the boundary of F ′, which we recall to
be a union of intersections of hyperplanes with F ′, each intersection giving an (n− 2)-cell. So r must
be in an (n− 2)-face C of F ′ such that r + en−1 /∈ 〈C〉. That is, a vector in direction en−1 does not lie
in the affine span of C. Since F ′ is an (i, n)-fin, C is contained in such a facet. We now consider the
possible cases for C.

48See Maclagan and Sturmfels (2015), Definition 3.4.9, or Baldwin and Klemperer (2019), Definition
4.10.
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If C is Type 1 then by Lemma A.2 it must have indices (i, n), and so 〈C〉 = {p ∈ Rn | pi = ri, pn =
rn}. This contradicts r + en−1 /∈ 〈C〉.

Suppose C is Type 2 with indices (i, j, n) for some j 6= i, n and tradeoffs (ti, tj , tk), and additionally
suppose j 6= n− 1. Then r + en−1 ∈ 〈C〉 = {p ∈ Rn | ti(pi− ri) = tj(pj − rj) = tn(pn− rn)}, providing
a contradiction.

Now suppose C is Type 2 with indices (i, n− 1, n); it must have trade-off (ti, tn−1, tn) where ti/tn
is the trade-off of F ′. Recall that L ∩H◦ contains no (n − 1, n)-fins, and so since r ∈ H◦, there is no
such fin containing C. By Lemma A.2 it follows that there are at most two different affine spans to
the facets of L containing C. Then by Corollary A.3 it follows that there is a facet F ′′ with the same
affine span and weight as F ′, on the other side of C from F ′, contradicting the definition of λ.

If C is Type 3 or Type 4 then obtain a contradiction by applying Corollary A.3 in the same way
as in the case of Type 2 with indices (i, n− 1, n).

So {λ′ > 0 | p +λ′en−1 ∈ H \
⋃
F} = ∅ for all p ∈ F ∩H◦, and hence (F +R≥0en−1)∩H◦ ⊆

⋃
F .

We show the same for (F +R≤0en−1) ∩H◦ by repeating the argument above but subtracting, instead
of adding, copies of en−1, and considering the supremum instead of the infimum. Together these results
show that (F + Ren−1) ∩H◦ ⊆

⋃
F .

Proof of Corollary 5.8. First consider the weighted pseudo-LIP (L, w) � (〈Hn−1〉, 1). Observe by
Lemma A.2 that, if i ∈ [n− 2], when an (i, n)-fin F of this pseudo-LIP meets Hn−1 in an (n− 2)-cell
C, then this must be a Type 3 (n− 2)-cell with indices (n− 1; i, n) with trade-off equal to the trade-off
of the (i, n)-fin itself. It follows that there can be at most one such facet meeting both H◦ and C, and
so, if F ′ = ρn−1(F ∩ 〈Hn−1〉) then wLρn−1 (F ′) = w(F ) by Definition 5.3.

Now, applying Lemma 5.7, it follows that, if F is the set of all (i, n)-fins of L, and F ′ is the set of
all (i, n)-fins of Lρn−1 , then

⋃
F ∩H◦ = (

⋃
F ′ + Ren−1) ∩H◦ and that if F ′ is an (i, n)-fin of Lρn−1

then wLρn−1 (F ′) = w(F ) for all (i, n)-fins of L such that dim((F ′ + Ren−1) ∩ F ∩H◦) = n− 1.
But by Lemma 5.4 we know that (Lρn−1 , wLρn−1 ) is an ordinary substitutes weighted pseudo-LIP

in Rn−1. By the inductive hypothesis we have made on Theorem 5.1, there exists a bid collection
B, rooted in ρn−1(Hn−1), such that (Lρn−1 ∩ ρn−1(Hn−1)◦, wLρn−1 ) = (LB ∩ ρn−1(Hn−1)◦, wB). Set
B′ := σn−1(B), which is (Lemma 5.5) an n-dimensional bid collection, rooted in Hi.

Now by Lemma 5.5 and by our previous observation, the union of all (i, n)-fins of (LB′ , wB′) in H◦

is identical to the union of all (i, n)-fins of (L, w) in H◦, with the weights also corresponding.
We conclude that (L∩H◦, w)�(LB′∩H◦, wB′) has no (i, n)-fins for all i ∈ [n−2]. But we originally

assumed that (L ∩H◦, w) had no (n − 1, n)-fins. The same is true of (LB′ , wB′) by Lemma 5.5. So
(L ∩H◦, w) � (LB′ ∩H◦, wB′) has no (i, n)-fins, for any i ∈ [n− 1].

