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1 Introduction

We model a time series fyt; t = 1; :::; ng using a state space framework with the fytj�tg

being independent and with the state f�tg assumed to be Markovian. The task will
be to use simulation to estimate f(�tjFt), t = 1; :::; n, where Ft is contemporaneously

available information. We assume a known `measurement' density f(ytj�t) and the
ability to simulate from the `transition' density f(�t+1j�t). Sometimes we will also
assume that we can evaluate f(�t+1j�t).

Filtering can be thought of as the repeated application of the iteration

f(�t+1jFt+1) / f(yt+1j�t+1)
Z
f(�t+1j�t)dF (�tjFt): (1)

This implies the data can be processed in a single sweep, updating our knowledge
about the states as we receive more information. This is straightforward if �t+1j�t
has a �nite set of known discrete points of support as (1) can be computed exactly.

When the support is continuous and the integrals cannot be analytically solved then
numerical methods have to be used.

There have been numerous attempts to provide algorithms which approximate
the �ltering densities. Important recent work includes Kitagawa (1987), West (1992),
Gerlach, Carter, and Kohn (1999) and those papers reviewed in West and Harrison

(1997, Ch. 13 and 15). Here we use simulation to perform �ltering following an

extensive recent literature. Our approach is to extend the particle �lter using an

auxiliary variable, an idea which �rst appeared in Pitt and Shephard (1999a). The

literature on particle �ltering is reviewed extensively in previous Chapters of this

book and will not be repeated here.

The outline of the paper is as follows. In Section 2 we analyse the statistical basis

of particle �lters and focus on its weaknesses. In Section 3 we review the main focus

of the chapter, which is an auxiliary particle �lter method. Section 4 discusses �xed

lag �ltering, while Section 5 uses strati�ed sampling to improve the performance of

the algorithm.
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2 Particle �lters

2.1 The de�nition of particle �lters

Particle �lters are the class of simulation �lters which recursively approximate the

�ltering random variable �tjFt = (y1; :::; yt)
0 by `particles' �1

t ; :::; �
M
t , with associated

discrete probability masses �1t ; :::; �
M
t . Hence a continuous variable is approximated

by a discrete one with random support. These discrete points are thought of as

samples from f(�tjFt). In our work we will always set the
n
�Mt

o
to be equal to 1

M

where M is taken to be very large. Then we require that as M ! 1, the particles

can be used to increasingly well approximate the density of �tjFt.

Particle �lters treat the discrete support generated by the particles as the true

�ltering density, then this is chained to produce a new density

bf(�t+1jFt+1) / f(yt+1j�t+1)
MX
j=1

f(�t+1j�
j
t ); (2)

the `empirical �ltering density' as an approximation to the true �ltering density (1).
Generically particle �lters then sample from this density to produce new particles
�1
t+1; :::; �

M
t+1. This procedure can then be iterated through the data. We will call

a particle �lter `fully adapted' if it produces independent and identically distributed
samples from (2). There may be advantages in deliberately inducing (negative) cor-

relations amongst the particles. This was �rst explicitly pointed out by Carpenter,
Cli�ord, and Fearnhead (1998).

2.2 Sampling the empirical prediction density

One way of sampling from the empirical prediction density is to think of

1

M

MX
j=1

f(�t+1j�
j
t )

as a `prior' density bf(�t+1jFt) which is combined with the `likelihood' f(yt+1j�t+1) to

produce a posterior. We can sample from bf(�t+1jYt) by choosing �j
t with probability

1
M

and then drawing from f(�t+1j�
j
t ). If we can also evaluate f(yt+1j�t+1) up to

proportionality this leaves us with three sampling methods to draw from f(�t+1jFt+1).

