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Abstract: A two-sample age-period-cohort model is analyzed. Levels and linear trends
are not fully identified. The identification problem is characterized and the model is
reparametrized in terms of parameters that are invariant to the identification problem. It
is shown how the identification problem changes when restricting some of the time effects
to be common across samples. The analysis allows for mixed frequencies where age and
period scales are grouped in different ways and can be implemented in a generalized
linear model framework. The methodology is applied to Swiss suicide rates.
Keywords: Age-period-cohort model, Canonical parametrization, Identification, In-
variance, Mixed-frequency data, Two-samples.

1 Introduction

We revisit a study of Swiss suicide rates (Riebler et al., 2012). The data consists of rates
by age, period and gender. Suicide rates tend to increase with age and to be higher
for men than for women. The rates vary by period and by birth cohort, quite possibly
due to time-varying socio-economic factors. Disentangling time and gender effects could
be helpful in work to prevent suicides. A two-sample age-period-cohort model is well-
suited for this. However, one has to take care when separating the time effects. It
is well-known that linear time effects are not identifiable in age-period-cohort models.
This issue becomes more involved when two samples involved. A further complication
is that age and period are measured at different frequencies. Thus, the purpose of this
paper is to clarify what can be identified in this context.

A very interesting aspect of two sample models is the ability to compare variations
across samples. A few examples are as follows. Riebler & Held (2010) compared female
mortality in two countries, Denmark and Norway. Dinas & Stoker (2014) compared
male and female participation rates in US presidential elections after the introduction
of universal suffrage. Cairns et al. (2011) investigated selection effects in life insurance
by comparing the mortality of assured lifes in England and Wales with the mortality of
the general population. In all these examples it is of interest to formulate and investigate
hypotheses about common age, period or cohort effects. For this we need to know exactly
what the hypotheses entail and what the associated degrees of freedom are.

In standard one-sample age-period-cohort models, the main identifiable objects are
double-differenced time effects (Fienberg & Mason, 1979, Holford, 1983, Clayton &
Schifflers, 1987, McKenzie, 2006, Kuang et al., 2008b). The double differences are
interpretable as log-odds-ratios or differences-in-differences. This carries over to the
two-sample situation. We will show that double differences are identified within each
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sample. We also consider cross-sample double differences and show that they are not
identified even when restricting the period effect to be common across samples. In the
mixed-frequency situation the double differences have to be formed with some care by
differencing in ‘macro’ steps.

The traditional age-period-cohort problem is as follows. The model has a predictor
that combines age, period and cohort effects and possibly an intercept. Because the age,
period and cohort time scales are linearly related, one finds that linear trends in age,
period and cohort are not separately identifiable. There is a lively debate about what to
do about that. Broadly speaking, there appears to be three approaches to the traditional
age-period-cohort identification problem. First, one can impose constraints on the time
effects to achieve identification. This has been done in many ways. One can set a
subset of the time effect parameters to zero as discussed by Fienberg & Mason (1979).
More elaborately, one can choose a particular generalized inverse as in the intrinsic
estimator (Yang & Land, 2013, Fu, 2018), or apply monotonicity constraints (Fosse &
Winship, 2019, O’Brien, 2022). None of these choices are universally agreable and this
has attracted considerable discussion, see for instance Luo (2013), O’Brien (2011), Bell
& Jones (2015), Reither et al. (2015), Keiding & Andersen (2016). Second, as suggested
by Fienberg & Mason (1979), Holford (1983), Clayton & Schifflers (1987), Chauvel &
Schröder (2014), Rosenberg (2019), one can apply the first approach for estimation and
then extract estimates for estimable functions. These are functions of the time effects
that do not change when moving linear trends between the age, period and cohort
effects. As an example, double differences are estimable because double differencing
removes linear effects. A related idea is to detrend the time effects. Third, by analyzing
the mapping from the time effects to the predictor in detail, one can characterize all
possible estimable functions or, in a different parlor, all functions that are invariant to
linear transformations of the time effects. By reparametrizing the predictor exclusively
in terms of freely varying, invariant parameters one can avoid the identification problem
in the statistical analysis. (Kuang et al., 2008b). See also Smith & Wakefield (2016),
Fannon & Nielsen (2019) for reviews.

In the two-sample situation, the immediate issue is to generalize the description of the
identification problem. This is done by describing the full set of transformations that can
be applied to the time effects without altering the predictor (Carstensen, 2007). From
this, we can reparametrize the predictor in terms of estimable or invariant quantities.
The analysis is first done for an unrestricted model where the two samples have separate
age-period-cohort models and subsequently restricted to the case where time effects are
common across samples. The analysis is done in a context of mixed-frequency data
arrays building on Nielsen (2022).

There is a relatively small literature on two-sample age-period-cohort methods.
Riebler & Held (2010) consider the identification problem although without giving a
full characterization. Estimation is done by Bayesian methods, which can hide iden-
tification issues (Nielsen & Nielsen, 2014). Recently, Fu et al. (2021) have suggested
a two-sample approach based on the intrinsic estimator. This relies on an asymptotic
framework where the period dimension increases (Fu, 2016) and permits inference on
age effects but not on period or cohort effects.

