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Abstract

This paper is concerned with Markov chain Monte Carlo based Bayesian inference
in generalized models of stochastic volatility de�ned by heavy-tailed student-t distribu-
tions (with unknown degrees of freedom) and covariate e�ects in the observation and
volatility equations. A simple, fast and highly e�cient algorithm, that builds on Kim,
Shephard and Chib (1998), is developed for estimating these models. Computation of
the likelihood function by a particle �lter is considered as are methods for constructing
diagnostic measures and the model marginal likelihood. The techniques are applied in
detail to daily returns on the S&P 500 index and to weekly changes in the short-term
interest rate.
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1 Introduction

The e�cient �tting of models with stochastic volatility is one of the more challenging prob-

lems in modern time series analysis. These models can be interpreted as non-linear state

space models in which the unobserved state variable is the stochastically evolving log volatil-

ity of the process. From a statistical perspective, therefore, methods for �tting such models

have the potential to be applied more broadly although the analysis of the stochastic volatil-

ity models is important in its own right due to its signi�cance for applications, especially

�Address for correspondence: John M. Olin School of Business, Washington University, Campus Box

1133, 1 Brookings Dr., St. Louis, MO 63130. Email addresses: chib@simon.wustl.edu.
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in the area of high-frequency �nance [see for example, Taylor (1994), Shephard (1996), and

Ghysels, Harvey and Renault (1996)].

We shall be concerned in this paper with the following generalized stochastic volatility

model

yt = x01t�1 + w


t exp (ht=2)ut

ht = �+ x02t�2 + �(ht�1 � �) + ��t; t � n ; (1)

where yt is the response variable, x1t; x2t and wt are covariates, fhtg is the latent log-

volatility process with f�tg a white noise Gaussian sequence. Assume that the density of ut

is independent student-t with mean zero, dispersion one and unknown degrees of freedom

�. Then, the density of yt conditioned on the parameters and ht is a t-density with mean

x01t�1 and dispersion w
2

t exp (ht) given by

f(ytjht; �) =
� ((� + 1)=2) �(�=2)�
��w

2

t exp (ht)

�1=2
 
1 +

1

�w
2

t exp (ht)

(yt � x01t�1)
2

!
�(1+�)=2

; (2)

where  � (�1; �2; 
; �; �; �; �) are the model parameters. Thus, in this model, the dis-

tribution of the responses is heavy-tailed and covariate e�ects are permitted in both the

evolution and observation equations. If we assume that j�j < 1 and fx1t; x2t; wtg are a

strictly stationary sequence, then the yt process is strictly stationary.

The generalized stochastic volatility speci�ed above has not been analyzed in the litera-

ture before from either the classical or Bayesian perspectives. Classical �tting of SV models

is generally quite di�cult because of the problems in constructing the likelihood function.

A procedure to deal with this issue is discussed by Sandmann and Koopmans (1998) but

the method (which is based on results in Shephard and Pitt (1997) and Durbin and Koop-

man (1997)), requires a number of tuning steps and is only tested on models that are much

simpler than the model above. The existing Bayesian methods are also concentrated on the

basic Gaussian SV models without covariates or a level e�ect [Jacquier, Polson and Rossi

(1994) and Kim, Shephard and Chib (1998)].

The main point of the current paper is to develop a highly tuned and e�cient MCMC

based method for sampling the posterior distribution of  in the generalized stochastic

volatility model. The method of Jacquier, Polson and Rossi (1994), which produces high
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autocorrelation times even in the basic SV model, cannot be generalized to this model.

The approach suggested in this paper builds on the framework of Kim, Shephard and Chib

(1998) although except for the sampling of the latent volatilities the method developed

here is entirely di�erent. The proposed MCMC sampler is extremely e�cient and fast and

represents in our view the easiest and most e�ective way of �tting stochastic volatility

models.

If we split the observation and evolution equation parameters as  = (�1; �; �), where

� = (
; �; �2; �; �), then our proposed strategy rests on the joint sampling of the parameters

� from one reduced conditional distribution and � (the degrees of freedom parameter) from

another reduced conditional distribution.

The rest of the paper is organized as follows. Section 2 presents an alternative repre-

sentation of the generalized stochastic volatility model that forms the basis of the proposed

approach. The approach is outlined with details of each step deferred to the Appendix. Sec-

tion 3 is concerned with posterior inferences based on the MCMC output. Procedures for

computing the likelihood function, diagnostic measures and the model marginal likelihood

are provided. Two real data examples are discussed in Section 4 and concluding remarks

and possible applications of the approach to other models of topical interest are given in

the last section.

