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Abstract

In this paper we examine methods for improving the e�ciency of sampling the pos-

terior distribution of the parameters of a non-Gaussian measurement models by simul-

taneously drawing the parameters and the states. We suggest that this is an e�ective

strategy for reducing autocorrelation for MCMC methods. We also investigate the ef-

fect of attempting to induce negative correlation in the Metropolis chain by the use of

antithetic variables. This is less successful in our experiments. The stochastic volatility

model is considered as a motivating example throughout.

KEYWORDS: Antithetic variables; Blocking; Kalman �lter; Metropolis sampling;

Non-Gaussian measurement models; Simulation smoother; Stochastic volatility.

1 Introduction

1�1 Inference via simulation

Markov chain Monte Carlo (MCMC) methods produce simulations from high dimensional

non-Gaussian posterior distributions. Early examples of their use in image analysis includes

Geman & Geman (1984). The methods are discussed for more widespread statistical im-

plementation by Ripley (1987) and Gelfand & Smith (1990). A thorough outline of these

methods is provided in Chib & Greenberg (1995). In addition, many examples of the current

use of MCMC techniques are given in the booklength review by Gilks et al. (1996).

In this paper we use the Metropolis algorithm to simulate from the joint distribution of

x1; x2; ::; xm, denoted f , where xi stands for a group of unobserved states or parameters in

the model, given the data. Proposals z are made to possibly replace the current xi, keeping

constant xni which denotes all the other elements of the x vector. The proposal density is

proportional to q(z; xni) while the true density is f(xijxni). Both of these densities are assumed
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to be everywhere positive (Tierney (1994)). If x(k) is the current state of the sampler then

the proposal is accepted with probability:

min
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f(zjx(k)ni )q(x
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In our work we would like to select q to be f(zjxni), but this density is generally di�cult to

sample directly. Instead we sometimes approximate f by ch(z), then we can sample from a

density proportional to min
n
f(zjxni); ch(z)

o
by the scheme: (1) Generate a candidate value z

from h(�) and a value u from a standard uniform; (2) If u � f(zjxni)=ch(z) return z; otherwise
goto (1). Tierney (1994) calls this type of method a pseudo-dominating rejection algorithm.

It is discussed in more detail in Chib & Greenberg (1995).

MCMC sampling is now increasingly used as a tool to �t non-Gaussian state space models.

The earliest reference to the use of single move Gibbs sampling seems to be Carlin et al. (1992)

who noted the conditional independence structure of the state space models. More recently

Fruhwirth-Schnatter (1994) used Gibbs sampling to draw from the posterior density of the

parameters in Gaussian state space form (GSSF) models. Often the focus of interest is on the

parameters of the state space models rather than the unobserved states, � = (�0
1; �

0
2; :::; �

0
n
)0.

We are therefore interested in drawing samples from f(	jy), the posterior distribution of the

parameters, 	, given the observations, y = (y01; y
0
2; ::; y

0
n
)0. For GSSF models (see Harvey

(1989) and Hannan & Deistler (1988))

yt = ct + Zt�t +Gtut; ut � NID(0; I);

�t+1 = dt + Tt�t +Htut; t = 1; :::; n

�1jY0 � N(a1j0; P1j0);

(1�1)

this density is available up to a constant of proportionality since we know the likelihood f(yj	)
through the Kalman �lter (KF). When the Gaussianity of the measurement equation (or the

state equation) breaks down we cannot in general analytically integrate over the states. We

therefore need to apply MCMC methods to sample the states and the parameters ensuring

that the resulting samples converge to samples arising from the required posterior f(�;	jy):

1�2 Non-Gaussian measurement time series

In this paper we investigate this sampling problem for a speci�c class of non-Gaussian meas-

urement time series. First de�ne the signal as st = ct + Zt�t, then we will assume that

l(ytj�t) = l(�t) = log f(ytj�t) = log f(ytjst)

is twice di�erentiable with respect to st and is parameter free. This second assumption can

be achieved by appropriate parameterisation. We also assume that the transition equation of

the states, �t, remains a linear Gaussian Markov Chain as in (1�1). Often we will employ a
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concavity assumption on log f(ytjst), however when this is relaxed the methods outlined in

this paper are still valid, although their e�ciency may be reduced. In this paper, we shall

now assume that yt and st are univariate for compactness of exposition.