With the invariant parametrization, the age-period-cohort problem can be approached
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as any other regression problem whether it is in the context of least squares estimation
or a generalized linear model. One can then focus on classical statistical issues such as
implementing hypotheses through zero restrictions, assessing the model fit and choosing
the data generating structure that motivates asymptotic inference. The identification
problem only shows up when seeking to plot the original time effects. We show how this
can be done with minimal impact from decisions with respect to the non-identifiable
linear trends. The approach is related to that of Chauvel & Schröder (2014).

The inferential framework for the Swiss data is as follows. The data has a large
information content in each age-period cohort cell with a population exposure in the
order of 100,000 individuals. At the same time the number of parameters is large relative
to the number of observations. Thus, it seems reasonable to apply an asymptotic theory
where the age-period dimensions are kept fixed while the dispersion of the statistical
errors is assumed to be small in each cell. For this, we rely on a small-dispersion
asymptotic theory (Harnau & Nielsen, 2018).

In the analysis of the Swiss data, estimation is done by generalized least squares
to account for differences in the dispersion for the two samples. It is found that the
age-period-cohort models for the individual samples cannot be reduced, yet, the period
effects appear to be common. It is investigated to which extent period effects can be
replaced by a family integration index formed from marriage and divorce rates.

2 Motivation: the Swiss suicide data

We consider the Swiss suicide data presented and analyzed by Riebler et al. (2012).
In short, the data consists of suicide mortality counts and mid-year population data
organized as two mixed-frequency age-period arrays for women and men. Age is grouped
in five year intervals 15− 19, . . . , 75− 79 while period is annual for 1950− 2007. Thus,
there are 13 age groups covering a 65 year range and 58 annual periods.

Age grouping is commonly used by data providers when counts are small. In the
present data, the counts range from 5 to 54 for women with a median of 27. For men,
the range is 18 to 133 with a median of 66.

Figure 1 shows crude suicide rates by age and period for women and men. The crude
rates are found as the sum of all mortality counts for a given age or period divided by
the sum of the population data and standardized as rates per 100,000 people. The rates
increase with age while female rates are about a third of the male rates. The rates per
period fall through the 1950s and 1960s, then increase through the 1970s, after which
they fall back again. The peak could match socio-economic trends.

Following Riebler et al., we will consider replacing the period effect with a family
integration index composed from marriage and divorce rates as shown in Figure 2(d)
below. This choice is motivated by Durkheim’s theory from the late 1800s and numerous
subsequent work considering the relationship between marital status and suicide.

Riebler et al. applied a Bayesian, two-sample, age-period-cohort, over-dispersed Pois-
son model. They found a common period effect for the two samples and investigated
the extent to which the period effects could be replaced by socio-economic time series.
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Figure 1: Crude rates per 100,000.

3 The 2-sample model

Suppose we have two samples of data in the form of rates, counts, or doses and responses.
Each sample is organized in the same way in terms of mixed-frequency age-period arrays.
We will first review the organization of the data, then introduce the unrestricted age-
period-cohort model and finally turn to restrictions on the model. We will use the recent
theory for mixed-frequency models in Nielsen (2022), henceforth N22.

We will consider the situation where age is grouped over G ages and period is annual.
The general case where both age and period are grouped has more complicated notation
and is left to the appendix.

3.1 Data structure

The two data arrays have the same mixed-frequency structure with AG age groups of
length G covering A = AGG ages while period is annual covering P years. The data
arrays are regular when G = 1. In the Swiss data, G = 5, AG = 13 and P = 58.
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Refering to each observation by the highest relevant age, we get the index set

Iage,per =
{
age = A− gG for g = 0, 1, . . . , AG − 1 and 1 ≤ per ≤ P

}
. (1)

Cohorts are defined according to the convention

coh = per + A− age, (2)

so that the lowest and highest possible cohort values are 1 and C = A + P − G. The
possible cohorts over the set Iage,per are

Icoh = (1, . . . , C). (3)

3.2 The unrestricted model

A two-sample age-period-cohort model has predictor

µage,per,s = αage,s + βper,s + γcoh,s + δs for age, per ∈ Iage,per and s = 1, 2. (4)

The time effects on the right hand side of the model equation have dimension

q = 2(AG + A+ 2P −G+ 1), (5)

as each sample has AG ages, P periods, A+P−G cohorts and 1 intercept. In particular,
for regular index arrays, we have q = 4A+ 4P .

The time effects on the right hand side of (4) are not fully identified. There are two
contributions to this under-identification. First, we have the standard age-period-cohort
problem that only one level and two linear slopes are identifiable. Second, the mixed-
frequency indexation results in additional constraints as noted by Fienberg & Mason
(1979). N22 describes the full set of constraints for one mixed-frequency sample. This
carries immediately over to the two-sample model.

To write down the mixed-frequency constraints, recall that two integers i, j are con-
gruent moduloG, ifG divides their difference i−j and we write i ≡ j mod G. Combining
the assumption that G divides age and A with the relation coh = per + A − age from
(2) gives the congruence coh ≡ per mod G.

The under-identification of the time effects can be characterized as follows. The
predictor is invariant to transformations of the time effects of the form

µage,per,s =
{
αage,s + as + ds × (A− age)

}
+
{
βper,s + bs + ds × per +

G−1∑
j=1

fj,s1(per≡j mod G)

}
+
{
γcoh,s + cs − ds × coh−

G−1∑
j=1

fj,s1(coh≡j mod G)

}
+ (δs − as − bs − cs), (6)

for any values of as, bs, cs, ds, fj,s for 1 ≤ j < G and s = 1, 2. Here, ds indicates arbitrary
slopes, as, bs, cs indicate arbitrary macro levels appearing at time intervals of G steps,
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while fj,s indicate arbitary micro levels appearing inbetween the macro steps. The latter
relate to the seasonal micro pattern noted by Holford (2006) and Riebler & Held (2010).

