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Abstract

I provide conditions under which increasing efficiency by combining competitive

auctions of substitute goods increases both expected bidder and auctioneer surplus

relative to running separate simultaneous auctions. I also provide conditions under

which one side’s expected surplus falls. I show how the distributional effects depend

on the bidders’ aggregate bid functions and the auctioneer’s costs of production. I

estimate these effects using novel bid-level data from Mexico’s domestic government

bond market.
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1 Introduction

Multi-unit auctions are often held separately and simultaneously for different goods. For

example, in the primary market for government debt, independent auctions are held for

bonds of different characteristics by the same institution at the same time.

This is inefficient if either the auctioneer or the bidders view the goods as substitutes. Selling

goods using multi-product multi-unit auctions can increase efficiency. In these auctions, the

allocation across goods depends on the submitted bids and the auctioneer’s own supply

preferences. They are straightforward to implement and have been used in both financial

markets and renewable energy procurement and support.1

Switching to the efficient multi-product auction naturally increases total surplus relative to

running independent auctions. But the effect on the distribution of surplus between bidders

and the auctioneer is less clear. Who gains, and who loses? I provide conditions under which

the efficient mechanism benefits both sides of the market when participants bid competitively

for substitute goods.2 I also provide conditions under which one side of the market, either the

bidders or the auctioneer, disproportionally benefits while the other side’s expected surplus

falls.

My results are especially simple in the special case of my model in which the goods are

symmetric, i.e. the expected inverse demand curves, and auctioneer’s marginal cost curves,

1In financial markets, a notable use of multi-product auctions is quantitative easing: both the Federal
Reserve and the Bank of England have held multi-product auctions, in which differentiated securities are
bought or sold at the same time. The Bank of England runs other multi-product auctions, too. Its weekly
Indexed Long-Term Repo operations are Product-Mix Auctions, which jointly allocate liquidity to financial
institutions against multiple types of collateral. Other examples, which motivate my empirical analysis in
Section 7, are from Mexico. Banco de México, the Mexican central bank, conducts swaps of a range of
government securities (differing in, e.g., their term, coupons, and whether nominal or real interest rates)
within multi-product auctions called “subastas de vasos comunicantes”. It also conducts similar swaps,
referred to as “permutas de valores gubernamentales”, on behalf of the Mexican federal government.
In renewable energy procurement and support, multi-product auctions are increasingly popular to allocate

contracts across different technologies (Szabó et al., 2020). Introduced in 2010, the Netherlands’ SDE+
programme was one of the first large multi-technology auctions of energy price support in Europe. All
technologies except offshore wind compete within one auction, subject to reserve prices specific to each
technology. In other cases, only comparable technologies compete. For example, the UK Contracts for
Difference scheme divides technologies into groups (in the 4th round, these were “established”, e.g. onshore
wind and solar; “less established”, e.g. advanced conversion technologies; and offshore wind), and auctions
are run separately for each group.

2The mechanism that I consider (i.e. a Product-Mix Auction) automatically increases efficiency in my
model in which each bidder demands just one of the goods, of which she demands a single unit, so the bidder
bids her true value. My model applies more generally if there are sufficiently many bidders that competitive
bidding is a reasonable assumption in uniform-price auctions. This precludes the oligopolistic effects in
multi-market models such as Chen and Duffie (2021), Rostek and Yoon (2021), Wittwer (2021), etc.
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are identical across goods, and the shocks to demand are exchangeable. Both the bidders

(in aggregate) and the auctioneer gain if the aggregate demand curves are neither extremely

convex nor extremely concave. Otherwise, either the bidders or the auctioneer lose. For

commonly used distributions, both bidders and the auctioneer gain from switching to the

efficient mechanism. A notable exception is that bidders with constant-elasticity aggregate

demand lose.

I also estimate these distributional effects in the primary market for Mexican government

debt. I use novel bid-level data from auctions of zero-coupon bonds (known as CETES)

held by the Mexican central bank to estimate the bidders’ and auctioneer’s preferences. I

find the efficient multi-product auction of 182-day and 364-day bonds increases both bidder

and auctioneer surplus relative to running the existing pair of independent auctions, assum-

ing participants bid competitively. The efficient auction of 28-day and 91-day bonds also

increases both surpluses. I show how my theoretical model predicts these empirical results.

The closest work to mine is Fabra and Montero (2023). They analyse several mechanisms

that allocate multiple units of different goods, assuming linear aggregate bid functions and

linear marginal benefits for the auctioneer. They compare running a pair of independent

auctions, in which the quantities of the two goods are fixed in advance to maximise expected

welfare, with a multi-product auction in which the goods are treated interchangeably.3 My

paper allows arbitrary aggregate bid functions and auctioneer costs of production. Also going

beyond Fabra and Montero (2023), I obtain results comparing the effects of the independent

auctions to those of the efficient mechanism.4

Section 2 describes an auctioneer who wishes to allocate a fixed total quantity across two

goods that she views as imperfect substitutes, for example, two bonds with different matu-

rities or two alternative energy sources.5 The objective is to maximise welfare, as conven-

tionally defined by the sum of total bidder and auctioneer surplus.6 For each good, there

is a large number of risk-neutral bidders with unit demand, who face perfectly correlated

shocks to their values.7 It follows that the efficient auction is a Product-Mix Auction (PMA)

3Fabra and Montero (2023) define welfare by a weighted sum of the sum of bidder and auctioneer surplus,
and total revenue. I focus on the case in which the weighting on revenue is zero.

4Fabra and Montero (2023) illustrate their model’s predictions for Spain’s 2021 auction of wind and solar
energy, which I also discuss in Section 7. I thank Natalia Fabra and Juan-Pablo Montero for kindly sharing
their simulation estimates.

5Except in the special case in which the goods are symmetric and the production costs are independent
across all goods (see Corollary 3), allowing for more than two goods creates additional complexity so is left
to future research.

6Section 6.1 analyses the case in which the objective is to maximise auctioneer surplus.
7With a large number of bidders, idiosyncratic shocks would be unimportant (and in the limit, irrelevant).
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as described in Klemperer (2008).8,9 The PMA finds the competitive equilibrium, assuming

bidders submit bids equal to their true values and that the auctioneer expresses her true

costs of producing the different goods. In my model, it is indeed rational for all participants

to behave “truthfully” in this way, so that the PMA maximises ex post welfare.10

The main contribution of this paper is to compare the effects on bidder and auctioneer

surpluses of this efficient mechanism to running a pair of separate simultaneous auctions

(SSA). In the SSA, the quantity sold of each good is chosen in advance to maximise expected

welfare, and so is insensitive to the shocks to bidders’ values. All sales mechanisms are

uniform-price.11 The PMA increases total welfare by adjusting its allocation to the shocks,

but the gain is not necessarily shared by both sides of the market.

Section 3 shows that we can decompose the difference in expected bidder surplus between

the PMA, i.e. the “efficient auction”, and the SSA into two effects. The Bidder Uncertainty

Effect captures the impact of the randomness of the quantity sold of each good in the efficient

auction. With this randomness, more bidders win when the price is lower. So bidders as a

group gain if the randomness does not affect the average market-clearing price. This is just

a reinterpretation of the classical result that a consumer with downward-sloping demand

benefits from a mean-preserving spread in price (Waugh, 1944). Bidders a fortiori gain if

the randomness reduces the average price. If the average price instead rises, bidders gain

only if the benefits of the mean-preserving spread dominate. Specifically, bidders gain (lose)

from the randomness if the aggregate bid function is log concave (log convex) (Proposition

1).

The second effect, the Bidder Allocation Effect, captures the impact on expected bidder

surplus of changes in the expected allocations of the goods. It is positive (negative) if, from

the perspective of the bidders, the efficient auction increases the expected quantity sold of

the relatively more (less) profitable good (Proposition 2).

The impact of the efficient auction on the auctioneer is more complex than on the bidders

for two reasons. First, the auctioneer’s marginal costs of producing the two goods may not

8I consider a simpler version of a PMA, in which bidders are not permitted to express their preferences
between goods in the form of “paired bids”, than Klemperer (2008, 2010, 2018). In other words, I consider a
“one-sided” PMA. However, the two mechanisms are equivalent in my setting because the bidders view the
two goods as non-substitutable.

9In our setting in which bidders are infinitesimal, the PMA is equivalent to the Vickrey auction.
10My model also applies if a large number of bidders for each good have identical downward-sloping

demand curves, since it is rational for bidders who are small relative to the market to bid truthfully.
11In my competitive framework, discriminatory pricing would give identical results in equilibrium provid-

ing the bidders observe the shocks to both goods.
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be independent so her surpluses from selling the two goods cannot be analysed separately.

Second, the marginal winning bidder sets the auction price so, on the margin, bidder surplus

is zero but auctioneer surplus may be different from zero.

Section 4 shows that it is therefore helpful to divide the difference in auctioneer surplus

between the efficient auction and the SSA into two effects, which distinguish the impact on

the price level from the impact on the relative prices. The first effect, the Auctioneer Price

Level Effect, is positive (negative) if the efficient auction increases (decreases) the expected

price level, as measured by the price of one of the goods. Specifically it is positive (negative)

if both the aggregate bid function for that good is convex (concave) and the efficient auction

decreases (increases) the expected quantity sold of that good (Proposition 3).

The second effect, the Auctioneer Relative Price Effect, captures the impact of the efficient

auction on the relative prices. There are two aspects to this. The first corresponds to the

Bidder Uncertainty Effect—the auctioneer gains from the uncertainty that the efficient auc-

tion generates in the relative prices. The second reflects the impact of the average difference

in relative prices between the efficient auction and the SSA. Overall, the Auctioneer Relative

Price Effect is positive (negative) if both the auctioneer’s inverse marginal cost of one good

relative to another is log concave (log convex) and the efficient auction increases (decreases)

the good’s expected quantity sold (Proposition 4).

Section 5 considers special cases of the model. In Section 5.1, I focus on the case in which

both the bidders’ aggregate preferences, and the auctioneer’s preferences, are symmetric

in the two goods. The distributional effects are particularly clean. If the aggregate bid

functions are convex but log concave, the efficient auction increases the expected surplus

of both the bidders and the auctioneer. Bidders as a group gain from the uncertainty in

the quantities sold in the efficient auction, but this uncertainty also translates into higher

expected auctioneer revenue. If the aggregate bid functions are either concave or very convex

(i.e. log convex), only one side of the market benefits in expectation. Section 5.2 examines

the asymmetric case of the generalised Pareto distribution, special cases of which correspond

to the more commonly used functional forms of demand: linear, log linear, and constant

elasticity. Section 5.3 analyses the case in which the auctioneer’s marginal cost of increasing

the quantity produced of one good while reducing the quantity of the other by the same

amount is constant.

Section 6 extends the model. When the objective is to maximise auctioneer surplus, the

auctioneer of course benefits from the PMA and the conditions for the bidders to gain
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and to lose are similar to those in the main model (Section 6.1). Section 6.2 shows how

the distributional effects may differ with a variable total supply. Section 6.3 analyses an

alternative multi-product design, commonly used in quantitative easing.12 This “reference

price auction” (RPA) imposes a fixed price difference between the goods. Because the efficient

mechanism is between the extremes of fixing quantities, i.e. an SSA, and fixing relative prices,

i.e. an RPA, it is not surprising that the results of the comparison of the efficient auction to

the RPA are broadly opposite to that of the SSA.

In Section 7, I estimate the distributional effects using bid-level data from the Mexican

primary market for government debt. I group the four bonds that I study into two pairs: 28-

and 91-day CETES, and 182- and 364-day CETES. For each pair, I find that the efficient

auction increases both average bidder and average auctioneer surplus relative to the existing

SSA design. The effects for each pair of bonds can be understood in terms of the model.

For the 182- and 364-day pair, the aggregate bid functions are log concave, so the bidders

gain from the uncertainty in issuance and the Bidder Uncertainty Effect is positive. This

dominates the negative, albeit statistically insignificant, Bidder Allocation Effect. For the

28- and 91-day pair, the positive effect on bidder surplus is driven by a positive Bidder

Allocation Effect, which results from the efficient auction increasing the expected allocation

of the bond which is relatively more profitable on the margin for the bidders. The Bidder

Uncertainty Effect is also positive, but statistically insignificant. For the auctioneer, the

Auctioneer Relative Price Effect is zero under the assumptions of our model so the results

are purely a function of the Auctioneer Price Level Effect. It is positive for the 28- and

91-day pair because the efficient auction increases the price of the reference good. It is also

positive, albeit imprecisely estimated, for the 182- and 364-day bonds.

Section 8 concludes. Proofs of the results are found in Appendix A.

2 Model

An auctioneer allocates a single unit across two divisible goods, j = {1, 2}. Her total cost

of producing q1 of good 1 and q2 of good 2 is C(q1, q2), which is three-times continuously

differentiable. It is convenient to assume her marginal cost of good j = {1, 2}, MCj(q1, q2) =
∂C(q1,q2)

∂qj
, is strictly increasing and that the goods are strictly imperfect substitutes, so that

∂2C(q1,q2)
∂qj∂qk

< ∂2C(q1,q2)

∂q2j
, k ̸= j. We do this for convenience to permit invertibility, but the cases

in which the marginal cost curves have zero slopes or the goods are perfect substitutes follow

12Both the Federal Reserve and Bank of England used this design in their quantitative easing programmes
(Bank of England, 2022; Song and Zhu, 2018).
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automatically, as shown in Section 5.3.

The auctioneer always sells the entire unit.13 It is therefore helpful to also define the auc-

tioneer’s relative marginal cost of producing good 1 (with reference to good 2), M̃C1(q1) =
∂C(q1,1−q1)

∂q1
− ∂C(q1,1−q1)

∂q2
. This expresses the net marginal cost of increasing the quantity al-

located of good 1 and correspondingly reducing the quantity of good 2, so that one unit is

allocated in total. We can define the relative marginal cost of good 2 (with reference to good

1) similarly.

Since marginal costs are strictly increasing, her relative marginal cost is strictly increasing.

We can therefore also define a corresponding inverse relative marginal cost curve, m̃c1(p̃1),

which specifies the quantity that the auctioneer is willing to sell of good 1 as a function of its

relative price (equal to p̃1 = p1 − p2).
14 I assume lim

p̃1→−∞
m̃c1(p̃1) = 0 and lim

p̃1→∞
m̃c1(p̃1) = 1.

Good j = {1, 2} is demanded by a measure, greater than one, of infinitesimal, risk-neutral

bidders, each with value for an increment dqj and quasi-linear utility. Bidders view the two

goods as non-substitutable; bidders for good 1 have no interest in good 2 and vice versa.

Bidders’ values are sums of idiosyncratic components, capturing preference heterogeneity

among the bidders, and a correlated one, interpreted as a common taste shock to bidders for

good j. Their idiosyncratic values are distributed by the twice continuously differentiable

and strictly increasing function Fj with density function fj.
15 The bidders for good j face

a shock, θj, to their values, which is distributed on [θj, θ̄j] with zero mean. The vector of

shocks is denoted by θ = (θ1, θ2).

In auctions with uniform-pricing, a bidder with unit demand has a dominant strategy to

submit a bid equal to his value. It follows that bidders in our setting also have this dominant

strategy, which I refer to as ‘bidding truthfully’. The aggregate bid function for good j — its

demand curve — is therefore dj(pj, θj) = (1− Fj(pj − θj)), which is continuous and strictly

decreasing in pj and only depends on the difference between pj and θj. We can also define a

corresponding inverse demand curve, Dj(qj, θj), which is additive in the shock θj. I describe

dj(pj, θj) as log convex (log concave) if it is log convex (log concave) with respect to pj,

13I assume the submitted bids are always sufficiently high relative to the costs of production that the
auctioneer never prefers to sell less than the full unit. Section 6.2 allows the total quantity sold to vary.

14The inverse relative marginal cost curve for good 2 is similarly defined and can be equivalently expressed
by m̃c2(p̃2) = (1− m̃c1(−p̃2)).

15With a large number of bidders, idiosyncratic shocks would be unimportant and, in the limit, irrelevant
to the analysis: the outcome would be identical and, because bidders are risk-neutral, they collectively value
the auction outcome as would a single representative consumer, so the measurement of bidder surplus would
be unchanged.
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holding θj constant, i.e.
∂2log(dj(pj ,θj))

∂p2j
≥ (≤) 0. Similarly, I describe Dj(qj, θj) as convex

(concave) if
∂2Dj(qj ,θj)

∂q2j
≥ (≤) 0.

Total bidder surplus, denoted TBS(q1,θ), equals the total gross value to bidders of receiving

q1 of good 1 (and (1−q1) of good 2), less the total payment to the auctioneer, given the shocks

θ. Analogously, total auctioneer surplus, TAS(q1,θ), equals the total payment received by

the auctioneer, minus her total cost of producing the two goods.

The auctioneer can adopt either of two sales mechanisms: a Product-Mix Auction (PMA)

or a pair of separate simultaneous auctions (SSA).16 In this context, the PMA is a multi-

product auction in which bidders submit bids for the two goods and the auctioneer expresses

her preferences between the goods.17 It uses the information from the resulting demand and

supply curves to find the competitive equilibrium, under the assumption that all bidders

bid truthfully and the auctioneer expresses her true costs of producing the goods. Truthful

behaviour is indeed rational for all participants as winning bidders of a good pay the highest

losing bid for that good. The PMA therefore maximises ex post welfare, defined convention-

ally by the sum of total bidder surplus and auctioneer surplus. I refer to the PMA as the

“efficient auction”.

