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Abstract: This paper analyses the likelihood test for the hypothesis of re-
duced cointegration rank in a Gaussian vector autoregressive model. In finite
samples the rejection probability for the hypothesis may be quite different
from the promised asymptotic size. An explanation is found in the fact that
the test is not similar. A new asymptotic distribution which depends contin-
uously on the nuisance parameters is suggested. This captures the functional
form of the exact distribution and gives a rather good approximation. The
idea is discussed for some low dimensional examples.

1. Introduction

Empirical evidence of economic equilibria can be found by cointegration
analysis using the idea that a linear combination of two stochastically trend-
ing processes may be stationary. One of many tests for the number of coin-
tegrating relations is suggested by Johansen (1988, 1995a). This test has
appeal as a likelihood ratio test in a Gaussian vector autoregressive model
although it is based on an asymptotic distribution approximation of the test
statistic. Simulation studies of the test show that under the hypothesis the
rejection probability of the test may be quite different from the promised
asymptotic size. As an example consider the money demand analysis for
Denmark by Johansen and Juselius (1990). One of their tests is for the hy-
pothesis of at most one cointegrating relation. Parametric bootstrap shows
that the rejection probability evaluated at the maximum likelihood estimator
is around 22% when the asymptotic size is 5%.

The statistical model involves a wide range of parameters, however, the
statistical analysis only has a reasonable interpretation if the first differences
of the process and the cointegrating vector are stable. Although the test sta-
tistic conveniently has one asymptotic distribution under these assumptions
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the test cannot even be regarded as asymptotically similar. If the assump-
tions are violated, different asymptotic distributions may apply. In fact, the
finite sample distribution of the test statistic depends continuously on nui-
sance parameters and it is approximated by a step function. The asymptotic
approximation is consequently poor near the steps of that function.

If the nuisance parameters are not too close to the steps it seems as
though the asymptotic distribution can be improved succesfully by a Bartlett
correction. For the money demand example mentioned above the size is
improved from 22% to 5%. The idea of Bartlett (1937) entails scaling with the
ratio of the asymptotic expectation and the finite sample expectation, which
depends on the nuisance parameters. Therefore the approach is analytically
rather demanding.

A different approach is to apply an asymptotic distribution which is more
closely related to the exact distribution. The idea is to identify the impor-
tant nuisance parameters, O, scale them by the sample size, §# = TO, and
fix 6 rather than © in the asymptotic argument. This approach has two
important features. First, the statistical model and analysis is not changed
so the nuisance parameter © is estimated by existing methods. Secondly, the
approach captures the shape of the finite sample distribution and it has a
nearly uniform effect in the entire parameter space. The approach will be
demonstrated in this paper using a few examples. In these cases the new
asymptotic distribution gives an approximation which is at least as good as
the Bartlett corrected standard asymptotic distribution. While the analytic
arguments for this method are also rather demanding, the benefit is that the
problem is now formulated as an asymptotic problem of first order rather
than of second order.

In the paper three types of cointegration models are considered. When
testing for no cointegration in a first order model the test is similar and
the standard asymptotic distribution gives a fine approximation. In general
models the test is non-similar. This non-similarity arises from two sources.
Firstly, higher order autoregressive structure allows for extra unit roots and
as a consequence the test is non-similar as pointed out by for example Pan-
tula (1989). This will be discussed in the context of a univariate second order
model. Secondly, cointegration is analysed using canonical correlations. In
classical canonical correlation analysis there is also a similarity problem as
pointed out by Hotelling (1936). This problem is inherited by cointegration
analysis. Here it will be discussed for a bivariate first order model. The new
asymptotic approach is considered in connection with classical canonical cor-
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relations by Nielsen (1997c). That paper includes more analytic arguments
since the observations are assumed to be independent and the problem is
therefore more tractable.

A brief introduction to the general model is given in Section 2 and, next,
in Section 3 the similar test for no cointegration in first order models is
discussed. The univariate second order model and the bivariate first order
model are considered in Section 4 and 5 respectively. Finally, Section 6
concludes with a discussion of some further issues.