The transformations in (6) describe the identification problem completely as proved
in N22. For the regular, one-sample, regular case, these transformations simplify to
those described by Carstensen (2007). The dimension of the transformations is 2(G+3).
Subtracting this from the time effect dimension q defined in (5) shows that the dimension
of the variation of the predictor is

p = q − 2(G+ 3) = 2{AG + A+ 2P − 2(G+ 1)}. (7)

For regular index arrays, we have p = 4A + 4P − 8 corresponding to eight constraints,
which are three level- and one slope-constraint for each sample.

Confronted with the under-identification, it is convenient to reparametrize the pre-
dictor in terms of freely varying, invariant parameters (Kuang et al., 2008b). We will
refer to the vector of these as the canonical parameter following terminology from ex-
ponential family theory (Sundberg, 2019). The canonical parameter is defined in terms
of two linear planes and a set of double differences.

We define the double differences as follows. Let ∆G indicate a macro difference oper-
ator over G periods, giving first differences ∆Gβper,s = βper,s−βper−G,s. Correspondingly,
let ∆1 indicate a 1-period difference operator. In combination, we get second differences

∆G∆1βper,s = ∆Gβper,s −∆Gβper−1,s = βper,s − βper−1,s − βper−G,s + βper−G−1,s. (8)

The double differences ∆G∆Gαage,s, ∆G∆1βper,s and ∆G∆1γcoh,s are invariant to the
transformations in (6). However, the simpler one-period double differences ∆1∆1βper
are only invariant to (6) in the regular case as pointed out by Gascoigne & Smith (2021).
Why is that? The one-period double difference of the period effect is constructed from
the period effect at consecutive periods per, per − 1 and per − 2. The transformations
in (6) involve sums of arbitrary coefficients multiplied with indicators defined in terms
of modulos. The arbitrary parameters are only eliminated when the three consecutive
periods are congruent modulo G. This is only possible for G = 1.

Identified and invariant linear planes for the two samples can be expressed in terms
of identified and invariant levels

µA,1,s = αA,s + β1,s + γ1,s + δs, (9)

along with identified and invariant slopes chosen as

λ1,s = µA−G,1,s − µA,1,s = ∆Gγ1+G,s −∆GαA,s (10)

νG,s = µA,1+G,s − µA,1,s = ∆Gγ1+G,s + ∆Gβ1+G,s, (11)

as well as micro levels defined as

νh,s = µA,1+h,s − µA,1,s = ∆hγ1+h,s + ∆hβ1+h,s for h = 1, . . . , G− 1. (12)

We note that the slopes and micro levels in (10)-(12) cannot be separated into individual
slopes for age, period, cohort.
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By imposing additional constraints such as ∆Gβ1+G,s = 0, we get a unique value for
∆Gγ1+G,s from (11). It is common to refer to this uniqueness as identification. However,
this type of identification destroys the invariance property as it depends on the choice
that ∆Gβ1+G,s = 0, which is not invariant to the transformations in (6).

We can now write down the canonical parameter (N22) as ξ = (ξ′1, ξ
′
2)
′, where

ξs =
(
µA,1,s; λ1,s; ν1,s, . . . , νG,s; ∆G∆GαA−gG,s for 0 ≤ g ≤ AG − 3;

∆G∆1βper,s for G+ 2 ≤ per ≤ P ; ∆G∆1γcoh,s for G+ 2 ≤ coh ≤ C
)
. (13)

The canonical parameter has dimension p as given in (24).
Finally, we must write the predictor as a function of the canonical parameter in order

to reparametrize the model. A representation of the predictor in terms of the canonical
parameter is given in the Appendix for a general mixed-frequency setup. For simplicity,
we focus on the case of regular index sets here. That is, when G = 1, we have

µage,per,s = µA,1,s + (A− age)λ1,s + (per − 1)ν1,s

+
A−2∑
t=age

A−2∑
u=t

∆1∆1αu+2,s +

per∑
t=3

t∑
u=3

∆1∆1βu,s +
coh∑
t=3

t∑
u=3

∆1∆1γu,s, (14)

with the convention that empty sums are zero. This arises by applying the one-sample
representation of Mart́ınez Miranda et al. (2015) to each sample. The first three terms
of the representation define a linear plane. Since the cohort is entangled with age and
period, then λ1,s should be interpreted as an age-cohort slope for fixed period while ν1,s
is a period-cohort slope for fixed age. The representation implies that we can write the
predictor in terms of a common design vector for each samples so that

µage,per,s = ξ′1xage,per1(s=1) + ξ′2xage,per1(s=2). (15)

One interpretation of the double sums of double differences in (14) is that they
represent detrended versions of the original time effects where, for instance, the two
first elements of the period effects are constrained to zero. The levels and linear slopes
for the three time effects are collected in an identified, invariant linear plane. Typically,
plots of the double sums will be trending and not offer appealing interpretation. We
will return to a more useful way of detrending in the empirical application, but see also
Chauvel & Schröder (2014). Thus, for now, the value of the representation in (14) is
that it defines a design matrix that can be used for estimation.

