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SUMMARY

Canonical correlation analysis provides an example of a significance test
which is not even asymptotically similar. For most values of the nuisance pa-
rameter a standard asymptotic distribution approximation applies, whereas
for some particular parameter values, which may not be of practical interest,
a different approximation applies. Therefore the asymptotic distribution and
also Bartlett corrections do not have a uniform effect. It is suggested to use
an asymptotic approximation which depends continuously on the nuisance
parameter

Some key words: Canonical correlations, distribution approximation, nui-
sance parameters, significance test.

1. INTRODUCTION

In canonical correlation analysis it is often of interest to test the hypoth-
esis that some of the canonical correlations are zero. The distribution of the
likelihood ratio criterion for this hypothesis depends, even asymptotically,
on the value of the non-restricted canonical correlations. However, except
for a subset of the parameter space of Lebesgue measure zero and also of
no practical interest, a limiting y2-distribution applies. This distribution
approximation is not accurate and a scalar correction to the criterion which
depends on the unknown parameters has been suggested by Lawley (1959).
Even the correction has not got a uniform effect, in fact, the scaling factor
might be negative although the test criterion is positive.

A different approach is applied, which is to let the nuisance parameters
change with sample size in the asymptotic argument. Thereby a distribution
approximation is found which depends continuously on the unknown parame-
ters. Moreover, the second order terms in the asymptotic expansions of the
moments of the criterion have a rather nice behaviour, albeit not exactly that
of a Bartlett correction. This approach was suggested by Nielsen (1997) in a
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cointegration context. Cointegration is basically an application of canonical
correlation analysis to time series. Distributional analysis for cointegration
is obviously more complicated and, unlike in the present paper, no analytic
arguments were given.

The exact density for sample canonical correlations was found by Con-
stantine (1963). This expression is rather complicated and therefore the
present paper is limited to the simplest bivariate case. The analysis is given
primarily in terms of expansions of the expectation of the relevant likelihood
test criterion.

In Section 2 the general statistical model is presented. Next, the sim-
ulated expectation of the bivariate test criterion is given in Section 3 as a
benchmark for the subsequent analysis. In Section 4 Bartlett’s degrees of
freedom correction and next in Section 5 Lawley’s correction are discussed.
The new approach is explained in Section 6 by an informal analysis of Con-
stantine’s density and moment expansions are described in Section 7. The
new approach involves non-standard asymptotic distributions which are dis-
cussed in Section 8. In Section 9 the new approximation is evaluated by
comparison with the simulated results. The paper is completed with proofs
in Section 10 and a discussion in Section 11.

2. THE STATISTICAL MODEL AND ITS ANALYSIS

Consider n + 1 independent repetitions of two normally distributed vec-
tors, X, Y, of dimension p and ¢ respectively, where p < ¢g. The variance
matrices and the joint covariance matrix are denoted > xx, Xyy and Xxy.
The hypothesis of interest is that the covariance matrix, ¥ xy, has reduced
rank of at most k& < p.

The hypothesis is analysed in terms of canonical correlations analysis
which was developed by Hotelling (1936) and Bartlett (1938). The squared
population canonical correlations, 1 > )\? > e > )\]2] > 0, are the solutions
of the eigenvalue problem

det ()\QEXX — nyz;%/z:yx) =0

and thus the hypothesis can also be formulated as Ay ; = 0. The likelihood
function is maximised in terms of the squared sample canonical correlations,
1>7r?>--->7r2 >0, solutions of the eigenvalue problem

det (TQSXX — SXYS;;'SYX) =0
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where the matrices S;; are sample covariance matrices. The likelihood ratio
criterion for the above hypothesis against a general alternative is given by

LR =—n Zlog (1 - 7“]2) . (1)

The squared sample canonical correlations are invariant with respect to
orthonormal transformations of the data and therefore their distribution only
depends on the parameters through the population canonical correlations.
The distribution of the criterion also depends on these. For \; # 0 it can
be approximated by a x2-distribution with (p — k)(q¢ — k) degrees of free-
dom whereas different distributions apply for Ay = 0. This distributional
approximation depends non-continuously on the nuisance parameters.

3. SIMULATED EXPECTATION FOR THE BIVARIATE CASE

In the subsequent sections various distribution approximations are con-
sidered. These are developed by expanding the moments of the criterion.
The expectation serves as a benchmark.