In the SSA, the quantity sold of each good is fixed ex ante and chosen by the auctioneer to

maximise expected welfare. Bidders submit the same bids (for each good) as they submit in

the efficient auction, because it is optimal to bid truthfully and bidders view the two goods as

non-substitutable. The two auction prices equal the highest losing bids on the corresponding

goods.

The quantity sold of good 1 under mechanism m ∈ {S,E}, where m = S refers to the SSA

and m = E to the efficient auction, is qm1 (and qm2 = 1−qm1 ), where q
S
1 is deterministic and qE1

is a function of θ, and pj(q
m
j , θj) = Dj(q

m
j , θj) is good j’s auction price. The efficient auction

finds the quantities such that the relative value of the goods to the marginal winning bidders

equals the goods’ relative marginal cost, i.e. D1(q
E
1 (θ), θ1)−D2(1−qE1 (θ), θ2) = M̃C1(q

E
1 (θ)).

16I consider an alternative design, in which the price difference between goods is fixed in advance, in
Section 6.3.

17This is a “one-sided” PMA because only the auctioneer expresses preferences between goods. In the
general PMA, both the bidders and the auctioneer are permitted to do so, with bidders submitting “paired
bids” (see Klemperer, 2008, 2010, 2018). Because bidders view the two goods as non-substitutable, the
one-sided PMA and general PMA are equivalent in my setting.
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The fixed quantities in the SSA satisfy this in expectation, E
[
D1(q

S
1 , θ1)−D2(1− qS1 , θ2)

]
=

M̃C1(q
S
1 ).

18

The relative price of good 1 is p̃1(q
m
1 ,θ) = p1(q

m
1 , θ1)− p2(1− qm1 , θ2). Let q1 = qE1 ((θ1, θ̄2))

and q̄1 = qE1 ((θ̄1, θ2)) denote the minimum and maximum quantities sold of good 1 in the

efficient auction, and (q2, q̄2) = (1− q̄1, 1− q1). I assume that these are interior solutions.

I label the goods so that the efficient auction increases the expected quantity sold of good

1, that is, E
[
qE1 (θ)

]
≥ qS1 . A sufficient condition for this labelling is that inverse demand

for good 1 relative to good 2 is weakly more convex than the relative marginal cost of good

1 (see Appendix B).

3 Bidder surplus

The expected surplus of a winning bidder of good j = {1, 2} is the difference between his

expected value and the good’s expected auction price, conditional on him winning. His prob-

ability of winning and the conditional expected price differ between the two sales mechanism

and this difference depends on the distribution of shocks and the bidder’s own value. In

general, some bidders gain and some lose from the efficient auction relative to the SSA,19 so

I sum the effects across bidders.20

Measuring (total) bidder surplus as a function of quantities, rather than prices as is conven-

tional, is helpful.21 Bidder surplus for good j ∈ {1, 2} is the sum of the values of winning

bidders, less their payment to the auctioneer. The difference in the value of the winners

is simply the area under the inverse demand curve between the quantities allocated in the

efficient auction and SSA. That is, it equals the sum of Areas Lj,Mj, and Nj in Figure 1 for

shocks θ.

Similarly, the difference in auctioneer revenue is measured by the area under the marginal

18The SSA allocation maximises expected welfare and so solves

max
qS1

E

[∫ qS1

0

D1(q1, θ1)dq1 +

∫ 1−qS1

0

D2(q2, θ2)dq2 −
∫ qS1

0

M̃C1(q1)dq1

]

19For example, a bidder with a low value always loses in the SSA but wins with positive probability in
the efficient auction, and so unambiguously gains. In contrast, a bidder with a high value always wins in
the SSA but sometimes loses in the efficient auction. The efficient auction also changes the expected price
he pays, conditional on winning. If the demand curve is concave, he gains. If the demand curve is convex,
the net effect on his expected surplus depends on the relative importance of these two opposing effects.

20This is of course equivalent to the average effect on expected individual bidder surplus.
21Bulow and Klemperer (2012) demonstrate the value of measuring surplus in this way.
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revenue curve for good j, MRj(qj, θj) =
∂(Dj(qj ,θj)qj)

∂qj
, because this curve describes the change

in total payment for good j due to a marginal increase in its quantity sold. This is equal

to Area Nj and is equivalent to the difference in the product of price and quantity sold, i.e.

(Area Mj +Area Nj)− (Area Jj +Area Kj).

The difference in total bidder surplus for good j ∈ {1, 2} is therefore the area between the

inverse demand curve and the marginal revenue curve between the quantities sold in the

efficient auction and SSA. For shocks θ, it is the sum of Areas Lj and Mj.

Another way to understand this is that the marginal winning bidder is indifferent to winning

because his bid sets the auction price. So bidder surplus on the margin is simply the change

in total payment of the inframarginal winners, i.e. Dj(qj, θj) −MRj(qj, θj) = −∂Dj(qj ,θj)

∂qj
qj.

For shocks θ, the difference in total bidder surplus for good j ∈ {1, 2} is therefore

∫ qEj (θ)

qSj

(Dj(qj, θj)−MRj(qj, θj)) dqj =

∫ qEj (θ)

qSj

−∂Dj(qj, θj)

∂qj
qj dqj.

I decompose the difference in expected total bidder surplus between the efficient auction and

SSA into two effects. Let

Bidder Uncertainty Effect = E

[ ∑
j={1,2}

(∫ qEj (θ)

E[qEj (θ)]
−∂Dj(qj, θj)

∂qj
qj dqj

)]

and

Bidder Allocation Effect = E

[ ∑
j={1,2}

(∫
E[qEj (θ)]

qSj

−∂Dj(qj, θj)

∂qj
qj dqj

)]

The following lemma immediately follows.

Lemma 1 The difference in expected total bidder surplus between the efficient auction and

SSA, E
[
TBS(qE1 (θ),θ)− TBS(qS1 ,θ)

]
, equals the sum of the Bidder Uncertainty Effect and

the Bidder Allocation Effect.

These effects each relate to properties of the bidders’ demand curves and the auctioneer’s

costs of production.
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Figure 1: Change in total bidder surplus for good j ∈ {1, 2}: two equivalent measurements
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Note: The difference in total bidder surplus between selling qEj (θ) and qSj is measured by the sum of Areas
Lj and Mj . This is equivalent to the conventional measure of the change in bidder surplus, which is the
sum of Areas Jj , Kj , and Lj . This is evident by comparing two equivalent measures of total payment. The
conventional measure of the change in total payment is (Area Mj +Area Nj) less (Area Jj +Area Kj). This
is equivalent to the area under the marginal revenue curve, i.e. Area Nj . Hence, Area Mj = (Area Jj +
Area Kj).

3.1 Bidder Uncertainty Effect

The Bidder Uncertainty Effect captures the benefit to bidders of uncertainty in the quantities

sold of the two goods in the efficient auction.

A marginal increase in the quantity sold of good j = {1, 2} reduces the auction price for all

winning bidders, and causes an additional bidder to win when he would otherwise lose. Only

the first effect is relevant to bidder surplus, as the marginal winner is indifferent between

winning and losing, paying a price precisely equal to his value Dj(qj, θj).

In the simple case of linear demand, bidders in aggregate benefit from uncertainty, just as

a consumer with downward-sloping demand benefits from a mean-preserving spread in price

in Waugh’s (1944) classical result. This is because equally sized changes in the quantity sold

of a good cause equally sized changes in its auction price, and more bidders win when the

auction price is low. With non-linear demand, the changes in auction price are asymmetric.

Uncertainty unambiguously benefits the bidders if the demand curve is concave: when the

quantity sold increases, the larger number of winners benefit from a greater reduction in

price. But if the demand curve is sufficiently convex, the relatively steep price rise for the

smaller number of winners, when the quantity sold declines, dominates the price fall from

the increase in quantity. So bidders as a group lose out from the uncertainty.
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Specifically, the Bidder Uncertainty Effect is positive if bidder surplus for good j = {1, 2},∫ q

0
−∂Dj(qj ,θj)

∂qj
qj dqj, is a convex function of the quantity sold, q. In this case, expected

bidder surplus for good j in the efficient auction, i.e. E
[∫ qEj (θ)

0 −∂Dj(qj ,θj)

∂qj
qj dqj

]
is greater

than bidder surplus evaluated at the expected quantities sold, i.e.
∫ E[qEj (θ)]
0 −∂Dj(qj ,θj)

∂qj
qj dqj

(by Jensen’s inequality), so it is immediate from its definition that the Bidder Uncertainty

Effect is positive. Simple manipulation of
∫ q

0
−∂Dj(qj ,θj)

∂qj
qj dqj shows that it is a convex

function of q if and only if the demand curve is log concave.22 So:

Proposition 1 The Bidder Uncertainty Effect is positive (negative) if both demand curves

are log concave (log convex).23

A large number of well-known distributions have a log concave density function, fj, which

implies a log concave demand curve, dj(pj, θj).
24 Examples include uniform (corresponding

to linear demand), normal, logistic, extreme value, and exponential (corresponding to log

linear demand).25 Indeed, there are many arguments for why log concave demand might

be a natural assumption. For example, Weyl and Fabinger (2013) argue that, if bidders’

willingness to pay for the good were proportional to their income, then log concave demand

fits the income distributions commonly observed in many countries.26 A notable exception

to the set of distributions with log concave density is Pareto (corresponding to constant-

elasticity demand).

There are two additional ways to understand this result. First, my model also applies to a

situation in which all bidders for good j have identical downward-sloping demand curves, as

described by the demand curve, dj(pj, θj), because it is also rational for bidders in this case

22This can also be understood in terms of the fatness of the right tail of the distribution of bidders’ values.
With a fat tail (corresponding to a log convex demand curve), few bidders value the good extremely highly.
If only a small quantity is sold, it will be sold only to these bidders and the auction price—corresponding
to the marginal winner’s value—will be very high. As more bidders win when larger quantities are sold, the
price will decline only gradually as the values of the marginal winners become more similar.

23Naturally, it is sufficient that the condition holds only for the range of feasible prices and shocks, that
is ∀{(pj , θj) : dj(pj , θj) ∈ [qj , q̄j ]}, j = {1, 2}. The effect is strictly positive (negative) if also at least one
demand curve is strictly log concave (log convex).

24The survival function (in this context, the demand curve) of a continuously differentiable log concave
density function is also log concave, but the converse does not necessarily hold for log convex densities
(Bagnoli and Bernstrom, 2005).

25See Bagnoli and Bernstrom (2005) for an extensive list.
26On the other hand, Fabinger and Weyl (2012) suggest that log convex demand might be a reasonable

characterisation if bidders have heterogeneous valuations for a good but resale is possible. The ability to
resell the good places a floor on bidders’ willingness to pay and heterogeneous valuations mean that the
demand curve is downward-sloping above this floor.
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to behave truthfully when there are sufficiently many of them. In this view, each bidder’s

surplus is measured by the area between the inverse demand curve and the marginal revenue

curve. If a bidder is risk-loving (risk-averse) with respect to quantity, that is, he prefers

(dislikes) uncertainty in the quantity sold, his demand curve is log concave (log convex).27

Second, the randomness in the quantities sold in the efficient auction is akin to the rationing

created by price controls in Bulow and Klemperer (2012). In my context, for any given

quantity sold, the price of each good reacts one-for-one to the common shock to bidders’

values for that good, because it is equal to the marginal winner’s value for that good. And so

the bidder surplus does not depend directly on the shocks, and depends only on the winners’

idiosyncratic values (i.e. values less the shock). The efficient auction creates uncertainty

in the quantities sold, so it is in effect rationing bidders with medium idiosyncratic values.

The reason is that the lower part of these medium-value bidders would always lose if the

quantities sold were the expected quantities sold in the efficient auction but do sometimes

win in the efficient auction, while the higher part of the medium-value bidders would always

win if the quantities sold were the expected quantities but do sometimes lose. Bulow and

Klemperer (2012) show that if the demand curves are log concave (log convex), bidders gain

(lose) in aggregate from rationing if there is no reduction in supply. So it follows that, in

our context, bidders gain (lose) from the uncertainty in the quantities sold generated by the

efficient auction.

3.2 Bidder Allocation Effect

The Bidder Allocation Effect represents the impact on expected total bidder surplus of the

difference between sales mechanisms in the expected quantity sold of each good. The efficient

auction increases the expected quantity sold of good 1, so the Bidder Allocation Effect is

positive (negative) if good 1 is relatively more (less) profitable on the margin for bidders.

The marginal winning bidder for each good is indifferent between winning and losing, so

that only the change in surplus for inframarginal winners is relevant. Good 1 is therefore

relatively more profitable if an increase in its quantity sold (and corresponding reduction

in the quantity sold of good 2) reduces the average price paid by the inframarginal winners

across the two goods.

27The coefficient of relative risk aversion for an agent with random wealth w and expected utility E [u(w)]

is −wu′′(w)
u′(w) . If the representative bidder’s expected utility is the area between the demand curve and the

marginal revenue curve, then the coefficient of relative risk aversion for the bidder with random allocation

qj is r(qj) =
−qj

(Dj(qj ,θj)−MRj(qj ,θj))
∂(Dj(qj ,θj)−MRj(qj ,θj))

∂qj
. If the demand curve is log concave (log convex),

r(qj) ≤ 0 (r(qj) ≥ 0) (see proof of Proposition 1).
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Sufficient conditions for this to hold for a marginal change at the SSA allocation are that

good 1’s expected auction price is higher than good 2’s (i.e. the marginal cost of good 1 is

higher than that of good 2), and that demand for good 1 is less price elastic.28 The reason

is that a marginal increase in the quantity sold of good 1 causes a larger quantity-weighted

change in price in this case. If the demand curves are also log concave, bidder surplus for

each good is a convex function of the quantity sold (see Section 3.1) so larger changes in the

allocation also increase expected bidder surplus. So:

Proposition 2 The Bidder Allocation Effect is positive (negative) if both demand curves are

log concave (log convex),29 good 1’s expected price elasticity of demand is smaller (larger) in

absolute value than good 2’s and the relative marginal cost of good 1 is positive (negative) at

the quantities sold in the SSA.30

We will see that Proposition 2 helps us understand why the estimated Bidder Allocation

Effect is positive in the case of combining the auctions for 28-day and 91-day Mexican

Treasury bonds (see Section 7).

Many frequently used demand curves are log concave (see Section 3.1). Moreover, if the

demand curves are log concave, then if one of the other two conditions required for the

Bidder Allocation Effect to be positive holds, it is more likely that the other holds. This

is because if each demand curve is log concave, the absolute value of its price elasticity is

decreasing in its quantity. And so, if good 1 is less price elastic than good 2 at the SSA

allocation, the quantity sold of good 1 in the SSA is typically relatively large. In this case, the

relative marginal cost of good 1 is typically positive, because it is increasing in the quantity

sold of good 1. On the other hand, it seems less likely that the two conditions required for

the Bidder Allocation Effect to be negative when demand is log convex would both hold.

Propositions 1 and 2 provide conditions under which we can determine the effect of switching

to the efficient auction on expected bidder surplus.

Corollary 1 The efficient auction increases (decreases) expected bidder surplus relative to

the SSA if both demand curves are log concave (log convex), good 1’s expected price elasticity

28It is of course also sufficient that both a larger quantity is sold of good 1 than of good 2 and the inverse
demand curve for good 1 is steeper.

29As for Proposition 1, it is sufficient that this condition holds only for the range of feasible prices and
shocks, that is ∀{(pj , θj) : dj(pj , θj) ∈ [qj , q̄j ]}, j = {1, 2}.

30The inequality is strict if the efficient auction strictly increases the expected quantity sold of good 1
and one of the three stated conditions holds strictly.
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of demand is smaller (larger) in absolute value than good 2’s, and the relative marginal cost

of good 1 is positive (negative) at the quantities sold in the SSA.

3.3 Market-specific bidder surplus

The impact of the efficient auction on the expected surplus of bidders for good j ∈ {1, 2}
can be decomposed into good-specific Bidder Uncertainty and Allocation Effects. By the

labelling of the two goods, the good-specific Bidder Allocation Effect is positive (negative)

for good 1 (good 2), and the conditions for the good-specific Bidder Uncertainty Effect are

a natural corollary to Proposition 1 (see Appendix C).

4 Auctioneer surplus

Auctioneer surplus is the difference between the total revenue raised in the auction and

the auctioneer’s total cost of producing the goods. The efficient auction increases expected

surplus for at least one side of the market. If it reduces expected bidder surplus—as deter-

mined by the conditions in Section 3—it therefore increases expected auctioneer surplus. In

this section, I provide additional conditions which determine the efficient auction’s impact

on expected auctioneer surplus. (Analogously, the efficient auction must increase expected

bidder surplus if it reduces expected auctioneer surplus.)

Measuring the impact of the efficient auction on the auctioneer is more complicated than

for the bidders for two reasons. First, the auctioneer’s marginal cost of each good may be

strictly below its auction price because the total supply is fixed. This would create strictly

positive surplus on the margin for the auctioneer, whereas the marginal winning bidder is

always indifferent between winning and losing, paying an auction price equal to his own bid.

This is relevant even when the auctioneer has independent marginal costs of production, in

which case the difference in auctioneer surplus between the efficient auction and SSA can be

measured conventionally by considering the two goods separately. This is illustrated for a

realisation of shocks for which qE1 (θ) > qS1 (and correspondingly qE2 (θ) < qS2 ), in Figure 2 by

(Area Q− Area P +Area R− Area S).