2. The statistical model and the asymptotic analysis
Consider the p-dimensional, k-th order vector autoregressive model given by

k-1
AX; =TIXi + Y TAX, j+&, fort=1...T (1)

j=1
for fixed values of Xj,..., X;_; and independent standard Gaussian inno-
vations with variance 2. The parameters, I1,I';,... Ty 1, vary freely so

that € is positive definite and symmetric. Usually deterministic components
would be included in applications. Nielsen and Rahbek (1998) demonstrate
how these components can be included in such a way that no further simi-
larity problems are introduced.

The hypothesis of at most r cointegrating relations is formulated as

H(r) : rankIl <r < p.

The inequality ensures that the matrix IT can be written as the product a3,
where «, (3 are freely varying (p X r) matrices.

The first differences of the time series and the cointegrating relation,

B X;, can be given stationary initial distributions and therefore interpreted

as stable phenomena under some restrictions to the characteristic polynomial

of the time series,

k—1

Alz) = (1= 2)I, — 211 =) (1 - 2)2T}. (2)

=1

The characteristic roots, solutions to the equation, detA (z) = 0, have to
fulfil the assumptions

(A.1) p — rankll roots are at one

(A.2) the remaining roots are numerically larger than one
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as proved by Johansen (1995a, Theorem 4.2, 4.7). The first assumption
ensures that the cointegrating vector and the first difference of the time
series do not have any unit roots, whereas the second emphasises stability
rather than explosiveness or seasonal integration.

In the statistical analysis the assumptions (A.1)-(A.2) are ignored. The
likelihood criterion for the hypothesis is therefore given by

LR{H()|H(p)} = -T Y log (1-4;) (3)

j=r+1

where 1 > Ay > -+ > Sxp > (0 are the squared sample canonical correla-
tions of AX; and X; ; and both series are corrected for lagged differences,
AXt_l, . ,AXt_k+1.

Since the test statistic is computed in terms of canonical correlations
its distribution does not change by a non-singular linear transformation of
the time series and the test is said to be invariant with respect to such
transformations (Cox and Hinkley, 1974, p. 157). Thus p? linear restrictions
can be imposed on the parameter space without altering the distribution
of the test statistic. This generalises the finding that the univariate test is
invariant with respect to scalar transformations and thereby not dependent
on the parameter of the innovation variance.

The asymptotic distribution of the sample canonical correlations varies
with the number of unit roots. Thus, the assumption (A.1) is necessary,
whereas (A.2) is convenient for deriving the asymptotic distributions. The
hypotheses of at most r cointegrating relations only specifies that the time
series has at least p — r unit roots, hence, for the asymptotic analysis it is

also assumed that
(A.3) rankIl =r.

Under these assumptions Johansen (1995a, Theorem 6.1) proves that the r
largest sample canonical correlations converge to constants and that the dis-
tribution of the likelihood criterion can be approximated by the distribution
of the trace of a stochastic matrix of the form

1 1 -1 2
/ AW, ( / WUWL’Ldu) / W,dW! (@)
0 0 0

Here W, is a p — r dimensional Brownian motion.



3. Similar tests
A test is said to be similar if it is based on a critical region K with probability

PQK:Oé

for all 6 in the parameter space restricted by the hypothesis (Cox and Hink-
ley, 1974, p. 134). Although the property is satisfied asymptotically when
the assumptions (A.1)-(A.3) are imposed the cointegration tests cannot be
said to be asymptotically similar. The reason is that various different limit
distributions may apply on the boundary of the parameter space given by
these assumptions. However, when testing for no cointegration, H (0), in
a first order model, k¥ = 1, then the assumptions (A.1)-(A.3) are trivially
fulfilled in the entire parameter space and the test is actually exact similar.
In that situation the asymptotic distribution gives a good approximation to
the exact finite sample distribution of the test.

In the univariate case, p = 1, the distribution of the likelihood criterion
converges unusually fast. With 8 observations the simulated finite sample dis-
tribution cannot be distinguished from the asymptotic distribution (Nielsen,
1997a).

