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Abstract

A standard neoclassical convergence model in which wealth accumulation
is subject to random shocks is examined. The focus is on the limiting, or
ergodic, distribution of wealth. This distribution satisfies a Fredholm integral
equation. Direct mathematical solution is not possible. However results
obtained characterize the limiting distribution of the logarithms of wealth
values as a single-peaked distribution. It is asymmetric with the left-hand tail
more heavily weighted. It follows that models which treat wealth transition
as purely random lead to qualitatively different outcomes from those implied
by the neoclassical convergence model augmented by random shocks.
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0.1 Convergence

The Neoclassical convergence model has been influential in recent years. In
its basic form it says that all countries tend to converge to a common level of

capital and output per head. The theory leads to a relationship similar to:

ki = f ki (1)

where k; is the logarithm of wealth (or income), and there is a unique stable
value of k = kx, such that kx = f [kx]. The function f [-] will be assumed to

be strictly concave. For stability one must have:

[8?_5{:]] - <1 (2)

Then (2), together with strict concavity, allow there to be a second, un-
stable, equilibrium for a value of k < k%; in which case k = —oco will be a
third (stable) equilibrium.

Such multiple equilibrium will not be encountered if the function f ]
is defined from either a Ramsey optimal saving model, or from a constant

saving share Solow-Swan growth model. Even in these instances, it may be

that:

Limpg, - [f (k)] = —o0 (3)

In which case there is an unstable zero wealth poverty trap equilibrium.
In empirical studies the usual practice is to work with a particular lin-

earized version of the relation (1), viz:

kipi—ki=flkl —ke=a—0 -k +e (4)



and to regress ki1 — ky on k. With 0 < § < 1, the normal finding, equation
(2) says that on average poor countries grow faster than rich countries. This
has been called —convergence. That is not the same as g—convergence,
which means that the variance of the population of k values declines over
time?.

Iriedman (1992) accused the approach based on regressions like (4) of
“Galton’s Fallacy” on the ground that non-persistent random fluctuations
in k; allow the possibility of a positive coefficient 3 even if the population
variance of k were to show no downward trend. This is correct, if not as well
expressed as it might be. The reference to random fluctuations in k; suggests
errors in variables, a famous Friedman theme, but not the one at issue here.

The point could be expressed more directly by saying that if (4) is the

true model, then:

kri=a—(B—1) -k +e (5)
in which case, should we observe a value of k; far from the population mean,
cither k1 was far from the population mean, or €(t — 1) was exceedingly
small. In either case the expected value of ki1 conditional on k; is a—(5—1)-
k; which will be closer to the population mean. However nothing is implied
for 0— convergence. Indeed it can be shown, as will be seen below, that a
process such as (5) is consistent with a population density of k values which is
invariant over time in the sense that it reproduces itself next period, although
individual values will vary, partly systematically, showing -convergence, and
partly randomly, due to stochastic realisations of ¢;.

Quah (1993) noted independently that a Galton’s Fallacy problem ex-

ists. Quah considers income as a pure Markov process. According to this

LFor a clear exposition of the two concepts of covergence, and empirical discussion, see
Sala-i-Martin (1996).



author, the process does not show convergence according to the data. Rather
countries divide into two groups, rich and poor. See also Quah (1996a) and
(1996b). There is a tendency to convergence within the two groups. There
are also non-negligible probabilities that a country will shift from one group
to the other. Indeed Bangladesh will become richer than the USA with prob-
ability 1, if one just waits long enough. This is a feature of any model which
includes serially uncorrelated random shocks.

The original convergence theorists - such as Barro - on the one hand; and
Friedman and Quah each one, on the other, all differ significantly in their
views, and they differ from Galton too. Galton noted regression towards
the mean of human heights. That entails that children of exceptionally tall
fathers tend to have heights closer to the population mean. Galton’s fallacy
was to infer that the variance of heights is declining, in the sense that the
population of heights is moving to a common mean. Consider two extreme
cases. The incomes of individual agents are drawn from a common distri-
bution, independently by time and agent. The variance of the distribution
declines through time, so that inequality tends to decrease. Convergence
however is stronger than the decline in overall inequality, as there is regres-
sion to the mean. An agent with a very low drawing at ¢ is highly likely to
do better at t 4+ 1. Alternatively, assume that position in the distribution is
fixed once and for all by the initial drawing. Inequality falls over time but
there is little convergence.