Second, with more general cost functions, the two goods cannot be analysed separately,

because the marginal cost of producing one good is dependent on the quantity produced of

the other.31

31In Section 6.2, I show that auctioneer surplus can be analysed identically to bidder surplus in the case
that there are both independent marginal costs (so that the two goods can be analysed separately) and
variable total supply (so that the auctioneer’s marginal cost for each good equals its auction price).
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Figure 2: Conventional measure of auctioneer surplus with independent marginal costs
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Note: If the auctioneer’s costs of producing the two goods are independent, the difference in auctioneer
surplus between selling qE1 (θ) units of good 1 (and correspondingly qE2 (θ) units of good 2) and selling qS1
units of good 1 (and correspondingly qS2 units of good 2), given the realisation of shocks θ, is (Area Q −
Area P +Area R−Area S).

To address both of these issues, it is therefore helpful to decompose auctioneer surplus

differently from bidder surplus in a way which isolates changes in the price level from changes

in the relative price structure of the goods. The auctioneer’s total revenue, p1(q1, θ1)q1 +

p2(1−q1, θ2)(1−q1), consists of the revenue that would be generated if she sold the entire unit

of a “reference good” at its auction price (and none of the other good) and the additional

revenue resulting from a part of the unit being reallocated to the other good. Measured with

reference to good 2, the “reference revenue” is p2(1 − q1, θ2) and the “relative revenue” is

p̃1(q1,θ)q1.

We can correspondingly decompose total cost, which is measured by the sum of the auction-

eer’s “reference cost” of producing the entire unit of good 2, C(0, 1), and her “relative cost”

of good 1, the area under her relative marginal cost curve,
∫ q1
0

M̃C1(q)dq.

First, the auctioneer’s “reference surplus”—the difference between her reference revenue

and reference cost—is measured by (p2(1− q1, θ2)− C(0, 1)). Given shocks θ for which

qE1 (θ) > qS1 , the difference in reference surplus between the efficient auction and SSA is

measured by Area U in Figure 3.
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Figure 3: Auctioneer surplus measured with reference to good 2
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Note: The Auctioneer Relative Price Effect with reference to good 2 is the expected difference in relative
surplus between the efficient auction and the SSA, that is, the expected size of Area T . The Auctioneer
Price Level Effect with reference to good 2 is the expected difference in reference surplus between the efficient
auction and the SSA, that is, the expected size of Area U .

Second, as for bidder surplus, the auctioneer’s “relative surplus”—the difference between

her relative revenue and relative cost—can be expressed as a function of quantities. The

auctioneer’s relative cost is measured by the area under the relative marginal cost curve

and relative revenue is measured accordingly. That is, the auctioneer’s relative marginal

revenue curve is given by M̃R1(q1) = ∂(M̃C1(q1)q1)
∂q1

, which is the change in relative revenue

due to a marginal increase in the quantity of good 1 (and corresponding reduction in good

2) if the relative price is set equal to the relative marginal cost. The auctioneer’s relative

revenue is the area under this curve, up to the quantity allocated of q1, plus an adjustment,

(p̃1(q1,θ) − M̃C1(q1))q1, which reflects the difference between the relative price and the

auctioneer’s relative marginal cost.

And so her relative surplus is equal to

p̃1(q1,θ)q1 −
∫ q1

0

M̃C1(q)dq =

∫ q1

0

(
M̃R1(q)− M̃C1(q)

)
dq1 +

[
p̃1(q1,θ)− M̃C1(q1)

]
q1

Given shocks θ for which qE1 (θ) > qS1 , the difference in relative surplus between the efficient

auction and SSA is measured by the sum of Area T in Figure 3 and the adjustment (θ2−θ1)q
S
1 .
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The adjustment is zero in the efficient auction and zero in expectation in the SSA, and so is

irrelevant to the difference in expected surplus between sales mechanisms.

Equivalently, we can decompose total revenue and total cost with reference to good 1 to

define the reference and relative surpluses accordingly.32

I use these measures to decompose the difference in expected total auctioneer surplus be-

tween the efficient auction and SSA into two effects, the Auctioneer Price Level Effect and

the Auctioneer Relative Price Effect, which respectively measure the auctioneer’s reference

surplus and relative surplus with reference to good j = {1, 2}:

(Auctioneer Price Level Effect)j = E
[
pj(q

E
j (θ), θj)− pj(q

S
j , θj)

]
and (Auctioneer Relative Price Effect)j = E

[∫ qEk (θ)

qSk

(
M̃Rk(qk)− M̃Ck(qk)

)
dqk

]

where k ̸= j, k ∈ {1, 2}.

Lemma 2 The difference in expected auctioneer surplus between the efficient auction and

SSA, E
[
TAS(qE1 (θ),θ)− TAS(qS1 ,θ)

]
, equals the sum of the Auctioneer Price Level Effect

and the Auctioneer Relative Price Effect, where the decomposition is made with reference to

either good.

These effects each relate to properties of the bidders’ demand curves and the auctioneer’s

costs of production.

4.1 Auctioneer Price Level Effect

The Auctioneer Price Level Effect captures the impact of the efficient auction on expected

auctioneer surplus through its impact on the price level, measured by the auction price of

the reference good. Both the uncertainty in the quantities sold in the efficient auction and

the difference in the expected quantities sold between mechanisms, are relevant.

If the demand curve of the reference good is convex (concave), uncertainty in the quantities

sold increases (reduces) its expected auction price, increasing (reducing) expected revenue

for the auctioneer and therefore expected auctioneer surplus.

32See Appendix D for the relationship between the areas in Figures 2 and 3, and for an illustration of the
relative surplus and reference surplus with reference to good 1.
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Moreover, by the labelling of the two goods, the expected quantity sold of good 2 (good 1)

is smaller (larger) in the efficient auction than the SSA, increasing (reducing) the reference

good’s expected auction price, i.e. the price level, when measured with reference to good 2

(good 1).

Proposition 3 The Auctioneer Price Level Effect with reference to good 2 (good 1) is posi-

tive (negative) if the demand for good 2 (good 1) is convex (concave).33

4.2 Auctioneer Relative Price Effect

The Auctioneer Relative Price Effect captures the impact of the variation in the relative

price structure caused by the efficient auction on the auctioneer’s expected surplus.34

The efficient auction chooses an allocation at which, given the shocks, the relative price of

good 1 equals its relative marginal cost. In the same way that the marginal winning bidder is

indifferent between winning and losing, the auctioneer is indifferent on the margin between

additional units of the two goods. Moreover, the SSA maximises expected welfare by setting

the expected relative price equal to the relative marginal cost. The deviations of the relative

price from relative marginal cost in the SSA therefore net out in expectation – the impact

of the efficient auction can be measured as if the relative prices in the SSA and the efficient

auction were set equal to the relative marginal cost of the quantities sold in the SSA and

the relative marginal cost of the quantities sold in the efficient auction, respectively.

Because the efficient auction sets a relative price for good 1 equal to its relative marginal

cost, which is an increasing function, more of good 1 is sold in the efficient auction when its

relative price is higher. There are two implications of this.

First, uncertainty in the relative price has an effect on the auctioneer which is analogous

to the Bidder Uncertainty Effect, with the auctioneer’s inverse relative marginal cost curve,

m̃c1(p̃1), corresponding to the bidders’ demand curve, d1(p1). That is, the auctioneer ben-

efits from a mean-preserving spread in the relative price, and therefore also benefits if the

randomness increases the average relative price, i.e. if the inverse relative marginal cost

33Naturally, it is sufficient that the condition holds only for the range of feasible prices and shocks, that
is ∀{(pj , θj) : dj(pj , θj) ∈ [qj , q̄j ]}, j ∈ {1, 2}.
The inequality is strict if the efficient auction strictly increases the expected quantity sold of good 1 relative

to the SSA and the condition on the convexity of demand holds strictly.
34The relative prices of the goods also vary in the SSA, as the price of each good reacts one-for-one to

the shock to demand for that good. Because the quantities sold in the SSA are fixed, this variation has no
effect on expected auctioneer surplus.

18



curve is concave. It is only if the inverse relative marginal cost curve is sufficiently convex

(specifically, if it is log convex) that the uncertainty causes the average relative price to fall

so far that the auctioneer loses from the uncertainty in the relative price.

The second implication is that ceteris paribus the auctioneer prefers a higher average relative

price. So the larger (smaller) expected quantity sold of good 1 (good 2) in the efficient auction

relative to the SSA is associated with a higher (lower) relative marginal cost of good 1 (good

2), increasing (reducing) the auctioneer’s relative surplus with reference to good 1 (good 2).

Proposition 4 The Auctioneer Relative Price Effect with reference to good 2 (good 1) is

positive (negative) if the inverse relative marginal cost curve of good 1 (good 2) is log concave

(log convex).35

A simple example of a positive Auctioneer Relative Price Effect with reference to good 2

is when the auctioneer’s marginal costs are independent, and the slopes of the two inverse

marginal cost curves are log concave.36 As discussed in Section 3.1, many commonly used

distributions have log concave densities, including uniform, normal, logistic, extreme value,

and exponential, which correspond to log concave slopes if the inverse marginal cost curves

are viewed as distribution functions.

Propositions 3 and 4 provide conditions under which we can determine the effect of switching

to the efficient auction on expected auctioneer surplus.

Corollary 2 The efficient auction increases (decreases) expected auctioneer surplus relative

to the SSA if the inverse relative marginal cost curve of good 1 (good 2) is log concave (log

convex) and the demand for good 2 (good 1) is convex (concave).

5 Special cases

I first show that the results are particularly clean in the case in which the two goods are

symmetric: the impact of the efficient auction on expected bidder and auctioneer surpluses

35The effect is strictly positive (negative) if the relative marginal cost curve is strictly log concave (log
convex).
It is of course sufficient that the respective conditions hold only for the range of feasible quantities sold,

that is ∀q1 ∈ [q1, q̄1] where q2 = 1− q1.
36With this property, the auctioneer’s supply of each good becomes more elastic as the quantity increases.

So uncertainty causes the relative price of good 1 to rise disproportionately at larger quantities sold of good
1. Moreover, the larger expected quantity sold of good 1 in the efficient auction increases the average relative
price of good 1. So both implications of the fact that the relative price equals the relative marginal cost of
good 1 in the efficient auction are positive. See Appendix E for details.
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depends on whether the demand curves are either concave (and therefore log concave), log

concave but convex, or log convex (and therefore convex). I then show that these results

also largely extend to asymmetric goods when the demand curves have standard functional

forms. Finally, I discuss the case in which the auctioneer’s marginal cost of one good relative

to another is constant. This case will be important for our empirical analysis in Section 7.

5.1 The symmetric case

Suppose the expected inverse demand curves are identical, i.e. E [D1(q, θ1)] = E [D2(q, θ2)]

∀q = [0, 1]; the shocks are exchangeable, i.e. the distribution of (θ1, θ2) is the same as

the distribution of (θ2, θ1);
37 and the auctioneer’s marginal cost curves are identical, i.e.

∂C(x,y)
∂q1

= ∂C(y,x)
∂q2

∀x, y ∈ [0, 1].

This model, which I refer to as the symmetric case, is instructive. We can split the space

of possible demand curves into those for which the bidders and auctioneer share the welfare

gain of the efficient auction (that is, both expected bidder and auctioneer surplus increase),

and the case in which only one side of the market benefits in expectation.

The Bidder Allocation Effect is zero because the expected quantities sold of the two goods

are equal both in the SSA and in the efficient auction in the symmetric case (i.e. qS1 =

E
[
qE1 (θ)

]
= 1

2
). So the impact of the efficient auction on expected bidder surplus only

depends on the benefit to the bidders of uncertainty. It follows immediately from Proposition

1 that if the demand curves are log concave (log convex), the Bidder Uncertainty Effect is

positive (negative) so that the efficient auction increases (decreases) expected bidder surplus.

The effects for the auctioneer are also particularly clean because we can show that the

auctioneer unambiguously benefits from the impact of the efficient auction on the relative

prices. Positive and negative deviations of the quantity sold of an arbitrary good from its

expected value impact the good’s relative price symmetrically. The efficient auction chooses

an allocation for which the relative price is equal to the auctioneer’s relative marginal cost,

given the shocks. Since relative marginal cost is an increasing function, the auctioneer sells

more of the good when its relative price is higher and ceteris paribus prefers selling the good

at a higher relative price. So the Auctioneer Relative Price Effect is positive.38

37A special case of this is that the shocks are independent and identically distributed.
38This does not follow from Proposition 4. In this case, the inverse relative marginal cost curve may

be neither log convex nor log concave across the entire range of feasible quantities sold (and, given the
symmetry, it cannot be log convex across the entire range).
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Table 1: Impact of the efficient auction relative to the SSA in the symmetric case

Demand curves (bidder preferences)
Log concave & concave Log concave & convex Log convex

Expected bidder surplus Increases Increases Decreases
Expected auctioneer surplus Depends on degree of concavity∗ Increases Increases

∗The efficient auction increases expected auctioneer surplus relative to the SSA if the demand curves are
not too concave, and otherwise reduces it.

The sign of the Auctioneer Price Level Effect is determined by the conditions of Proposition

3. If the demand curves are convex, the efficient auction therefore unambiguously increases

expected auctioneer surplus. But if the demand curves are concave, the auctioneer loses from

the efficient auction’s impact on the price level but gains from its effect on relative prices.

The efficient auction therefore increases expected auctioneer surplus relative to the SSA if

the demand curves are either convex or not too concave, and otherwise reduces it.

Proposition 5, summarised in Table 1, partitions the space of demand curves into the sub-

cases in which either only one side of the market benefits in expectation or the bidders and

auctioneer share the welfare gain of the efficient auction.

Proposition 5 In the symmetric case,

(i) the efficient auction increases (decreases) expected bidder surplus relative to the SSA

if both demand curves are log concave (log convex).

(ii) the efficient auction increases expected auctioneer surplus relative to the SSA if the

demand curves are convex.

In the case in which the auctioneer’s marginal cost of production is independent of the

quantities produced of the other goods, ∂2C(q1,...,qJ )
∂qj∂qk

= 0 ∀j, k ∈ J, j ̸= k, this result extends

to J > 2 goods.

Corollary 3 In the symmetric case in which ∂2C(q1,...,qJ )
∂qj∂qk

= 0 ∀j, k ∈ J, j ̸= k,

(i) the efficient auction increases (decreases) expected bidder surplus relative to the SSA

if the demand curves are log concave (log convex).

(ii) the efficient auction increases expected auctioneer surplus relative to the SSA if the

demand curves are convex.
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Of course, these results continue to hold if the goods are close to symmetric. In the case of

the Mexican Treasury auctions analysed in Section 7, each pair of bonds is close to symmetric

so the Bidder Allocation Effect is small. The Bidder Uncertainty Effect therefore explains

the PMA’s positive impact on expected bidder surplus, and the Auctioneer Price Level Effect

explains the PMA’s positive impact on expected auctioneer surplus in the Mexican case.

5.2 Standard functional forms

I illustrate the results for three commonly used demand curves—linear, log linear and con-

stant elasticity—and more generally for demand curves that are derived from the generalised

Pareto distribution (GPD). The results suggest that the classification developed in Table 1

for the symmetric case is likely to be a good approximation in asymmetric cases.

Linear If the demand curves for goods 1 and 2 are linear, the Bidder Uncertainty Effect is

positive and the Auctioneer Price Level Effect (with reference to either good) is zero. If the

auctioneer’s relative marginal cost curve with reference to good 2 is also linear, the Auctioneer

Relative Price Effect with reference to good 2 is positive and, because the expected quantity

sold of each good is the same in the two sales mechanisms, the Bidder Allocation Effect

is zero. So in this case the efficient auction increases both expected bidder and auctioneer

surplus relative to the SSA, as we anticipate from the symmetric case because the demand

curves are log concave (so the bidders gain) but not strictly concave (so the auctioneer also

unambiguously gains). The impacts of the PMA on expected bidder surplus and expected

auctioneer surplus are proportional to the variance of the difference of the demand shocks,

i.e. V ar(θ1 − θ2).
39

Log linear With log linear demand, i.e. Dj(qj, θj) = µj −σjlog (qj)+ θj, where σj > 0, for

j = {1, 2}, uncertainty in the quantities sold has no impact on expected bidder surplus, so

the Bidder Uncertainty Effect is zero. The impact of an increase in good j on the payment

of inframarginal winners for good j is constant in its quantity sold, equal to σj. If σ1 ≥ (≤
) σ2, the Bidder Allocation Effect is positive (negative), and the efficient auction increases

39The linear model allows for direct analogy to the result in consumer theory that the surplus of a
consumer with linear demand is determined by the mean and variance of the market price. In our setting,
bidders’ values for a good, and its auction price at a given allocation, change one-for-one with the common
taste shock for that good. So expected bidder surplus for good j under mechanism m can be expressed in
terms of the mean and variance of the auction price less the shock to good j, (pmj − θj). Conditional on the
expected ‘adjusted’ price, expected bidder surplus is increasing in its variance.
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(reduces) expected bidder surplus relative to the SSA.40 The knife-edge with asymmetric

goods between the cases in which σ1 > σ2 (the bidders gain) and σ1 < σ2 (the bidders

lose) corresponds exactly to the knife-edge result of the bidders’ indifference to the efficient

auction in the symmetric case.