For higher dimensions the convergence is obviously slower. In Table 1
the sizes of tests based on the asymptotic 95% quantile are reported for
various dimensions and sample lengths. This table can be evaluated by the
requirement that there should be 8-10 observations per parameter as in many
applications. For the first four dimensions the relevant sample lengths are
16-20, 28-35, 40-50, 52-65. Thus, except for the univariate case the test
is slightly, but not alarmingly, over-sized. Note, that compared with many
classical tests this convergence is rather fast.

[ Table 1 |

A Bartlett correction works very well in this case. The idea is that the
asymptotic quantiles and the exact finite sample quantiles are approximately
proportional and the asymptotic distribution can therefore be improved by
scaling for instance by the ratio of the asymptotic and the exact expectation
of the test statistic. Bartlett (1937) argued in terms of a second order ex-
pansion of the expectation and later Lawley (1956) proved that for testing



situations in case of n repeated observations the moments of the test statistic
are given by
E(LR)* =my (1 +a/n)* +0 (n7?) (5)

where my, is the k-th moment of the limiting distribution. Therefore, scaling
with a second order expansion of the expecation would eliminate all second
order terms from the distribution approximation.

These properties are slightly different for cointegration models. For the
univariate first order model Nielsen (1997a) shows by simulation that the
quantiles are close to proportional. Moreover, scaling with the ratio of the
asymptotic expectation and the (simulated) exact distribution improves the
distribution approximation. However, the analytic effect of the Bartlett cor-
rection is less clear. The second order term, denoted a in (5), depends on the
moment, which is considered. It is reduced in absolute value by a Bartlett
correction but not eliminated.

Bartlett corrections based on the ratio of simulated finite sample and
asymptotic expectations work fine also for the higher dimensional test of no
cointegration in first order models. In that case the figures in Table 1 would
be improved to be 4.9%-5.3% for T' = 25.

It should be noted that the degrees of freedom correction suggested by
Reinsel and Ahn (1992) is not very helpful. That correction approximates
the ratio of exact and asymptotic expectation by (14pk/T’). This is obviously
not very good for the univariate case where the asymptotic distribution fits
rather well. For the first four dimensions studied in Table 1 and T = 25
the simulated ratios are 1.008, 1.037, 1.066, 1.096 which should be compared
with 1.04, 1.08, 1.12, 1.16 respectively.

4. The univariate second order model

This model provides the simplest example of a non-similar cointegration test
and illustrates the autoregressive aspect of the problem. The distribution
of the test depends, even asymptotically, on a nuisance parameter. In the
following the statistical analysis is discussed briefly, next the asymptotic
distribution of the test criterion is described, then approximations to the
finite sample and finally some practical issues are considered.

4.1. The statistical analysis.
The model is reparametrisised in terms of the univariate equation

A2X, =T1X, , —TAX; | +&, (6)



where I' = —I';. The likelihood ratio test criterion for the hypothesis II = 0
is given by —T'log(1 — 5\) where ) is the squared empirical correlation of
A2X, and X,_; with both series corrected for AX,_;.

For the distributional analysis two properties are of interest. Emperical
correlations are, as mentioned above, scale invariant and the distribution of
the criterion does therefore not depend on the innovation variance 2. Further,
an analysis of the characteristic polynomial for a process given by (6) reveals
that the process has two unit roots if I' # 0 and one otherwise. The process
is I(1) if the absolute value of (1-I") is smaller than one.

4.2. The asymptotic distribution
The asymptotic distribution of the criterion is given as follows

Theorem 1 (The univariate second order model)
Let W be a standard Brownian motion and W, = fou W,dv.
For T' # 0 the criterion converges in distribution to

(L)) [ o

For I' = 0 the criterion converges in distribution to

(fol W,,dW,, — Ji WuWadu [} Wuqu>2

[ W2du

1.7 (Jd WuWoudu)®
fo Widu — Ojol W2du
Summary statistics of the distributions are given in Table 2.