To illustrate the type of non-Gaussian model under consideration we shall apply our meth-

ods to the stochastic volatility (SV) model on a dataset recording the daily returns on holding

the Pound Sterling/US Dollar exchange rate from 1/10/81 to 28/6/85 (946 observations). The

univariate SV model, from Taylor (1986), is written as

yt = �t exp(�t=2); �t+1 = �+ �(�t � �) + �t; (1�2)

�t � NID(0; �2
�
); �t � NID(0; 1); t = 1; ::; T; (1�3)

�1 � NID
n
�; �2

�
=(1� �2)

o
; (1�4)

where �t represents the unobserved log instantaneous volatility or state and 	 = f�; �; �2
�
g

represents the parameters. This model has attracted much recent attention in the economet-

rics literature; see, for instance, Hull & White (1987), Harvey et al. (1994) and Jacquier et al.

(1994).

1�3 Block sampling

This procedure has traditionally been split into two separate sampling problems. We draw the

parameters from their distribution conditional upon the states f(	jy; �) and then the states

conditional upon the new parameters f(�jy;	). The problem of drawing from f(�jy;	)
is by no means trivial since, for state space models, � is typically of high dimension. In

addition, the correlations between elements �t and �t+k arising from f(�jy;	) may be very

high, particularly for persistent models. This high correlation causes single move methods

(which move one state at a time), such as Jacquier et al. (1994), to converge slowly. Blocking

components in this case provides a much more e�ective strategy and this approach is exploited

for special cases of non-Gaussianity in Shephard (1994) and Carter & Kohn (1994). A more

general method for sampling blocks of states is given in Shephard & Pitt (1997), and this

method will be explored in more detail in Section 2 of this paper.

The problem of sampling the parameters from their conditional posterior distribution

f(	jy; �) is less problematic. The dimension of 	 is low in comparison to � and if we break

	 into its various components, sampling each conditional upon the others, we often obtain

conditional distributions which are easy to sample from.

1�4 Outline of this paper

The disadvantage of the separate sampling scheme outlined above is that the posterior for the

parameters can be highly correlated with the states as well as with the other parameters. This
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presents potential problems as it indicates that the MCMC chain may mix slowly leading to

an ine�cient sampler and di�cult statistical diagnostics. In this paper we investigate various

strategies for improving the performance of the algorithms.

In Section 3 we exploit antithetic variables which induce negative correlation between

successive sweeps of the MCMC chain. We closely follow the stochastic relaxation approach

of Green & Han (1990) and Barone & Frigessi (1989). Section 4 presents the joint sampling

method, directly drawing from f(�;	jy). Section 5 concludes, while the conclusion outlines

some algorithm used in this paper.

2 Separate sampling

The states, conditional upon the parameters, are drawn from their target density using the

procedure suggested by Shephard & Pitt (1997). Firstly a small number of states �n, widely

spaced, are randomly picked to retain their values from the previous MCMC sweep. These

states are called \knots". We now update each block of states between two knots using the

MCMC method. Suppose that �t;k = f�t; :::; �t+kg represents a block of states between two

knots, �t�1 and �t+k+1. We then have to sample the states �t;k from the target density

f(�t;kj	; y; �t�1; �t+k+1). We note that

f(�t;kjy;	; �t�1; �t+k+1) / expfl(yj�t;k)gf(�t;kj	; �t�1; �t+k+1)

' expfl~(yj�t;k)gf(�t;kj	; �t�1; �t+k+1)

/ f ~(�t;kjy;	; �t�1; �t+k+1):

where l~(yj�t;k) represents a second order Taylor expansion of l(yj�t;k) in �t;k around the vector
b�t;k. We generally choose b�t;k to be the mode of f(�t;kjy;	; �t�1; �t+k+1). By construction

the approximation f ~(�t;kjy;	; �t�1; �t+k+1) is of Gaussian form since l~(yj�t;k) is quadratic
and f(�t;kj	; �t�1; �t+k+1) is Gaussian. This approximate model for �t;k is now in Gaussian

state space form and so �t;k (or the corresponding disturbances of the state space) can be

sampled using the simulation smoother of de Jong & Shephard (1995) .