The equations (14), (15) parametrize the age-period-cohort predictor in terms of the
canonical parameter. As the aim is to use this for estimation, we must be assured that
the information content is the same as with the original expression for the predictor in
terms of the time effects. Thus we need to know that

(a) ξ is a linear function of µ that is invariant to the transformations in (6);
(b) µ is a linear function of ξ given by (14) or (31);
(c) The parameter ξ is exactly identified in that ξ† 6= ξ‡ implies µ(ξ†) 6= µ(ξ‡).

In other words, in the original model (4), the time effects generate a certain variation
in the predictor, which we will match with the variation in the data. The identifica-
tion problem means that different time effects can generate the same predictor. This
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redundancy is eliminated when parametrizing the predictor in terms of the canonical
parameter. As the canonical parameter is invariant to the transformations (6), the
identification problem is no longer of any consequence for estimation.

The properties (a)-(c) follow from Theorem 1 of N22, which builds on the analysis in
Kuang et al. (2008b). That result gives such a summary for one-sample, mixed-frequency
arrays and can be applied to each sample in the two-sample situation.

3.3 The hypothesis of common period effects

With a two-sample set-up it is natural to ask if any of the time effects are common
across samples. Here, we look at the period effects.

The hypothesis that the non-linear part of the period effects is common is that

∆G∆1βper,1 = ∆G∆1βper,2 for G+ 2 ≤ per ≤ P. (16)

The degrees of freedom of the hypothesis is P − G − 1. The interpretation of this
hypothesis follows from the representation (14) for the regular-frequency case and (31)
for the mixed-frequency case. We see that the double sum of double differenced period
effects will be common while there are no other constraints. In particular, there are no
constraints to the linear planes.

For estimation under the hypothesis it is convenient to rewrite the design vector
expression for the predictor in (15). By adding and subtracting ξ′1xage,per1(s=2)/2 and
ξ′2xage,per1(s=1)/2 we get

µage,per,s =
(ξ1 + ξ2

2

)′
xage,per +

(ξ1 − ξ2
2

)′
xage,per

{
1(s=1) − 1(s=2)

}
. (17)

Thus, restricting the period double differences to be common is equivalent to a zero
restriction on the second parameter (ξ1 − ξ2)/2. Indeed, if we were to impose the
restriction that all parameters are common for the two samples, so that ξ1 = ξ2, then
two regression parameters in (17) reduce to ξ1 and zero, respectively.

Alternatively, we could formulate the hypothesis of common period effects in terms
of the unidentified period effect, so that

βper,1 = βper,2 for 1 ≤ per ≤ P. (18)

This formulation implies the P −G−1 restrictions for the double differences in (16). In
addition, it givesG+1 constraints to the macro and micro levels and the slope of the cross
sample difference of the period effects. This parametrizes the cross-sample differences
of the linear planes in terms of age and cohort effects without actually restricting the
planes. Thus, it would be observationally equivalent to parametrize the linear planes
in terms of age and period effects or in terms of period and cohort effects. This is
the standard age-period-cohort identification problem. Of course, if it the linear period
effects did truly satisfy (18), then the cross-sample differences of the age and cohort
slopes would be identified. This truism cannot be confirmed by statistical analysis.
This point was made for the one-sample, regular-frequency case by Clayton & Schifflers
(1987). Keiding & Andersen (2016) raised the point in a comment on a paper concerned
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with the question whether delaying childbearing to older ages might be associated with
more positive educational and health outcomes for the children. See also Fannon &
Nielsen (2019) for a review.

Would the hypothesis (18) formulated for the period effects in levels then imply that
cross-sample differences are invariant? For instance, are the cross-sample age difference
αage,2 − αage,1 or at least the cross-sample double age difference ∆Gαage,2 − ∆Gαage,1

invariant? From a statistical viewpoint the answer is negative since the hypothesis does
not constrain the linear planes and we cannot therefore not move away from age-period-
cohort problem that different parametrizations of the linear planes are observationally
equivalent. In any case, the levels of the cross-sample age differences would remain
entwined with those of the cross-sample cohort differences.

To conclude, from a statistical viewpoint, the hypothesis of common period effects
concerns their non-linear part as outlined in (16). Treated as such, the restriction can
be imposed as a zero constraint on the cross-sample differenced canonical parameter
through (17). The degrees of freedom of the hypothesis then matches the dimension of
the constraint.

3.4 Replacing period effect with time series

Could it be that socio-economic effects explain the period movements that we see in
the data? This can be investigated by imposing the time series as a restriction on the
period effect. When doing so, the identification problem should be taken into account.

We replace the double differenced period parameter ∆G∆1βper by the double differ-
ences of the external time series multiplied by a free scalar parameter, that is ψ∆G∆1Tper
say. The degrees of freedom will then be the number of period double differences,
P −G− 1, minus one free parameter.

In a two-sample age-period-cohort model the external time series restriction can be
done in various ways. It can be imposed on the cross-sample differenced parameter
ξ1 − ξ2, or on the common parameter ξ1 + ξ2, or on the individual parameters ξ1, ξ2.