The I(1) result, for abs(1-I') < 1, and the I(2) result, for I' = 0, are well-
known, see for example (4) and Johansen (1995b) respectively. The situation
of a negative unit root, I' = —2, is closely related to the work of Chan and
Wei (1988), whereas the explosive case seems to have escaped the literature.
The proof of Theorem 1 is given in the appendix.

A consequence of Theorem 1 is, as pointed out by Pantula (1989), that
the test is not similar. It is tempting to exclude all but I(1) processes by the
restriction abs(1-I') < 1. However, this is not of any help since the likelihood
function does not necessarily have a maximum under this restriction and
the pole at I' = 0 remains a problem in finite samples. For the subsequent



arguments it is convenient that there is just the one pole at I' = 0 and that
explosive roots are not a problem for the theoretical derivations.

[ Table 2 |

4.8. Approzimation of the finite sample distribution

The following analysis of the small sample distribution is based on simula-
tions. It is assumed that the initial values Xy, AXy are both zero. If this
were not the case in an application a deterministic trend would be included
in the model. An important feature of the distribution is the expectation.
In the Table 3 simulated values of the expectation are reported for various
values of I and T Except for the extreme case I' = 0 it is seen that a sub-
stantial number of observations are needed to obtain an expectation close to
the asymptotic value. For T = 24 where the parameter to observation ratio
is 1:8, and therefore better than in most cointegration applications, there is
a significant distortion even for I' = 2/3.

[ Table 3 |

One approach to approximation of the expectation is an asymptotic ex-
pansion for fixed I" and increasing sample sizes. This has been done for I' = 1
by Larsson (1994) and the correction seems to work in a range of I' around
I' = 1. Larsson’s idea could be pursued further.

A different approach is to fix v = I'T" in the asymptotic argument as
suggested by Nielsen (1997c) in the context of canonical correlations. This
corresponds to reading Table 3 diagonally from bottom-left to top-right cor-
ner. The figures indicate fast convergence, although to a continuum of new
asymptotic distributions. The new asymptotic expectation can be estimated
by fitting a polynomial in 1/7. The relative error of the finite sample expec-
tation in relation to the new asymptotic distribution now varies in the range
1.009 to 1.029 for T' = 24, so that the relative error is largest for small I'.
These figures are very small and it follows that a good approximation to the
expectation has been found. The new approach can be formalised as



Theorem 2 (The univariate second order model)
Let U be a univariate Ornstein-Uhlenbeck process given by the stochastic dif-

ferential equation

where W is a standard Brownian motion. Then for fived v = I'T" the test
criterion converges in distribution to a random variable of form (8) where W
15 replaced by U.

A proof can for instance be given along the line of Phillips (1988) theory for
near-integrated time series.

Simulated values of the expectation and variance of the asymptotic distri-
bution given in Theorem 2 are reported in Table 4. The distribution can be
fitted well by a I'-distribution determined from the first two moments. For
example for v = 0 and 4 the simulated asymptotic 95% quantiles are 4.90
and 4.59 as compared with I'-fits of 4.94 and 4.61.

[ Table 4 |

The Table 5 shows the actual performance of the various available ap-
proximations for a test at 95% level for T' = 24 and various values of T'.

The entry "I(1)” gives simulated rejection frequencies of tests based on
the asymptotic I(1) quantile of 4.129. The approximation is poor for small
r.

Next, as "I(1) Bartlett” a Bartlett approximation is given where the crit-
ical value is scaled by the ratio of the simulated expectation and the asymp-
totic I(1) expectation, 1.142. This is in the spirit of the approach of Larsson
(1994) although it actually works slightly better here since the exact expec-
tation is approximated more accurately by simulation than by asymptotic
expansion. It can be seen that this approach is quite good, although it works
less well for the smallest values of I'. The reason is that the quantiles of the
two asymptotic distributions given in Theorem 1 are not exactly proportional
and some of the proportionality underlying the Bartlett correction is lost.

The entry "new” gives rejection frequencies for tests based on the asymp-
totic 95% quantiles reported in Table 4. The figures are as good as those for
the Bartlett correction although they are based on a first order approxima-
tion. This convergence is as fast as that seen for the similar tests discussed
in the previous section.