On the auctioneer side, the Auctioneer Price Level Effect (with reference to either good)

is positive due to the log linear demand. If the auctioneer’s inverse relative marginal cost

curve, m̃c1(p̃1), is log concave, including log linear, the Auctioneer Relative Price Effect with

reference to good 2 is positive, so that the efficient auction increases expected auctioneer

surplus relative to the SSA. And if the inverse relative marginal cost curve is not too log

convex, the positive Auctioneer Price Level Effect outweighs the negative Auctioneer Relative

Price Effect so that the auctioneer still benefits. The results for the auctioneer therefore

correspond to the symmetric case if the auctioneer’s marginal cost curve is either log concave

or not too log convex.

Constant elasticity If the demand curves have constant expected elasticities, equal to

−εj for j = {1, 2}, the demands are log convex so the Bidder Uncertainty Effect is negative.

The Bidder Allocation Effect is also negative if M̃C1(q
S
1 ) ≤ 0 and demand for good 1 is more

elastic than for good 2, that is, ε1 ≥ ε2. In this case, the efficient auction reduces expected

bidder surplus and consequently must increase expected auctioneer surplus relative to the

SSA. So under these conditions we have the same result as in the symmetric case that only

the auctioneer benefits from the efficient auction.

The demand curves are convex, so the Auctioneer Price Level Effect with reference to either

good is positive. So, exactly as in the log linear case, the efficient auction increases expected

auctioneer surplus if the auctioneer’s inverse relative marginal cost curve is not too log

convex, again corresponding to the symmetric case.

Generalised Pareto distribution Appendix F analyses the GPD class of demand curves

more generally. It also suggests that the results of the symmetric case are likely to remain a

good approximation in asymmetric cases.

40If σ1 > σ2, the demand for good 1 is relatively inelastic, so good 1’s auction price falls by more than
good 2’s rises when an incremental unit is reallocated from good 2 to good 1, causing a greater change
in bidder surplus for good 1. The efficient auction increases the expected quantity sold of the relatively
profitable good.
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5.3 Constant relative marginal costs

An important case is when the auctioneer faces a constant marginal cost of increasing the

quantity produced of good 1 while correspondingly reducing the quantity produced of good

2, i.e. M̃C1(q1) is constant. This arises if, for example, the marginal cost of each good is

constant, or if the goods are interchangeable to produce, i.e. C(x, 1− x) = C(1− x, x) ∀x ∈
[0, 1].

It follows automatically from the main analysis that the results of Propositions 1, 2 and 3

continue to hold exactly as before. Moreover it follows directly from its definition that the

Auctioneer Relative Price Effect is zero. The reason is that it captures the impact on the

auctioneer of variation in the relative price, but in the efficient auction the relative price

equals the auctioneer’s relative marginal cost so is always constant.

Proposition 6 If the auctioneer’s relative marginal cost is constant,

(i) the efficient auction increases (decreases) expected bidder surplus relative to the SSA

under the same conditions as in Corollary 1.

(ii) the efficient auction increases (decreases) expected auctioneer surplus relative to the

SSA if the demand for good 2 (good 1) is convex (concave).41

The empirical analysis in Section 7 is an example of this case.

6 Extensions

6.1 Profit-maximising auctions

The main analysis is most relevant to auctions held by public sector institutions, including

the application studied in Section 7, in which efficiency is a key objective. In other contexts,

it is more reasonable to assume that the auctioneer aims to maximise auctioneer surplus.

A PMA which maximises ex post auctioneer surplus is the “profit-maximising auction”. The

relevant comparator is the SSA in which the fixed quantities sold of the two goods are chosen

to maximise expected auctioneer surplus. As in the main model, I assume the auctioneer

always sells the entire unit.

41With constant relative marginal costs, it follows from the labelling of the two goods that the demand
for good 1 is more convex than the demand for good 2 (see Appendix B).
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The profit-maximising auction naturally increases expected auctioneer surplus. By defining

the Bidder Uncertainty Effect and Bidder Allocation Effect in an analogous way to that in

Section 3, it is straightforward to see that the Bidder Uncertainty Effect is positive (negative)

if the demand curves are log concave (log convex), as in the main analysis. The objective

is irrelevant to whether the bidders gain or lose as a group from the uncertainty in the

quantities sold in the PMA.

I relabel the goods so that the profit-maximising auction increases the expected quantity

sold of good 1.42 The Bidder Allocation Effect is therefore positive (negative) if good 1 is

relatively more (less) profitable on the margin than good 2 for the bidders. This is the case

if reallocating a marginal unit to good 1 from good 2 increases the bidders’ gross value by

more (less) than it increases the total payment they make to the auctioneer, i.e. auctioneer

revenue. But the relevant SSA equates the auctioneer’s expected marginal surplus across the

two goods: the expected marginal revenue of good 1 relative to good 2 equals the auctioneer’s

relative marginal cost. So the Bidder Allocation Effect is positive (negative) if the difference

in the expected values of the marginal winners is greater (less) than the auctioneer’s relative

marginal cost.

Proposition 7 Relative to the SSA in which the fixed shares sold of the two goods are chosen

to maximise expected auctioneer surplus,

(i) the profit-maximising auction increases expected auctioneer surplus.

(ii) the profit-maximising auction increases (decreases) expected bidder surplus if both de-

mand curves are log concave (log convex),43 and the expected inverse demand for good

1 relative to good 2 is greater (less) than the relative marginal cost of good 1 at the

quantities sold in the SSA.44

It of course follows that, in the symmetric case, the conditions under which the profit-

maximising auction increases (decreases) expected bidder surplus are the same as those

under which the PMA increases (decreases) expected bidder surplus in the main model

(described in Table 1).45

42A sufficient condition for this labelling is that marginal revenue for good 1 relative to good 2 is weakly
more convex than the relative marginal cost of good 1 (see Appendix B).

43Naturally, it is sufficient that the condition holds only for the range of feasible prices and shocks, that
is ∀{(pj , θj) : sj(pj , θj) ∈ [qj , q̄j ]}, j = {1, 2}.

44As in Proposition 1, it is sufficient that the condition holds only for the range of feasible prices and
shocks, that is ∀{(pj , θj) : dj(pj , θj) ∈ [qj , q̄j ]}, j = {1, 2}. The effect is strictly positive (negative) if at least
one demand curve is strictly log concave (log convex).

45This is also the case for any objective function that treats the two goods symmetrically because the
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6.2 Variable total supply

The total supply available at auction is often fixed in practice.46 However, a total supply

which varies in response to the strength of demand is another source of efficiency gains.

I compare the welfare effects of an efficient auction with variable supply to an SSA with fixed

quantities sold of the two goods, assuming that the goods are independent. The efficient

auction is equivalent to running two separate simultaneous auctions with variable supply.

This allows us to isolate the impact of the efficiency gains specifically arising from variable

supply.

In the SSA (with fixed supplies), the quantity sold of each good is fixed ex ante to maximise

expected welfare, and in the variable-supply efficient auction, the quantities sold of the

goods maximise welfare. And so, pj(q
S
j , θj) = Dj(q

S
j , θj),E

[
Dj(q

S
j , θj)

]
= E

[
∂C(qS1 ,q

S
2 )

∂qj

]
and

pj(q
E
j (θ), θj) = Dj(q

E
j (θ), θj) =

∂C(qE1 (θ),qE2 (θ))

∂qj
. I consider the symmetric case of independent

goods, that is, ∂2C(q1,...,qJ )
∂qj∂qk

= 0 ∀j, k ∈ J, j ̸= k, and variable supply.

In this case, the bidder and auctioneer sides of the market are analogous, and the impact

on their surpluses can each be decomposed into the effects of the efficient auction on the

uncertainty and expectation of the quantities sold. The gain to bidders from the uncertainty

in the efficient auction does not depend on the total quantity sold, and as in Proposition 1,

bidders benefit (lose) from the uncertainty of the quantities sold in the efficient auction if

the demand curves are log concave (log convex). Similarly, the auctioneer benefits (loses)

from this uncertainty if her inverse marginal cost curves are log concave (log convex).

The bidders and auctioneer both gain (lose) from an increase in the expected quantity sold

of each good. With variable supply, the efficient auction increases (reduces) the expected

quantity sold of each good relative to the SSA if the inverse demand curve for each good is

more (less) convex than the marginal cost curve.

objective is then irrelevant to whether bidders benefit from the uncertainty in the quantities sold in the
PMA. Fabra and Montero (2023) consider an objective function which is a weighted sum of welfare and
revenue for the linear case.

46In the multi-product case, the central bank of Mexico permits a fixed nominal value of securities to be
traded in its debt exchange auctions and the total quantity of energy procured in renewable energy auctions
is often fixed (Szabó et al., 2020). The quantity sold in separate, simultaneous auctions of primary govern-
ment debt is also typically fixed, including in Mexico’s (see Section 7).
Nonetheless, there are exceptions. The quantity of liquidity issued in the Bank of England’s ILTR opera-

tions was fixed until 2014, and now varies in response to the bids received and the Bank’s privately known
preferences. In the Federal Reserve’s quantitative easing auctions, the total quantity sold was within a
prespecified range.
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Proposition 8 In the symmetric case of independent goods and variable supply,

(i) the efficient auction increases (decreases) expected bidder surplus relative to the SSA

if the inverse demand curve for each good is more (less) convex than the marginal cost

curve, that is,
∂2Dj(qj ,θj)

∂q2j
≥ (≤)

∂2MCj(qj)

∂q2j
, j = {1, 2}, and the demand curves are log

concave (log convex).

(ii) the efficient auction increases (decreases) expected auctioneer surplus relative to the

SSA if the inverse demand curve for each good is more (less) convex than the marginal

cost curve and the inverse marginal cost curves are log concave (log convex).47,48

6.3 Alternative mechanism: reference price auction

The reference price auction (RPA) is a standard mechanism which only partially accommo-

dates the imperfect substitutability of the two goods. Good 1 is assigned a fixed reference

price (and the reference price of good 2 is normalised to zero). Within a multi-product auc-

tion, the total quantity to be sold is fixed at one unit and the acceptance priority of bids is

determined by their differences with their respective reference prices. The auction clearing

price of each good equals the marginal losing bid for that good.

The RPA is used in both financial and energy markets. The Bank of England and Federal

Reserve used RPAs for their quantitative easing purchase schemes (Bank of England, 2022;

Song and Zhu, 2018).49 Both Germany and the UK use RPAs to allocate renewable energy

contracts (Fabra and Montero, 2023).

The RPA fixes the relative price of the two goods. If the auctioneer’s marginal cost of

producing good 1 relative to good 2, M̃C1(q1), is constant, the optimal relative price is

constant so the RPA is identical to the efficient auction. With more general auctioneer

preferences, the RPA is inefficient.

In the symmetric case, the optimal reference price for good 1 is zero, and the RPA is equiv-

alent to running one auction in which bids for the two goods are treated interchangeably.

For each good, the expected quantity sold is equal across the two mechanisms and only the

impact of uncertainty is relevant to their distributional effects.

47In the case in which the auctioneer’s relative marginal cost is constant (described in Section 5.3), the
auctioneer is indifferent between the two designs.

48The effects are each strictly positive (negative) if at least one of their corresponding conditions holds
strictly.

49Armantier, Holt and Plott (2013) report that the US Treasury also considered using an RPA to purchase
“toxic assets” (namely mortgage-backed securities) in the $700 billion Troubled Asset Relief Program (TARP)
in 2008.
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Table 2: Impact of the efficient auction relative to the RPA in the symmetric case

Demand curves (bidder preferences)
Log concave & concave Log concave & convex Log convex

Expected bidder surplus Decreases Decreases Increases
Expected auctioneer surplus Increases Increases Ambiguous

The RPA creates more uncertainty in the quantities sold than the efficient auction. This is

because the quantities sold of the two goods in the RPA adjust to the relative strength of

demand, characterised by the bids, but not to the auctioneer’s increasing relative marginal

cost. So the conditions under which the bidders benefit from the efficient auction relative to

the RPA are opposite to the conditions under which they benefit relative to the SSA. The

efficient auction increases (decreases) expected bidder surplus if the demand curves are log

convex (log concave), as the bidders gain (lose) from the reduced uncertainty.

Because the efficient auction increases the sum of bidder and auctioneer surplus, the efficient

auction must increase expected auctioneer surplus if the demand curves are log concave.

Proposition 9, summarised in Table 2, partitions the space of demand curves into the subcases

in which one or both sides of the market benefit in expectation from the efficient auction

relative to the RPA.

Proposition 9 In the symmetric case,

(i) the efficient auction increases (decreases) expected bidder surplus relative to the RPA

if the demand curves are log convex (log concave).

(ii) the efficient auction increases expected auctioneer surplus relative to the RPA if the

demand curves are log concave and has an ambiguous impact if the demand curves are

log convex.50

7 Primary market for Mexican government debt

Primary auctions are currently held separately and simultaneously for different Mexican

Treasury bonds. I estimate the effects of instead using efficient multi-product auctions to

jointly allocate bonds of different maturities.51

50In the case in which the auctioneer’s relative marginal cost is constant (described in Section 5.3),
expected bidder surplus and expected auctioneer surplus are each identical in the efficient auction and RPA.

51This is a particularly natural alternative as Banco de México currently runs other multi-product debt-
exchange auctions. The quantity traded of each bond in “subastas de vasos comunicantes”, as well as in
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To recover bidders’ and the government’s preferences over the bonds, I assume bidders’

bids correspond to their valuations and use a revealed preference approach to identify the

government’s preferences from their issuance choices. Equipped with these preferences, I

can estimate the differences in average bidder and auctioneer surpluses between the existing

mechanism to allocate bonds and a counterfactual Product-Mix Auction.

7.1 Institutional details and data

I analyse the primary market for Mexican Federal Treasury Certificates (CETES). These

are zero-coupon bonds with terms to maturity of typically 28, 91, 182 and 364 days, which

were the main source of federal government financing in 1978 – 2017 and represented 25% of

Mexican government debt in 2001 – 2017 (Cole et al., 2022). They are issued via separate

sealed-bid uniform-price auctions, which are held simultaneously on a weekly schedule. The

supply issuance of each bond is fixed so the auctions on any given day can be characterised

as SSAs.

I collect bid-level data (including both winning and losing bids and bidder identifiers) for

every auction from October 2017—the date on which the current uniform-price protocol was

introduced—to August 2021. This constitutes 205 observations of the 28-, 91- and 182-day

bond auctions, and 98 of the 364-day bond auctions.52 To my knowledge, this is the first

analysis of this period in which the uniform-price protocol was used.53

Bids Each bid for a particular bond specifies the quantity that the bidder demands and

the discount rate that they are willing to accept. Bidders can submit multiple bids with

minimum increments of one basis point and minimum quantity increments of 5,000 Mexican

pesos (MEX$). I convert the yields into bid prices so that bid functions (describing the

bidder’s bid as a function of the quantity demanded) are decreasing in quantity.

Descriptive statistics are provided in Table 3.

“permutas de valores gubernamentales” (conducted on behalf of the Mexican federal government), depends
on the bids submitted and the auctioneer’s supply preferences.

52Auctions of all maturities were held weekly, except auctions of 364-day bonds are held only monthly in
the period October 2017 – June 2020.

53A discriminatory-pricing rule was used from November 1995 to October 2017 and studied by Castel-
lanos and Oviedo (2008) and Cole et al. (2021). Umlauf (1993) studied a previous (1990) change from a
discriminatory- to a uniform-pricing rule.
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Table 3: Summary statistics of CETES primary auctions, 3 October 2017 – 31 August 2021

Maturity (days) 28 91 182 364

Number of auctions 205 205 205 98
Total quantity allocated (mean, million pesos) 6,305 10,205 12,283 10,587

(std. dev., million pesos) 1,640 2,498 1,492 2,978
Number of bidders (mean) 20.37 20.28 16.24 15.16

(std. dev.) 3.42 2.89 3.09 2.74
Number of bids (mean) 64.80 53.14 45.22 42.80

(std. dev.) 12.23 10.84 11.01 12.08
Discount rate (mean, percentage points) 6.52 6.55 6.43 5.65

(std. dev., percentage points) 1.52 1.51 1.49 1.45
Bid price (mean, pesos) 9.95 9.84 9.68 9.43

(std. dev., pesos) 0.01 0.04 0.07 0.14
Cover ratio (mean) 3.25 3.07 2.68 2.67

(std. dev.) 0.67 0.67 0.64 0.61
Quantity demanded by bidder (mean, % of total allocated) 15.95 15.14 16.49 17.63

(std. dev., % of total allocated) 18.06 17.77 16.88 17.08
Quantity allocated to winner (mean, % of total allocated) 6.94 7.23 9.28 9.64

(std. dev., % of total allocated) 9.69 12.35 12.32 12.84

Note: The cover ratio is the aggregate quantity demanded in an auction as a proportion of the total
issuance. Discount rates and bid prices are weighted by the quantities demanded at those prices by
bidders. The standard deviations of discount rate, bid price, quantity demanded by bidder and quantity
allocated to winner are across auctions and bidders.

Issuance For each bond, the issuance is fixed at a quantity which is announced typically

four days before the auction.54 Both the total issuance of CETES and the share issued of

each bond vary over time (Figure 4).

The federal government’s annual financing plan lays out its long-term debt portfolio optimi-

sation strategy (Gobierno de México, 2022). In the plan, CETES are grouped into two pairs

of bonds—28- and 91-day, and 182- and 364-day bonds—and the total issuance of each pair

of CETES is determined within an optimisation model, but the allocation within pair is not.

Motivated by this, my counterfactual analysis focuses on the optimal allocation within pair,

abstracting from the choice of the total issuance for the pair.