2 The Proposed Approach

2.1 Alternative representation of the model

We begin by recalling the procedure introduced by Kim, Shephard and Chib (1998) for

converting the stochastic volatility model into a conditionally Gaussian state space model.

In order to achieve the same simpli�cation, we �rst represent the student-t errors as scale

mixture of normals and write ut = �
�1=2
t "t, where "t is a standard normal random vari-

able and �t is i.i.d. Gamma(�
2
; �
2
). Now, conditioned on  and f�tg the model may be

reexpressed as

y�t = 
 log(w2
t ) + ht + zt (3)

ht = �+ x02t�2 + �(ht�1 � �) + ��t (4)
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where

y�t = log

 
(yt � x01t�1)

2

��1t

!
;

and zt = log "2t .

It is easy to see that the observation equation of the model could also be represented as

y�t = ht+ zt, with y
�

t now de�ned y�t as log
�
(yt � x01t�1)

2=(��1t w
2

t )
�
. We do not adopt this

transformation, however, because the term w
2

t in the denominator tends to make the ratio

too small in general, leading to numerical problems in the evaluation of the logarithm.

The model is completed by specifying the distribution of zt. The exact distribution is

actually quite complicated but Kim, Shephard and Chib (1998) have determined that the

distribution of zt may be approximated rather closely by a seven-component mixture of

normal densities fN given by

ztjst � N (mst; v
2
st)

Pr(st = i) = qi ; i � 7; t � n; (5)

where st 2 (1; 2; :::; 7) is an unobserved component indicator with probability mass function

q = fqig and the parameters fq;mst ; v
2
stg are as reported in Table 1.

st q mst v2st
1 0.00730 -11.40039 5.79596

2 0.10556 -5.24321 2.61369

3 0.00002 -9.83726 5.17950

4 0.04395 1.50746 0.16735

5 0.34001 -0.65098 0.64009

6 0.24566 0.52478 0.34023

7 0.25750 -2.35859 1.26261

Table 1: Parameters of seven-component Gaussian mixture to approximate the distribution

of log�21 .

In the MCMC context, the use of this approximation is highly recommended because

the minor approximation error can be removed easily (at the conclusion of the posterior

sampling) by a reweighting procedure, as discussed by Kim, Shephard and Chib (1998).

This strategy of working with a highly e�cient approximating model, and then reweighting
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the posterior sample ex-post, is a powerful and general method of dealing with complicated

models in the simulation context.

If we let s = fs1; :::; sng, � = f�1; :::; �ng and F
�

t = (y�1; :::; y
�

t ), then it should be noted

that given this simpli�cation, the density of y�t conditioned on (s; �) but marginalized over

h = fhtg can be expressed

f(y�1; :::; y
�

njs; �) =
nY
t=1

f(y�t jF
�

t�1; s; �) (6)

where each one-step ahead density f(y�t jF
�

t�1; s; �) can be derived from the output of the

Kalman �lter recursions (adapted to the di�ering components, as indicated by the compo-

nent vector s):

2.2 Prior distributions

The generalized SV model provided above is completed through the speci�cation of the

distribution �( ) on the parameters. In the context of our computational MCMC estimation

scheme the nature of the prior is not important and virtually any distributional form may

be adopted in the data analysis. Nonetheless, in the examples below we assume that the

parameters are mutually independent and that prior information can be represented by the

following distributions. For �, we follow Kim, Shephard and Chib (1998) and formulate our

prior in terms of � = 2�� � 1, where �� is distributed as Beta with parameters (�(1); �(2)).

This implies that the prior on � 2 (�1; 1) is

�(�) = c (0:5(1 + �))�
(1)
�1 (0:5(1 � �))�

(2)
�1 ; �(1); �(2) > 0:5 ; (7)

where

c = 0:5
�(�(1) + �(2))

�(�(1))�(�(2))

is the normalizing constant. Under this prior, the prior mean is

2�(1)=(�(1) + �(2) � 1) :

This prior distribution is su�cient for our purposes although it is possible to proceed with

alternative distributional forms, such as those considered by Chib and Greenberg (1994)

and Marriott and Smith(1992). Each of these priors imposes stationarity which in our view
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is important in this context. For 
 we assume a uniform distribution on the range (0; 2) ,

which covers the values that have been considered in the literature. For � we assume that

our prior information can be represented by an inverse gamma density

�(�) =
��00
�(�0)

�
1

�

��0+1
exp(��0=�) ; � > 0

and for �, �1 and �2 we assume independent normal priors N(�j�0;M0), N(�1j�10; B
�1
10 ),

andN(�2j�20; B
�1
20 ), respectively, where the hyperparameters (�0; �0; �0;M0; �10; B10; �20; B20)

are assumed known. Finally, for the degrees of freedom � we assume that the prior is uniform

over the range (2; 128).