Finally, as "new Bartlett” a Bartlett-type correction is given where the
quantiles of Table 4 are scaled by the ratio of simulated expectations from
Table 3 and the asymptotic expectations from Table 4. The error of this
approximation is smaller than the simulation error.

[ Table 5 |

The conclusion supported by the figures in Table 5 is that a more accu-
rate distribution approximation than the usual asymptotic I(1) distribution
can be obtained analytically in one of two ways. The first approach is the
Bartlett correction based on an asymptotic expansion of the expectation of
the criterion for fixed value of I' whereas the new approach is to apply the
new asymptotic distribution obtained for fixed value of . These are respec-
tively second order and first order asymptotic approaches which give roughly
the same quality of distribution approximation.

There is an interesting analytic connection between the two approaches,
which has been investigated in detail in the canonical correlation study of
Nielsen (1997¢). It will only be sketched for the present example, since no
formal proof has been found. For fixed v = I'T" the expectation of the
criterion can be expanded for large T" as

E., reriterion ~ f () {1 + ﬁTW) +-- } : (9)

Now, an asymptotic expansion for large v gives

ho) ~ 1aa2(1+ 2+ 2 )
v

b
fily) = bo+—1+"'
Y
so that
. . ay bo
E, rcriterion ~ 1.142 (14 —+ = +---
¥ T
1 aq
~ 114201 —(— b> 10
{ +T F+ o) + } ( )
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which would be the asymptotic expansion of the criterion for not too small,
fixed I and large T.

The Table 5 can be interpreted in terms of the above expansions. The
entry ”I(1)” is found using the leading term of the expansion (10). Next,
the entry ”Bartlett I(1)” is a simulation attempt to capture the second order
term of the expansion (10). Actually, Larsson (1994) finds the second order
coefficient a;/T" 4+ by for I' = 1 in his analytic work. Finally, the entries
"new” and "new Bartlett” are simulation based attempts to use respectively
the leading term and the second order expansion of (9).

4.4.Practical implemention

In practical situations the nuisance parameter has to be estimated. Rather
little is known about the effect of this. Before discussing that it is worth
considering how close to zero the estimator for the nuisance parameter could
be in practical situations.

Because of the similarity problem Pantula (1989) suggests first to test
that the process has two unit roots, I = I' = 0. If this is rejected the
hypothesis IT = 0 can be tested using the criterion above and now the I(1)
distribution can be applied with more confidence. Even so the estimator for
I' could be close to zero. If, for instance, the estimator for II is close to
zero then the test for II = I' = 0 is roughly a unit root test for the first
differences of the time series. Elliot, Rothenberg and Stock (1996) report the
asymptotic power envelope for such tests. For I' = 7/24, T' = 24 the power is
approximately 50% which illustrates that the parameter I" can be quite close
to zero in applications.

In practice there is an unresolved problem since the suggested distribution
approximations depend on the nuisance parameter, I'. Several estimators are
available. The maximum likelihood estimators under the alternative as well
as under the hypothesis could both be used and one could choose to bias-
correct. Next, it has to be argued by some conditional argument that the
distribution approximation is good given a fixed value of the estimator. For
the simpler situation of canonical correlations such an answer is given by
Glynn and Muirhead (1978), but even in that situation their argument is
rather complicated.

5. The bivariate first order model
This model gives the simplest example of cointegration as a stationary linear
relation of non-stationary variables. The model entails two types of similarity
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problems, the autoregressive aspect discussed aboved and the canonical cor-
relation aspect discussed by Nielsen (1997c). The test for H (1) is of interest
here.

The model is given by (1) with p = 2 and k& = 1. The hypothesis is,
H(1):rankIl <1,s0r =1, Il = af’, where a,3 are bivariate vectors.