Thus if (4) describes the world there will be F-convergence. There may
or may not be o-convergence. Suppose, for instance, that we start with all k
values very close together. The regression coefficient 5 may be positive and
< 1. Yet k values will tend to diverge, because the scattering effects due to

stochastic shocks will predominate. Equally, if £ values are initally extremely



diverse, we will see both -convergence and o-convergence.

A crucial role is always played by transition probabilities; that is probabil-
ities, or probability densities, attaching to an individual unit which is in one
state being in another state next period. Such transition probabilities may
be computed from an underlying model specification. Or they may simply
be assumed, as is done in many Markov models to be discussed below.

The theorists are theorists: they derive a relationship from theory and
try to estimate a coefficient. They have to admit that there is a random ele-
ment, because one cannot do econometrics without making that assumption.
However the idea that all transition is random, as in Markov models, is con-
trary to the theorist’s prior view of the problem. Ideally estimation should
be based on the prior theoretical view, and should also avoid biases or other
problems. The theory should be helpful in deciding what those problems
might be.

0.2 Markov Stochastic Process Models

Champernowne (1953) divides income into discrete ranges. He shows that if
the lengths of the intervals are in geometric progression and the transition
probabilities depend only on the number of interval divisions crossed (includ-
ing zero) then the limit distribution satisfies Pareto’s law. Notice that if one
worked in the logarithm of incomes, the geometric progression assumption
would equate to assuming equal intervals in log income. Wold and Whittle
(1957) are closest to the approach of the present paper in that they as-
sume an accumulation equation for wealth - compound growth in their case.
This accumulation process does not by itself exhibit a tendency to conver-
gence. What stops estates growing without bound is that random mortality

intervenes, when an estate is divided equally among n inheritors. These



authors find that a Pareto distribution to be an asymptotic equilibrium of
their process. Steindl (1972) generalizes the Wold and Whittle model by sub-
stituting a general lifetime probability function for the exponential lifetime
specification of the original.

Quah (1993) and (1996a) can be seen as testing a non-theoretical prior,
according to which the transition process is purely random. He rejects that
model but not in the direction of global convergence; rather he finds local
convergence. What does the Galton fallacy mean for Quah? Consider ob-
servations of income y taken at two times, called 1 and 2 without loss of
generality. Suppose that y; and yy are drawn from a distribution with joint

probability density:

P [yl, y2] (6>

for which #; and 79 have a common mean 7. Quah notes that even if the
covariance of y; and %y is positive, there are various possibilities for the
ergodic limit of 1, when v, values are obtained by repeatedly drawing w1

from the distribution:

P lyi1, 91 (7>

including convergence, partial convergence and no convergence at all.

Friedman proposes a solution to the Galton’s fallacy problem, which is
to regress k1 — k¢ on ki1, where he finds a weak fit and a low coefficient.
If the problem were as described by Quah, this would not help at all.

To keep matters simple, suppose that the true model is:

kt+1:a+ﬂ'kt+€t (8>



where 0 < 8 < 1. Barro regresses k(t 4+ 1) — k; on k;; while Friedman
regresses k (£ + 1) — ky on keyq.%.
From (8):
kipi—ki=a—(1—-0) k+¢ 9)

Also, from (8):

kot — a—
]{;t:t“TM (10)

Therefore:

kepr — ke = % — %k‘tﬂ + % (11)