Proof of Lemma 5.9. The proof of this lemma is similar to that of Lemma 5.7. Fix j, k ∈ [n − 1]
such that j 6= k, let F be a (j, k)-fin of L, and let F be the set of (j, k)-fins F ′ of L such that
dim(F ′ ∩ (F + Ren) ∩H◦) = n − 1 and such that w(F ′) = w(F ). Fix p ∈ F ∩H◦ and assume for a
contradiction that {λ′ > 0 | p + λ′en ∈ H◦ \

⋃
F} 6= ∅; let λ be the infimum of this set and observe

that r := p + λen ∈ H◦.
As in the proof of Lemma 5.7, r is on an (n− 2)-cell C of a facet F ′ ∈ F such that r + en /∈ 〈C〉.

Now consider the possible cases for C, recalling that F ′ is a (j, k)-fin.
If C is Type 1 then by Lemma A.2 it must have indices j, k, in which case r + en ∈ 〈C〉: a

contradiction.
If C is Type 2, then by Lemma A.2 it must have indices (i, j, k) for some i 6= j, k. If i 6= n then

r + en ∈ 〈C〉: again, a contradiction.
Now suppose C is Type 2 with indices (j, k, n) and trade-off (tj , tk, tn). By Lemma A.2, and by

assumption that L ∩H◦ contains no (i, n)-fins for any i ∈ [n − 1], the only facets of L containing C
are (j, k; tj/tk)-fins, that is, they all have the same affine span. But by Corollary A.3 it follows that
there is a facet F ′′ with the same affine span as F ′ on the other side of C from F ′, contradicting the
definition of λ.

If C is Type 3 or Type 4 then we obtain a contradiction by applying Corollary A.3 in the same
way as the case of Type 2 with indices (j, k, n).

Thus {λ′ > 0 | p + λ′en ∈ H◦ \
⋃
F} = ∅ for all p ∈ F ∩H◦, and thus (F + R≥0en) ∩H◦ ⊆

⋃
F .

Again we may show that (F +R≤0en)∩H◦ ⊆
⋃
F in the same way. So, as in the proof of Lemma 5.7,

the result follows.
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Proof of Corollary 5.10. This follows from Lemmas 5.5 and 5.9 in exactly the same way as Corollary
5.8 follows from Lemmas 5.5 and 5.7.

Proof of Lemma 5.11. The proof of this lemma is again similar to that of Lemma 5.7. Fix i ∈ [n],
let F be a i-hod of L, and write F for the set of i-hods F ′ of L such that F ′ ∩ 〈F 〉 ∩H◦ 6= ∅ and such
that w(F ′) = w(F ). Suppose for a contradiction that

⋃
F ∩H◦ 6= 〈F 〉 ∩H◦. Then there must exist a

point r ∈ H◦ such that r ∈ C, where C is an (n − 2)-cell contained in a facet F ′ ∈ F , and such that
r + εej /∈

⋃
F for some j ∈ [n] with j 6= i and some small ε > 0.

However, there can only be at most two distinct affine spans to the facets containing C: this is
clear by considering the possibilities of Lemma A.2 and recalling that we assumed that L∩H◦ contains
no fins, so C is of Type 1. So, by Corollary A.3, it follows that there is a facet F ′′ ∈ F with the same
affine span as F ′ on the other side of C from F ′ containing r+ εej , contradicting what we had inferred
about C.

The contradiction implies that 〈F 〉 ∩H◦ =
⋃
F ∩H◦ ⊆ L, whence 〈F 〉 ∩H ⊆ L since 〈F 〉 is closed

and convex, and L is closed. The required property on weights of facets follows immediately from the
definition of F .

Proof of Corollary 5.12. This follows from Lemmas 5.5 and 5.11 in exactly the same way as Corol-
lary 5.8 follows from Lemmas 5.5 and 5.7.

B.5 The Proof of Proposition 5.6

Definition B.14. Suppose L is an ordinary substitutes pseudo-LIP. Write ĝrid(L) for the union of
sets 〈F 〉, where either

(1) F is an (i, n)-fin L ∩H◦ for i ∈ [n− 1]; or
(2) F is an n-hod of L ∩H◦; or
(3) F = Hi or Hi for some i ∈ [n].