For distributional analysis it is sufficient to consider processes given by
the equation

AXt = ( jg g > Xt,1 +€t (11)

where A € R and B > 0 and the innovations are independently standard
normal distributed. This follows from the invariance of canonical correla-
tions with respect to non-singular linear transformations. An alternative
parametrisation is, for A # 0,

A0 1\
AXt:(o 0>XH+<C 1> &

B/A

\/1— B2/A%

It can easily be seen that the assumption (A.1) is not satisfied for A =
0,B # 0, (A.2) is fulfilled for —2 < A < 0 and (A.3) is not satisfied for
A = B = 0. The asymptotic distribution of the criterion is given as follows

where

Theorem 3 (The bivariate first order model)

For A # 0 the criterion converges in distribution to (7). Moreover, the
largest eigenvalue, Ay, converges in probability to ¢/(1+¢) for |1+ A| < 1
where ¢ = (A* + B*)/(1 — (1 + A)?) and one otherwise.

For A = 0, B # 0 the criterion converges in distribution to (8) and A
converges in probability to one.

For A = B = 0 the normalised eigenvalues, T;\l,T 5\2, converge jointly in
distribution to the eigenvalues of

1 1 -1 .1
/ AW, W ( / Wuwgdu) / W, dW! (12)
0 0 0

where W is a bivariate standard Brownian motion. The asymptotic distrib-
ution of the criterion is given by the smallest of these eigenvalues.

12



Summary statistics of the distributions are given in Table 2.

For A = B = 0 and for —2 < A < 0 the result follows from Johansen
(1995a, Chapter 11). Proofs for the remaining results are given in Nielsen
(1997b).

The distribution of the test statistic depends on the parameters A, B
in a complicated way. The following two tables show the variation of the
expectation and variance, first for B = 0 and secondly for A = 0. These
figures are compared with moments of asymptotic distributions obtained by
the new approach. Again the idea is to fix a = AT and b = BT in the
asymptotic argument. Accordingly the Ornstein-Uhlenbeck process given by
the stochastic differential equation

dU, = ( 8 8 > Udt + dW, (13)

is of interest and new asymptotic distributions are obtained by replacing the
Brownian motion in (12) by this process. It is seen from the tables that the
new approach gives a rather good, nearly uniformly good, approximation to
the finite sample moments.

[ Table 6 |
[ Table 7 |

In the Tables 4 and 7 the figures show a monotonous tendency. Similarly,
the analysis of bivariate canonical correlations shows a monotonous increas-
ing expectation, see Nielsen (1997c). This is not the case in Table 6, where
B = 0. There is an overall minimum around a = —3/8 and a maximum
around a = —48.

In application only some of the values in Table 6 and 7 are of interest.
Following the sequential procedure suggested by Johansen (1995a, Chapter
12) the test would only be applied if it has been rejected that A = B = 0.
For instance for A = —18/24, B = 0, T = 24 the asymptotic power is
approximately 57% of a test at 5% level, see Johansen (1995a, Theorem
14.5) and it is likely that a test of no cointegration would be rejected. At
this value of A a test based on the standard I(1) distribution (7) is slightly
under-sized and, in particular, the degrees of freedom correction of 1 4 2/7T
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suggested by Reinsel and Ahn (1992) would only make this worse, see also
Kostial (1994). If A = 0 the asymptotic power of the test for no cointegration
is approximately 62% for B = 6/24, T' = 24. For this value the finite sample
expectation is larger than the asymptotic expectation, even when it is scaled
using the degrees of freedom correction.

6. Discussion and further suggestions

For a few examples it has been demonstrated that the asymptotic distrib-
ution of the cointegration test depends on the number of unit roots in the
characteristic polynomial. Consequently, it is not always an improvement to
use a degrees of freedom correction as that suggested by Reinsel and Ahn
(1992). The approach developed in this paper gives a rather good approx-
imation to the finite sample distribution: the convergence is fast and the
error is nearly constant in the entire parameter space. Unfortunately the
number of nuisance parameters increases dramatically by the dimension and
by increased lag length.

A deterministic term can be included in the model without adding further
similarity problems as discussed by Nielsen and Rahbek (1998). The previous
results seem to carry over to that case and figures corresponding to Table 1
are reported by Toda (1995, Table 1).