3.5 Further sub-models

Other sub-models may be relevant. We give an overview, but see also N22.
A period-cohort model for the cross-sample differenced predictors arises when the

non-linear part of the age effects is common, that is ∆G∆Gαage,1 = ∆G∆Gαage,2. The
degrees of freedom of the hypothesis is AG − 2.

An age-period model for the cross-sample differenced predictors arises with the re-
striction ∆G∆1γcoh,1 = ∆G∆1γcoh,2. The degrees of freedom of the hypothesis is C−G−1.

An age-drift model arises when both the period and cohort double differences are
restricted to be zero. That is ∆G∆1βperh,1 = ∆G∆1βper,2 and ∆G∆1γcoh,1 = ∆G∆1γcoh,2.
The degrees of freedom is the count of parameters P + C − 2(G + 1). This hypothesis
does not restrict the linear plane. For further discussion, see Clayton & Schifflers (1987).

A pure age model occurs when restricting the age-drift model further by requiring
the cross-sample period-cohort slope and micro effects through νh,1 = νh,2. This gives
further G constraints. Now the linear slope only varies with age and can be attributed
as an age effect.

9



These restrictions are imposed on the cross-sample differenced predictor. The same
type of restrictions could be imposed on the predictors for the individual samples or on
the cross-sample common predictor.

4 Empirical illustration

We now consider the Swiss suicide data reviewed earlier. A two sample age-period-cohort
predictor will be applied in the context of a log-normal model using least squares for the
log rates. We will first analyze the two samples separately using one-sample age-period-
cohort analysis. All time effects appear significant and the scale parameters are found
to be different. Thus, it is necessary to correct for this difference through generalized
least squares regression combined with a small-dispersion asymptotic theory. We will
then find that we cannot reject the hypothesis of a common period effect. We will also
explore the use of a marriage-divorce index as period effect.

The data analysis was done in R (R Core Team, 2022) using code building on the
apc package (Nielsen, 2015).

4.1 Initial one-sample analyses

At first, we model the two samples separately. We assume that the log suicide rate
is normal, where the expectation has a linear age-period-cohort structure as in (4)
and constant variance. At this point, the parameters for expectation and variance are
allowed to depend on the sample. The models are estimated separately for the two
samples using the least squares method. For inference we can, at this point, rely on the
exact distribution theory for the normal model.

model −2 logL df F vs. apc df vs. apc pF σ̂
APC -363.02 572 0.218
AP -157.38 684 1.60 112 0.0003 0.229
AC -68.82 624 5.25 52 0.0000 0.254
PC -18.55 583 30.11 11 0.0000 0.272
χ2
normality(2) = 4.50 (p = 0.105).

Table 1: Analysis of variance, women.

model −2 logL df F vs. apc df vs. apc pF σ̂
APC -841.70 572 0.159
AP -605.47 684 1.88 112 0.0000 0.170
AC -434.27 624 7.88 52 0.0000 0.199
PC -210.52 583 68.10 11 0.0000 0.239
χ2
normality(2) = 0.31 (p = 0.579).

Table 2: Analysis of variance, men.
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Tables 1, 2 show separate analyses of variance for women and for men. Each table
consider full APC models and reductions to sub-models AP, AC and PC where, respec-
tively, the cohort, the period and the age effects are omitted. The restrictions are all
strongly rejected. We note that the residual standard deviation, σ̂, is somewhat smaller
for women than for men, matching the lower number of cases for women.

Tables 1, 2 also show tests for the normality assumption. The tests are standard
skewness and kurtosis based tests, see for instance Hendry & Nielsen (2007). In both
cases, the p-values are large and the assumption of normality cannot be rejected.

4.2 Two-sample analysis by least squares

model −2 logLOLS df F vs. apc df vs. apc pF σ̂OLS σ̂GLS

APC -1129.99 1144 0.191 0.159
AP -836.72 1256 2.19 112 0.0000 0.201 0.167
AC -1052.62 1196 1.16 52 0.2092 0.192 0.160
PC -1021.68 1155 7.74 11 0.0000 0.197 0.164
OLS: χ2

normality(2) = 15.82 [p = 0.0004]
GLS: χ2

normality(2) = 2.13 [p = 0.3440]

Table 3: Analysis of variance, both samples. Submodels for cross-sample differenced
predictor. For GLS, data for women are scaled to have same dispersion as men.

We apply the proposed two-sample age-period-cohort analysis, where the common
predictor is unrestricted while the cross-sample differenced predictor is restricted in
various ways. The log normal specification is maintained. We consider both the case
with common scale parameter so that least squares estimation can be used and the
case of different scale parameters in the two sample so that generalized least squares
estimation is needed. Table 3 summarizes the results.

Asymptotic inference relies on asymptotic arguments. We must specify the assump-
tions underlying the asymptotics. One approach is to let the size of the data array and
therefore the size of the parameter vector increase as in Fu (2016). Another approach is
to use small-dispersion asymptotics, where the size of the data array is kept fixed while
the scale, or dispersion, parameters are shrinking in the asymptotic experiment. The
second approach seems particular useful here as the dose, or exposure, is large. The
dose is the entire Swiss population of the relevant age and gender. It is in the order
of 100,000 for each cell. With the second approach it is possible to justify use of F
distributions as limiting distributions. Formal analysis is given by Jørgensen (1987) in
the context of exponential dispersion models whereas Harnau & Nielsen (2018) develop
a Central Limit Theorem for this situation. Both setups allow log normal distribution,
but the latter has some flexibility in allowing approximate log normal distributions and
some types of over-dispersed Poisson models. The implementation in Kuang & Nielsen
(2020) is suited for the present situation. Thus, the idea of the asymptotic experiment
is that log suicide rates converge to constant parameters for large values of the dose
appearing as denominator of the rates. Convergence of the rates to constant parameters
corresponds to a shrinking dispersion. More specifically, we apply a log normal model
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where we hold fixed the dimension of the index array, the canonical age-period-cohort
parameter, and the ratio of the scales in the sample, while the scale parameters shrink
in the asymptotic experiment.