The government’s preferences between CETES are unobserved. In line with both the large

literature on sovereign debt portfolio optimisation (e.g. Missale and Blanchard, 1994; Green-

wood et al., 2015a, b) and the optimal portfolio models implemented in practice in Mexico

(Gobierno de México, 2022), as well as in, e.g., Canada (Bolder and Deeley, 2011), Sweden

54The auctions are typically held on Tuesdays and the amount to be issued of each bond is announced
on the last day of the previous working week.
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Figure 4: Issuance in CETES primary auctions, 3 October 2017 – 31 August 2021

(Bergstrom et al., 2002), Turkey (Balibek and Memis, 2012), and the UK (Pick and Anthony,

2006), I characterise the government’s objective by a tradeoff between minimising the costs

of issuance and maintaining a prudent risk profile.55 Loosely speaking, shorter-term bonds

are favourable from a financial perspective—bidders are willing to pay a higher price—but

are unfavourable from a risk perspective because shorter-term bonds need to be rolled over

more frequently and this occurs at uncertain interest rates.

Specifically, I assume the government’s total cost of issuing a bond is equal to its nominal

debt service charges (reflecting its financial cost) less its Macaulay duration (reflecting its

benefits in reducing rollover risk), weighted by an unobserved time-varying preference for

duration.56 For zero-coupon CETES, the nominal debt service charge is simply the bond’s

face value and its Macaulay duration is its term to maturity. The government’s surplus is

55I abstract from the possibility that the choice of issuance between CETES is determined by cash
management objectives—the IMF (2021) reports that active cash management by the Mexican government
through CETES issuance was limited during the sample period.

56Allen, Kastl and Wittwer (2022) use a similar specification to approximate the difference in the Bank
of Canada’s surplus from issuing Treasury bills of different maturities. They approximate the issuance cost
of one bond relative to another by its initial relative price. More generally, alternative metrics of the cost
and risks of issuance may be relevant to the choice over issuance of Treasury bills (see, e.g., Gobierno de
México (2022) and Bolder and Deeley (2011)).
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the difference between total revenue and total cost, and so on date t is

ASt(q1t, q2t) =
∑

j={1,2}

[
pjt(qjt)− vj + αt

tj
364

]
qjt (1)

where, for bond j ∈ {1, 2} on date t, qjt is its quantity issued, pjt(qjt) is its auction price, vj

is its face value, and tj is its term in days, and αt is an unknown preference parameter.

This is a simplified version of the preference specification used to allocate bonds in Banco

de México’s debt-exchange auctions (“subastas de vasos comunicantes”) in which multiple

securities, including CETES, are exchanged within a multi-product auction. My interpre-

tation of conversations with practitioners at Banco de México is that this is a reasonable

approximation for the government’s preferences between CETES.

7.2 Method

I group the bonds into two pairs: 28- and 91-day CETES, and 182- and 364-day CETES.

For each pair, I compare the bidder and government surpluses under the actual mechanism

to a counterfactual Product-Mix Auction (PMA) which jointly allocates the two bonds to

maximise welfare (conventionally defined by the sum of total bidder and government surplus)

given the same fixed total issuance.57 The share issued of each of the two bonds is fixed in

advance in the original mechanism but varies in the PMA. Surpluses are averaged over the

set of dates T on which both bonds are auctioned. The following method refers to one pair

of bonds, labelled bonds 1 and 2.

Estimating bidder preferences I assume that the submitted bids correspond to bidders’

marginal valuations for the bonds, that bidders do not view the bonds as substitutes.58 Each

bidder submits a bid function, specifying the price they are willing to pay as a function of

the quantity they demand. The bid function of bidder i for bond j in auction t is denoted

57In principle, we could run a counterfactual auction which jointly allocates all four bonds to maximise
welfare. I focus on jointly allocating the bonds within pairs, as they are more plausibly substitutable so that
Equation 1 is a more reasonable approximation—indeed, the government’s annual financing plan allocates
the bonds across but not within the pairs (Gobierno de México, 2022).

58Bidding according to their valuations is optimal if bidders are price takers so that they cannot exert
unilateral market power by submitting bids below their valuations to push down the auction price. For the
28-day bond, for example, there are on average 20.4 bidders per auction, and the mean and standard deviation
of the allocations of winning bidders are 6.9% and 9.7% of the total issuance, respectively, suggesting that
this might be a reasonable approximation. Cole et al. (2022) also assume bidders behave competitively in
their analysis of auctions of CETES in the period in which a discriminatory pricing rule was used, which
precedes my sample period.
Allen, Kastl and Wittwer (2022) find that bills with 3-, 6-, and 12-month terms are weak substitutes for

the average bidder in Canadian Treasury auctions.
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bijt(qijt). I assume bidders are risk neutral so their surpluses are the differences between

their bids and the auction prices. Bidder i’s surplus for good j is the area between their bid

function and the auction price for the quantity that they win:∫ 1

0

I
(
bijt(qijt) ≥ pj(qjt)

)(
bijt(qijt)− pjt(qjt)

)
dqijt

where I(.) is the indicator function; qjt is the issuance of bond j ∈ {1, 2} on date t and

pj(qjt) is its auction price. Total bidder surplus on date t, BSt(q1t, q2t), is the sum of these

surpluses over goods and winning bidders, i.e.

BSt(q1t, q2t) =
∑

j={1,2}

∑
i∈Njt

∫ 1

0

I
(
bijt(qijt) ≥ pj(qjt)

)(
bijt(qijt)− pj(qjt)

)
dqijt (2)

where Njt is the set of bidders for bond j ∈ {1, 2} on date t ∈ {1, ..., T}.

Estimating government preferences The government’s (i.e. auctioneer’s) surplus on

date t is described by Equation 1. The preference parameters, αt ∀t ∈ T , are unobserved

and are calibrated to match the share of the total issuance which is allocated of bond 1, qS1t

(and corresponding of bond 2, qS2t = (1− qS1t)). The observed choices are shown in Figure 4.

The calibration method is based on revealed preference: I assume that the allocation (qS1t, q
S
2t),

which is fixed in advance of each auction, is chosen by the government to maximise expected

welfare, i.e. the expected sum of auctioneer and bidder surplus defined in Equations 1 and

2.59

In order to recover the preference parameters from the data, we must estimate the govern-

ment’s beliefs over the distribution of bids that will be submitted in auction t, given the

information, denoted It,D, available at the time of the decision.

These beliefs and a particular value of the parameter, αt, imply an optimal share to allocate

of bond 1, qS1t(αt), which is the share that maximises expected welfare over q1t ∈ [0, 1]. The

preference parameter, αt, is recovered by matching the observed share to the optimal one.

59My interpretation of conversations with staff at Banco de México is that the government’s objective
for the auctions is not only to ensure issuance is cost-effective, but also to ensure well-functioning markets
for the CETES, and that efficiency is an important objective. While positive weight might be placed on
both auctioneer surplus and efficiency, I simplify the main analysis by assuming efficiency, i.e. maximising
welfare, is the only objective. This allows for clear comparisons with the theoretical model. I also repeat the
exercise assuming the fixed shares maximise expected auctioneer surplus and compare the outcomes to the
multi-product auction that maximises auctioneer surplus (see Appendix G).
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To estimate the expected distribution of bids, I split the bid function of each potential bidder

into two components. Bidder i’s bid function for bond j in auction t, bijt(qijt), is the sum of

the secondary market price at the time of the auction, sjt, and a “residualised bid function”,

ϵijt(qijt), i.e. bijt(qijt) = sjt + ϵijt(qijt). The residualised bid function captures the bidder’s

idiosyncratic valuation for the bond as well as factors which impact the valuation of all

bidders which are not captured by the secondary market price. The expected bid function

of bidder i for bond j in auction t at the time of the issuance decision is therefore

E [bijt(qijt)|It,D] = E [sjt|It,D] +E [ϵijt(qijt)|It,D]

where ϵijt(qijt) is the difference between the bidder’s bid and the secondary market price, as

a function of the quantity he demands.

I estimate the two components of the bid functions separately. First, the expected secondary

market price on the day of auction t is estimated by the secondary market price on the day

of the decision, which is typically five days prior to the auction.60,61

Second, to estimate the auctioneer’s beliefs over the distribution of the residualised bids, I

apply the resampling method developed by Hortaçsu (2002), Kastl (2011) and Hortaçsu and

Kastl (2012). This approach is now standard in the empirical auction literature to estimate

bidders’ beliefs about the distribution of bids submitted by other bidders; I adapt it to

simulate the auctioneer’s beliefs.

Each bid function observed in the data represents one realisation of a bidder’s marginal

value function so the empirical distribution of residualised bids can be used to estimate the

population distribution of residualised bids that the auctioneer expects to face in auction t.

To estimate the distribution of residualised bids in auction t, I resample from the the set of

bid functions submitted within auction t − 1, which is the last auction observed before the

decision for auction t. Restricting the sample in this way avoids the bias that unobserved

heterogeneity across auctions would cause if we pooled the bid functions across auctions.

Moreover, the distribution of bid functions in the most recent auction will be most infor-

mative of the distribution in the next auction if there is a trend in the distribution over

60The decision is made the day before the pair of auctions is announced. At this point, the federal
government’s decision is communicated to Banco de México, which runs the auction.

61This is an approximation, which is equivalent to assuming that the secondary market price follows
a random walk. We expect that natural alternative forecasting techniques would produce similar results
because data is only available at a daily frequency and the forecast is just five days ahead. I use the
secondary yield provided by Valuación Operativa y Referencias de Mercado (Valmer) converted to price.
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time.62 Nonetheless, resampling bids from only one auction reduces the precision of the

results and we do require that the bidders’ valuation functions are identically distributed for

the estimator to be consistent.63

For each auction t and bond j ∈ {1, 2}, there are Njt potential bidders, each submitting

a bid function. I draw Njt bid functions observed in the data for bond j in auction t − 1

with replacement (with bids equal to zero for non-participating bidders). This simulates

one possible realisation of residualised bid functions, equal to the drawn bid functions less

the secondary market price on the day of auction t − 1. Repeating this resampling a large

number of times simulates the full distribution of residualised bids the government expects

to face for bond j in auction t.

The two estimated components—the estimated secondary market price and estimated dis-

tribution of residualised bids—provide an estimate of the government’s beliefs over the dis-

tribution of bids in auction t at the time of the decision over the share to allocate of each

bond. For any given αt, the estimated optimal share allocated of bond 1, qS1t, is the share

that maximises average welfare given the estimated distribution of bids. The parameter αt

is calibrated by matching the optimal share to the observed one.

Surpluses For each date t ∈ T , the counterfactual PMA selects the shares allocated to the

two bonds, (qE1t, q
E
2t), which maximise welfare given the bids submitted on date t and given

the calibrated αt. The differences in surpluses between this counterfactual and the actual

mechanism are calculated given the bids submitted on date t. Estimated government and

bidder surpluses in auction t, given an allocation (q1t, q2t), are the empirical counterparts to

Equations 1 and 2 and are denoted ÂSt(q1t, q2t) and B̂St(q1t, q2t).

Decomposition The Bidder Uncertainty Effect is estimated by

1

T

∑
t∈T

(
B̂St(q

E
1t, q

E
2t)− B̂St(q̄

E
1t, q̄

E
2t)
)

62The residualised bid functions of a bidder depend on his information set, which includes both inde-
pendent private signals and correlated signals which are not captured by the secondary market price. The
presence of correlated signals would imply within-auction correlation of residualised bid functions. If the
residualised bid functions were instead independent across bidders and their distribution was stable across
auctions, we could use the full set of bid functions observed in the sample period.

63Cassola, Hortaçsu and Kastl (2013) discuss the consistency of the estimator. In Appendix H, I use an
alternative resampling procedure, which relaxes this assumption.
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and the Bidder Allocation Effect by

1

T

∑
t∈T

(
B̂St(q̄

E
1t, q̄

E
2t)− B̂St(q

S
1t, q

S
2t)
)

where (q̄E1t, q̄
E
2t) = ( 1

T

∑
t∈T qE1t,

1
T

∑
t∈T qE2t) (see Section 3).

As in Section 5.3, the auctioneer’s marginal cost of good 1 relative to good 2 is constant, so

the Auctioneer Relative Price Effect is set to zero, and the estimated Auctioneer Price Level

Effect equals the average difference in auctioneer surplus:

1

T

∑
t∈T

(
ÂSt(q

E
1t, q

E
2t)− ÂSt(q

S
1t, q

S
2t)
)

7.3 Results

Results are shown in Table 4.64 For each pair of bonds, the tables’ upper panels show the

issuance shares and bidder surplus in the SSA and the lower panels show the differences in

issuance and surpluses between the counterfactual PMA and the SSA.

Since the objective is to maximise total welfare, naturally the PMA is more efficient. For

the pair of 182-day and 364-day bonds, the estimated welfare gain is 0.97 basis points of

the issuance, i.e. MEX$2.27 million per auction. For the 28- and 91-day pair, the estimated

welfare gain is 0.21 basis points (MEX$0.34m) (Table 4).

The PMA also increases both average bidder surplus and average auctioneer surplus for

both pairs of bonds. For the 182-day and 364-day pair, the estimated bidder and auctioneer

gains are 0.61 basis points of the issuance (or MEX$1.44 million) and 0.36 basis points

(MEX$0.84m), respectively. For the 28-day and 91-day pair, the estimated gains are 0.08

basis points (MEX$0.13m) and 0.13 basis points (MEX$0.22m), respectively.

These results can be understood in terms of the predictions of the model. I label the 91- and

364-day bonds by bond 1 and 28- and 182-day bonds by bond 2 so that the counterfactual

PMA increases the average allocation of bond 1 in each pair, in line with the model.

The significant, positive Bidder Uncertainty Effect for the 182- and 364-day pair can be

understood by the fact that the bid functions are close to linear, and therefore log concave,

64I estimate standard errors treating the government preference parameters, αt ∀t ∈ T , as known as in
Backus, Conlon and Sinkinson (2021) and Roussille and Scuderi (2022).
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in the neighbourhoods of the quantities issued, suggesting bidders benefit as a group from

the uncertainty in the quantities allocated in the PMA (Proposition 1). For the 28- and

91-day pair, the bid functions are also close to linear, and therefore log concave, and the

Bidder Uncertainty Effect is also positive, albeit imprecisely estimated.

Similarly, the significant, positive Bidder Allocation Effect for the 28- and 91-day pair can

be understood by the fact that demand is more price elastic for bonds with shorter terms

to maturity.65 The price elasticity of demand of bond 1 (the 91-day bond) is therefore

smaller in absolute value than that of bond 2’s (28-day), and Proposition 2 implies that

the Bidder Allocation Effect is positive if the relative marginal cost of good 1 is positive

or not too negative at the quantities allocated in the SSA.66 For the 182- and 364-day

pair, our propositions do not predict the Bidder Allocation Effect (which is negative and

insignificant).67

The impact on auctioneer surplus is explained by the impact on the price level alone as the

auctioneer’s constant marginal costs imply indifference to the uncertainty in relative prices.

The PMA increases auctioneer surplus for the 28- and 91-day pair because it increases the

price of the 28-day bond. The effect is positive but imprecisely estimated for the 182- and

364-day pair.

Overall, the welfare gains of the counterfactual PMA are moderate. Under our assumptions

that the fixed allocation across the two bonds is determined jointly and optimally, the fact

that the decision is made shortly before the auctions take place limits the additional welfare

gains of determining the allocation within the auction itself.68

For both pairs of Mexican Treasury bonds, the bidders and the auctioneer both gain a

significant fraction of the benefits of the efficient auction. However, our model shows this

is not necessarily the case in other contexts. In Appendix I, I analyse the 2021 Spanish

65In the neighbourhood of the SSA allocation, the elasticity of the 28-day bond (estimated to be ϵ̂D1,28 =

−12964) is larger in absolute value than the 91-day bond (ϵ̂D2,91 = −7508), and the elasticity of the 182-day

bond (ϵ̂D2,182 = −2718) is larger than the 364-day bond (ϵ̂D1,364 = −1614). Allen, Kastl and Wittwer (2022)
also find that demand for bonds is more price elastic for shorter terms in Canadian Treasury bill auctions.

66The auctioneer’s relative marginal cost of the 91-day bond (bond 1) is negative because its longer term is
associated with less rollover risk, but the overall Bidder Allocation Effect is positive because bidders benefit
from the larger expected quantity sold of the 91-day bond in the PMA.

67Demand for bond 1 (the 364-day bond) is less price elastic than demand for bond 2 (the 182-day bond)
and the relative marginal cost of good 1 is sufficiently negative that Proposition 2 does not apply.