The representation theorem of Granger, see Johansen (1995a, Th. 4.2)
is the basis of the I(1) analysis and the assumptions should be considered
in applications. A root near one not only distorts the finite sample distri-
bution dramatically as demonstrated above, it also distorts the stationarity
interpretation of the results. Therefore, it may be useful to impose such a
root as a unit root in for instance an I(2) model as suggested by Johansen
(1995b). In that case new possibilities for interpretation may arise, see for
instance Juselius (1995) and Rahbek, Kongsted and Jgrgensen (1998). Fur-
ther, one could hope that the I(2) distributions would be less distorted when
the near-unit roots are eliminated.

For more complicated situations than those discussed here the higher or-
der representation theorem by LaCour (1998) may be helpful. There is very
little analytic work on the multivariate I(1) distribution in the literature.
The Laplace transform of the sufficient statistic in a first order vector au-
toregressive model is studied by Abadir and Larsson (1996) and Jensen and
Nielsen (1995). Cointegration in continuous time for processes such as (13)
and relevant weak convergence results have been studied by Stockmarr and
Jacobsen (1994).
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To conclude, the small sample problem in cointegration is actually an
asymptotic problem: the small sample problem vanishes when the right as-
ymptotic theory is employed.
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Appendix: Proof of Theorem 1
First, under the hypothesis the time series A?X; corrected for AX; ; can be
rewritten as
T T
AX,AX, AX;
A2X, — AX; th& e — e - AX ZTt=1 =u
Zt:l (AXL‘—1> Zt:l (AXt—l)
As for the levels of the time series, then summation of the equation (6) under
the hypothesis gives

t
AX, — AXog=—T (X1 — Xo+ AXo) + ) &

j=1
Addition of the term I'’X; and some rearrangements imply that
rx;=5-(1-TI)AX;
with .
Si=> e, eo=TXy+ (1 -T)AX,.
s=0

Then, for I' # 0, X;_; corrected for AX;_; can be rewritten as

r T
X = AXi Zt:Tl XtilAthl = 1 Se1—AXy Zt?l StilAXtigl .
Zt:l (AXt—1) r thl (AXt_1>

As a consequence of the results above the empirical correlation, 5\, equals

2
|:ZT S, e — S S AXe S Athlfft:|
=1 S (AX 1)

{z?l st - SH““)Q] {Zfl o - Axt-mf}

i1 (AXio1) i1 (AXi-1)®

It remains to conclude that this term equals

23—2 St1€¢ ( 1 >
= +0p | =
Zthl €f Z;fzz Sthl T

in which case the Theorem follows. The initial term, g, is asymptotically
ignorable and thus it suffices that

2
(Zthl AXt%gt)
ZtT:1 (AXt—l)2

16




converges in distribution, which follows from White (1958) for any I', and
that

2
(Zfzg StflAXt71>
T2y (AX 1)

converges in probability to zero. Now, (14) follows if

(14)

T

<Tig S SiAX, 9—12 > (AXt_l)Q) 2 (0,V) (15)

t=1

where the random variable V' # 0 almost surely and g is some normalisation
constant. In case |1 —I'| < 1 then AX,, AS; are stationary linear processes
and (15) follows from Johansen (1995a, Theorem B.13) with g = /7". For
the case I' = 2 Chan and Wei (1988, Th. 2.2) show that S; and AX, i, nor-
malised by /T, converges to independent Brownian motions and the Theo-
rems 2.4 and 3.4.1 of the same authors imply (15) with g = 7. Finally, for
the case |1 — I'| > 1 it follows from White (1958) that

T

1 2
T_nT ; (AX; 1)

is convergent in distribution which gives the relevant normalisation, g =
(1 —T)". Further,

T T t-1  t-1
S 1AX, = ey (1-D) 1 re
t—1 1 = Fi k
=2 t=2 j=0 k=1
T-17-1 T k-1
t
= €€k (1-0)".
j=0 k=1 t=max(j—k,0)

By Chebychev’s inequality it can be shown that this converges in probability
to zero when normalised by (1 —T)" /7. W
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p versus T’ 25 50 100 200 400
1 50% [ 5.0% | 51%|50%|50%
2 6.2% |53%|52%|52%|52%
3 80% [62%|55%[52%|50%
4 116 % | 75% | 6.0% | 55 % |52 %

Table 1. Simulated size of test for no cointegration in a first order model.
Based on the asymptotic 95% of MacKinnon, Haug and Michelis (1996)
and 10° repetitions.