The common variance assumption can be tested by comparing the least squares log
likelihoods for the APC model in Table 3 and in Tables 1, 2 to get the Bartlett test
statistic (Harnau, 2018; Kuang & Nielsen, 2020). The test statistic is 363.02 + 841.70−
1129.99 = 78.73 multiplied by a Bartlett correction factor which is very close to unity
in this case. The test statistic is large compared to a χ2

1-distribution. In addition,
normality is rejected. This is quite possibly a consequence of mixing two samples with
different scale. Ordinary least squares will therefore not give reliable inference. Instead,
generalized least squares is needed. This is done by scaling the log rates and the design
matrix for women by the ratio of the scale estimates for men and women as reported in
Tables 1, 2. This results in a scaling factor of 0.159/0.218. We see that normality can
no longer be rejected.

We now consider the restrictions on the age-period-cohort structure for the differ-
enced predictor. The F-statistics for the three sub-models considered in Table 3, turn
out to be exactly identical when estimating by ordinary least squares and by general-
ized least squares. This is a consequence of the particular block structure of the design
and covariance matrices and can be checked through a somewhat detailed derivation.
However, given the difference in dispersion for women and men, we must apply the
F-statistics under the generalized least squares setup. In that case the F-statistics are
asymptotically F-distributed under the small-dispersion setup. Thus, from Table 3 we
learn that we can reduced the model for the cross-sample differenced predictor to an age-
cohort model, whereas the age-period and period-cohort models are strongly rejected.
The interpretation of the age-cohort model is that the period effect is common across
samples. This matches conclusions by Riebler et al. (2012).

4.3 Plots of time effects

Figure 2 shows detrended time effects estimated by the generalized least squares methods
from the unrestricted age-period-cohort models. The detrending serves three purposes.
First, to emphasize non-linearity, which is the only part of the time effects that is
invariant to the identification problem. Second, to disentangle the plots, so that they
can be viewed separately. Indeed, with fewer constraints the plots are linked inextricably
and must be viewed jointly (Carstensen, 2007). Third, to ensure that the degrees of
freedom shown in the plot matches the degrees of freedom associated with the time
effects. Detrending can be done in various ways. Here it is done by restricting the
time effects to be zero at a time close to the beginning and a time close to the end.
There is no estimation uncertainty at those two points and the degrees of fredom can
be appreciated. Chauvel & Schröder (2014) suggest to set the averaged time effect to
zero and then eliminate the time trend. This achieves the first two objectives above.

Figure 2(a) shows the two detrended age effects. The age effects are subject to an
arbitrary level and linear slope due to the invariance transformations (6). Thus, the
plotted age effects are constrained to start and end in zero in order to highlight the
non-linearity. The detrended age effect first rises considerably relative to an overall
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Figure 2: (a)-(c): Detrended estimates of time effects. (d): F-index

age-period-cohort linear plane. This corresponds to a relatively large increase in suicide
rates for people in their twenties. The curves then decline gradually corresponding to
relative declines in rates. There are small local peaks around the age of 50 and for men
also at age 75. The dotted lines show two standard errors from zero. By construction,
the dotted lines are exactly proportional for the two samples reflecting the different
dispersion for women and men. We conclude that the age-trends are significant for both
men and women in line the individual tests for the period-cohort models in Tables 1, 2.
The age-trends do also appear to be quite different for women and men in line with the
rejection of period-cohort model reported in Table 3.

Figure 2(b) shows detrended period effects. Now, we need to adjust for an arbitrary
level, arbitrary slope and four arbitrary micro levels. Thus, the macro trend, shown with
bullets at five year intervals is detrended to start and end in zero. The micro trends
starting at 1, 2, 3, 4 years after 1950 are demeaned to start on the line between the
first two macro estimates in 1950 and 1955 as marked with crosses. The idea here is to
minimize the apparent seasonality in a way that is common for the two samples. Once
again, we see that the period effects are individually significant, although somewhat less
than for ages, in line with the tests for the age-cohort models reported in Tables 1, 2.
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The period-trends do appear to follow each other in line with the non-rejectance of the
age-cohort restriction in Table 3.

Figure 2(b) shows detrended cohort macro effects. The transformations (6) show
that the cohort effect is subject to the same under-identification as the period effect,
but the cohort macro effects are only subject to an arbitrary level and slope. Thus,
we apply two zero constraints. The cohort effect is inevitably quite noisy because of
the mixed-frequency setup with 112 degrees of freedom associated with cohorts among
754 observations. The estimated cohort parameters are particularly noisy at end points.
Thus, the zero constraints are chosen three macro steps from the end points. The micro
effects starting 1, 2, 3, 4 years after the macro effect are noisy and not shown in this
plot of macro effects. Overall, the individual cohort effects are less significant than age
and period effects – compare with the age-period tests in Tables 1, 2. The cohort effects
are somewhat different across samples in line with Table 3.