2.3 Markov chain Monte Carlo algorithm

The model in the mixture representation has a straightforward conditional structure that

lends itself to Markov Chain Monte Carlo simulations. The idea behind MCMC sampling

is to construct a Markov chain whose limiting distribution is the target posterior density

of interest. The Markov chain is then iterated a large number of times and the sampled

draws, beyond a burn-in period, are treated as variates from the target distribution. For

discussions of MCMC methods, see Chib and Greenberg (1995) and Gilks, Richardson

and Spiegelhalter (1996). In the present context, the key idea is to construct the Markov

chain based on the blocks f�1; [�; h]; s and [�; �]g, where the notation [�; h] means that the

parameters � = (
; �; �2; �; �) and h are sampled in one block, conditioned on the remaining

blocks. In this algorithm, the parameters � and � are also sampled in one block conditioned

on the other blocks. Extensive experimentation has shown that these step are the key to

minimizing the serial correlation in the MCMC output.

We summarize the algorithm through the following steps.

MCMC algorithm for the generalized SV model

1. Initialize �1; s; � and �

2. Sample � and h from �; hjy; s; �; �1 by drawing

(a) � from �jy�; s; �1 and
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(b) h from hjy�; s; �1; �

3. Sample �1 from �1jy; h; s; �; 


4. Sample s from sjy�; h

5. Sample � and �t from �; �jy; h;  by drawing

(a) � from �jy; h;  and

(b) �t from �tjyt; ht;  ; �.

Steps 2a and Step 5a as mentioned above are the key to this algorithm. We implement

Step 2a by using the Metropolis-Hastings algorithm [see for example, Chib and Greenberg

(1995)] by making a proposal draw �i = (
i; �i; �i2; �
i; �i) from a tailored multivariate-t

density q(�jm;V; �) with � degrees of freedom (the proposal density may alternatively be

speci�ed as multivariate normal). Speci�cally, the density log f(y�js; �) in (6) is numerically

maximized over � within each MCMC iteration; then, the maximizing value, say �̂, is taken

as the mean m of q(:) and the inverse of minus the Hessian matrix (evaluated at �̂) is taken

as the scale matrix V of q(:). The proposal value is accepted or rejected according to the

Metropolis-Hastings algorithm.

Step 2b is implemented using the simulation smoother algorithm as in Kim, Shephard

and Chib (1998). Step 3 follows from the update of a regression model with heteroskedastic

errors. Step 4 corresponds to the sampling of st from a seven point discrete distribution

in which the prior weights Pr(st) are updated to Pr(st)fN (y
�

t j
 log(w
2
t ) + ht +mst; v

2
st) and

then normalized. Finally, Step 5a involves the sampling of the degrees of freedom by a

Metropolis-Hastings step from the reduced conditional density of � (given by the product

of student-t densities in equation (2)) and Step 5b is a drawing from updated gamma

distributions. Full details of this algorithm are given in the Appendix.

We mention that while it may appear to be reasonable to sample 
 and the remaining

parameters of � as separate blocks, the resulting sampler is ill-behaved due to the strong

correlation between 
 and �. It is well known that strongly correlated components should

be simulated as one block to minimize the serial correlation of the MCMC output. A similar
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consideration led to our treating the parameters (�; �2; �; �) and h as one block. The value

of this blocking scheme is demonstrated in the applications below.

3 Posterior Inferences

In this section we turn to methods that provide the likelihood function of the model, di-

agnostic measures for evaluating model adequacy and the model marginal likelihood for

comparing alternative models. It should be noted that we need the likelihood function (not

for the sampling of the posterior distribution) but for computing the marginal likelihood.

In the latter calculation, the likelihood function is required at just a single point in the

parameter space.

3.1 Likelihood estimation

Consider the estimation of the likelihood function f(y1; :::; ynjF0;  ) =
Qn

t=1 f(ytjFt�1;  )

where  is some known value (say the estimated posterior mean from the MCMC sim-

ulations), f(ytjFt�1;  ) is the student-t density in (2) marginalized over the distribution

of htjFt�1;  and Ft = (y1; :::; yt) is the data up to time t. Suppose that a sample of h
j
t

(j � M) is available from the �ltered distribution htjFt;  for each t. Then, the sequence

of one-step ahead densities f(ytjFt�1;  ) can be obtained by the following procedure.