Due to the complicated analytic theory only the criterion for the hypoth-
esis that the smallest of the canonical correlations is zero, £ = 1, in the
bivariate case, p = ¢ = 2, is analysed. Because of the invariance mentioned
above it can be assumed without loss of generality that ¥ xx and Xyy are
identity matrices, X xy is the diagonal matrix with the elements Aq, 0, the
observations have mean zero and therefore only n observations are consid-
ered. Henceforth the index of the largest population canonical correlation,
A1, is omitted.

Table 1. Simulated expectation of the criterion.

n
A 16 64 256 1024
0-8 1-116 1-022 1-002 0-999
0-4 0-767 0925 0-986 0-995
0-2 0-584 0-675 0-885 0-981
0-1 0-531 0-514 0-650 0-878

0-05 0-515 0-468 0-496 0-635
0-025 0-508 0-450 0-448 0-493



Simulated values of the expectation of the criterion are reported in Table
1 as a function of the nuisance parameter A versus the sample size, n. The
simulations are based on 100,000 replications. Note, that even for rather big
values of A the limiting approximation, one, is not very accurate.

4. A DEGREES OF FREEDOM CORRECTION

Bartlett (1938) suggested that a degrees of freedom correction of the cri-
terion might be useful. In the bivariate case this implies that the expectation
should be better approximated by 1 + 5/2n. Table 1 shows, in accordance
with Bartlett’s own observation, that this correction is only helpful for very
large values of A. The approximation is an exact second order expansion
of the expectation in case the nuisance parameter, \, takes the value one.
Hotelling (1936) found that the minimum sample canonical correlation then
is a partial correlation and its distribution has been found by Fisher, see
Muirhead (1982).

5. LAWLEY’S CORRECTION

A second order expansion of the expectation, which also applies for gen-
eral values of k,p,q, was given by Lawley (1959). Provided that A? is not
”small” he found that

5) 1 1
EALR:1+%+5<1—F>+O(71_2> (2)
and suggested scaling the criterion with this expression. This would actually
give a Bartlett correction, such that terms of order n~! would be eliminated
from all moments of the criterion (Lawley, 1956). Note, that for A\ = 1 the
degrees of freedom correction is obtained.

The condition on A? is supposedly that it should be larger than ¢/n for
some unspecified constant c. The sample canonical correlations are the char-
acteristic roots of a bivariate matrix and the explicit expression for these
involves a square-root which can be expanded under that condition.

By computing the approximation and comparing with the entries of Table
1 the relative error of the approximation can be found. For A*n >40, 10, 2.5,
respectively, the relative error varies between 99-100%, 95-98%, 96-105%.



For A?n = 1-28 the approximation misses the entries in the table by a factor
two and for \*n < 0 - 64 the approximation is negative.

Conditional inference would be preferable to the suggested inference due
to the nuisance parameter in (2). Lawley proposed simply to replace A\ with
its maximum likelihood estimator, 7. Glynn and Muirhead (1978) justified
this by finding that the asymptotic conditional distribution of 73 given r?
does not depend on A. Evaluated with this ”truncated” measure the scaled
criterion has expectation one up to an error of order n=2, provided that r? is
not too small.

6. A NEW APPROACH

Table 1 has the feature that the figures along the diagonals from top left to
bottom right vary less than those along horizontal lines. This has previously
been observed in a cointegration context by Nielsen (1997). This suggests
replacing the nuisance parameter, A\?, with ¢/n and then fixing ¢ in the
asymptotic arguments. This gives a limit distribution which is a continuous
function of £ and, as it turns out, a rather good approximation to the exact
distribution. In the following the density of the sample canonical correlations
is analysed using the new approach.

The joint density for squared sample canonical correlations was found
by Constantine (1963) in terms of a hypergeometric function with matrix
arguments, see also Muirhead (1982, p. 557). For general dimensions zonal
polynomials are involved in the definition of these functions, however, in
the present case a simplification is obtained. When the smallest population
canonical correlation is zero the density for (z,y) = n(rf, r?) is

{-2) (2o {(-2) (-2} e
R EI L) B

where n > z > y > 0. Now, the hypergeometric function with two matrix
arguments can be rewritten as a hypergeometric function with one matrix
argument which is then integrated over a Stiefel manifold with respect to an
invariant measure, see Muirhead (1982, p. 67,260) or formula (2.8) of Glynn
and Muirhead (1978). Since one of the two matrix arguments has rank one



it follows that

(5 2) 35 2)