The grid of L, denoted grid(L), is then the union of ĝrid(L) with additionally the affine spans 〈F 〉 of
the sets F , where

(4) F = C + Rei for any Type 1 (n− 2)-cell C of ĝrid(L) with indices (i, n) for some i ∈ [n− 1].

Write Fn−1,n for the set of (n− 1, n)-fins of grid(L) contained in H.

Part (4) of Definition B.14 introduces additional n-hods into our structure, including potentially some
which are not affine spans of n-hods in L, but instead are defined by intersections of affine spans of
(i, n)-fins.

Observe that, because any pseudo-LIP L has only finitely many facets and (n − 2)-cells, grid(L)
is indeed also a finite rational polyhedral complex. If we endow every facet of grid(L) with weight 1,
then this has the structure of a balanced weighted rational polyhedral complex, and is thus a (true)
LIP. Its (n − 1, n)-fins, Fn−1,n, will be be our building blocks; the addition and subtraction of these
will provide the (n− 1, n)-fins of L.

However, we must create the fins of Fn−1,n by using bids. The geometry of grid(L) gives us a
natural set of roots and trade-offs for bids:

Definition B.15.

(1) If (r; t) ∈ H× Zn>0 then define inv(r; t) :=
∑
j∈[n], rj 6=H

ej

tj
.

(2) The set of candidates, C, is the set of pairs (r; t) ∈ H× Zn>0 where:

(i) r is a 0-cell of grid(L);
(ii) rn−1 6= H and rn 6= H;
(iii) for i ∈ [n− 2], if ri = H then ti = 1;
(iv) there is a 1-cell of grid(L) of the form {r−λ inv(r, t) | 0 ≤ λ ≤ λ} for some λ ∈ R>0∪{∞}
(v)

∑
j∈[n];rj 6=H tje

j is a primitive integer vector.

Write C(r;t) for the 1-cell of grid(L) of Part (2)(iv).

There is a close relationship between C and Fn−1,n.
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Definition B.16. If (r; t) ∈ C and F ∈ Fn−1,n then F and (r; t) are associated if C(r;t) ( F ⊆ Fn−1,n(r;t) .

Proposition B.17. For every (r; t) ∈ C there is an unique associated F ∈ Fn−1,n. Conversely, for
every F ∈ Fn−1,n there is a unique associated (r; t) ∈ C.

To prove this, first we show:

Lemma B.18. If (r; t) ∈ C then there is an n-hod of grid(L) containing r and, for all i ∈ [n−1], either
ri = H, and there is an i-hod of grid(L) containing C(r;t), or ri > H, and there is an (i, n; ti/tn)-fin of
grid(L) containing C(r;t).

Proof. Since C(r;t) is one-dimensional, there must be n− 1 linearly independent normal vectors repre-
sented in the facets of grid(L) containing C(r;t). Fix a set V of such vectors. Normalise the vectors in
V so that they are either ei for some i ∈ [n], or αie

i − en, where αi 6= 0 is a rational number.

If ei ∈ V for i ∈ [n] then ei ·
(∑

rj 6=H
ej

tj

)
= 0, which is only consistent with ri = H. In particular,

as rn 6= H, we have en 6∈ V .

On the other hand, if αie
i− en ∈ V then (αie

i− en) ·
(∑

rj 6=H
ej

tj

)
= 0, that is, αiti = 1

tn
if ri 6= H,

or 1
tn

= 0 if ri = H. The latter case is obviously a contradiction, so we conclude that ri 6= H and

αi = ti
tn

.
Observing that therefore there is only one vector in V containing nonzero ith coordinate for all

i ∈ [n − 1], and that there are n − 1 vectors in V , it follows by the pigeonhole principle that each
coordinate i ∈ [n − 1] must be represented exactly once. In summary, then, for all i ∈ [n − 1], either
ri = H and ei ∈ V , or ri 6= H and ti

tn
ei − en ∈ V . But in the former case, there is an i-hod of

grid(L) containing C(r;t), and in the latter case, there is an (i, n; ti/tn)-fin of grid(L) containing C(r;t),
as required.