Section 4 Section 5 Mean Variance 90% 95%
irrelevant | A=B=0 | 0.671 0.714 1.73 2.37
#£0 A#0 1.142 2.221 298 4.13
r=o0 A=0,B#0]| 1.402 3.097  3.60 4.94

Table 2: Summary statistics for limit distribution.
The figures are obtained analytically for A # 0,

see Abadir (1995), Monsour and Mikulski (1994) and Nielsen (1997a)

and otherwise by simulation of moments and I'-fit of quantiles.

I' versus T’ 6 12 24 48 96 192
0 1.723 1.491 1.431 1.414 1.407 1.402
1/24 1.727 1498 1.434 1.391 1.322 1.253
1/12 1.733 1.495 1.404 1.328 1.254 1.203
1/6 1.731 1.467 1.342 1.258 1.208 1.180
1/3 1.706 1.393 1.271 1.210 1.179 1.162
2/3 1.607 1.295 1.215 1.178 1.160 1.150
4/3 1.440 1.230 1.183 1.162 1.153 1.149

Table 3: Simulated expectation of likelihood ratio test statistic
for fixed I, based on 10° repetitions.
The asymptotic value is 1.142 for I' > 0 and 1.402 for I' = 0.
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v

0

1

2

4

8

16

32

expectation
variance

1.402 1.394 1.371 1.316 1.251 1.205 1.172
3.097 3.000 2.867 2.673 2.491 2.386 2.299

1.142
2.221

I-fit of 90% quantile

3.60

3.56

3.49

3.36

3.22

3.12

3.05

2.978

I-fit of 95% quantile

4.94

4.88

4.78

4.61

4.43

4.31

4.22

4.129

Table 4: Asymptotic mean and variance for v fixed.

The values for finite 7 are obtained by fitting polynomial in 1/7" to
the figures in Table 3. The values for v = oo are moments obtained
for T 2 0 in the usual asymptotic approach, see Table 2.

T 0 1/24 1/12 1/6 1/3 2/3 4/3
~=IT 0 1 2 4 16 32
I(1) 082 .080 .076 .068 .061 .056 .053
I(1) Bartlett | .047 .046 .045 .045 .047 .049 .049
new 054 054 053 .052 .051 .050 .051
new Bartlett | .051 050 .050 .049 .050 .050 .050

Table 5: The rejection frequency using various distribution approximations,

based on 10° repetitions.

A 0 -1/32 -1/16 -1/8 -1/4 -1/2 -1
a=AT 0 -3/4  -3/2 -3 -6 -12 -24
Finite sample mean 0.698 0.694 0.735 0.837 0.975 1.097 1.132
Finite sample var. 0.769 0.732 0.771 0914 1.235 1.770 2.109
New asymp. mean 0.670 0.670 0.718 0.825 0972 1.103 1.155
New asymp. var. 0.707 0.682 0.737 0.886 1.212 1.735 2.160

Table 6: Simulated finite sample expecation for T' = 24 and asymptotic
expectation and variance for a = AT fixed. B = 0 in both cases.
Based on 10° repetitions and 7' = 1536 in the asymptotic case.
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B 0 1/32 1/16 1/8 1/4 1/2
b= BT 0 3/4  3/2 3 6 12
Finite sample mean 0.698 0.739 0.841 1.066 1.297 1.407
Finite sample var.  0.769 0.859 1.096 1.703 2.531 3.125
New asymp. mean 0.670 0.714 0.821 1.053 1.284 1.383
New asymp. var. 0.707 0.805 1.054 1.674 2.522 3.065

Table 7: Simulated finite sample expecation for 7' = 24 and asymptotic
expectation and variance for b = BT fixed. A =0 in both cases.
Based on 10° repetitions and 7' = 1536 in the asymptotic case.
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