68In the Bank of England’s liquidity auctions, Giese and Grace (2023) find much larger potential welfare
gains from the PMA relative to an SSA for which the Bank of England commits to the allocation across
goods further in advance. In this case, the PMA increases welfare (conventionally defined by the sum of the
bidders’ and Bank of England’s surpluses) by approximately 50% relative to the SSA.
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Table 4: Surplus estimates and model predictions in CETES primary auctions given an
objective to maximise total welfare

28- & 91-day 182- & 364-day

Bond 1 (term, days) 91 364

Bond 2 (term, days) 28 182

Issuance of bond 1 in SSA (mean, % of total) 39.679 54.631
(0.556) (1.153)

(std. dev., % of total) 6.971 9.366
(1.479) (1.670)

Bidder surplus in SSA (bps of issuance) 0.750 2.838
(0.038) (0.246)

(MEX$ million per auction) 1.213 6.636
(0.059) (0.611)

Difference between counterfactual PMA and actual SSA:
∆ Issuance of bond 1 (mean, % of total) 8.228∗∗∗ 4.284

(1.920) (3.216)
(std. dev., % of total) 23.577∗∗∗ 25.689∗∗∗

(1.282) (1.869)

∆ Welfare (bps of issuance) 0.211∗∗∗ 0.972∗∗∗

(0.035) (0.181)
(MEX$ million per auction) 0.342∗∗∗ 2.273∗∗∗

(0.056) (0.430)

∆ Bidder surplus (bps of issuance) 0.078∗∗ 0.614∗

(0.028) (0.243)
(MEX$ million per auction) 0.127∗∗ 1.437∗

(0.046) (0.571)

∆ Auctioneer surplus (bps of issuance) 0.133∗∗∗ 0.358
(0.031) (0.238)

(MEX$ million per auction) 0.215∗∗∗ 0.836
(0.049) (0.557)

Bidder Uncertainty Effect (bps of issuance) 0.024 0.688∗∗

(0.034) (0.240)
(MEX$ million per auction) 0.038 1.610∗∗

(0.055) (0.567)

Bidder Allocation Effect (bps of issuance) 0.055∗∗ -0.074
(0.018) (0.093)

(MEX$ million per auction) 0.088∗∗ -0.173
(0.030) (0.218)

Note: bps denote basis points. Surpluses measured in bps are weighted by total quantities issued and

surpluses measured in MEX$ are unweighted. Standard errors are in parentheses. The level of welfare and

auctioneer surplus in the actual SSA, which depend on the auctioneer’s unobserved total benefit from

issuing the total supply, are unidentified. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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auctions for wind and solar power and show that the entire benefit of the efficient auction is

captured by the bidders.

Appendix G discusses the case in which the auctioneer’s objective is to maximise auctioneer

surplus. The auctioneer of course benefits from the PMA relative to the SSA. Average bidder

surplus falls, but by a much smaller amount than the auctioneer gains.

8 Conclusion

Even when markets are competitive, the welfare gains of a more efficient auction do not

necessarily benefit both sides of the market. I provide conditions under which the efficient

auction reduces expected bidder surplus, and conditions under which it reduces expected

auctioneer surplus, relative to running independent auctions of substitute goods.

However, the conditions required for either side to lose seem extreme. If the model is

symmetric in the goods, the efficient auction benefits both sides of the market if the aggregate

bid functions are convex and log concave. Bidders only lose if the bid functions are very

convex, and the auctioneer only loses if they are very concave. Moreover, the results are

even clearer when the auctioneer’s objective is to maximise auctioneer surplus, rather than

total welfare: the auctioneer of course benefits from the profit-maximising mechanism, and

the bidders benefit if the aggregate bid functions are log concave. I show how the results

extend if the model is asymmetric in the goods.

The mechanism that is efficient in my model—the Product-Mix Auction (PMA)—probably

yields greater benefits relative to running independent auctions than my many-bidder model

suggests. First, if the number of bidders is small, the PMA is likely to increase competition

and efficiency by reducing large bidders’ incentives to strategically bid below their values.

Second, with a small number of bidders, idiosyncratic shocks to bidders’ values provide an

additional source of efficiency gain from the PMA.69 Finally my model assumes each bidder

is only interested in one of the goods. But if the bidders as well as the auctioneer view the

goods as imperfect substitutes, the PMA in general further increases efficiency by allowing

bidders to make bids that express their relative values for the different goods.70 So my model

does not consider all the potential benefits of the efficient mechanism; I leave analysis of the

69The effects on the distribution of surplus between bidders and the auctioneer are non-trivial. Lings
(2013) considers the special case of a finite number of identical bidders for interchangeable goods.

70In the general PMA (see Klemperer (2008), bidders can submit “paired bids”, which express the quantity
demanded by the bidder across both goods and a separate price for each of the two goods. The bidder wins
at most the quantity he demands, and if he wins he is allocated the good which gives him the highest net
surplus (under the assumption that his bids correspond to his valuations).
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distribution of these additional benefits to future work.

The magnitude of the benefits also varies across contexts. One of the main determinants of

the welfare gains of combining auctions is the amount of uncertainty in the relative strength

of demand for the two goods. In the case of Mexican Treasury bonds, the estimated benefits

are only moderate because the amount of demand uncertainty is limited in the existing

design. (This is because the decision over how to allocate the bonds is made shortly before

the auctions take place.) If the uncertainty was greater, we would expect the benefits to be

larger.71 Giese and Grace (2023) find much larger potential welfare gains from the PMA in a

context of much more uncertainty; they compare the PMA to running independent auctions

for which the allocation across goods is fixed further in advance, in the Bank of England’s

liquidity auctions. The flexibility of the multi-product auction is therefore most helpful when

the economic environment is uncertain.

The empirical work also provides additional support for the view that combining auctions

typically benefits both sides of the market. Both the multi-product auction of 28-day and

91-day Mexican Treasury bonds, and that of the 182-day and 364-day bonds, increase both

average bidder and auctioneer surplus. This can be explained largely by the fact that the

aggregate bid functions are log concave and typically convex in the relevant range.

In conclusion, the fact that both sides of the market are likely to gain, both in theory and in

practice, is a strong argument for policymakers to consider combining competitive auctions

of substitute goods.

71In the linear model (analysed in Section 5.2), the impacts on expected bidder surplus and expected
auctioneer surplus are both proportional to the variance of the difference in the demand shocks across the
two goods, i.e. the amount of uncertainty about their relative demand. Numerical examples with other
demand and marginal cost curves yield similar results.
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Cassola, N., A. Hortaçsu, and J. Kastl. 2013.“The 2007 Subprime Market Crisis through the
Lens of European Central Bank Repo Auctions for Short-Term Funds.” Econometrica,
81(4): 1309–45.

Castellanos, S., and M. Oviedo. 2008. “Optimal Bidding in the Mexican Treasury Securi-
ties Primary Auctions: Results of a Structural Econometric Approach.” Latin American
Journal of Economics (formerly Cuadernos de Economı́a), Instituto de Economı́a, Pon-

41

https://www.bankofengland.co.uk/-/media/boe/files/markets/asset-purchase-facility/operating-procedures.pdf
https://www.bankofengland.co.uk/-/media/boe/files/markets/asset-purchase-facility/operating-procedures.pdf
https://www.bankofengland.co.uk/-/media/boe/files/markets/asset-purchase-facility/operating-procedures.pdf
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Appendices

A Proofs

A.1 Proposition 1

Suppose both demand curves are log concave. (The case of log convex demand curves is

analogous.) For good j ∈ {1, 2}, let D̂j(qj) = −∂Dj(qj ,θj)

∂qj
qj, which is independent of θj

because of the additivity of shocks. Evaluated at quantity qj = dj(pj, θj),

D̂j(dj(pj, θj)) = −dj(pj, θj)
∂dj(pj ,θj)

∂pj

=⇒ ∂D̂j(qj)

∂qj
=

∂

∂pj

−dj(pj, θj)
∂dj(pj ,θj)

∂pj

 ∂Dj(qj, θj)

∂qj

=
∂2(log(dj(pj, θj)))

∂p2j

dj(pj, θj)
∂dj(pj ,θj)

∂pj

2

∂Dj(qj, θj)

∂qj

=⇒ ∂D̂j(qj)

∂qj
≥ 0 ⇔ ∂2(log(dj(pj, θj))

∂p2j
≤ 0

because
∂Dj(qj ,θj)

∂qj
< 0, and similarly for the strict inequalities. Applying Jensen’s inequality

to the function
∫ qEj (θ)

0 D̂j(qj) dqj of q
E
j (θ),

Bidder Uncertainty Effect = E

 ∑
j={1,2}

(∫ qEj (θ)

E[qEj (θ)]
D̂j(qj) dqj

) ≥ 0

A.2 Proposition 2

Observe that

Bidder Allocation Effect = E

 ∑
j={1,2}

(∫
E[qEj (θ)]

qSj

−∂Dj(qj, θj)

∂qj
qj dqj

) =

∫
E[qE1 (θ)]

qS1

X(q1) dq1

in which X(q1) =
(
−∂D1(q1,θ1)

∂q1
q1 +

∂D2(1−q1,θ2)
∂q2

(1− q1)
)
, because the auctioneer sells precisely

one unit so that q2(q1) = (1 − q1). Evaluating the integrand at the quantities sold in the

SSA and writing ϵDj (qj, θj) =
Dj(qj ,θj)

∂Dj(qj ,θj)

∂qj
qj

for the elasticity of demand for good j,

X(qS1 ) = −
E
[
D1(q

S
1 , θ1)

]
E [ϵD1 (q

S
1 , θ1)]

+
E
[
D2(1− qS1 , θ2)

]
E [ϵD2 (1− qS1 , θ2)]
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because the shocks are additive. The pair of quantities sold in the SSA is chosen to maximise
expected welfare, so E

[
D2(1− qS1 , θ2)

]
= E

[
D1(q

S
1 , θ1)

]
− M̃C1(q

S
1 ), and therefore

X(qS1 ) = E
[
D1(q

S
1 , θ1)

]( 1

E [ϵD2 (1− qS1 , θ2)]
− 1

E [ϵD1 (q
S
1 , θ1)]

)
− M̃C1(q

S
1 )

E [ϵD2 (1− qS1 , θ2)]

So if E
[
ϵD2 (1− qS1 , θ2)

]
≤ E

[
ϵD1 (q

S
1 , θ1)

]
and M̃C1(q

S
1 ) ≥ 0, then X(qS1 ) ≥ 0.

If the demand curves for goods j = {1, 2} are log concave ∀{(pj, θj) : dj(pj, θj) ∈ [qj, q̄j]},
then ∂X(q1)

∂q1
≥ 0 as shown in Proposition 1, and qS1 ≤ E

[
qE1 (θ)

]
. Combining these three

properties, it follows that the Bidder Allocation Effect is positive.

If instead the demand curves for goods j = {1, 2} are log convex ∀{(pj, θj) : dj(pj, θj) ∈
[qj, q̄j]}, so

∂X(q1)
∂q1

≤ 0 andE
[
ϵD2 (1− qS1 , θ2)

]
≥ E

[
ϵD1 (q

S
1 , θ1)

]
, and M̃C1(q

S
1 ) ≤ 0, soX(qS1 ) ≤

0, then the Bidder Allocation Effect is negative.

A.3 Lemma 2

I consider the case of good 1; the case of good 2 is analogous. In equilibrium, p1(q
E
1 (θ), θ1)−

p2(q
E
2 (θ), θ2) = M̃C1(q

E
1 (θ)) and p1(q

S
1 , θ1)− p2(q

S
2 , θ2) = M̃C1(q

S
1 ) + θ1 − θ2, and so

E
[
TAS(qE1 (θ),θ)− TAS(qS1 ,θ)

]
=E

[(
p1(q

E
1 (θ), θ1)q

E
1 (θ) + p2(q

E
2 (θ), θ2)q

E
2 (θ)−

∫ qE1 (θ)

0

M̃C1(q1) dq1 − C(0, 1)

)

−

(
p1(q

S
1 , θ1)q

S
1 + p2(q

S
2 , θ2)q

S
2 −

∫ qS1

0

M̃C1(q1) dq1 − C(0, 1)

)]

=E

[(
M̃C1(q

E
1 (θ))q

E
1 (θ)−

∫ qE1 (θ)

0

M̃C1(q1) dq1

)
−

(
M̃C1(q

S
1 )q

S
1 −

∫ qS1

0

M̃C1(q1) dq1

)

+
(
p2(q

E
2 (θ), θ2)− p2(q

S
2 , θ2)

)
− (θ1 − θ2)q

S
1

]

=E

[∫ qE1 (θ)

qS1

(
M̃R1(q1)− M̃C1(q1)

)
dq1

]
+E

[
p2(q

E
2 (θ), θ2)− p2(q

S
2 , θ2)

]

A.4 Proposition 3

Let D̄j(qj) = (Dj(qj, θj)− θj), which is a function of qj only because inverse demand for
good j is additive in the shock θj. Then,

E
[
pj(q

E
j (θ), θj)− pj(q

S
j , θj)

]
=
(
E
[
D̄j(q

E
j (θ))

]
− D̄j(E

[
qEj (θ)

]
)
)
+
(
D̄j(E

[
qEj (θ)

]
)− D̄j(q

S
j )
)
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If dj(pj, θj) is convex in pj then, because demand for good j is strictly decreasing, D̄j(qj) is
convex and D̄j(E

[
qEj (θ)

]
) ≤ E

[
D̄j(q

E
j (θ))

]
. The converse is analogous.

By the labelling of the two goods, qS1 ≤ E
[
qE1 (θ)

]
and correspondingly qS2 ≥ E

[
qE2 (θ)

]
, so

D̄2(q
S
2 ) ≤ D̄2(E

[
qE2 (θ)

]
) ≤ E

[
D̄2(q

E
2 (θ))

]
if demand for good 2 is convex, and D̄1(q

S
1 ) ≥

D̄1(E
[
qE1 (θ)

]
) ≥ E

[
D̄1(q

E
1 (θ))

]
if demand for good 1 is concave.

A.5 Proposition 4

Suppose the inverse relative marginal cost curve with reference to good j = {1, 2} is log
concave. Evaluated at quantity qj = m̃cj(p̃j),

M̃Cj(m̃cj(p̃j)) =
m̃cj(p̃j)
∂m̃cj(p̃j)

∂p̃j

=⇒ ∂M̃Cj(qj)

∂qj
=

∂

∂p̃j

m̃cj(p̃j)
∂m̃cj(p̃j)

∂p̃j

 ∂M̃Cj(qj)

∂qj

= −∂2(log(dj(p̃j, θj)))

∂p̃2j

m̃cj(pj)
∂m̃cj(pj)

∂pj

2

∂M̃Cj(qj)

∂qj

=⇒ ∂M̃Cj(qj)

∂qj
≥ 0 ⇔ ∂2(log(m̃cj(p̃j))

∂p̃2j
≤ 0

because
∂M̃Cj(qj)

∂qj
> 0, and similarly for the strict inequalities.

Let hj(qj) = M̃Rj(qj)− M̃Cj(qj) =
∂M̃Cj(qj)

∂qj
qj. Relative marginal cost is increasing, so that

hj(qj) ≥ 0 ∀qj. By the labelling of the two goods, E
[
qE1 (θ)

]
≥ qS1 , so

E

[∫
E[qE1 (θ)]

qS1

h1(q1) dq1

]
≥ 0, E

[∫
E[qE2 (θ)]

qS2

h2(q2) dq2

]
≤ 0

Applying Jensen’s inequality to the function
∫ qE1 (θ)

0
h1(q1) dq1, the Auctioneer Relative Price

Effect with reference to good 2 is positive if M̃C1(q1) is log concave. Analogously, the

Auctioneer Relative Price Effect with reference to good 1 is negative if M̃C2(q2) is log
convex.

Of course, if the inverse relative marginal cost curve of good j ∈ {1, 2} has zero slope, then
hj(qj) = 0 ∀qj and the Auctioneer Relative Price Effect with reference to good j is zero.

A.6 Proposition 5

The two shocks, (θ1, θ2), are exchangeable with zero mean, and so the relative shock to
good 1, (θ1 − θ2), is symmetrically distributed around zero. The auctioneer’s and bidders’
preferences are each symmetric in the two goods. Using the equilibrium condition for the
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efficient auction, it follows that qEj (θ), j = {1, 2}, is also symmetrically distributed, with

qSj = E
[
qEj (θ)

]
= 1

2
.

Bidder surplus The conditions follow from Proposition 1 and the fact that the expected
quantities sold in the two mechanisms are equal.

Auctioneer surplus Proposition 3 determine the conditions under which the Auctioneer
Price Level Effect is positive/negative. To determine the sign of the Auctioneer Relative
Price Effect, I suppress the dependence on the vector of shocks, and denote the distribution
of qEk , k ∈ {1, 2}, by Gk(q

E
k ). By the symmetry, M̃Ck(1− qEk ) = −M̃Ck(q

E
k ), and so

E

[∫ qEk

E[qEk ]

(
M̃Rk(qk)−M̃Ck(qk)

)
dqk

]

= E

[
M̃Ck(q

E
k )q

E
k −

∫ qEk

1
2

M̃Ck(qk)dqk

]

= 2

∫ 1

1
2

(
M̃Ck(q

E
k )

(
qEk − 1

2

)
−
∫ qEk

1
2

M̃Ck(qk)dqk

)
dGk(q

E
k )

= 2

∫ 1

1
2

(∫ qEk

1
2

(
M̃Ck(q

E
k )− M̃Ck(qk)

)
dqk

)
dGk(q

E
k )

≥ 0

because ∂M̃Ck(qk)
∂qk

≥ 0 ∀qk.

A.7 Corollary 3

For each of the J goods, the same quantity will be sold in the SSA and PMA in expectation,
qSk = E

[
qEk (θ)

]
= 1

J
, k ∈ J .

Bidder surplus Lemma 1 and Proposition 1 directly generalise to J goods, and the
Bidder Allocation Effect is zero.