1. Sampling/importance resampling.

2. Acceptance sampling.

3. Markov chain Monte Carlo (MCMC).

In the rest of this section we write the prior as f(�) and the likelihood as f(yj�),
abstracting from subscripts and conditioning arguments, in order to brie
y describe

these methods in this context.
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2.2.1 Sampling/importance resampling (SIR)

This method (Rubin (1987) and Smith and Gelfand (1992)) draws �1; :::; �R from

f(�) and then associates with each of these draws the weights �j where

wj = f(yj�j); �j =
wjPR
i=1wi

; j = 1; :::; R:

The weighted sample will converge, as R ! 1, to a non-random sample from the

desired posterior f(�jy) as R�1PR
i=1wi

p
! f(y). The non-random sample can be

converted into a random sample of size M by resampling the �1; :::; �R using weights

�1; :::; �R. This requires R ! 1 and R >> M . The use of this method has been

suggested in the particle �lter framework by Gordon, Salmond, and Smith (1993),

Kitagawa (1996), Berzuini, Best, Gilks, and Larizza (1997) and Isard and Blake

(1996).

To understand the e�ciency of the SIR method it is useful to think of SIR as an

approximation to the importance sampler of the moment

Ef� fh(�)g =
Z
h(�)�(�)dF (�); by

1

R

RX
j=1

h(�j)�(�j);

where � � f(�) and �(�) = f(yj�)=f(y). Liu (1996) suggested the variance of this
estimator is approximately (for slowly varying h(�)) proportional to Ef f�(�)

2g =R.

Hence the SIR method will become very imprecise when the �j become very variable.
This will happen if the likelihood is highly peaked compared to the prior.

2.2.2 Adaption

The above SIR algorithm samples from f(�jy) by making blind proposals �1; :::; �R

from the prior, ignoring the fact that we know the value of y. This is the main feature
of the initial particle �lter proposed by Gordon, Salmond, and Smith (1993). We say

that a particle �lter is adapted if we make proposals which take into account the
value of y.

An adapted SIR based particle �lter has the following general structure

1. Draw from �1; :::; �R � g(�jy)

2. Evaluate wj = f(yj�j)f(�j)=g(�jjy), j = 1; :::; R.

3. Resample amongst the f�jg using weights proportional to fwjg to produce a
sample of size M .

Although this looks attractive, for a particle �lter f(�) =
PM

j=1 f(�t+1j�
j
t ) which

implies we have to at least evaluate M �R densities in order to generate M samples

from f(�jy). Given M and R are typically very large, it implies adaption is not

generally feasible for SIR based particle �lters.
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2.2.3 Rejection and MCMC sampling

Exactly the same remarks hold for rejection sampling. A blind rejection sampling

based particle �lter will simulate from f(�) and accept with probability �(�) =

f(yj�)=f(yj�max), where �max = argmax� f(yj�). This has been proposed by H�urzeler

and K�unsch (1995) and used on a univariate log-normal stochastic volatility model

by Kim, Shephard, and Chib (1998). Again the rejection becomes worse if the

varf f�(�)g is high and adaption is di�cult as it will again typically involve eval-

uating f(�) and so is computationally infeasible.

Another alternative to SIR is the use of a blind MCMC method (see Gilks,

Richardson, and Spiegelhalter (1996) for a review). In this context the MCMC accepts

a move from a current state �i to �i+1 � f(�) with probability

min

(
1;
f(yj�i+1)

f(yj�i)

)
;

otherwise it sets �i+1 = �i. Again if the likelihood is highly peaked there may be a

large amount of rejection which will mean the Markov chain will have a great deal

of dependence. This suggests adapting, when this is possible, the MCMC method to
draw from g(�jy) and then accept these draws with probability

min

(
1;
f(yj�i+1)f(�i+1)

f(yj�i)f(�i)

g(�ijy)

g(�i+1jy)

)
:

The problem with this, as for the previous adapted SIR, is that evaluating f(�) is
very expensive.

2.3 Particle �lter's weaknesses

The particle �lter based on SIR has two basic weaknesses. The �rst is well known,

that when there is an outlier, the weights �j will be very unevenly distributed and
so it will require an extremely large value of R for the draws to be close to samples

from the empirical �ltering density. This is of particular concern if the measurement
density f(yt+1j�t+1) is highly sensitive to �t+1. Notice this is not a problem of having
too small a value of M . Instead, the di�culty is, given that degree of accuracy, how

to e�ciently sample from (2)? We will show how to do this in the next section.