If we use only a Metropolis algorithm for deciding whether to accept the new proposal �n
t;k

or retain the old values �o
t;k

(in Shephard & Pitt (1997) this is combined with an A-R step),

we have

Pr(�o
t;k
� > �n

t;k
) = min

(
1;
w(�n

t;k
)

w(�o
t;k
)

)
;

where w(�t;k) = expfl(yj�t;k)� l~(yj�t;k)g = exp

"
t+kP
i=t

n
l(�i)� l~(�i)

o#
.

Typically w(�t;k) is close to 1, yielding a high acceptance rate in the Metropolis algorithm.

We proceed in this fashion, sampling all the blocks between the �xed knots. This de�nes a

complete MCMC sweep through the states. The parameters are then sampled from their
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Figure 1: Correlograms for 80,500 samples of �, �2
�
and � going from left to right, using

the seperate sampling approach with 10 knots. Plots of the samples are shown below the

correlograms

conditional density f(	j�). For the next sweep a �xed number of knots is again randomly

chosen from the states and so the process continues.

The parameters 	 are drawn directly from f(	j�). Indeed they are conditioned on the

other parameters so for the SV model we draw from the densities [��j�; �; �], [�j�; �; ��] and
[�j��; �; �]. The conditional distributions of these parameters are described in more detail in

Shephard & Pitt (1997).

To illustrate these methods we analyse the exchange rate data discussed in the introduc-

tion. Figure 1 shows M = 80; 500 samples from the separate sampler using 10 knots (an

e�cient choice) together with their correlograms. The accept-reject method together with

the Metropolis step is used for this application. It is clear that at lags of 500 there is some

degree of autocorrelation in the parameters � and ��. This suggests that these two parameters

are highly correlated with the states and with each other.

The summary statistics are given in Table 1. The reported ine�ciency factor estimates

the variance of the sample mean from the MCMC sampling scheme relative to a hyperthetical

sampler which draws independent random variables from the posterior. The ratio is estimated

using a Parzen window (see, for example, Priestley (1981, Ch. 6)) with

bRM = 1 +
2M

M � 1

BMX
i=1

K

�
i

BM

� b�(i);
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Parameter Mean Variance Ine�ciency factor

� �0:90523 0:077368 3:69 (300)

�� 0:16907 0:0014429 191 (800)

� 0:97425 0:00017069 112 (800)

CPU time (s) 4; 363

Table 1: Summaries of Figure 1. Results for the separate block sampling scheme with 10 knots.

Time is in seconds on a pentium 133 to carry out 80,500 iterations. Figures in brackets denote

the bandwidth for Parzen window.

where BM represents bandwidth, while the Parzen kernel is

K(x) = 1� 6x2 + 6x3; x 2 [0; 1
2
];

= 2(1� x)3; x 2 [1
2
; 1];

= 0; elsewhere.

Here b�(i) is an estimate of the autocorrelation at lag i of the MCMC sampler.

3 Antithetic variables

In this section the approach of Barone & Frigessi (1989), which they call the !�stochastic
relaxation approach, is considered. Barone & Frigessi (1989) use this method in image analysis

to reduce autocorrelation in their Metropolis chain when the conditional target distribution

is Gaussian. Part of the appeal of this method is that the Metropolis proposals are accepted

with probability 1. Green & Han (1990) modify the method for use in a Poisson spatial

statistics model. For this single-move method the conditional densities are non-Gaussian

although the proposal densities are Gaussian. The proposal densities are constructed in the

following manner. Suppose we de�ne the following transition density with x denoting the

proposed new state and x0 the current state, with �1 < � < 1

q(xjx0) = N
n
(1 + �)�� �x0; (1� �2)�

o
;

To ease notation the conditioning variables have been dropped. Then,

log

(
q(x0jx)
q(xjx0)

)
= � 1

2(1� �2)

"
fx0 � �� �(�� x)gT��1fx0 � �� �(�� x)g
�fx� �� �(�� x0)gT��1fx� �� �(�� x0)g

#

= �1

2

h
(x0 � �)T��1(x0 � �)� (x� �)T��1(x� �)

i
= log

(
q(x0)

q(x)

)
;

where q(x) = N(�;�), the independent proposal density corresponding to � = 0. This

expression is independent of �. Hence the Metropolis expression is the same as the independent

sampling (� = 0) case. However, it should be noted that the Metropolis acceptance rate will

not be the same as that for the independent sampling case since the proposal values are

sampled di�erently.