Auctioneer surplus Let MCk(qk) = ∂C(q1,...,qJ )
∂qk

, k ∈ J , and MCk(q) = MC(q) ∀k, q,
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then, for j ∈ J ,

E
[
TAS(qE1 (θ), q

E
2 (θ), ..., q

E
J−1(θ),θ)− TAS(qS1 , q

S
2 , ..., q

S
J−1,θ)

]
=E

[
J∑

k=1

(
pk(q

E
k (θ), θk)q

E
k (θ)− pk(q

S
k , θk)q

S
k −

∫ qEk (θ)

qSk

MC(qk) dqk

)]

=
J∑

k=1

E

[
MC(qEk (θ))q

E
k (θ)−MC(qEj (θ))

(
1

J

)
−
∫ qEk (θ)

1
J

MC(qk) dqk

]

+E

[
pj(q

E
j (θ), θj)− pj

(
1

J
, θj

)]

=JE

[∫ qEj (θ)

1
J

(
MC(qEj (θ))−MC(qj)

)
dqj

]
+E

[
pj(q

E
j (θ), θj)− pj

(
1

J
, θj

)]
(3)

because pk(q
E
k (θ), θk)−pj(q

E
j (θ), θj) = MCk(q

E
k (θ))−MCj(q

E
j (θ)) and pk(q

S
k , θk)−pj(q

S
j , θj) =

MCk(q
S
k )−MCj(q

S
j ) + θk − θj ∀j, k ∈ J .

Because
∂MC(qj)

∂qj
≥ 0,

∫ qEj (θ)
1
J

(
MC(qEj (θ))−MC(qj)

)
dqj ≥ 0 ∀θ and the first term in Equa-

tion 3 is positive. The sign of the second term follows from Proposition 3.

A.8 Proposition 7

The impact on expected auctioneer surplus is immediate. It is clear from Proposition 1 that
the Bidder Uncertainty Effect in this case, analogous to that defined in Section 3, is positive
(negative) if the demand curves are log concave (log convex).

Turning to the Bidder Allocation Effect in this case, let X(q1) = (D1(q1, θ1)−MR1(q1, θ1))−
(D2(1− q1, θ2)−MR2(1− q1, θ2)). Then,

X(qS1 ) =E
[
D1(q

S
1 , θ1)

]
−E

[
D2(1− qS1 , θ2)

]
−E

[
MR1(q

S
1 , θ1)

]
−E

[
MR2(1− qS1 , θ2)

]
=E

[
D1(q

S
1 , θ1)

]
−E

[
D2(1− qS1 , θ2)

]
− M̃C1(q

S
1 )

where the last line follows from the quantities sold in the SSA maximising expected auctioneer
surplus. And so, X(qS1 ) ≥ 0 if E

[
D1(q

S
1 , θ1)

]
− E

[
D2(1− qS1 , θ2)

]
− E

[
MR1(q

S
1 , θ1)

]
≥

M̃C1(q
S
1 ). The rest of the proof is identical to that of Proposition 2.

A.9 Proposition 8

Define the Bidder Uncertainty and Allocation Effects as in Section 3 and define the Auc-
tioneer Uncertainty and Allocation Effects similarly,

Auctioneer Uncertainty Effect = E

[ ∑
j={1,2}

(∫ qEj (θ)

E[qEj (θ)]
(MARj(qj)−MCj(qj)) dqj

)]
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and

Auctioneer Allocation Effect = E

[ ∑
j={1,2}

(∫
E[qEj (θ)]

qSj

(MARj(qj)−MCj(qj)) dqj

)]

where MCj(qj) = ∂C(q1,q2)
∂qj

and MARj(qj) =
∂(MCj(qj)qj)

∂qj
. Define the inverse marginal cost

curve for good j, equal to mcj(pj).

It follows immediately that the difference in expected total bidder (auctioneer) surplus be-
tween the efficient auction and SSA, E

[
TBS(qE1 (θ),θ)− TBS(qS1 ,θ)

]
(E
[
TAS(qE1 (θ),θ)− TAS(qS1 ,θ)

]
), equals the sum of the Bidder (Auctioneer) Uncertainty

Effect and the Bidder (Auctioneer) Allocation Effect.

It follows from analogy to Proposition 1 that the Auctioneer Uncertainty Effect is positive
(negative) if both inverse marginal cost curves are log concave (log convex).72

Now consider the Bidder Allocation Effect and Auctioneer Allocation Effects. For j = {1, 2},
let hj(qj) = Dj(qj, θj)−θj−MCj(qj), which is a function of qj only, because inverse demand
for good j is additive in the shock θj and the goods are independently produced. By the
equilibrium conditions, hj(q

S
j ) = 0, and hj(q

E
j (θ)) = −θj so that E

[
hj(q

E
j (θ))

]
= E [−θj] =

0. If the inverse demand for good j is more convex than its marginal cost, then hj(qj) is
strictly decreasing and convex, so hj

(
E
[
qEj (θ)

])
≤ 0 and E

[
qEj (θ)

]
≥ qSj . Conversely, if the

inverse demand for good j is less convex than its marginal cost, then E
[
qEj (θ)

]
≤ qSj .

Both (Dj(qj, θj)−MRj(qj, θj)) = −∂Dj(qj ,θj)

∂qj
qj ≥ 0 and

(MARj(qj, θj)−MCj(qj)) =
∂MCj(qj)

∂qj
qj ≥ 0, and so the result follows.

A.10 Proposition 9

Bidder surplus Let qR1 be the quantity sold of good 1 in the RPA; E(qE1 (θ)) = E(qR1 (θ)),
so

E
[
TBS(qE1 (θ),θ)− TBS(qR1 (θ),θ)

]
= E

[ ∑
j={1,2}

(∫
E

[
qEj (θ)

]qEj (θ)
(Dj(qj, θj)−MRj(qj, θj)) dqj

−
∫ qRj (θ)

E[qRj (θ)]
(Dj(qj, θj)−MRj(qj, θj)) dqj

)]
72It is sufficient that the condition holds only for the range of feasible prices and shocks, that is ∀{(pj , θj) :

dj(pj , θj) ∈ [qj , q̄j ]}, j = {1, 2}. The effect is strictly positive (negative) if at least one demand curve is strictly
log concave (log convex).
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Let θ̃ = θ2− θ1 be the relative shock to good 1. If θ̃ ∈ [0, θ̄2− θ1], q
E
1 ((θ1, θ1+ θ̃)) < 1

2
∀θ1 ∈

[θ1, θ̄1], and M̃C
′
1(q1) ≥ 0, then the quantities sold in the PMA and RPA satisfy

D1(q
E
1 ((θ1, θ1 + θ̃)), θ1)−D2(1− qE1 ((θ1, θ1 + θ̃)), θ1 + θ̃)

= M̃C1(q
E
1 ((θ1, θ1 + θ̃))) ≤ M̃C1

(
1

2

)
= 0

and 0 = D1(q
R
1 ((θ1, θ1 + θ̃)), θ1)−D2(1− qR1 ((θ1, θ1 + θ̃)), θ1 + θ̃)

=⇒ qR1 ((θ1, θ1 + θ̃)) ≤ qE1 ((θ1, θ1 + θ̃)) ≤ 1

2
∀
{
θ1 ∈ [θ1, θ̄1], θ̃ ∈ [0, θ̄2 − θ1]

}
and, analogously, 1

2
≤ qE1 ((θ1, θ1 + θ̃)) ≤ qR1 ((θ1, θ1 + θ̃)) ∀

{
θ1 ∈ [θ1, θ̄1], θ̃ ∈ [θ2 −

θ̄1, 0]
}
. So qE1 (θ) second order stochastically dominates qR1 (θ). By Proposition 1, if the

demand curves are log convex (log concave), (Dj(qj, θj)−MRj(qj, θj)) ≤ (≥) 0, so that
E
[
TBS(qE1 (θ),θ)− TBS(qR1 (θ),θ)

]
≥ (≤) 0.

Auctioneer surplus The efficient auction increases total expected surplus, so it increases
expected auctioneer surplus if it reduces expected bidder surplus.

B Labelling the goods

Lemma 3 If ∂2(D1(q1,θ1)−D2(1−q1,θ2))

∂q21
≥ ∂2M̃C1(q1)

∂q21
∀q1 ∈ [q1, q̄1], the efficient auction increases

the expected quantity sold of good 1 relative to the SSA.73

Proof. Let h(q1) = D1(q1, θ1) − θ1 − D2(1 − q1, θ2) + θ2 − M̃C1(q1), which is a function
of q1 only, because inverse demand for good j = {1, 2} is additive in the shock θj. By
the equilibrium conditions, h(qS1 ) = 0, and h(qE1 (θ)) = θ2 − θ1 so that E

[
h(qE1 (θ))

]
=

E [θ2 − θ1] = 0. The function, h(q1), is strictly decreasing and convex, so h
(
E
[
qE1 (θ)

])
≤ 0,

and it is also decreasing, so E
[
qE1 (θ)

]
≥ qS1 .

If the PMA instead maximises auctioneer surplus, as in the profit-maximising auction, the
quantity sold of good 1 (and implicitly, of good 2) adjusts so that the marginal revenue of
good 1 relative to good 2 equals the auctioneer’s relative marginal cost. This implies the
following analogous sufficient condition for labelling the goods.

Lemma 4 If ∂2(MR1(q1,θ1)−MR2(1−q1,θ2))

∂q21
≥ ∂2M̃C1(q1)

∂q21
∀q1 ∈ [q1, q̄1] and

∂(MRj(qj ,θj)

∂qj
< 0 for

j = {1, 2}, the profit-maximising auction increases the expected quantity sold of good 1
relative to the SSA in which the fixed shares sold of the two goods are chosen to maximise
expected auctioneer surplus.74

73Of course, the implication also holds strictly, that is, if ∂2(D1(q1,θ1)−D2(1−q1,θ2))
∂q21

> ∂2M̃C1(q1)
∂q21

∀q1 ∈
[q1, q̄1], then E

[
qE1 (θ)

]
> qS1 .

74The implication also holds strictly.
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Proof. Let qP1 be the quantity sold of good 1 in the profit-maximising auction and and qT1
be the quantity sold of good 1 in the SSA in which the fixed shares sold of the two goods
are chosen to maximise expected auctioneer surplus, respectively. Let g(q1) = MR1(q1, θ1)−
θ1−MR2(1− q1, θ2)+ θ2− M̃C1(q1). In equilibrium, g(qP1 (θ)) = θ2− θ1 and g(qT1 ) = 0. The
rest of the proof is the same as that of Lemma 3, and so E

[
qP1 (θ)

]
≥ qT1 .

C Distribution of bidder surplus across markets

The impact of the efficient auction on the expected surplus of the bidders for a single good
can be decomposed into good-specific Bidder Uncertainty and Allocation Effects. For good

j, let the Bidder Uncertainty Effectj = E

[∫ qEj (θ)

E[qEj (θ)]
(Dj(qj, θj)−MRj(qj, θj)) dqj

]
and the

Bidder Allocation Effectj =
∫ E[qEj (θ)]
qSj

(Dj(qj, θj)−MRj(qj, θj)) dqj. The following decom-

position therefore immediately follows.

Lemma 5 The difference between the efficient auction and SSA in expected surplus of bid-
ders for good j ∈ {1, 2}, E

[
TBSj(q

E
j (θ), θj)− TBSj(q

S
j , θj)

]
, equals the sum of the good-

specific Bidder Uncertainty Effect and Bidder Allocation Effect for good j.

The Bidder Uncertainty Effect is the sum of the good-specific Bidder Uncertainty Effects,
capturing the gain to bidders from the uncertainty in the quantity sold of each good (see
Proposition 1).

Corollary 4 Bidder Uncertainty Effectj, j ∈ {1, 2}, is positive (negative) if the demand
curve for good j is log concave (log convex).75

By the labelling of the two goods, the efficient auction increases the expected quantity sold
of good 1, and so Bidder Allocation Effect1 ≥ 0 and Bidder Allocation Effect2 ≤ 0.

D Auctioneer surplus decomposition

D.1 Relationship between Figures 2 and 3

If the auctioneer has independent marginal costs of production, the areas shaded in Figure
2 correspond to those in Figure 3.

To see the relationship, I denote χ(θ) = (M̃C1(q
E
1 (θ))− M̃C1(q

S
1 ))q

S
1 and I split Area U in

Figure 3 into three parts, Areas V , W and X, as illustrated in Figure 5. Comparing Figures

75Naturally, it is sufficient that the condition holds only for the range of feasible prices and shocks, that
is ∀{(pj , θj) : dj(pj , θj) ∈ [qj , q̄j ]}. The effect is strictly positive (negative) if the demand curve is strictly
log concave (log convex).
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Figure 5: Auctioneer surplus measured with reference to good 2
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The Auctioneer Relative Price Effect with reference to good 2 is the expected difference in relative surplus
between the efficient auction and the SSA, that is, the expected size of Area T . The Auctioneer Price Level
Effect with reference to good 2 is the expected difference in reference surplus between the efficient auction
and the SSA, that is, the expected size of (Area V + Area W + Area X).

2 and 5, we have

Area T +Area W = Area Q− Area S + χ(θ)

Area V = Area R

Area X = (θ1 − θ2)q
S
1 − Area P − χ(θ)

Given shocks θ for which qE1 (θ) > qS1 , the difference in relative surplus between the efficient
auction and SSA is Area L+Area U+(θ2−θ1)q

S
1 = Area T+(Area V +Area W+Area X)−

(θ1 − θ2)q
S
1 = (Area Q− Area P +Area R− Area S).

D.2 Auctioneer surplus decomposed with reference to good 1

The difference in auctioneer surplus between the efficient auction and SSA can equivalently
be measured with reference to good 1. This is illustrated for shocks for which qE1 (θ) > qS1
(and correspondingly qE2 (θ) < qS2 ) in Figure 6. The difference in relative surplus between
the efficient auction and SSA is measured by the adjustment term (θ1 − θ2)q

S
1 > 0 less the

Area Y . Relative to the SSA, the efficient auction reduces the price level, measured by the
price of good 1, reducing the auctioneer’s reference surplus by Area Z.
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Figure 6: Auctioneer surplus measured with reference to good 1
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The Auctioneer Relative Price Effect with reference to good 1 is the expected difference in relative surplus
between the efficient auction and the SSA, that is, the expected size of Area Y . The Auctioneer Price Level
Effect with reference to good 1 is the expected difference in reference surplus between the efficient auction
and the SSA, that is, the expected size of Area Z.

E Example of Proposition 4

Proposition 10 The Auctioneer Relative Price Effect with reference to good 2 is positive if

the two marginal cost curves are independent, that is, ∂2C(q1,q2)
∂qj∂qk

= 0, j, k ∈ {1, 2}, j ̸= k, and

the slopes of the inverse marginal cost curves are log concave.

Proof. Label the inverse marginal cost curves, in the case in which the marginal cost curves
are independent, by mcj(pj), j = {1, 2}.

Suppose mc′1(p1) and mc′2(p2) are log concave. We have q1 = m̃c1(p̃1) and M̃C1(q1) =
MC1(q1)−MC2(q2(q1)), so

MC1(m̃c1(p̃1))−MC2(q2(m̃c1(p̃1))) = p̃1

Differentiating w.r.t. p̃1, noting MC ′
j(qj) = 1

mc′j(MCj(qj))
, j = {1, 2}, and q′2(m̃c1(p̃1)) =

−1 ∀p̃1,

MC ′
1(m̃c1(p̃1))m̃c′1(p̃1)−MC ′

2(q2(m̃c1(p̃1)))q
′
2(m̃c1(p̃1))m̃c′1(p̃1) = 1

=⇒
(

m̃c1(p̃1)

mc′1(MC1(m̃c1(p̃1)))
+

m̃c1(p̃1)

mc′2(MC2(q2(m̃c1(p̃1))))

)
m̃c′1(p̃1)

m̃c1(p̃1)
= 1
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m̃c1(p̃1) is log concave iff ∂
∂p̃1

(
m̃c′1(p̃1)
m̃c1(p̃1)

)
≤ 0. Differentiating w.r.t. p̃1,

∂

∂p̃1

(
m̃c1(p̃1)

mc′1(MC1(m̃c1(p̃1)))
+

m̃c1(p̃1)

mc′2(MC2(q2(m̃c1(p̃1))))

)(
m̃c′1(p̃1)

m̃c1(p̃1)

)
+

(
m̃c1(p̃1)

mc′1(MC1(m̃c1(p̃1)))
+

m̃c1(p̃1)

mc′2(MC2(q2(m̃c1(p̃1))))

)
∂

∂p̃1

(
m̃c′1(p̃1)

m̃c1(p̃1)

)
= 0 (4)

Noting m̃c1(p̃1) = q1,

∂

∂p̃1

(
m̃c1(p̃1)

mc′1(MC1(m̃c1(p̃1)))
+

m̃c1(p̃1)

mc′2(MC2(q2(m̃c1(p̃1))))

)
=

∂

∂q1

(
q1

mc′1(MC1(q1))
+

q1
mc′2(MC2(q2(q1)))

)
∂m̃c1(p̃1)

∂mc1

Define f1(q1) = mc′1(MC1(q1)), f2(q1) = mc′2(MC2(q2(q1))) and gm(q1) = q1
fm(q1)

,

hm(q1) = fm(q1)− q1f
′
m(q1),m = {1, 2}.