Thus if (8) is the data generating process, with 3 = 0.97, which, notice,

is a high level of persistence, a Barro regression as (4) will find the coefficient
on k; to be —0.03, while Friedman’s regression will find the coefficient on
ki1 to be —% = —0.03093, almost the same; and both the intercept and
the variance of errors will be nearly the same. With 3 close to 1, Friedman’s
device of regressing the growth rate on final level should make little difference.
Friedman, however, has in mind smaller values of 3 than the 0.93 value
taken above. Obviously, with # much smaller, the two regressions diverge
considerably. Friedman shows this happening for the OFECD countries over
the period 1950 to 1979. Not surprisingly for this long period, the persistence
coefficient is not so large. With g = 97, the 29-year persistence coefficient
would be -41. With such a value it will be seen, comparing equations (9)
and (11), that Friedman’s final year income on growth regression will involve

a larger intercept and greater variance around the regression line. This is

exactly what Friedman finds.

?Note that Friedman is discussing income, where the present paper mainly has wealth
in mind.



The theory predicts that f [k¢] will be concave, probably strictly concave,
while often a linear form is tested. Also, a random element is included in
the empirics but not taken into account in the theory. This paper attempts
a theoretical analysis of a model in which individual “countries” are accu-
mulating wealth according to the rule (1), but are subject to random shocks
which throw them off course each period. The accumulation rule may reflect
the fact of the random shocks.

In general the interdependence of agents’ decisions needs to be taken into
account, which makes things very complicated - see Bliss (1995). However the
present analysis concentrates on the ergodic wealth distribution of infinitely
many agents, their distribution measured by a density function. In that case
interdependence is effectively reduced to steady-state price values, which may

be subsumed into the shape of f [k].

0.3 Analysis

The process:

kipr = [k + e (12)

will be exmained, where k; will usually be taken to be the logarithm of
wealth. The random error term ¢; is independent of k¢ and ey for ¢/ # ¢, and
has mean zero. Specifying the stochastic process in terms of the logarithm
of wealth brings the advantage that the range of ¢; is unconfined, so that,
for instance, ¢; might be normally distributed without allowing wealth to
become negative. One might want to permit wealth to be negative, even
down to —oo, in which case k; could be interpreted as wealth itself, not the

logarithm of wealth. This interpretation is left to the reader and will not be



noted explicitly in what follows?.
The stochastic process (12) generates a Fredholm Equation of the second

kind* for the equilibrium density of the logarithm of wealth:

A K] :/”"ﬂk;—f[,@]] A W] dr (13)

where 7 [-] is the density of the random effect ¢;. The integral on the right-
hand side of (11) is the sum of all transitions from k to k weighted by the
probability that the initial value is x, which is A [k], and the probability of
a transition to k which is the probability that €, takes the value k — f [x].
Placing the same function A[-] on both sides of (13) identifies the ergodic
fixed point outcome.

This derivation is somewhat similar to the so-called Theory of Breakage

which leads to the equation:

x
Fy(a)= [ ;2] aryi [ (14)
for which see Aitchison and Brown (1957), pp.26-7.

The process:

kiyr = f ke + € (15)

generates another Fredholm Fquation, viz:

3Negative wealth raises complicated modelling issues. Plainly small net debts raise no
great problems as they can be worked off over time. This is because wealth here may be
present balance sheet net worth, not including the present value of future income. Large
net debts on the other hand raise problems as they may be unserviceable. When random
shocks take agents into the region of unserviceable indebtedness, some kind of bankruptcy
regime operates.

4See Hildebrand (1961) p. 381-2. In section 4.5 of the same chapter the author explains
the connection between this type of equation and the joint effect of many causes.



A K] :/”"w[fl[k;]—m} A [k dr (16)

which is quite similar.

To keep things simple, we concentrate on the Fredholm Equation (13).

0.4 Some Results

Theorem 1 The set of functions satisfying (13) is conver’. Hence the set
of functions which integrate to 1 and also satisfy (13) is conver.

Proof: Is immediate. If A'[k] and A% [k] both satisfy (11), then:

)\-Ai[lf]:/Jroow[k:—f[/{]]-)\-/\i[/@]d/f (17)

o0

fori=1 or 2, and for any value of A\.O

In analysing the distribution of k values, it is sometimes convenient to
work in terms of the cumulative distributions. Hence A(k) is the proportion
of the population with wealth not greater than k. Clearly A(—o0) = 0 and
A(oo) = 1. Then (13) translates to:

Al = [0 ]~ o] Al d (18)

where ©(+) is the cumulative distribution of €.