It remains to show that there exists an n-hod containing r. Since grid(L) has a 0-cell at r, it follows
that there is an additional facet whose normal v′ is not in V , but which contains r. So either v′ = en;
or V ∪ {v′} contains both ei and αie

i − en for some i ∈ [n − 1] and αi ∈ Q>0; or V ∪ {v′} contains
both αie

i− en and βie
i− en for some i ∈ [n− 1] and some βi ∈ Q>0 with βi 6= αi. In the first of these

cases, grid(L) has an n-hod containing r. In the second and third, the affine spans of these facets are

in ĝrid(L), and the intersection of these is an (n− 2)-cell C ′ of Type 1 with indices (i, n), in which case
〈C ′ + ei〉 is contained in grid(L), and so (by Definition B.14 Part (4)) grid(L) has an n-hod containing
r.

It immediately follows from this that if (r(b), t(b)) ∈ C then many of the facets of Lb are contained
in grid(L):

Corollary B.19. If (r; t) ∈ C then Fn(r;t) ( grid(L) and F i,n(r;t) ( grid(L) for all i ∈ [n − 1] such that

ri 6= H.

Proof. By definition 〈F 〉 ⊆ grid(L) for every facet F of grid(L), so the result follows immediately from
Lemma B.18.

Recall that by Definition B.15, rn−1 6= H for (r; t) ∈ C, so that by Corollary B.19 we always have
Fn−1,n(r;t) ( grid(L). Now:

Corollary B.20. If F ∈ Fn−1,n and dim(F ∩ Fn−1,n(r;t) ) = n− 1 then F ⊆ Fn−1,n(r;t) ∩H.

Proof. Recall that F ⊆ H for every F ∈ Fn−1,n. The result follows because facets do not meet in their
interiors, and, by Lemma B.18 and the fact that 〈F 〉 ⊆ grid(L) for every facet F of grid(L), we know
that every (n − 2)-cell in the boundary of Fn−1,n(r;t) ∩H is the intersection of Fn−1,n(r;t) ∩H with another

(n− 1)-dimensional set also contained in grid(L).

As a final consequence of Lemma B.18:

Corollary B.21. If F ∈ Fn−1,n and (r; t) is associated with F , then for all i ∈ [n− 2], either ri = H
or there is an (i, n; ti/tn)-fin of grid(L) meeting F in an (n− 2)-cell containing r.
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Proof. If ri 6= H then, by Lemma B.18, there is an (i, n; ti/tn)-fin of grid(L) containing C(r;t). By
definition of grid(L), the affine span of this fin also lies within grid(L), and meets F along C(r;t). We
need to show that this intersection defines an (n− 2)-cell of F . But, the only affine spans of facets of
grid(L) which can contain C(r;t) are the affine spans of those described by Lemma B.18, due to the
limited range of facets in grid(L) and the definition of C(r;t) itself. And Lemma B.18 describes facets
with a linearly independent set of normal vectors. So the affine span of each facet there described must
meet F in an (n− 2)-cell of F , and in particular there exists an (i, n; ti/tn)-fin of grid(L) meeting F in
an (n− 2)-cell containing C(r;t), and hence containing r.

Next, we develop a partial order on C, which will be useful first in our proof of Proposition B.17,
and second in our development of bids to demonstrate Proposition 5.6. Write ≤ for the Euclidean
partial ordering on Rn. Now define a partial ordering ≤C on C as follows.

Definition B.22. If (r; t), (r′; t′) ∈ C then (r′; t′) ≤C (r; t) when the following all hold:

(1) 〈Fn−1,n(r;t) 〉 = 〈Fn−1,n(r′;t′) 〉;
(2) r′n ≥ rn;
(3) if r′n = rn then r′ ≤ r;

(4) if r′ = r then
t′i
t′n
≤ ti

tn
for all i ∈ [n− 2] such that ri 6= H.

We must check:

Lemma B.23. ≤C is a partial order.

Proof. Reflexivity is clear. To show anti-symmetry, assume that (r; t) ≤C (r′; t′) and (r′; t′) ≤C (r; t).
Then rn = r′n by (2), and so r = r′ by (3) and because ≤ is a partial order itself. Then, by Part (4),
t′i
t′n

= ti
tn

for all i ∈ [n − 2] such that ri 6= H (which holds iff r′i 6= H). So t′i =
t′n
tn
ti for all i such that

ri 6= H. Since
∑
rj 6=H tje

j is a primitive integer vector, it follows that t′i = ti for these values of i.