Then g′m(q1) =
1

(fm(q1))2
(fm(q1)− q1f

′
m(q1)) and h′

m(q1) = −q1f
′′
m(q1). Then hm(0) = fm(0) >

0,m = {1, 2}, because the two marginal cost curves are strictly increasing.

mc′1(p1) = f1(mc1(p1)) and mc′2(p2) = f(q1(mc2(p2))) are log concave,

=⇒ ∂

∂p1
(f ′

1(mc1(p1))) =
∂

∂p1

(
mc′′1(p1)

mc′1(p1)

)
≤ 0,

∂

∂p2
(−f ′

2(q1(mc2(p2))))) =
∂

∂p2

(
mc′′2(p2)

mc′2(p2)

)
≤ 0

=⇒ ∂

∂q1
(f ′

m(q1))
∂mcm(pm)

∂pm
= f ′′

m(q1)mc′m(pm) ≤ 0,m = {1, 2}

And mcm(pm),m = {1, 2} are strictly increasing, so f ′′
m(q1) ≤ 0, h′

m(q1) > 0,m = {1, 2}.
And so,

∂

∂p̃1

(
m̃c1(p̃1)

mc′1(MC1(m̃c1(p̃1)))
+

m̃c1(p̃1)

mc′2(MC2(q2(m̃c1(p̃1))))

)
≥ 0

In addition, inverse relative marginal cost is increasing in p̃1, m̃c1(p̃1) = q1 is always non-

negative, and the marginal cost curves are strictly increasing, so ∂
∂p̃1

(
m̃c′1(p̃1)
m̃c1(p̃1)

)
≤ 0 follows

from Equation 4. The inverse marginal cost curve is log concave, and the rest of the proof
follows from Proposition 4.
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F Generalised Pareto distribution

Suppose bidders’ values have a Generalised Pareto distribution. This implies demand curves
of the form

dj(pj, θj) =

(
1 +

ξj(pj − θj − µj)

σj

)− 1
ξj

, j = {1, 2}

where ξj < 1, σj > 0.

I consider the cases in which the demand curves are both concave (and therefore log concave);
both log concave but both convex; and both log convex (and therefore convex). The results
suggest that the classification described in Table 1 is likely to be a good approximation more
broadly.

Concave demand If {ξ1, ξ2} < −1, the demand curves are strictly concave. If the

inverse relative marginal cost curve, m̃c1(p̃1), is also log convex (or M̃C1(q1) = 0), the
efficient auction reduces expected auctioneer surplus relative to the SSA (Propositions 3 and
4). Under these conditions, the efficient auction must increase expected bidder surplus.

If µ2

σ2
≥ 1

ξ1
, the expected price elasticity of demand for good 1 is smaller than that for good

2 at all allocations (see below). Switching to the efficient auction also increases expected

bidder surplus if {ξ1, ξ2} < −1, M̃C1(q
S
1 ) ≥ 0 and µ2

σ2
≥ 1

ξ1
(Propositions 1 and 2).

Log concave and convex demand If −1 ≤ {ξ1, ξ2} ≤ 0, the demand curves are log

concave and convex. If, in addition, µ2

σ2
≥ 1

ξ1
and M̃C1(q

S
1 ) ≥ 0, then the efficient auction

increases expected bidder surplus relative to the SSA (Propositions 1 and 2), as described
above. It increases expected auctioneer surplus if, in addition to the demand curves being
convex, m̃c1(p̃1) is log concave (or M̃C1(q1) = 0) (Propositions 3 and 4).

Log convex demand If 0 ≤ {ξ1, ξ2}, the demand curves are log convex. If 1
ξ2

≤ µ2

σ2
≤

1
ξ1

≤ µ1

σ1
, or, µ2

σ2
≤ 1

ξ2
≤ µ1

σ1
≤ 1

ξ1
, then the expected price elasticity of demand for good 1 is

larger than that for good 2 at all allocations (see below). If, in addition, M̃C1(q
S
1 ) ≤ 0, then

the efficient auction reduces expected bidder surplus relative to the SSA and must therefore
increase expected auctioneer surplus.

If, alternatively, 0 ≤ {ξ1, ξ2} and m̃c1(p̃1) is log concave, switching to the efficient auction
increases expected auctioneer surplus.

Expected price elasticities for demand curves in the GPD class The expected
price elasticity of demand for good j ∈ {1, 2} is

E
[
ϵDj (qj, θj)

]
=

Dj(qj, θj)− θj
∂Dj(qj ,θj)

∂qj
qj

=

(
1

ξj
− µj

σj

)
q
ξj
j − 1

ξj
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and

∂E
[
ϵDj (qj, θj)

]
∂qj

= ξj

(
1

ξj
− µj

σj

)
q
ξj−1
j

The expected price elasticities of demand are negative. If {ξ1, ξ2} < 0, this implies 1
ξj

−
µj

σj
≤ 0 ∀j = {1, 2}. Under this condition, the expected price elasticities are therefore both

increasing in the quantity sold. And so

E
[
ϵD1 (0, θ1)

]
−E

[
ϵD2 (1, θ2)

]
≥ 0 =⇒ E

[
ϵD1 (q1, θ1)

]
−E

[
ϵD2 (1− q1, θ2)

]
≥ 0∀q1 ∈ [0, 1]

We have E
[
ϵD1 (0, θ1)

]
− E

[
ϵD2 (1, θ2)

]
= − 1

ξ1
+ µ2

σ2
. So, if {ξ1, ξ2} < 0 and µ2

σ2
≥ 1

ξ1
, then

E
[
ϵD1 (q1, θ1)

]
−E

[
ϵD2 (1− q1, θ2)

]
≥ 0∀q1 ∈ [0, 1].

Now turn to the case of {ξ1, ξ2} > 0. If either (i) the expected price elasticities are both
increasing in the quantity sold and E

[
ϵD1 (1, θ1)

]
−E

[
ϵD2 (0, θ2)

]
≤ 0 or (ii) the expected price

elasticities are both decreasing in the quantity sold and E
[
ϵD1 (0, θ1)

]
− E

[
ϵD2 (1, θ2)

]
≤ 0,

then E
[
ϵD1 (q1, θ1)

]
−E

[
ϵD2 (1− q1, θ2)

]
≤ 0∀q1 ∈ [0, 1]. We have

E
[
ϵD1 (1, θ1)

]
−E

[
ϵD2 (0, θ2)

]
=

1

ξ2
− µ1

σ1

E
[
ϵD1 (0, θ1)

]
−E

[
ϵD2 (1, θ2)

]
= − 1

ξ1
+

µ2

σ2

∂E
[
ϵDj (qj, θj)

]
∂qj

≥ 0∀qj if
(

1
ξj
− µj

σj

)
≥ 0

≤ 0∀qj if
(

1
ξj
− µj

σj

)
≤ 0

for j ∈ {1, 2}. And so, E
[
ϵD1 (0, θ1)

]
− E

[
ϵD2 (1, θ2)

]
≤ 0 if (i) 1

ξ1
≥ µ1

σ1
, 1
ξ2

≥ µ2

σ2
and µ1

σ1
≥ 1

ξ2

or (ii) 1
ξ1

≤ µ1

σ1
, 1
ξ2

≤ µ2

σ2
, and µ2

σ2
≤ 1

ξ1
. Or equivalently, either

(i)
µ2

σ2

≤ 1

ξ2
≤ µ1

σ1

≤ 1

ξ1
; or (ii)

1

ξ2
≤ µ2

σ2

≤ 1

ξ1
≤ µ1

σ1

G Mexican government debt auctions: maximising auctioneer surplus

Table 5 show results for the case in which the objective is to maximise auctioneer surplus.
The PMA naturally benefits the auctioneer but average bidder surplus is lower in the PMA
than in the original design, unlike in the main analysis. Nonetheless, the PMA still increases
total welfare.
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Table 5: Surplus estimates and model predictions in CETES primary auctions given an
objective to maximise auctioneer surplus

28- & 91-day 182- & 364-day

Bond 1 (term, days) 91 364

Bond 2 (term, days) 28 182

Issuance of bond 1 in SSA (mean, % of total) 39.223 55.455
(0.639) (1.283)

(std. dev., % of total) 7.545 10.136
(0.598) (0.933)

Bidder surplus in SSA (bps of issuance) 0.750 2.754
(0.036) (0.268)

(MEX$ million per auction) 1.213 6.427
(0.056) (0.659)

Difference between counterfactual PMA and actual SSA:
∆ Issuance of bond 1 (mean, % of total) 10.676∗∗∗ 2.316

(1.954) (2.972)
(std. dev., % of total) 23.235∗∗∗ 23.409∗∗∗

(1.138) (1.869)

∆ Welfare (bps of issuance) 0.243∗∗∗ 1.992∗∗∗

(0.039) (0.475)
(MEX$ million per auction) 0.393∗∗∗ 4.649∗∗∗

(0.064) (1.127)

∆ Bidder surplus (bps of issuance) -0.146∗∗∗ -0.254
(0.025) (0.204)

(MEX$ million per auction) -0.237∗∗∗ -0.593
(0.039) (0.475)

∆ Auctioneer surplus (bps of issuance) 0.389∗∗∗ 2.246∗∗∗

(0.033) (0.383)
(MEX$ million per auction) 0.630∗∗∗ 5.242∗∗∗

(0.054) (0.909)

Note: bps denote basis points. Surpluses measured in bps are weighted by total quantities issued and

surpluses measured in MEX$ are unweighted. Standard errors are in parentheses. The level of welfare and

auctioneer surplus in the actual SSA, which depend on the auctioneer’s unobserved total benefit from

issuing the total supply, are unidentified. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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H Mexican government debt auctions: alternative estimation method

In the main analysis, I estimate the distribution of residualised bids (equal to the difference
between bids and the secondary market price) that the government expects to face in auction
t by sampling with replacement from the set of bids that bidders submit in auction t−1. By
pooling bids from just one auction, this approach is consistent even if there is unobserved
heterogeneity in the distribution of bids across auctions. Nonetheless, by resampling from
the set of individual bidders, I assume that their valuations are identically distributed.76

In this appendix, I use an alternative resampling procedure to estimate the differences in
surpluses between the counterfactual PMA and the actual mechanism. The approach relaxes
the assumption that bidders’ valuations are identically distributed, but assumes that the
distribution of residualised bids is stable over time.

The set of T − 1 auctions in the sample, which excludes auction t, represent a set of T − 1
realisations of the aggregate bid functions for bonds j = {1, 2}. I simulate one possible
realisation of residualised bids by drawing the pair of aggregate bid functions for bonds
j = {1, 2} from this sample, and subtracting the secondary market prices on the day of
the corresponding auction. Repeating this procedure a large number of times simulates the
distribution of residualised bids the government expects to face. The method is otherwise
identical to the main analysis.

The results using this method for the cases in which the objectives are to maximise welfare
and auctioneer surplus, respectively, are shown in Tables 6 and 7.

76A third alternative approach would be to group bidders into a finite number of groups and resample
within group.
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Table 6: Surplus estimates and model predictions in CETES primary auctions given an
objective to maximise welfare, under the alternative estimation method

28- & 91-day 182- & 364-day

Bond 1 (term, days) 28 364

Bond 2 (term, days) 91 182

Issuance of bond 1 in SSA (mean, % of total) 39.533 53.775
(0.405) (0.914)

(std. dev., % of total) 5.177 7.824
(0.323) (0.576)

Bidder surplus in SSA (bps of issuance) 0.767 2.709
(0.037) (0.205)

(MEX$ million per auction) 1.248 6.362
(0.058) (0.512)

Difference between counterfactual PMA and actual SSA:
∆ Issuance of bond 1 (mean, % of total) 1.735 0.121

(2.064) (3.453)
(std. dev., % of total) 26.599∗∗∗ 29.798∗∗∗

(1.099) (1.789)

∆ Welfare (bps of issuance) 0.220∗∗∗ 1.027∗∗∗

(0.031) (0.141)
(MEX$ million per auction) 0.357∗∗∗ 2.411∗∗∗

(0.051) (0.330)

∆ Bidder surplus (bps of issuance) 0.063∗ 0.855∗∗∗

(0.026) (0.248)
(MEX$ million per auction) 0.102∗ 2.008∗∗∗

(0.043) (0.580)

∆ Auctioneer surplus (bps of issuance) 0.157∗∗∗ 0.172
(0.033) (0.231)

(MEX$ million per auction) 0.255∗∗∗ 0.403
(0.054) (0.543)

Bidder Uncertainty Effect (bps of issuance) 0.081∗∗ 0.923∗∗∗

(0.030) (0.240)
(MEX$ million per auction) 0.132∗∗ 2.168∗∗∗

(0.049) (0.562)

Bidder Allocation Effect (bps of issuance) -0.018 -0.068
(0.013) (0.039)

(MEX$ million per auction) -0.030 -0.160
(0.021) (0.093)

Note: bps denote basis points. Surpluses measured in bps are weighted by total quantities issued and

surpluses measured in MEX$ are unweighted. Standard errors are in parentheses. The level of welfare and

auctioneer surplus in the actual SSA, which depend on the auctioneer’s unobserved total benefit from

issuing the total supply, are unidentified. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 7: Surplus estimates and model predictions in CETES primary auctions given an
objective to maximise auctioneer surplus, under the alternative estimation method

28- & 91-day 182- & 364-day

Bond 1 (term, days) 91 364

Bond 2 (term, days) 28 182

Issuance of bond 1 in SSA (mean, % of total) 39.585 53.893
(0.427) (0.893)

(std. dev., % of total) 5.483 7.643
(0.320) (0.524)

Bidder surplus in SSA (bps of issuance) 0.775 2.674
(0.039) (0.211)

(MEX$ million per auction) 1.261 6.280
(0.061) (0.527)

Difference between counterfactual PMA and actual SSA:
∆ Issuance of bond 1 (mean, % of total) 7.067∗∗∗ 2.115

(1.875) (2.464)
(std. dev., % of total) 23.884∗∗∗ 21.463∗∗∗

(1.153) (1.558)

∆ Welfare (bps of issuance) 0.193∗∗∗ 0.712∗∗∗

(0.029) (0.140)
(MEX$ million per auction) 0.314∗∗∗ 1.672∗∗∗

(0.048) (0.329)

∆ Bidder surplus (bps of issuance) -0.188∗∗∗ -0.461∗∗

(0.023) (0.150)
(MEX$ million per auction) -0.306∗∗∗ -1.084∗∗

(0.036) (0.353)

∆ Auctioneer surplus (bps of issuance) 0.382∗∗∗ 1.173∗∗∗

(0.036) (0.150)
(MEX$ million per auction) 0.621∗∗∗ 2.756∗∗∗

(0.058) (0.355)

Note: bps denote basis points. Surpluses measured in bps are weighted by total quantities issued and

surpluses measured in MEX$ are unweighted. Standard errors are in parentheses. The level of welfare and

auctioneer surplus in the actual SSA, which depend on the auctioneer’s unobserved total benefit from

issuing the total supply, are unidentified. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

60



Figure 7: Aggregate supply curves for wind and solar energy

Supply curves of wind and solar energy, estimated by Fabra and Montero (2023) using data on potential
investment projects in Spain with applications for planning permission at the Registry of Renewables Instal-
lations in Spain (RIPRE) in January 2019 until March 2020.

I Spanish renewable energy procurement: model predictions

The large number of current and planned auctions for renewable energy contracts across
a range of countries (IRENA, 2013) exhibit large variation in design, with a broad trend
towards multi-product auctions of multiple technologies (Szabó et al., 2020). In these energy
procurement auctions, the auctioneer acts as the buyer and the bidders act as sellers. This is
a mirror image of the main model, and the results are of course unchanged. In many cases, the
auctions are special cases of PMAs, either with the two technologies treated interchangeably,
or with a demand curve expressing the government’s preference for diversified procurement.

I illustrate the model’s predictions for Fabra and Montero’s (2023) analysis of Spanish re-
newable energy auctions held in January 2021, in which solar and wind producers were
permitted to bid for energy contracts within a single auction. The government’s total de-
mand was fixed, and in the neighbourhood of the observed quantities procured of the two
goods, the two types of energy were treated interchangeably, i.e. the auctioneer viewed the
two goods as perfect substitutes.77

Using data on 2019 applications for renewable energy projects, Fabra and Montero (2023)
estimate the aggregate bid functions, i.e. the supply curves, for solar and wind energy in
Spain, which I use to determine the properties of the supply curves relevant to the model

77The auction rules specified minimum quotas reserved for each energy type, but the auction outcome
triggered neither quota. Note the minimum quota design can be viewed as a PMA in which the demand
curve is a step function.
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predictions. Figure 7 shows these bid functions in the case of zero shocks.

While the supply curve for wind is approximately linear, the inverse supply curve for solar is
convex in the neighbourhood of the observed pair of quantities procured, so wind is labelled
good 1 in the model by Lemma 3 in Appendix B. Given the supply estimates, the PMA
run by the Spanish government therefore increases the expected quantity procured of wind
energy relative to the pair of separate simultaneous auctions that would maximise expected
welfare.

Both the Auctioneer Price Level Effect and Auctioneer Relative Price Effect with reference to
good 1 (wind) equal zero, given the linearity of the supply curve for wind and the auctioneer’s
perfect substitute preferences. So the model predicts that the government is indifferent
between the PMA and running separate auctions.

The supplies of both goods are log concave, so that bidders prefer the uncertainty in the
quantities procured of the two goods in the PMA, and, by Proposition 1, the Bidder Uncer-
tainty Effect is positive.78

Because of the auctioneer’s indifference, the positive Bidder Uncertainty Effect must domi-
nate so that the PMA increases expected bidder surplus, as it increases expected welfare.

So, in this setting, the model predicts that the entirety of the welfare gain of the PMA
translates into higher expected bidder surplus.

78The Bidder Allocation Effect is ambiguous. At the quantities procured in the SSA in Fabra and
Montero’s (2023) simulation (denoted by qS1 and qS2 in Figure 7, which are the pair that maximises expected
surplus at θ1 − θ2 = E [θ1 − θ2]) the supply of wind energy is more price elastic than the supply of solar
and the auctioneer’s relative demand for good 1 is zero at the quantities procured in the SSA (given the
auctioneer views the two goods as perfect substitutes). Proposition 2 therefore does not apply as the supply
curves are log concave.
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