Notice that the effect on the distribution of wealth in moving from one
period to the next is the sum of two separate transformations. First each k
value maps to f [k]. We call this f-transformation. Next all values are scat-
tered by the addition of random shocks €¢;. We call this scattering. Consider

the first step. Before f-transformation:

°To say that the set of functions is convex is not, of course, to say that the functions
are convex functions.

10



Whereas after f-transformation:

NGEENVG] (20)

where T [k] is the cumulative distribution of k after transformation. Then:

dr'[k]  A[K]
M= =

where f'[k] is the derivative of f [k] with respect to k. This defines how

(21)

the accumulation function affects the distribution of wealth in the absence

of random eflects.

Theorem 2 If the distribution A [k] has a reqular maximum at kg, then the

transformed distribution }\,L[Z]] has a mazimum at k > kq.

Proof: A reqular mazximum in this context means that:

dA [k]
for k # ko. Maximizing }\% with respect to k gives:
AY[k] fYR] — AR 2k
KL - AR )
S K]

where superseripts denote derivatives. For a value of k for which A [k] takes

a mazimum (23) will be positive. Hence the result. O

Analysis of a Fredholm distribution can proceed either from the integral
equation (13), or from the equation defining the process itself (12). The next

section adopts the latter approach.

11



0.5 Direct Analysis from the Stochastic Process Equa-
tion

Applying mathematical expectation operator to (12) gives:

Ek = Ef [k] < f |EK] (24)

where the final inequality holds when f [k] is strictly concave. Subtracting
(24) from (12) and rearranging gives:

Elk — Bk > E{[f [k = [ [BK] + e} = E{f [k]}" + E{[el]}*  (25)

If f [kt is quadratic, (12) becomes:

kiyi=a+b-ki—c-kl+e (26)
- B [k?
Ek:ch—b[t] (27)

Note that:

E|(k— Ek)’| = E[k* = 2kBk + (Ek)?| = B [§*| — (BK)>  (28)
So that:
(Ek)? a+c- B [(k; - Ek:)Q]

1-b 1-0
The left-hand side of (29) involves only the mean of k, while the right-

Ek—c (29)

hand side involves the variance of k.

12



0.6 Symmetric Bell-Shaped Distributions

The following argument touches particularly on the question of whether an
ergodic equilibrium wealth distribution can be normal. As k is the logarithm
of wealth, that is equivalent to asking whether wealth can be log-normally

distributed in the limit.

Definition 1 A density function of k, D(k), will be said to be Symmetric
Bell-Shaped (SBS) if:

There exists a unique value ko such that D(k) takes its maximum value.
The value of D(k) is uniquely determined by |k — ko|.

The value of D(k) is decreases monotonically with |k — kol.

Definition 2 The Fredholm equation (11) will be said to be standard if:
The density function of errors 7 [-] is SBS with its maximum at zero.

The function f [k is strictly concave.

Theorem 3 If the functions f[| and 7 [-] are both continuous, then any
Fredholm equation solution is continuous in k.
Proof: Note that if f[] is concave, it must be continuous, but this resull does

not require concavity. Consider an infinite sequence:
ki,ko,....kn, ... (50)

tending to ko. It may be confirmed by inspection that:

Limnﬂm/;ooﬂ[k(n)—f[/{]]-A[/@]d/{z/ﬂoﬂ[l{:o—f[/i]]-A[/{]d/@ (31)

— 00

provided that 7 [-] is continuous.O

Recall that the mapping of a Fredholm distribution solution into itself
consists of the sum of two separate steps. The first is the effect of the f-

transformation; the second is scattering.

13



The statement of the next theorem is most easily understood in terms
of the cumulative distribution I'[k]. The distribution has an infinite tail if
there exist no finite value of k such that I"[k] takes either the value 0 or 1.
In the former case the distribution will be said to have an infinite left-hand

tail; in the latter case an infinite right-hand tail.