4.4 Replacing the period effect with an external time series

model Test vs APC
common diff. −2 logLGLS df F df pF σ̂GLS

APC APC 3862.93 1144 0.159
APC AC 3940.30 1196 1.16 52 0.209 0.160
APC AC+F 3934.12 1195 1.08 51 0.321 0.159
AC+F APC 4340.08 1195 8.35 51 0.000 0.182
AC+F AC+F 4432.71 1246 5.15 102 0.000 0.184

Table 4: Analysis of variance, both. Submodels for common and differenced predictors.

We now investigate if the period effect can be replaced by an external time series.
Following Riebler et al. (2012), we consider a familiy integration index computed as
(mper−dper)/(mper +dper) where mper and dper are the counts of marriages and divorces
in a given period. The F-index is shown in Figure 2(d). A high value of this measure
indicates better integration which could be associated with lower suicide rate.

The period effect is restricted to follow the F-index, by substituting the double
differences of the period effect with those of the F-index. Table 4 gives an analysis
of variance. Here, the common predictor and the cross-sample differenced predictor
are restricted either individually or jointly. The first model has an age-period-cohort
structure for both predictors, while the second model has an age-cohort structure for
the cross-sample differenced predictor. The remaining models have one or both of the
predictors following an age-cohort model combined with the F-index as period effect.

The conclusion from the table is that we cannot reject replacing the period effect of
the cross-sample differenced parameter with the F-index. Eliminating the F-index from
that model to get an age-cohort structure adds another degree of freedom. The relevant
F-statistic is 4.906 with p-value 2.7%, which gives a marginal decision. Thus, there is
slight evidence that it is better to replace the period effect in the difference parameter
with the F-index than eliminating it all together. The coefficient ψ for the F-index is
estimated by −0.217 with standard error 0.098. The first sample is chosen as women.
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Thus, changes in family integration has a bigger impact for men than for women. An
increase in the F-index by 1% implies that the suicide rate for men decreases by 0.2%
more than that of women. This is in line with conclusions by Riebler et al.

5 Conclusion

We considered the two-sample age-period-cohort model and clarified what can be iden-
tified invariantly and the associated degrees of freedom. The hypothesis of a common
period effects was analyzed in a similar fashion. Replacing the period effect with an
external time series was discussed.

The two-sample age-period-cohort model was applied to the Swiss suicide data previ-
ously analyzed by Riebler et al. (2012). Inference was conducted for a log-normal model
using an asymptotic framework where the age-period dimensions are fixed while disper-
sions shrink. A generalized least squares approach was used to account for differences
in dispersion for women and men. The hypothesis of a common period effect could not
be rejected. This was done by setting the cross-sample difference of the period effects
to zero. There was weak evidence that it would be better to replace the cross-sample
period difference with an external family integration index instead of removing it alto-
gether. The interpretation is that an increase in the family integration index gives a
larger improvement in suicide rates for men than for women.

For the present empirical analysis forecasting is not of particular interest. If fore-
casting were of interest, it would be desirable to work with invariant forecasts (Kuang
et al., 2008a). The small-dispersion asymptotics allow the construction of distribution
forecasts (Harnau & Nielsen, 2018; Nielsen, 2022). This asymptotic theory applies not
only for log normal models as here but also for over-dispersed Poisson models.
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A General mixed-frequency arrays

The two-sample age-period-cohort model is generalized to general mixed-frequency ar-
rays building on Nielsen (2022), henceforth N22.

Data structure, The general mixed-frequency setup has AG age groups of length G
covering A = AGG ages and PH period groups of length H covering P = PHH periods.
We assume that the largest common divisor of G and H is unity. If groups have common
divisor larger than unity, such as 10 and 4, we can scale by the common divisor of 2.

An age-period data array has index set

Iage,per :

{
age = A− gG, where g = 0, 1, . . . , AG − 1,
per = H + hH where h = 0, 1, . . . , PH − 1.

(19)

When, G,H ≥ 2, certain cohort values will be skipped as noted by Holford (2006).
Table 5 illustrates this for a case with G = 5 and H = 3. Macro blocks of dimension
GH are indicated with dashed lines. Note that top left and bottom right macro blocks
are identical apart from trimming. The cohort values 4, 5, 7, 10 and 42, 45, 47, 48 are
skipped. This corresponds to 3 plus the values 1, 2, 4, 7 and 49 minus the same values.

The skipping problem is akin to the coin problem (N22): If we have coins of de-
nominations G,H, which monetary amounts can we form? Let NG,H denote the non-
representable monetary amounts. The Frobenius number FG,H = GH − G − H is the
largest non-representable number, while Sylvester pointed out that the number of non-
representable numbers is SG,H = (G−1)(H−1)/2 (Ramı́rez Alfonśın, 2005). Algorithms
for finding NG,H are discussed in N22. As an example, if we have coins G = 5 and H = 3
then N5,3 = (1, 2, 4, 7) while FG,H = 7 and SG,H = 4.