Finally, ti = 1 = t′i for all i such that ri = H.
To show transitivity, suppose (r; t) ≤C (r′; t′) and (r′; t′) ≤C (r′′; t′′). Condition (1) evidently then

holds for (r; t) and (r′′; t′′). It is immediate that rn ≥ r′′n. If rn = r′′n then necessarily rn = r′n = r′′n and

so r ≤ r′ ≤ r′′. But now, if r = r′′ then necessarily r = r′ = r′′, and so
t′′i
t′′n
≤ t′i

t′n
≤ ti

tn
for all i ∈ [n− 2]

such that ri 6= H.

It is useful to note how to write Condition (1) of Definition B.22 in terms of the roots and trade-offs:

Lemma B.24. 〈Fn−1,n(r;t) 〉 = 〈Fn−1,n(r′;t′) 〉 if and only if
t′n−1

t′n
= tn−1

tn
and tn−1(r′n−1 − rn−1) = tn(r′n − rn).

Proof. The normal to Fn−1,n(r;t) is tn−1e
n−1 − tnen; the normal to Fn−1,n(r′;t′) is t′n−1e

n−1 − t′nen; clearly

these are parallel if and only if
t′n−1

t′n
=

t′n−1

t′n
. If this holds, then 〈Fn−1,n(r;t) 〉 = 〈Fn−1,n(r′;t′) 〉 if and only if

r′ ∈ 〈Fn−1,n(r;t) 〉, which holds if and only if tn−1(r′n−1 − rn−1) = tn(r′n − rn) by Lemma 4.9.

Lemma B.25. If (r; t) ∈ C and F ∈ Fn−1,n are associated, and dim(F ∩ Fn−1,n(r′;t′) ) = n − 1 then

(r′, t′) ≤C (r; t).

Proof. Since (r; t) and F are associated, we know C(r;t) ( F ⊆ Fn−1,n(r;t) , and by Corollary B.20, we

know that F ⊆ Fn−1,n(r′;t′) .

Since F itself is (n−1)-dimensional, it must now hold that both 〈F 〉 = 〈Fn−1,n(r;t) 〉 and 〈F 〉 = 〈Fn−1,n(r′;t′) 〉,
that is, Part (1) of Definition B.22 holds.

Next, r ∈ C(r;t) so r ∈ F ⊆ Fn−1,n(r′;t′) . It follows by Lemma 4.9 that rn ≤ r′n. And if rn = r′n then,

for all i ∈ [n− 2] we see by Lemma 4.9 again that 0 = t′n(rn − r′n) ≤ t′i(ri − r′i), and so it follows that
r′ ≤ r. So Parts (2) and (3) of Definition B.22 hold.

Finally, suppose that r′ = r, and pick ε > 0 sufficiently small that r − ε inv(r; t) ∈ C(r;t) ( F .
Applying Lemma 4.9 to r − ε inv(r; t), if ri 6= H then t′n(rn − ε

tn
− r′n) ≤ t′i(ri − ε

ti
− r′n), which after

re-arrangement shows that ti
tn
≥ t′i

t′n
. So Part (4) of Definition B.22 holds, and we have established that

(r′; t′) ≤C (r; t).
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Proof of Proposition B.17. Since rn−1 > H and rn > H, the description of Lemma 4.9 implies
that dim(Fn−1,n(r;t) ∩H) = n − 1. We know Fn−1,n(r;t) ∩H ( grid(L) (by Definition B.15 and Corollary

B.19), so Fn−1,n(r;t) ∩H is contained in the union of a finite set of facets of grid(L); by Corollary B.20

it is in fact equal to this finite set of facets of grid(L). Meanwhile C(r;t) is by definition a 1-cell of

grid(L), and C(r;t) ( Fn−1,n(r;t) ∩H by inspection of Lemma 4.9. Thus there exists a facet F of grid such

that C(r;t) ( F ⊆ Fn−1,n(r;t) . Uniqueness of F follows because facets containing C(r;t) with normals as

described in Lemma B.18 have affine spans meeting the boundary of Fn−1,n(r;t) ∩H, and so cannot bisect

F , and it is straightforward to check that no other facets of grid(L) have normals consistent with them
containing C(r;t). So Fn−1,n(r;t) is not bisected as a facet of grid(L) along C(r;t).