Theorem 4 If the distribution 7 [-] has an infinite left- or right-hand tail,
a Fredholm equation solution will have respectively an infinite left- or right-
hand tail. A Fredholm equation solution may have an infinite left-hand tail

without 7 [-] having an infinite left-hand tail if:

k— f(k) (32)

is bounded above for all negative k by A, where — A is within the range of the
left-hand tail of 7 [].

Proof: The first statement is obvious. Whatever value f [ki| may take, if the
distribution 7 [-] has an infinite tail, positive probability attaches to ¢, taking
any value whatsoever in that direction; hence positive probability, and there-
fore distribution density, attaches to ki taking any value in that direction.
The second statement is also plain. As long as the difference k — f(k) can-
not exceed the reach of the left tail of w[], density lost by the effect of f

transformation O

Even if k — f(k) is bounded above within the range of the finite left-
tail of 7 [-], for all negative k sufficiently large in absolute value, it might
not be so bounded for k < kx and closer to k* . Is it then possible for
an equilibrium density to be split into two disjoint segments: a high wealth
segment, including positive density for k*; and a low wealth segment from

which agents cannot escape because random shocks always push them back

14



down? We call such a distribution disjoint. The next theorem answers the

question in the negative sense.

Theorem 5 An equilibrium density cannot be disjoint.

Proof: Suppose, contrary to the theorem, that an equilibrium density is dis-
joint. Then there exists a range of values of k, [k, k%], such that A[k] =0
for these values, while positive density attaches to values of k just below k™.
Consider the value k = f~'[k™]. Ask < k—, positive density attaches to
k . Therefore f—transformation will take density to k—. When scattering is
taken into account, some even higher k values will result, and positive density

will attach to values of k just above k=, contrary to assumption.O
The next result is called a Lemma because it serves Theorem 6 directly.

Lemma 6 A distribution is SBS after scattering only if it is SBS before
scattering.

Proof: Scattering does not affect the mean because:
El{ft+1 = Ekt —I— EEt = Ekt (33)

Suppose that D(k) is a distribution with mean ko, and asymmetric about
that value, but that the image of that distribution after scattering is SBS. In
that case the image must be symmetric about ky. Call the image distribution

I(k). Then:
](k:):/ wlk—#]- D[k dr (34)

— 00

because D(k) is not symmetric but 7 || is symmetric aboutl zero, the above

cannot be equal to:
k

[(ko+k) = [Oﬂ[k0+/€—ﬂ]-D[K]dK+ :OMW[/{;OJF/{:—K]-D[K](@@)
+ kikﬂ[k0+k—ﬂ]-D[/{]dﬂB (1)

This demonstrates the Lemma.O

15



Theorem 7 If the problem is standard, no Fredholm equation solution can
be SBS.

Proof: Because of Lemma 1, if a Fredholm equation solution is to be SBS, the
transformation k — f [k]. must map an SBS distribution into an SBS distri-
bution. For only in that case can the subsequent scattering generate an SBS
distribution. However Theorem 2 states that the transformation k — f [k]
increases the value of k at which the distribution takes its maximum value.
For an SBS distribution the maximum value is taken at the mean. Scattering
does not affect the mean. Therefore supposing a Fredholm solution to be SBS

implies that its mean is higher than itself, which is a contradiction.O

0.7 Single Peakedness

The above results tell us more about what a Fredholm solution is not than
about what it is. Theorem 6 rules out SBS. The argument indicates what
shape to expect should the distribution be single peaked. The k — f [k]
transformation increases the value of k at which the distribution takes its
maximum. Scattering must therefore lower that value, which it cannot do in
the case of an SBS distribution. It can do it for a distribution skewed to the
negative side, as there would then be more mass to the left of the maximum
to generate random jumps pulling the maximum to the left. So for the single
peak case the distribution is broadly characterized as asymmetric relative
to log-normality. How do we know that a Fredholm solution will be single-
peaked? This section provides the method which enables that property to be
derived. Note that staring at the Fredholm equation itself hardly resolves the
issue. Should there be a trough in the distribution that will tend to produce
a trough in the image, simply because there will be less mass around that

trough, or rather its image under the f-transformation, to feed density via

16



small error values.