The possible cohorts over the set Iage,per are given by

Icoh = (H, . . . , C)\(H + c, C − c : c ∈ NG,H). (20)

The number of possible cohorts is then C− (H− 1)− 2SG,H , which equals A+P −GH.
We will also consider the subset of cohort values arising when dropping age A and period

age
period real 50-54 55-59 60-64 65-69 70-74 75-79

real per A-age 40 20 15 10 5 0
1984-86 3 28 23 18 13 8 3
1987-89 6 31 26 21 16 11 6
1990-92 9 34 29 24 19 14 9
1993-95 12 37 32 27 22 17 12
1996-98 15 40 35 30 25 20 15
1999-01 18 43 38 33 28 23 18
2002-04 21 46 41 36 31 26 21
2005-07 24 49 44 39 34 29 24

Table 5: Cohort indices for G = 5 year age groups and H = 3 year period groups.
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H from Iage,per. This smaller set of cohorts is

I◦coh = (G+ 2H, . . . , C)\(G+ 2H + c, C − c : c ∈ NG,H). (21)

Unrestricted age-period-cohort model. Consider the predictor given in (4).
The time effects on the right hand side of the model equation have dimension

q = 2(AG + PH + A+ P −GH + 1), (22)

as each sample has AG ages, PH periods, A+ P −GH cohorts and 1 intercept.
The invariance transformations in (6) generalize as

µage,per,s =
{
αage,s + as + ds × (A− age) +

H−1∑
i=1

ei,s1(A−age≡i mod H)

}
+
{
βper,s + bs + ds × per +

G−1∑
j=1

fj,s1(per≡j mod G)

}
+
{
γcoh,s + cs − ds × coh−

H−1∑
i=1

ei,s1(coh≡i mod H) −
G−1∑
j=1

fj,s1(coh≡j mod G)

}
+ (δs − as − bs − cs), (23)

for any values of as, bs, cs, ds, ei,s, fj,s for 1 ≤ i < H, 1 ≤ j < G and s = 1, 2. The
transformations in (23) have dimension 2(G + H + 2). Subtracting this from q defined
in (22) shows that the dimension of the variation of the predictor is

p = q − 2(G+H + 2) = 2{AG + PH + A+ P − (G+ 1)(H + 1)}. (24)

The canonical parameter has dimension p. It consists of invariant double differences

∆GH∆Gαage,s for age = A− gG with 0 ≤ g ≤ AG −H − 2, (25)

∆GH∆Hβper,s for per = H + hH with G+ 1 ≤ h ≤ PH − 1, (26)

∆G∆Hγcoh,s for coh ∈ I◦coh, (27)

and invariant linear plane parameters

λg,s = ∆gGγH+gG,s −∆gGαA,s for g = 1, . . . , H, (28)

νh,s = ∆hHγH+hH,s −∆hHβH=hH,s for h = 1, . . . , G. (29)

When reparametrizing the predictor in terms of the canonical parameter, it is conve-
nient to express the time scales through their Euclidean representations. For instance,
age is given by age = A− gG. Let qg = bg/Hc be the largest integer not exceeding g/H
and let rg = g − qgH so that qg ≥ 0 and 0 ≤ rg < H. Thus, we can write

age = A−qgGH−rgG, per = H+qhGH+rhH, coh = H+qGH+rgG+rhH, (30)
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where q = qg + qh. Each combination of 0 ≤ rg < H and 0 ≤ rh < G gives different
micro effect and different representations

µA−qgGH−rg ,H−rhGH−rh

= M intercept
rg ,rh

+ qgM
age/coh
rg ,rh

+ qhM
per/coh
rg ,rh

+ Sage
qg ,rg + Sper

qh,rh
+ Scoh

qg+qh,rg ,rh
, (31)

where the level and slopes are given by

M intercept
rg ,rh

= µA,H + 1(rg>0)λrg ,s + 1(rh>0)νrh,s

+ 1(rg>0)1(rh>0)∆rgG∆rhHγH+rgG+rhH , (32)

Mage/coh
rg ,rh

= λH + 1(rh>0)∆GH∆rhHγH+GH+rgG+rhH

+ 1(rg>0)∆GH∆rgG

(
γH+GH+rgGαA

)
, (33)

Mper/coh
rg ,rh

= νG + 1(rg>0)∆GH∆rgGγH+GH+rgG+rhH

+ 1(rh>0)∆GH∆rhH

(
γH+GH+rhHβH+GH+rhH

)
, (34)

while the double sums of double differences are

Sage
qg ,rg = 1(qg≥2)

qg−1∑
v=1

vH−1∑
u=0

∆GH∆GαA−(rg+u)G,s, (35)

Sper
qh,rh

= 1(qh≥2)

qh−1∑
v=1

vG∑
u=1

∆GH∆HβH+GH+(rh+u)H,s, (36)

Scoh
qg+qh,rg ,rh

= 1(q≥2)

q−1∑
v=1

vG∑
u=1

∆GH∆HγH+GH+rgG+(rh+u)H,s. (37)

For G = H = 1 one gets the expression (14) by changing summation indices.

Restrictions. The hypothesis of common period effects is now that βper,1 = βper,2
for per = H + hH with 0 ≤ h < PH . This is equivalent to restricting the double
differences as ∆GH∆Hβper,1 = ∆GH∆Hβper,2 for per = H + hH with G+ 1 ≤ h < PH .

As in §3.3, we can formulate other restrictions on the time effects in terms of the
double differences. The degrees of freedom are counted by counting the restrictions on
the double differences.
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