6



The method may be applied to the states, �, of our model since the proposal for the states

is Gaussian. If we denote the current states by �0 and the proposed states by �, suppressing

the conditioning parameters and knots, then the target density is given by p(�) where

log p(�) = c+ l(�) + �(�):

The log-prior �(�); the state density, is quadratic in � and, as before l(�) represents the non-

quadratic, but concave, log-likelihood (the measurement density). The unnormalised proposal

density is given by q�(�), where

log q�(�) = c+ l~(�) + �(�);

where, as before, l~(�) represents the second order expansion of the log-likelihood. Hence we

draw � � N(�;�), using the simulation smoother, then the log of the Metropolis ratio is

log

(
p(�)q(�

0

)

p(�
0

)q(�)

)
= l(�)� l~(�)� l(�0) + l~(�0):

If we instead draw � � N f(1 + �)�� ��0; (1� �2)�g then the construction of the Metropolis

ratio remains the same since we have,

log

(
q(�j�0)

q(�
0j�)

)
= log

(
q(�)

q(�
0

)

)
: (3�1)

So again this expression does not depend on �.

The fact that this expression still does not involve the density arising from the state equa-

tion, but only the likelihood arising from the measurement equation and its approximation,

is computationally attractive.

We may also require to place the state sampler within an accept-reject method (A-R), see

Tierney (1994), before performing the calculation of the Metropolis ratio. The reason for this

being that the Metropolis rejection probability is reduced at the expense of some computer

time. The equality of (3�1), arising from the results of Barone & Frigessi (1989), implies that

l~(�) + �(�)� l~(� 0)� �(� 0) = l~(�) + �(�)� l~(�0)� �(�0) (3�2)

where, regarding them as functions of � we de�ne

�(�) =
f� + ��0 � (1 + �)�gp

1� �2
+ � and � 0(�0) =

f�0 + ��� (1 + �)�gp
1� �2

+ �,

If we perform A-R sampling by sampling � � N(�;�) until acceptance by inspecting the

ratio, the log of which is

log r(�) = l(�)� l~(�);

then the density of the resulting � is

f(�) / min fp(�); q�(�)g :
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If we then transform the � value by setting � =
p
1� �2(� � �)� ��0 + (1+ �)� then the

distribution of � is (since the Jacobian of the transformation is constant),

f(�) / min [p f�(�)g ; q� f�(�)g] ;

where � is de�ned in terms of � as above.

The log of the contribution to the Metropolis ratio of (4�2) now becomes,

log
n
p(�)f(�0)

p(�0)f(�)

o
= l(�) + �(�) + minfl(� 0) + �(� 0); l~(� 0) + �(� 0)g
+ �l(�0)� �(�0)�minfl(�) + �(�); l~(�) + �(�)g:

Noting (3�2) we obtain,

log

(
p(�)f(�0)

p(�0)f(�)

)
= l(�)� l(�0) + l~(�0)� l~(�)

+minfl(� 0)� l~(� 0); 0g �minfl(�)� l~(�); 0g:

The Metropolis step is therefore simple to calculate and still only involves the likelihood of the

states and their second order approximation. The justi�cation for using the A-R method in the

context of non-independent proposals is less compelling than its use for independent proposals

since, even if we have coverage, we do not accept at the Metropolis stage with probability 1.

However, in practice, we have found that for this form of proposal the Metropolis acceptance

probability was increased by the addition of the A-R stage.

The advantage of this antithetic variable approach is that it is possible to induce negative

correlation in the states conditional upon the previous draw. This is achieved by choosing

0 < � < 1. However, it is apparent that the conditional variance of the proposal, given by

(1��2)�, is reduced as � becomes closer to 1. This is not an attractive feature since as � ! 1

we get no movement in the resulting MCMC chain.

Figure 2 and Table 2 presents the results of the separate sampling scheme using stochastic

relaxation on the states (� = 0:65). In this case the Metropolis method with A/R was

implemented. Clearly, the e�ciency is less than that for the standard separate sampling

scheme. This may be due to the fact that the relaxation method leads to higher rates of

Metropolis rejection.