/2 2
= g/ 2F1{ n/2,n/2 ‘)\— (xcos20+ysin2 0)}6[0. (4)
7 Jo 1 n

Most terms of the expression (3) are well-behaved for large n, however, for
A fixed the last two terms converge to zero respectively infinity for increasing
n. Thus Glynn and Muirhead (1978) need to apply Laplace’s method to ap-
proximate the integral in equation (4). Now, by the normalisation \* = ¢ /n
the first of these two terms, the n/2-th power of 1 — A, can be approxi-
mated by an exponential function and the hypergeometric function can be
approximated in terms of modified Bessel functions using (4) and Hansen’s
confluence, see Watson (1958) and also Fields Theorem (Luke, 1969, p. 52),

give
nn T\? x?

Fid— =1 (=) ¢ =1 —1I O(n?).

2 1{2’2’ ‘(n) } o (@) + 5 12(2) + 0 (n”*)
For large arguments the modified Bessel function increases at an exponen-
tial order. However, it turns out that the density is actually exponentially
decreasing for increasing = whenever ¢ is much smaller than n. In this case a
good approximation can be provided for the distribution of the criterion and
this is exactly the situation which is of practical interest.

7. EXPANSION OF THE MOMENTS

The moments of the criterion can now be expanded using the suggested
approach. Computational algorithms for the involved Bessel functions are
given by Abramowitz and Stegun (1965, p. 378).

The asymptotic expectation obtained by the new approach is given by

Fi() =2+ 5 — = oxp(~£/4) {(4 Y (%) el (g) }2. (5)

It follows that the expectation for £ = 0 is 2 — /2 ~ 0 - 429 whereas for
£ — 00 it tends to one, the expectation of the y?-distribution. Moreover, the
function (5) appears to be increasing in &.



Similarly the asymptotic second moment is given by

2
Ey(€) = 10+56+ % - 312 exp (—¢£/4) {(96 + 726+ 1687+ &) I (g)

+ (28 4+ 126 +£%) 26T (g) L (g) + (8+&) P (g) } . (6)

This has the value 10 — 37 ~ 0 - 575 for £ = 0 and it tends to 3 for £ — oo.
The second order expansions of the first two moments are of the form

Ej(5)<1+ 5>j+Rj—(5).

2n n

So apart from a remainder term, R;, which depends on &, the properties of
a Bartlett correction are obtained. The remainder term of the first moment
has the expression

R (&) = %[—5+5+3126Xp(—f/4){(484—35—252) 2 <§>

+ (10 43¢ — ) 41 (g) I (g) + (9 — 26) EI? (g) H (7)

For ¢ = 0 the remainder term R; is obviously zero. This is a case where a
Bartlett correction apply and it also found that the remainder term for the
second moment, Ry, has the value 0 for ¢ = 0. Thus Bartlett’s degrees of
freedom correction, 1+ 5/2n, apply in this case. For £ — oo the remainder
terms behave similarly nice. The term R; is 1 and R, is 6. This correspond
to a correction of 147/2n, just as Lawley’s result for A — co. The remainder
term R; is illustrated in Figure 1. The second remainder term has a similar
shape but it is shifted in such a way that a Bartlett correction does not apply
for general £, for example, R;, Ry are zero at approximately 0-96 respectively
1-53. However, for ¢ <1-19 then R; is smaller than 0-016 in absolute terms,
whereas for £ <1.-88 then R, is smaller than 0-115. This means that for
practical applications the remainder term can be ignored, either because n
is large or because £ is small.

[ Figure 1 |



8. APPROXIMATING THE ASYMPTOTIC DISTRIBUTION

The asymptotic distribution seems to be approximated very well by a
Gamma distributed fitted to the first two moments.

For the case £ = 0 an expression for the asymptotic density of the criterion
can be found relatively easily. In this case, for large n, the joint density (3)

reduces to )

4\ /zy
for n > x > y > 0. The density for y is now found by integration with respect
to x. The integrand is exponentially decreasing for large x, thus the upper

limit can be extended to infinity. The substitution y(z + 1) = z, ydz = dx
then gives the following expression for the asymptotic density of the criterion

(z —y)exp{—(z+y)/2},

%exp (—y) /0 2(1+2)"exp (—yz/2) dz.