To show the converse, suppose F ∈ Fn−1,n and let rn = max{pn ∈ R | p ∈ F} and let r = inf≤{p ∈
F | pn = rn}, where we take the infimum with respect to the Euclidean order ≤. Recall, as we discussed
after Definition B.14, that grid(L) can be endowed with the structure of a (true) LIP, and so we may
apply Lemma A.5 to it. Therefore, because {p ∈ F | pn = rn} is a face of F , it is a cell of grid(L) and
so its infimum is well-defined and is a 0-cell of F , and thus of grid(L). Observe here that rn > H and
rn−1 > H since F is contained in H and is (n− 1)-dimensional.

Since F has a 0-cell at r, and since {p ∈ F | pn = rn} is bounded below at r, there must be facets
F ′ of grid(L), whose intersection with F is a (n − 2)-cell of F containing r, whose normal vectors,
together with the normal vector of F , span Rn; and such that F is on the side of F ′ ∩ F on which
pi takes weakly higher values. Given the limited normals of facets in grid(L), and the fact that the
0-cell at r is bounded from below in coordinate i for i ∈ [n− 2], it follows that there exists such an F ′

which is either an i-hod or an (i, n)-fin of grid(L); but that F ′ can only be i-hod of grid(L) if ri = H
(as otherwise ri = H, which contradicts F ⊆ H being (n − 1)-dimensional and lying on the side of
F ′ on which pi takes weakly higher values). So either ri = H or there is an (i, n)-fin F i,n of grid(L)
containing r and meeting F in an (n−2)-cell. For each i with ri 6= H, let the normal to F i,n, expressed
as a primitive integer vector, be ŝie

i − ŝinen. Moreover, let tn = lcm{ŝin | i ∈ [n], ri 6= H} and let
ti = ŝi

tn
ŝin

for ri 6= H, and ti = 1 for ri = H. Now, for ri 6= H we also have tie
i − tnen normal to

F i,n, with tn consistent across these facets. So the 1-cell given by the intersection of the facets F i,n

for ri 6= H and Hi for ri = H is in direction inv(r; t). That is, (r; t) ∈ C. But by construction now
C(r;t) ( F ⊆ Fn−1,n(r;t) ∩H, so F and (r; t) are associated.

Finally, if also (r′; t′) is associated with F then C(r′;t′) ( F ⊆ Fn−1,n(r′;t′) ∩H. Lemma B.25 now shows

that both (r; t) ≤C (r′; t′), and that (r′; t′) ≤C (r; t). But, by Lemma B.23, it therefore follows that
(r′; t′) = (r; t).

In order to prove Proposition 5.6, we will construct B′ from bids (r; t;m) where (r; t) ∈ C. We do
this by incrementally “deleting” all the (n− 1, n)-fins of L. These are not necessarily the same as the
fins in Fn−1,n. However, there is a close relationship between Fn−1,n and the (n− 1, n)-fins of L, and
of the pseudo-LIP we obtain by subtracting any collection of bids associated with fins in Fn−1,n, as
follows:

Corollary B.26. Suppose that B is a (possibly empty) set of bids b = (r; t;m) where (r; t) ∈ C. Write
(L′, w′) = (L, w) � (LB, wB) Then:

(1) If F ′ is a (n− 1, n)-fin of L′ then F ′ ⊆ grid(L).
(2) If F ∈ Fn−1,n and F ∩ L′ is (n − 1)-dimensional then F ⊆ L′. Moreover, if F ∩ F ′, F ∩ F ′′ is

(n− 1)-dimensional for (n− 1, n)-fins F ′, F ′′ of L′ then w′(F ′) = w′(F ′′)

Proof. We show a more general form of Part (1). Suppose F ′ is an (i, n)-fin or an n-hod of (L′, w′) =
(L, w) � (LB, wB) for some i ∈ [n − 1]. We show that F ′ ⊆ grid(L) if ri 6= H. First suppose that
F ′ ∩ L is (n − 1)-dimensional. Then F ′ ⊆ grid(L) by construction of grid(L). Next, if F ′ ∩ L is not
(n − 1)-dimensional, then F ′ ⊆ LB. But then F ′ ∩ F i,nb or F ′ ∩ Fnb is (n − 1)-dimensional for some

b ∈ B. But b ∈ B implies that F i,nb , Fnb ⊆ grid(L) if ri 6= H by Corollary B.19; by construction of
grid(L) this implies that again F ′ ⊆ grid(L). In particular, if (r; t) ∈ C then rn−1 6= H by definition of
C, and so F ′ ⊆ grid(L) if F ′ is an (n− 1, n)-fin of L.