4 Joint sampling

The proposed joint algorithm aims at sampling all the states and parameters given some

known randomly selected knots �n. We shall denote the states to be sampled by � and the

whole state space by � = f�; �ng. The joint distribution of the parameters and the states,

given the observations and the knots, can be written as f(�;	jy; �n). Now

f(�;	jy; �n) / f(yj�)f(�j	; �n)f(	) = expfl(yj�)gf(�j	; �n)f(	)
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Figure 2: Correlograms for 80,500 samples of �, �2
�
and � going from left to right, using the

seperate sampling approach with 10 knots. The relaxation method (� = 0:65) is applied to the

states. Plots of the samples are shown below the correlograms

' expfl~(yj�)gf(�j	; �n)f(	)

= f ~(yj�)f(�j	; �n)f(	); (4�1)

where again l~(yj�) represents the second order expansion of l(yj�) around a suitable vector b�,
the choice of which will be outlined presently. Now we have to sample from the approximate

joint density of (4�1) to provide proposals for the Metropolis method. Again it can be seen,

as in Shephard & Pitt (1997), that (4�1) represents a Gaussian state space form (GSSF) in

�. Indeed f ~(yj�) / f(zj�) where z represents a vector of pseudo-observations arising from

a GSSF. We can now see how to sample from (4�1) since,

f ~(yj�)f(�j	; �n)f(	) / f(zj�)f(�j	; �n)f(	) / f(�j	; y; �n)f(	jz; �n):

Parameter Mean Variance Ine�ciency factor

� �0:9051572 0:07813187 4:780 (300)

�� 0:1680184 0:0017689 302 (800)

� 0:9745084 0:0001751277 179 (800)

CPU time (s) 7; 981

Table 2: Summaries of Figure 2. Results for the separate block sampling scheme with 10 knots

and using relaxation on the states. Time is in seconds on a pentium 133 to carry out 80,500

iterations. Figures in brackets denote the bandwidth for Parzen window.
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Here f(�j	; y; �n) represents the smoothing density for �; which can be simulated by using

the method of de Jong & Shephard (1995). The sampling of f(	jz; �n) is less straightforward.

The log of f(	jz; �n) is given by the Kalman �lter (together with the parameter prior). If

it were possible to sample directly from this parameter density then the overall Metropolis

switching probability would be

Pr(f�o;	og� > f�n;	ng) = min

(
1;
w(�n)

w(�o)

)
:

This is exactly the same as the construction of the Metropolis step were we only sampling the

states. In practice, sampling the parameters from f(	jz; �n), is not possible exactly. Instead

we generate proposal samples for f(	jz; �n) from an approximation to this density f ~(	jz; �n).

The approximation is constructed as follows. We use the BFGS method for obtaining the

mode of f(	jz; �n); or a point near the mode, b	. The BFGS method is described in detail

in Fletcher (1987, p55{57). The method is a quasi-Newton optimisation algorithm. Let us

express f(	jz; �n) = expfl(	jz; �n)g. Our approximation to this density (up to a constant of

proportionality) is f ~(	jz; �n) = expfl~(	jz; �n)g where,

l~(	jz; �n) = �1

2
(	� b	)0H�1(	� b	):

H is the Hessian matrix which is output by the BFGS method. It is guaranteed to be positive

de�nite and approximates the negative of the inverse matrix of second derivatives of l(	jz)
evaluated at b	. Hence we have the following Metropolis updating step

Pr f(�o;	o)� > (�n;	n)g = min

(
1;
w(�n)

w(�o)

�(	n)

�(	o)

)
(4�2)

where

�(	) =
f(	jz; �n)

f(	jz; �n)~
= expfl(	jz; �n)� l~(	jz; �n)g:

It should be noted that again A/R methods for � can be used in conjunction with this

Metropolis algorithm although the details are similar to those given Shephard & Pitt (1997)

and will not, therefore, be given in detail here. As in the separate sampling scheme it is hoped

that the approximations lead to a high Metropolis acceptance probability.