To show that there cannot be multiple peaks we again take advantage
of the fact that the mapping of a wealth density into itself is the result of
the sum of two separable transformations - f-transformation plus scattering.
The way in which we rule out multiple peaks is by examining the effect of the
two steps on extrema. The next theorem examines the effect of scattering

by itself.

Theorem 8 The cffect of scattering on its own is to increase A(k) in the
neighbourhood of strict minima and to decrease A(k) in the neighbourhood of
strict mazrima.

Proof: The result is shown for a mazimum. The proof for a minimum is the
same.

For a mazimum of A(k), we must have:

dA (k)

Now choose k, and 6 , which affects the extent of scaltering, to maximize:

+oo
/ A(g) -7[0(k— kK)]dr (57)
to oblain:
+oo
/ AR)-0-7"[0(k—k)]de =0 (38)
where the prime denotes the first derivative. Maximizing with respect 6 to
gives:
+oo
/ AR) k-7 [0(k—kK)]ds=0 (39)

Now it is clear that (38) and (39) are the same condition after k and 0 have
been placed outside the integrals and eliminated. This implies that maximizing

or minimizing density entails minimizing scattering. The Theorem follows.O
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Theorem 9 If f(k) is strictly concave, a Fredholm equation solution is single
peaked.

Proof: Should a Fredholm equation solution not be single peaked it must be the
case that it has a local minimum between two local marima. Let the values
of k corresponding to these extrema be respectively k™1, k™in gnd kmax2,
After f-transformation the distribution }\% will similarly have a maximum,
a minimum and a maxrimum al respectively k™1 k™ gnd kmax2,

By definition:

A (k1) > A (kmet) (40)
A (k™) < A (k) (41)
A (km?) > A (kme?) (42)

Because of the effects of scattering shown in Theorem 8, f-transformation
must increase maximum values of the density and decrease a minimum value,

so that scattering may undo these effects. Therefore:

A (%max 1) -
f/ (%max 1) - A (k ) (43)
A (%min) '
_ A min
f/ (kmin) < (k ) (44)
A (%maxQ) _
f/ (%max 2) - A (k ) (45)

Then (40) and (43); (41) and (44); and (42) and (45); respectively imply
f (%ma’d) < 1;f (%min) > 1; and f’ (%ma’d) < 1. This contradicts the
concavity of f(k).O
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0.8 Concluding Remarks

The long history of the analysis of income or wealth distributions, going
back to Pareto, includes different approaches. One is purely empirical. The
shape of the distribution is examined and the fitness of simple mathematical
specifications is investigated. Another approach is to start with postulates
concerning the process which generates the distribution and then to investi-
gate mathematically what is the limiting distribution which results. Yet the
limiting distribution does not have to be the object of concern. The shorter
term conditional transfer process can itself be the focus of investigation. In-
deed the neoclassical convergence theorists can only do that, because for
them the limiting distribution is trivial, being a state in which all countries
- or individuals in the case of a personal distribution - are at the common
limit point k*. When the transfer process is taken to be random there are
wider possibilities than when it is modelled using economic theory.

The present paper marries two different traditions. They are the neoclas-
sical approach, according to which wealth accumulation is systematic and
deliberate; and the random shocks approach, according to which wealth ac-
cumulation is purely haphazard. As would be expected, such a model is
complicated, and direct mathematical solution is hardly possible. Even so,
we have been able to obtain a series of results which together effectively char-
acterize the limiting distribution of the logarithms of wealth values. It is a
single-peaked distribution which may or may not have infinite tails, and it is
asymmetric with the left-hand tail more heavily weighted.

An implication of these results, particularly Theorem 9, is that Quah’s
finding, according to which there are two disjoint regions of attraction in a
distribution, cannot be reconciled with the neoclassical model augmented by

the addition of shocks.
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