The integral defines a confluent hypergeometric function, see Gradshteyn
and Ryzhik (1965, 9.211.4). A final expression for the asymptotic density is
obtained, using the formulae 7.2.2.2 and 7.11.2.9437 of Prudnikov, Brychkov
and Marichev (1990), as

1 1—y 27 Y \/@)}
2exp( y) + 1 yexp( 2){1 erf< 5

with the corresponding distribution function

L—exp(—y) + 5 {Rly) — By} — [T exp () et (12).
Here Fj(-) is the distribution function of a y?-distributed variable with k
degrees of freedom and erf is the error function, a convenient modification of
the standard normal integral. A computational algorithm for erf is given by
Abramowitz and Stegun (1965, p. 299).

The upper quantiles of this distribution can be approximated very well
by a Gamma distribution fitted to the first two moments. The relative error
is up to 9%, however, from the 60% quantile and upwards the relative error
is at most 0-24%.

For general values of € it is not so easy to find explicit expressions for the
density. A different measure for the quality of a Gamma approximation is a
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comparison of third and fourth moment of the exact distribution and of the
approximation for different values of £&. The relative error was found to be
at most 2-2% respectively 6-5%.

For £ — o0 at least the first four moments of the asymptotic distribution
are those of a y2-distribution with 1 degree of freedom.

9. APPROXIMATING THE FINITE SAMPLE DISTRIBUTION

Application of the degrees of freedom correction, 1 4+ 5/2n, to the first
moment given by (5) gives figures which are very close to those of Table 1.
For n = 256, 1024 the difference is smaller than the simulation error. For
n = 64 figures which are up to 2% too small are obtained. For n = 16
and A <0-8 values which are up to 4% too small are found. For n = 16
and A =0-8 the approximation is not too good. The value is 1-010 which is
improved to 1-072 by including the remainder term R;. However, this case of
a small n and a large value of \ is probably not common in applications. The
systematic under-correction would be improved by applying the correction
exp(5/2n) rather than 1+ 5/2n.

Similar figures would be found for the second moment. Therefore it is
concluded that a rather good approximation is found.

10. PROOFS

A proof for the results of Section 7 is sketched in the following using the
ideas of Section 6. Details can be obtained from the author.
Let f denote the joint density of (z,y) = n(r?,r3) given by formula (3).

The k-th moment of y is

n rx n 1
/ / y¥ f(x,y) dyde = / / oF R f (2, 22) dz da.
o Jo o Jo

The second expression is obtained by the substitution xz = y, xdz = dy.

For large arguments the modified Bessel function, I, (z), is of order
exp (2) /v/#, see Gradshteyn and Ryzhik (1980, 8.451.5) or Watson (1958,
p. 203). Thus, for large z, the integrand of the triplet integral is of order

(1 _ é)”/2 (1-2) " exp (vea) ~ exp {1 (v - ve)?)

n
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and the integrand is therefore exponentially small for large values of z if £ is
much smaller than x, and therefore much smaller than n. The upper limit
for integration with respect to z can therefore be extended and to the order
n~! the moments of i can be approximated by

(-2 (-3 (i g)”” 4 117,
1

L= §/Oooxk+lexp{—%ﬂf(1+z)}[1+${10$(1+z)—x2(1+z2}]

{10 (vow) + T2 8 (Vaw) | do.
7, — —* [rp
T ak+) o T

1 /1

Iy = —/ V(1 = 2) Todz
4 Jo

and w = &(cos? 0 + z sin? 6).

The first integral. Introduce the notation p = &r/2, ¢ = £(1+7) /4,
r=(1-2)/(1+2), s =sin? 0, and the substitution t* = z, 2t dt = dz. Then,

o t? L[ 52 t1+7?)
7, = / ¢k - 14— -
' 0 xp 1+r +n I+7r  2(1+7r)?

{IO (ty/w) + i—;”fg (t\/w)} dt.

Hankel’s generalisation of Weber’s first exponential integral, see Gradshteyn
and Ryzhik (1965, 8.970.1) or Watson (1958, p. 393) can now be applied,

2

/Ooo thr2et exp <— | Z_ T) I, (ty/w) dt

alwh’?