Estimation of the likelihood function

1. Set t = 1, initialize  and obtain a sample of h
j
t�1 (j �M).

2. For each value of h
j
t�1, sample h

j
t from the Gaussian evolution equation h

j
t jh

j
t�1;  �

N
�
�+ �(h

j
t�1 � �) + x02t�1�2; �

2
�
:

3. Estimate the one-step ahead density as

bf(ytjFt�1;  ) =
1

M

MX
j=1

fT
�
ytjx

0

1t�1; w
2

t exp(h

j
t ); �

�
:

4. Apply the �ltering procedure described below to obtain a sample h1t ; :::; h
M
t from the

�ltered distribution htjFt;  .

5. Increment t to t+ 1 and goto Step 2.
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In this procedure Steps 2 and 3 are both straightforward. The key question is the

sampling of h1t ; :::; h
M
t from the �ltered distribution. This may be done using what is called

the particle �lter in the literature [see, for example, Gordon, Salmond and Smith (1993),

Kitagawa (1996), Berzuini, Best, Gilks and Larizza (1997), Isard and Blake (1996), Pitt

and Shephard (1997) and Carpenter, Cli�ord and Fearnhead (1998)]. From Bayes theorem,

f(htjFt;  ) / f(ytjht;  )f(htjFt�1;  ) (8)

where f(ytjht;  ) = fT
�
ytjx

0

1t�1; w
2

t exp(ht); �

�
and

f(htjFt�1;  ) =

Z
f(htjht�1;  )f(ht�1jFt�1;  )dht�1:

In this case f(htjht�1;  ) = fN
�
htj�+ �(ht�1 � �) + x02t�1�2; �

2
�
, a Gaussian evolution

density. The latter integral can be estimated from the sample h1t�1; :::; h
M
t�1 leading to the

approximations

f(htjFt�1;  ) '
1

M

MX
j=1

f(htjh
j
t�1;  )

f(htjFt;  )
:
/ f(ytjht;  )

1

M

MX
j=1

f(htjh
j
t�1;  ):

The question now is to sample ht from the latter density. We work with a generic suggestion

of Pitt and Shephard (1997) called an auxiliary particle �lter. This �lter requires a �rst

stage in which proposal values h�1t ; :::; h
�R
t are created. These values are then reweighted to

produce draws fh1t ; :::; h
M
t g that correspond to draws from f(ytjht;  )

PM
j=1 f(htjh

j
t�1;  ).

Typically one may take R to be �ve or ten times larger than M . In all the examples below,

we let M = 2000 and R = 10; 000 though one may select even higher values if computer

resources are available. We now summarize the steps involved for the �lter in period t.

Auxiliary particle �lter for generalized SV model

1. Given values fh1t�1; :::; h
M
t�1g from (ht�1jFt�1;  ) calculate

ĥ
�j
t = �+ �(h

j
t�1 � �) + x02t�1�2;

wj = f(ytjĥ
�j
t ;  ) ; j = 1; :::;M ;

and sample R times the integers 1; 2; :::;M with probability proportional to fwjg. Let

the sampled indexes be k1; :::; kR and associate these with ĥ�k1t ; :::; ĥ�kRt .
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2. For each value of kj from Step 1, simulate the values fh�1t ; :::; h
�R
t g from the volatility

process as

h
�j
t = �+ �(h

kj
t�1 � �) + x02t�1�2 + ��

j
t ; j = 1; :::; R;

where �
j
t � N(0; 1).

3. Resample the values fh�1t ; :::; h
�R
t g M times with replacement using probabilities pro-

portional to

fT
�
ytjx

0

1t�1; w
2

t exp(h

�j
t ); �

�
fT
�
ytjx

0

1t�1; w
2

t exp(ĥ

�kj
t ); �

� ; j = 1; :::; R ;

to produce the desired �ltered sample fh1t ; :::; h
M
t g from (htjFt;  ).

This particle �lter is extremely simple to code. The only non-straightforward aspect

is the sampling of indexes with replacement from populations with unequal probabilities.

Methods for carrying this out are discussed in Pitt and Shephard (1997) and Carpenter,

Cli�ord and Fearnhead (1998).

3.2 Diagnostics

Based on these M draws on ht+1 from the prediction density, one can estimate the con-

ditional probability that the random Yt+1 will be less than the observed yt+1, Pr(Yt+1 �

yt+1jFt) by

uMt+1 =
1

M

MX
j=1

Pr(Yt+1 � yt+1jh
j
t+1;  ) : (9)

For each t = 1; : : : ; n, under the null of a correctly speci�ed model uMt converges in dis-

tribution to independent and identically distributed uniform random variables as M !1