For Part (2), suppose F ∈ Fn−1,n and F ∩ L′ is (n− 1)-dimensional. Let F ′ be a facet of L′ such
that F ∩F ′ is (n−1)-dimensional, and suppose that F 6⊆ F ′. It follows that there is an (n−2)-cell C in
the boundary of F ′, such that C ∩F 6= ∅ but C is not in the boundary of F . Such C is an intersection
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of facets of L′. But if F ′′ is another facet of L′ containing C and F ′′ is an (i, n)-fin or an n-hod of L′
then F ′′ ⊆ grid(L) by the proof of Part (1) given above. But then C contains an intersection of facets
of grid(L), which is a contradiction. So any facet F ′′ of L′ containing C must not be an (i, n)-fin or an
n-hod of L′. Now Corollary A.3 implies that L′ has a facet F ′′′ with the same weight and affine span
as F ′, on the other side of C. As L′ has only finitely many facets, we may continue in this way until
we have a collection of facets of L′ whose union contains F , all having the same weight.

Part (2) of Corollary B.26 allows us to abuse notation as follows: if F ∈ Fn−1,n and F ⊆ L′ then
write w′(F ) to denote the weight of any facet F ′ of L′ such that F ∩ F ′ is (n− 1)-dimensional.

We will incrementally define sets of bids to match more and more of the (n − 1, n)-fins of L. The
following lemma ensures that we can define such bids with integer multiplicities.

Lemma B.27. Suppose that B is a (possibly empty) set of bids b = (r; t;m) where (r; t) ∈ C. Write
(L′, w′) = (L, w)�(LB, wB). Suppose that (r; t) is minimal with respect to ≤C such that their associated
facet F satisfies F ⊆ L′. Then gcd(tn−1, tn) | w′(F ).

Proof. By Corollary B.21, for every i ∈ [n− 2] such that ri 6= H, we have F meeting an (i, n; ti/tn)-fin
of grid(L) in an (n− 2)-cell Ci containing r, which by Lemma A.2 must be an Type 2 (n− 2)-cell with
indices (i, n− 1, n) and trade-off (ti, tn−1, tn). By assumed minimality of (r; t) such that the associated
facet is contained in L′, and by Corollary B.26, it follows that there is only one (n, n− 1)-fin F ′ of L′
containing Ci, and that w′(F ′) = w′(F ). So we can apply Lemma A.4. However, (ti, tn−1, tn) is not
necessarily a primitive integer. Write (ti, tn−1, tn) = Ki(t

′
i, t
′
n−1, t

′
n) where Ki ∈ Z and (t′i, t

′
n−1, t

′
n) is

indeed a primitive integer vector. Now, by Lemma A.4, we know that gcd(t′n−1, t
′
n) | w′(F ).

Consider any prime number q such that q` | gcd(tn−1, tn) for some maximal exponent `. Since∑
j∈[n];rj 6=H tje

j is a primitive integer vector, there must exist i ∈ [n− 2] with ri 6= H such that q - ti.
Since q is prime, it follows that gcd(q, ti) = 1 and so, since Kit

′
i = ti, that gcd(q,Ki) = 1. Since

Kit
′
n−1 = tn−1 and Kit

′
n = tn, we can conclude that q` | gcd(t′n−1, t

′
n). Thus, by the conclusion above,

we know that q` | w′(F ). As this follows for all primes in the prime factorisation of gcd(tn−1, tn) we
can conclude that gcd(tn−1, tn) | w′(F ).

We will now see that we can generate B′ by defining (integer) bid sets as follows:

Definition B.28. Write L0 = L. For s ≥ 0 inductively define:

(1) Bs for bids b = (r; t;m), where (r; t) is minimal with respect to ≤C among the subset of those

(r; t) ∈ C such that their associated facet F satisfies F ⊆ Ls, and where m = ws(F )
gcd(tn−1,tn)

;

(2) (Ls+1, ws+1) := (Ls, ws) � (LBs , wBs).

Corollary B.29. The bid Bs in Definition B.28 are well defined.