4�1 Finding points of expansion and starting values

We know that l(	jz; �n), the true log-density, consists of the log-likelihood arising from the

KF together with a weak prior. The dominating KF log-likelihood is not, in general, concave

making an exact Newton method, for instance, unstable. The BFGS method is computa-

tionally e�cient because it avoids explicitly calculating the matrix of second derivatives, an

expensive task when each call of the log-density involves the calculation of the KF (over a

potentially large number of time points). However, the performance of the BFGS method
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relies on the method being initialised at sensible starting values and with a reasonable initial

Hessian, H. One way to do this is to simply run the separate MCMC scheme for a �xed short

run-in period, recording the means and the variance matrix of the parameters. The proposed

joint sampling scheme would then be started at this stage with the starting values for b	 in the

BFGS method always being set to these means and the corresponding Hessian always being

set to the sampled variance matrix. Of course, the samples from the run-in period would need

to be discarded when making inference from the MCMC chain.

In fact in the applications presented in this paper a di�erent strategy has been employed

for obtaining good starting values of b	 and cH. Before the MCMC sampling procedure begins

we �nd an approximation to the overall mode of the posterior distribution of 	.

The following scheme is implemented:

1. An initial guess 	0 for the parameters is obtained.

2. The mode, b�, of f(�jy;	0) is found. This can be done by using the expectation smoother

and is detailed in Fahrmeir (1992) and Shephard & Pitt (1997).

3. The mode b� is used as an expansion point to yield a GSSF.

4. The log-density of 	 in the GSSF is maximised, starting at 	0, with respect to 	. We

then set 	1 = 	.

This process is continued until we have convergence. We then obtain a rough estimate of

the posterior mode b	. The Hessian, H, is set to the negative of the inverse of the matrix

of second derivatives of the log-density of 	 evaluated at b	. The important aspect of this

method is that it only needs to be run once, before the MCMC simulation, in order to yield

starting values for the subsequent BFGS optimisation schemes.

So far we have not addressed the issue of how to choose the expansion points b� which are

used to obtain the GSSF as the proposal density. The algorithm describing one entire sweep

of the MCMC procedure is given below where the states and parameters from the previous

sweep are denoted by �o and 	o (we have obtained b	 and dH as above):

� Randomly allocate a �xed number of the current states to retain their previous sampled

values, �n.

� Find the mode, b�, of f(�j b	; y; �n) and perform a second order expansion of f(yj�; b	)
around b�.

� Construct the resulting GSSF, with pseudo-observations z and �nd the mode, e	; and
Hessian, H; of 	 from f(	jz; �n), using the BFGS method intialised with b	 and dH .
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Figure 3: Correlograms for 80,500 samples of �, �2
�
and � going from left to right, using the

joint sampling approach with 45 knots. Plots of the samples are shown below the correlograms

� Sample 	n � N( e	; H).

� Sample �n � f(�j b	; z; �n) using the simulation smoother.

� Change to the new values with probability Prf(�o;	o)! (�n;	n)g = min
n
1;

w(�n)

w(�o)

�(	n)

�(	o)

o
:

The number of knots has little impact upon the discrepancy between f(	jz; �n) and its

approximation. However, as the number of knots becomes larger the discrepancy between

the density of the states and its approximation is reduced and so w(�n)=w(�o) becomes less

variable around 1, increasing the Metropolis switching probability. However, the price of this

is increased dependency in the sampled chain since we are retaining more states drawn from

the previous sweep. In practice, the best choice for the number of knots involves a trade o�

between these two considerations. In the applications which follow the number of knots is

periodically increased, every few iterations, for one sweep to ensure that the MCMC chain

moves.

The results of the joint sampling approach with 45 knots are shown in Figure 3 and Table

3. The parameter � is sampled separately, not jointly, since it is fairly uncorrelated with

the states and the other parameters. There is clearly a substantial improvement in e�ciency

resulting from this approach. The autocorrelations of the parameters die out at about lag 50.

The results of the joint sampling approach when stochastic relaxation (� = 0:7) is used
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Parameter Mean Variance Ine�ciency factor

� �0:90508 0:077538 1:60 (30)

�� 0:16795 0:0012925 22:9 (200)

� 0:97476 0:00015346 17:4 (200)

CPU time (s) 6; 857

Table 3: Summaries of Figure 3. Results for the joint sampling scheme with 45 knots. Time

is in seconds on a pentium 133 to carry out 80,500 iterations. Figures in brackets denote the

bandwidth for Parzen window.

for �, are given in Figure 4 and Table 4. There is a slight increase in e�ciency resulting from

the relaxation approach.