(Rosenblatt (1952)). This provides a valid basis for diagnostic checking. These variables

can be mapped into the normal distribution, by using the inverse of the normal distribution

function nMt = F�1(uMt ) to give a standard sequence of independent and identically dis-

tributed normal variables, which are then transformed one-step-ahead forecasts normed by

their correct standard errors. These can be used to carry out formal Box-Ljung, normality,

and heteroscedasticity tests, among others. Likewise diagnostic checks which focus on the

modelling of the dispersion of returns can be obtained by working with the so-called re-


ected residuals 2
���uMt � 1

2

��� introduced by Kim, Shephard and Chib (1998). These random
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variables also converge in distribution to independent and identically distributed uniform

random variables as M !1 and so again can be transformed via the inverse of the normal

distribution function rMt = F�1(2
���uMt � 1

2

���).
3.3 Marginal likelihood

The likelihood ordinate and the MCMC output can also be used to compute the model

marginal likelihood. The marginal likelihood is de�ned as the integral of the likelihood

function with respect to the prior density and is useful for comparing non-nested models.

We describe a method for computing the marginal likelihood based on Chib (1995).

Let  denote the parameters of a given generalized stochastic volatility model with

likelihood function f(yj ) and prior density �( ), where the likelihood function is computed

using the particle �ltering algorithm given above. Then, the marginal likelihood (with all

normalizing constants included) can be written as

m(y) =
f(yj )�( )

�( jy)
;

an expression that follows from Bayes theorem. This expression is an identity in  and

can be evaluated at any appropriately selected point  � (say). If  � denotes a high density

point and �̂( �jy) the estimate of the posterior ordinate at  �, then the marginal likelihood

on the log scale is estimated as

lnm(y) = ln f(yj �) + ln�( �)� �̂( �jy) (10)

The posterior density ordinate is estimated from the MCMC output by either kernel smooth-

ing (if the dimension of  is small) or by a marginal/conditional decomposition of the poste-

rior ordinate followed by reduced MCMC runs to generate the draws necessary to estimate

each of the marginal/conditional ordinates (see Chib (1995) for further details).

4 Applications

In this section we consider applications of the proposed method to two datasets that have

been extensively analyzed in the �nance literature. The purpose of these examples is to

illustrate the e�cacy of the algorithm on two dimensions: the observed serial correlation in
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the sampled output and the ine�ciency factors in the estimation of the posterior mean. If

we let G denote the Monte Carlo sample size, then the ine�ciency factor is de�ned as

[1 + 2
1X
k=1

�(k)] ;

where �(k) is the autocorrelation at lag k for the parameter of interest and the terms in

the summation are cut o� according to (say) the Parzen window. This is a useful quantity

and may be interpreted as the ratio of the numerical variance of the posterior mean from

the MCMC chain to the variance of the posterior mean from hypothetical independent

draws. It serves to quantify the relative loss from using correlated draws, in comparison

with hypothetical uncorrelated draws, for computing the posterior mean.

4.1 Stock Market Data

The data series comes from the Center for Research on Security Prices (CRSP) �les and

consists of daily continuously compounded returns, yt, on the S&P 500 index (computed

without considering dividends) from January 2, 1980 through December 29, 1987, for a total

of 2022 observations. For ease of comparison with the existing papers, the sample period

that we have selected is the same as in, among others, Gallant et al. (1992), Jacquier,

Polson and Rossi (1994) and Sandmann and Koopman (1998). The model speci�cation

adopted here is, however, di�erent from the latter papers and is given by

yt = x01t�1 + exp (ht=2)ut

ht = �+ �2x2t + �(ht�1 � �) + �vt

where xit = (1; yt�1) and �1 = (a; b). Within this setup, four models are �t to the data:

� Model M1 : Gaussian errors in the measurement equation and no covariates in the

evolution equation;

� Model M2 : Gaussian errors in the measurement equation and the lagged return,

x2t = yt�1, in the evolution equation;

� Model M3 : student t-errors with unknown degrees of freedom parameter � in the

measurement equation and no covariate in the evolution equation.
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� Model M4 : student t-errors with unknown degrees of freedom parameter � in the

measurement equation and the lagged return, x2t = yt�1, in the evolution equation;

4.1.1 Prior distributions

Before turning to the data analysis, we complete the model by specifying the parameters

of the prior distributions given in Section 2.2. For � we choose the values �(1) = 20 and

�(2) = 1:5 which implies that our prior guess of � is 0:86. This re
ect the relatively high

degree of persistence in volatility commonly found in high frequency �nancial series. In the

prior of � we let �0 = 2:25 and �0 = 0:25 which implies that the prior mean of � is 0:20

and the prior standard deviation is 0:40. For �, �1 and �2 we assume independent normal

priors with means and standard deviations that are reported in Table 2. Finally, for the

degrees of freedom � we assume that the prior is uniform over the range (2; 128). These are

reasonable priors as they impose some structure but are not particularly informative.