Proof. It is sufficient to check the definition of the multiplicity m(b) for a bid b ∈ Bs, as the remainder
of the definition is without ambiguity. We proceed by induction; both the base case and inductive
step are proved in the same way. For the base case, observe that (L0, w0) = (L, w) � (L∅, w∅). Our
inductive hypothesis is that bids Bs are well defined for s ≥ 0; we can then express (Ls+1, ws+1) :=

(L, w)�(LB̂s , wB̂s), where B̂s :=
⋃s
s′=0 Bs

′
. Thus Corollary B.26 and Lemma B.27 can be applied to Ls

for all s ≥ 0. In particular ws(F ) is well-defined, by Corollary B.26, and gcd(tn−1, tn) | w′(F ) so that
m(b) ∈ Z>0 for all b ∈ Bs, by Lemma B.27. This completes both the base and inductive steps.

Lemma B.30. For s ≥ 1, if b = (r; t;m) ∈ Bs+1 then there exists b′ = (r′; t′;m′) ∈ Bs such that
(r′; t′) ≤C (r; t) and (r′; t′) 6= (r; t).

Proof. By Definition B.28 we know that the (n − 1, n)-fin F of grid(L) associated with (r; t) satisfies
F ⊆ Ls+1 = (Ls, ws) � (LBs , wBs).

Suppose first that F ⊆ LBs . Then dim(F ∩Fn−1,n(r′;t′) ) = n−1 for some (r′; t′) ∈ C, whence by Lemma

B.25 we know (r′; t′) ≤C (r; t).
The alternative case is that F 6⊆ LBs . Then F ∩ Ls is (n − 1)-dimensional, whence F ⊆ Ls by

Corollary B.26. So, by Definition B.28, there exists (r′; t′;m′) ∈ Bs such that (r′; t′) ≤C (r; t).
Finally we show that if b′ ∈ Bs has associated facet F ′ then F ′ 6⊆ Ls+1. We know by Definition

B.16 that F ′ ⊆ Fn−1,n(r′;t′) ( Lb′ , and by Definition B.28 that F ′ ⊆ Ls. Moreover we know by Lemma
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4.9 that wb′(F
n−1,n
b′ ) = ws(F ′)

gcd(tn−1,tn)
gcd(tn−1, tn) = ws(F ′). So F ′ has at most (n − 2)-dimensional

intersection with (Ls, ws) � (Lb′ , wb′).

Now suppose that dim
(
F ′ ∩ Fn−1,nb′′

)
= n − 1 for some other bid b′′ ∈ Bs. By Lemma B.25 it

follows that (r′′; t′′) ≤C (r′; t′). By minimality of (r′; t′) it follows that (r′′; t′′) = (r′; t′) and so that
b′′ = b′.

We can therefore conclude that F ′ has at most (n − 2)-dimensional intersection with (Ls, ws) �
(LBs , wBs), and in particular that F ′ 6⊆ Ls+1, as claimed. It follows by Definition B.28 that (r′; t′) /∈
Bs+1, which proves that (r′; t′) 6= (r; t).

Corollary B.31. There exists S ∈ Z≥0 such that BS = ∅, and such that LS has no (n − 1, n)-fins
meeting H◦.

Proof. If Bs′ 6= ∅ for s′ = 1, . . . , s then, by Lemma B.30, there exists a chain of bids bs′ = (rs′ ; ts′ ,ms′) ∈
Bs′ such that (r1; t1) �C · · · �C (rt; tt). Since ≤C is a partial order (Lemma B.23), it follows that these
bids are all distinct. But C is a finite set, so we conclude that BS = ∅ some S ∈ Z≥0.

Now suppose for a contradiction that LS does have an (n − 1, n)-fin F ′ meeting H◦. Then, by
Corollary B.26 Part (1) we know F ′ ⊆ grid(L). Hence there exists F ∈ Fn−1,n with dim(F∩LS) = n−1,
which implies F ⊆ LS by Corollary B.26 Part (2). But then F is, by Proposition B.17, the associated
facet of some (r; t) ∈ C, so that either (r; t;m) ∈ BS for some m ∈ Z>0, or there exists (r′; t′;m′) ∈ BS
with (r′; t′) ≤C (r; t). As BS = ∅, this provides the required contradiction, and so completes the
proof.

Proof of Proposition 5.6. Let B :=
⋃S
s′=0 Bs

′
, with S as in Corollary B.31. These bids are rooted

in H as r ∈ H for any (r; t) ∈ C (Definition B.15). Moreover (L, w) � (LB, wB) = (LS , wS) and we
know that LS has no (n− 1, n)-fins meeting H◦ by Corollary B.31.
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