= e e Lw b (~qwen) @

for p € N. Thus Z; can be expressed in terms of the Laguerre polynomials
LY 4, LY.y, LY, and L7 . The last of these can be written as a combination
of the first using a recurrence formula, see Gradshteyn and Ryzhik (1965,
8.971.4).
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The second integral. The Laguerre polynomials mentioned above have
the argument ps — q. By the explicit expression for the Laguerre polynomial,
see Gradshteyn and Ryzhik (1965, 8.970.1), it is found that

S L LG

1*3

The substitution s = sin®f, ds = 2y/s\/(1 — s)df gives that the second
integral can be rewritten as a finite sum of certain integrals. These integrals
can be rewritten in terms of Beta functions and confluent hypergeometric
functions, see Gradshteyn and Ryzhik (1965, 3.383.1),

1
/ s71 (1 — s)" " exp(—ps) ds = B(p,v) 1 Fy (v p + v —p) .
0

Introduction of the functions, of z,

M, = - / T3 12 exp(—ps) L) (ps — q)ds
_ (—1) (21—1) . &r
= ]z:;) i PG+ 5+ =

=

Ao

My, {1 + %(m 2)(k + 3)}

{— (4k +7) My, 2 + (k +3) <1 41 _2TQ> Mk+3H

leads to the result
I, = (1+r)"exp(q)

kE+2
n

+

The third integral. The second integral is a function of z only through
r which suggests the substitution r = (1 — 2)/(1 + 2), (1 + r)?*dz = —2dr.
Moreover, the confluent hypergeometric functions can be rewritten as

V(G +1/25 + 15 2) = exp (2/2) {4;(2) 10 (2/2) + B;(2) [1(2/2) }

where A;, B; are some ratios of polynomials. The relevant polynomials can
be found using the identity 7.11.1.5 and the recurrence formulae 7.11.1.23-25
of Prudnikov, Brychkov and Marichev (1990). Since

exp(q) exp(—€r/4) = exp(£/4)
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the third integral can now be found using

1
/ 7“0"1(1 — TQ)ﬁflfy(—cr) dr

(=) T(B)L {(r +v)/2} { (a+v)/2
20 {3+ (a+v)/2}T(v+1) "2\ B+ (a+v)/2,v+1

2
4
which follows by integrating the Taylor series for the Bessel function term

by term. The involved hypergeometric functions can be rewritten either as
polynomials or as

A(e)I§ (¢/2) + B(e)lo(e/2) 1 (c/2) + C(e) I} (c/2)

where A, B, C' are some ratios of polynomials. The relevant polynomials can
be found using section 7.14.2 of Prudnikov, Brychkov and Marichev (1990).

Finally, the moments of the criterion are found by expanding the loga-
rithm in equation (1).

11. DISCUSSION

The new approach apparently gives a good approximation which is of primary
interest in statistical analysis. However, a number of standard theoretical
properties cannot be proved.

The immediate problem is that the nuisance parameter of the new ap-
proach, &, cannot be estimated consistently, since n(r? — )\2) converges in
distribution. It is of interest to find the distribution of the criterion for a
given value of the nuisance parameter; this is usually approximated by the
Taylor expansion

2 2 9 2 2 2

D (LR; A n) ~D (LR; Tl,n> + 557D (LR; A n) o (/\ - r1>
The last term can be ignored because the term A — 72 converges to zero.
Due to the consistency problem a similar expansion cannot be performed in
terms of £. However, the new approach gives an improved approximation of
each term in the expansion above.

Because of the nuisance parameter a conditional analysis would be of
most interest. Glynn and Muirhead (1978) find the result that the asymp-
totic conditional distribution of r3 given r# does not depend on the nuisance
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parameter. This seems to fail for the new approach since the nuisance pa-
rameter, A\, and the arguments, x,y, for the density (3) are entwined in a
rather complicated way, see equation (4).

A formal Bartlett correction fails to hold for the new approach, except
for certain values of the nuisance parameter.

Preliminary simulations indicate that similar results would apply for gen-
eral dimensions, p, ¢, k; however, I have not been able to generalise the proofs.
For general k the hypergeometric function cannot be reduced as simply as
in formula (4). A more detailed discussion of the involved zonal polynomials
seems therefore necessary. For k = 1, p = 2 but ¢ = 3 the solution to the in-
tegral (8) is expressed in terms of a confluent hypergeometric function which
cannot be reduced to a finite (Laguerre) polynomial.
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