4.1.2 Results

Table 2 reports posterior quantities and ine�ciency factors for the most general of the four

models, ie., M4 computed from 5000 iterations of the MCMC algorithm. The ine�ciency

factors are below ten for each parameter (except �) which indicates that the sampler is

mixing well. In addition, the drift parameter b is tightly estimated and indicates that there

is some autocorrelation in the S&P 500 return, after controlling for stochastic volatility.

The posterior means for the parameters �; � and � are similar to the estimates one �nds

in models without covariates, for example, as reported in Sandmann and Koopman (1998).

Furthermore, the distribution of �2 is concentrated around �0:04 showing that past returns

a�ect not only the level of current returns but also the current volatility of the stock index.

Finally, the marginal posterior distribution of � reveals that the Gaussian assumption is

not appropriate for these data. The posterior density is centered around 9: this value is

slightly higher than that reported by Sandmann and Koopman (1998) (� = 7:6) for the SV

model without covariates.

Next, we check the adequacy of each of the four models by computing the autocorrelation

plots of the nMt and rMt diagnostics (for convenience these are not reported). The absence

of serial correlation in these diagnostics suggests that each model provides a reasonable
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Prior Posterior

Mean Std dev Mean Std dev Lower Upper INEFF

a 0.000 0.400 0.035 0.019 -0.001 0.072 1.773

b 0.000 0.400 0.071 0.022 0.028 0.113 1.860

� -5.000 5.000 -0.349 0.161 -0.653 -0.003 5.862

� 0.860 0.100 0.981 0.007 0.965 0.993 7.691

� 0.200 0.400 0.102 0.018 0.069 0.138 9.702

�2 0.000 0.400 -0.040 0.012 -0.065 -0.016 9.201

� 65.00 36.37 8.973 2.178 5.953 14.023 16.89

Table 2: Summary output for the S&P500 data using the generalized SVmodel. In the table,

\Lower" and \Upper" denote the 2.5th percentile and the 97.5th percentile, respectively,

and INEFF denotes the ine�ciency factor. The results are based on 5000 draws of which

the �rst 1000 are discarded.

explanation for the serial dependence and the dispersion dependence in the data.

Next we compare the four models presented above by computing the model marginal

likelihood in (10) and Bayes factors. The likelihood function which is in an input into

the marginal likelihood computation is computed using the particle �lter with parameters

M = 2000 and R = 10; 000. The results are summarized in Table 3. The Bayes factor

indicate that there is decisive evidence for including yt�1 in the volatility equation. Similarly,

the support for the student-t error distribution is found to be decisive. We conclude that

the extensions from the simplest SV model in M1 to richer structures are necessary to

adequately capture the volatility dynamics of the S&P500 return.

Model M2 M3 M4

M1 -6.26 -9.91 -11.88

M2 { -3.64 -5.61

M3 { { -1.96

Table 3: Models for the S&P500 index return. The entries in the table are Log (base 10)

of Bayes factors for row model against column model (see text for a de�nition of the four

models).
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4.2 Interest Rate Data

We next analyze the interest rate data set considered, for example, by Gallant and Tauchen

(1998). Bank discount rates on three-month Treasury Bills from January 13, 1962 to April

30, 1995 (1737 observations) are collected from the Federal Reserve Bank H.15 database.

The raw data are transformed into continuously compounded yields, rt, prior to the analysis.

The response variable yt is the change in the yield (rt � rt�1) and the model of interest is

yt = x01t�1 + r


t�1 exp (ht=2)ut

ht = �+ �2x2t + �(ht�1 � �) + ��t

where xit = (1; rt�1), �1 = (a; b), x2t is the spread between the yields on a 30-year Treasury

Bond and a 1-year Treasury Bill and the ut errors are independent student-t with v degrees

of freedom. The term r


t�1 represents the level e�ect of the interest rate variable on its

volatility. Note that in Gallant and Tauchen (1998) the parameter 
 is set equal to one but

is treated as an unknown parameter in the present analysis.

4.2.1 Prior distributions

As for the parameters �1; �; �2; �; � and �, the prior distributions are the same as those

used above for the S&P 500 dataset. For 
 we assume a uniform distribution on the range

(0; 2) as this encompasses the typical values chosen for this parameter in the literature.

4.2.2 Results

The results on the �tted model, based on 5000 draws from the MCMC algorithm, are

summarized in Table 4 and Figure 1. Once again we �nd from the estimated ine�ciency

factors that our algorithm delivers an extremely e�cient sampler with the largest ine�ciency

factor being around ten. These are quite low given the complicated nature of the model.