Parameter Mean Variance Ine�ciency factor

� �0:90561 0:07829744 0:698 (30)

�� 0:16735 0:001331371 18:5 (200)

� 0:9747017 0:000161953 14:2 (200)

CPU time (s) 6; 913

Table 4: Summaries of Figure 4. Results for the joint sampling scheme with 45 knots and

using relaxation on �. Time is in seconds on a pentium 133 to carry out 80,500 iterations.

Figures in brackets denote the bandwidth for Parzen window.

5 Conclusions

The methods outlined in this paper represent a general MCMC approach for non-Gaussian

measurement time series. The approach is 
exible, allowing the practitioner choice in which

parameters to update jointly with the states and which to update separately conditional upon

the states. Those parameters which are most highly correlated with the states, and with each

other, are the most suitable for the joint updating strategy. In the application presented,

the method enables gains in e�ciency of around 10 fold as it reduces the autocorrelation

associated with the parameters of interest.

The use of the antithetic variables approach introduced by Green & Han (1990) and Barone

& Frigessi (1989) for Metropolis sampling requires careful consideration of the antithetic

parameter �. For values of � close to 1, convergence can be slow. In general, even with

judicious choice of �, the e�ciency gains resulting from the use of antithetic variables was

slight. This is in part due to the fact that the Metropolis rejection probability increases as

� increases above 0. In addition the conditional variance of the proposal samples is reduced

which may cause slow mixing.
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Figure 4: Correlograms for 80,500 samples of �, �2
�
and � going from left to right, using the

joint sampling approach with 45 knots. Relaxation (� = 0:7) used. Plots of the samples are

shown below the correlograms

In general, it appears that consideration of blocking strategies which exploit the depend-

ency structure of the model of interest as fully as possible is more important than attempting

to induce negative correlation between successive sweeps of the MCMC chain. In very highly

persistent models, which may arise from intra-daily observations using the SV model, in-

creased e�ciency is particularly important.

6 Appendix

This Appendix details Gaussian �ltering and smoothing. The Gaussian state space puts

yt = ct + Zt�t +Gtut; ut � NID(0; I);

�t+1 = dt + Tt�t +Htut;

�1jY0 � N(a1j0; P1j0);

We assume that G0
t
Ht = 0 and write GtG

0
t
= �t which we assume is full rank. The Kalman

�lter (de Jong (1989)) computes atjt�1 = E�tjYt�1 and Ptjt�1 =MSE(�tjYt�1);

at+1jt = dt + Ttatjt�1 +Ktvt; Pt+1jt = TtPtjt�1L
0
t
+HtH

0
t
; vt = yt � Ztatjt�1 � ct;

Ft = ZtPtjt�1Z
0
t
+GtG

0
t
; Kt = TtPtjt�1Z

0
t
F�1
t ; Lt = Tt �KtZt:

The �lter yields forecast errors vt, MSEs Ft and the Gaussian likelihood

log f(y1; :::; yn) = const� 1

2

X
log jFtj �

1

2

X
v0
t
F�1
t
vt:
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The simulation smoother (de Jong & Shephard (1995)) draws from (c1 + Z1�1; :::; cn + Zn�n) jy.
Setting rn = 0 and Nn = 0, for t = n; :::; 1 , and writingDt = F�1

t +K 0
t
NtKt, nt = F�1

t vt�K 0
t
rt

Ct = �t � �tNt�t; �t � N(0; Ct);

rt�1 = Z 0
t
F�1
t vt + L0

t
rt � V 0

t
C�1
t �t; Vt = �t (DtZt �K 0

t
NtTt) ;

Nt�1 = Z 0
t
F�1
t Zt + L0

t
NtLt + V 0

t
C�1
t Vt:

(6�1)

and recording �t = �tnt + �t. Then yt � �t is a draw from the signal (ct + Zt�t) jy.
The de Jong (1989) and Koopman (1993) moment smoother is a special case of the simu-

lation smoother as it computes the means of (c1 + Z1�1; :::; cn + Zn�n) jy. Setting rn = 0 for

t = n; :::; 1 , and writing nt = F�1
t vt �K 0

t
rt

rt�1 = Z 0
t
F�1
t
vt + L0

t
rt; (6�2)

and recording �t = �tnt. Then yt � �t is the mean of the signal (ct + Zt�t) jy.
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