The parameter 
, which plays a large role in many interest rate models discussed in the

�nance literature, is quite poorly determined in this dataset. The posterior interval of


, computed from the 2.5th and 97th percentile of the MCMC output, ranges from 0:3 to

around 1:35 and the volatility dynamics are quite persistent as measured by the distribution

of �. Interestingly, the parameter � is quite accurately estimated and its posterior mean of
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Figure 1: Autocorrelation functions and posterior histograms for �, �, 
 and � in the

generalized SV model with independent student-t observation errors.

7:35 suggests that the data is non-Gaussian. The regression coe�cient �2 is estimated to

be negative but quite small with its upper interval just including zero.

We next compare four di�erent models on the basis of our diagnostic measures and our

marginal likelihood/Bayes factor criterion. In addition to the general model given above

(which we denote as M1) we de�ne three other models in order to formally assess the

statistical evidence for a simpli�cation of the model. Model M2 is the same as model M1

except that the degrees of freedom is �xed at � = 32. Model M3 is the same as model

M1 except that the parameter 
 is set to one. Finally, model M4 is de�ned by replacing

the t-assumption of M1 with the Gaussian and removing the covariate from the volatility

equation. The residuals nMt and rMt which are de�ned above, and the likelihood function

for each of these models, is computed using the particle �lter that is run with M = 2000
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Prior Posterior

Mean Std dev Mean Std dev Lower Upper INEFF

a 0.000 0.400 0.007 0.006 -0.004 0.019 1.877

b 0.000 0.400 -0.001 0.001 -0.004 0.002 2.285

� -5.000 5.000 -5.910 1.113 -8.028 -3.570 7.593

� 0.860 0.100 0.987 0.006 0.973 0.996 9.791

� 0.200 0.400 0.187 0.031 0.134 0.259 14.09

�2 0.000 0.400 -0.006 0.003 -0.014 0.001 2.299


 1.000 0.333 0.684 0.242 0.192 1.142 8.004

� 65.00 36.37 7.322 1.558 5.096 11.173 7.895

Table 4: Prior-posterior summary from the generalized SV model based on 5000 MCMC

draws. \Lower" and \Upper" denote the 2.5th percentile and the 97.5th percentile, respec-

tively, and INEFF denotes the ine�ciency factor.

and R = 10; 000.

The autocorrelation plots of the nMt and rMt (which are not reported) indicate no serial

dependence in either residual for any of the models. This indicates that there is no evidence

for any missing linear dependence or for any missing dispersion dependence. We next

consider the QQ plots in Figures 2 and 3 of nMt and rMt , plotted against the quantiles of the

uniform distribution, to check for the correctness of the model speci�cation. A well �tted

model should have residual quantiles that are equal to those of the uniform distribution. A

visual analysis of the �gures shows that both modelsM1 andM4 are suitable according to

this criteria.

The model diagnostic given above provides useful information about model adequacy

but do not help in the formal choice amongst these models. To do so we compute the

marginal likelihoods and the associated Bayes factors on the log base 10 scale for the models

under contention. The results appear in Table 5. This table clearly indicates that the data

evidence for the general SV modelM1 over the other models is decisive.

5 Concluding Remarks

This paper has considered a class of generalized stochastic volatility models de�ned by heavy

tails, a level e�ect on the volatility and covariate e�ects in the observation and evolution

equations. A simple, fast and highly e�cient MCMC �tting algorithm has been developed
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Figure 2: QQ plots of the nMt = F�1(uMt ) across four models (de�ned in the text).

for such models. The discussion has also considered the construction of diagnostic measures

and the estimation of the model marginal likelihood for comparing alternative stochastic

volatility models. Taken together the framework and results will be important for the

practical analysis of high frequency data.

The analysis can be extended in a number of directions. First, one can consider gener-

alized SV models in which the parameters are allowed to switch amongst a given number of

states according to a hidden Markov process. The basic SV model under this assumption

has been considered recently by So, Lam and Li (1998). The MCMC implementation fol-

lows from the procedures developed in Albert and Chib (1993) and Chib (1996). Second,

one can �t continuous time analogues of the model discussed in this paper [Andersen and

Lund (1997), Gallant and Tauchen (1998) and Gallant, Hsu and Tauchen (1998)]. Such
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Figure 3: QQ plots of the inverse normally transformed re
ected residuals 2
���uMt � 1

2

��� across
four models (de�ned in the text).

extensions can be handled in the MCMC context by amalgamating the approach of this

paper with that of Elerian, Chib and Shephard (1998). Another possible extension is to

generalized models of multivariate stochastic volatility of the type recently investigated in

detail by Pitt and Shephard (1998). This extension will be reported elsewhere.

Appendix

Algorithm

We include full details of the Metropolis-Hastings algorithm described in the text. This

algorithm provides a mechanism for sampling the joint distribution

h; s; �;  jy
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Model M2 M3 M4

M1 2.21 6.70 3.18

M2 { 4.49 0.97

M3 { { -3.52

Table 5: Log (base 10) of Bayes factors for row model against column model ( see text for

a de�nition of the four models).

by simulating various blocks of parameters in sequence.

1. Initialize s; �; �1; �.

2. Sample � and h from �; hjy; s; �; �1 by drawing

(a) � from �jy; s; �; �1
d
= �2jy

�; s which is proportional to

g(�) = �(�)
nY
t=1

f(y�t jy
�

t�1; s; �) ;

where

�(�) = �(�j�(1); �(2))N(�j�0;M0)N(�2j�20; B
�1
20 )IG(�j�0; �0)I[0 < 
 < 2]

and the moments of the Gaussian conditional density f(y�t jy
�

t�1; s; �) can be de-

termined from the Kalman �lter recursions. One computes for t = 1; :::; n

et = y�t � 
 log(w2
t )� at �mst; dt = pt + v2st ; kt = �pt=dt; (11)

at+1 = �+ x02t�2 + � (at � �) + ktet; pt+1 = �2 + �pt (�� kt) : (12)

From these recursions,

log f(y�t jy
�

t�1; s; �) = const�
1

2

nX
t=1

log dt �
1

2

nX
t=1

e2t
dt
:

To sample g(�), let q(�jm;V; �) denote a multivariate normal density with �

degrees of freedom, mean vector m and scale matrix V de�ned as the mode and

inverse of the negative Hessian, respectively, of log g(�). These are found by

numerical optimization, typically initializing at the current value of � and using

the previous value of the Hessian. Then
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i. Sample a proposal value �0 from the density q(�j�; V; �)

ii. Move to �0 given the current point � with probability of move

min

(
�(�0)

Qn
t=1 f(y

�

t jy
�

t�1; s; �
0)

�(�)
Qn

t=1 f(y
�

t jy
�

t�1; s; �)

q(�j�; V; �)

q(�0j�; V; �)
; 1

)
;

otherwise stay at �.

(b) h from hjy; s; �;  
d
= hjy�; s; � in one block using the simulation smoother of de

Jong and Shephard (1995). This involves running the Kalman �lter (11) and

(12) storing fet; dt; ktg followed by backward recursions, de�ning nt = d�1t +k2t ut

and ft =
et
dt
+ rtkt, where going from t = n; :::; 1 with rn = 0 and un = 0,

ct = v2st � v4stnt; �t � N(0; ct); bt = v2st (nt � �ktut) ;

rt�1 =
et

dt
+ (�� kt)rt�1 � bt

�t

ct
; ut�1 = d�1t + (�� kt)

2ut +
b2t
ct
:

Then, ht = y�t � v2stft � �t.

3. Sample �1 from �1jy; h; s; �; 
. Under the prior N (�10; B
�1
10 ), the draw is from the

distribution N(�̂1; B
�1) where

B = B10 +
nX
t=1

x1tx
0

1t

��1t exp(ht)w
2

t

; �̂1 = B�1

 
B10�10 +

nX
t=1

x1tyt

��1t exp(ht)w
2

t

!
:

4. Sample s from [sjy; h; �;  ]
d
= [sjy�; h;  ], where [sjy�; h;  ] =

Qn
t=1 Pr(stjy

�

t ; ht;  ) and

Pr(stjy
�

t ; ht;  ) / Pr(st)fN (y
�

t j
 log(w
2
t ) + ht + �st; v

2
st) :

5. Sample � and � from �; �jy; h;  by drawing

(a) � from �jy; h;  which is proportional to

g(�) = �(�)
nY
t=1

fT
�
ytjx

0

1t�1; w
2

t exp(ht); �

�

This density is not in a known family but it can be sampled by �nding a proposal

density that is tailored to the target g(�) and applying the Metropolis-Hastings

algorithm in a manner analogous to the case of � above.
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(b) �t independently from �tjyt; ht;  (t � n) where

�tjyt; ht;  � Gamma

0
@v + 1

2
;
� + (yt � x01t�1)

2 =
�
w
2

t exp (ht)

�
2

1
A ;

6. Repeat Steps 2-6 using the most recent values of the conditioning variables.

A complete loop through steps 2-6 completes one sweep or cycle of the MCMC iterations.

These sweeps are fast. On a 400 Mhz Pentium machine with a data set of 1800 observations,

5000 cycles take about twenty minutes for the most general interest rate model investigated

in this study. Given the low ine�ciency factors of our algorithm, 2000 sweeps may be

adequate for typical datasets.
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