The second weakness holds in general for particle �lters. As R ! 1, so the
weighted samples can be used to arbitrarily well approximate (2). However, the

tails of 1
M

PM
j=1 f(�t+1j�

j
t ) usually only poorly approximate the true tails of �t+1jFt

due to the use of the mixture approximation. As a result (2) can only ever poorly

approximate the true f(�t+1jFt+1) when there is an outlier. Hence the second question
is how do we improve the empirical prediction density's behaviour in the tails? This

will be discusses in Section 4.

3 Auxiliary variable

3.1 The basics

A fundamental problem with conventional particle �lters is that their mixture struc-

ture means that it is di�cult to adapt the SIR, rejection or MCMC sampling methods
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without massively slowing the running of the �lter. Pitt and Shephard (1999a) have

argued that many of these problems are reduced when we perform particle �ltering

in a higher dimension. In this section we review this argument.

Our task will be to sample from the joint density f(�t+1; kjFt+1), where k is an

index on the mixture in (2). Let us de�ne

f(�t+1; kjFt+1) / f(yt+1j�t+1)f(�t+1j�
k
t ); k = 1; :::;M: (3)

If we draw from this joint density and then discard the index we produce a sample

from the empirical �ltering density (2) as required. We call k an auxiliary variable as

it is present simply to aid the task of the simulation. Generic particle �lters of this

type will be labelled auxiliary particle �lters.

We can now sample from f(�t+1; kjFt+1) using SIR, rejection sampling or MCMC.

The SIR idea will be to make R proposals �j
t+1; k

j � g(�t+1; kjFt+1) and then con-

struct resampling weights

wj =
f(yt+1j�

j
t+1)f(�

j
t+1j�

kj

t )

g(�j
t+1; k

jjFt+1)
; �j =

wjPR
i=1wi

; j = 1; :::; R:

We have complete control over the design of g(:), which can depend on yt+1and �k
t ,

in order to make the weights even. Thus this method is adaptable and extremely


exible. In the next subsection we will give a convenient generic suggestion for the
choice of g(:).

Rejection sampling for auxiliary particle �ltering could also be used in this context.
An example of this appears in Section 3.3.4. We can also make proposals for an
MCMC variate of the auxiliary particle �lter from �

(i+1)
t+1 ; k(i+1) � g(�t+1; kjFt+1),

where g(�t+1; kjFt+1) is some arbitrary density, then these moves are accepted with
probability

min

8<
:1; f(yt+1j�

(i+1)
t+1 )f(�

(i+1)
t+1 j�

k(i+1)

t )

f(yt+1j�
(i)
t+1)f(�

(i)
t+1j�

k(i)
t )

g(�
(i)
t+1; k

(i)jFt+1)

g(�
(i+1)
t+1 ; k(i+1)jFt+1)

9=
;

= min

�
1;
wi+1

wi

�
:

A special case of this argument has appeared in Berzuini, Best, Gilks, and Larizza
(1997) who put g(�t+1; kjFt+1) / f(�t+1j�

k
t ) which means their method is again blind.

3.2 A generic SIR based auxiliary proposal

3.2.1 The method

Here we will give a generic g(:) which can be broadly applied. We will base our
discussion on the SIR algorithm, although we could equally have used an MCMC

method. We approximate (3) by

g(�t+1; kjFt+1) / f(yt+1j�
k
t+1)f(�t+1j�

k
t ); k = 1; :::;M;

where �kt+1 is the mean, the mode, a draw, or some other likely value associated with

the density of �t+1j�
k
t . The form of the approximating density is designed so that

g(kjFt+1) /
Z
f(yt+1j�

k
t+1)dF (�t+1j�

k
t ) = f(yt+1j�

k
t+1):
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Thus we can sample from g(�t+1; kjFt+1) by simulating the index with probability

�k / g(kjFt+1), and then sampling from the transition density given the mixture

f(�t+1j�
k
t ). We call the �k the �rst stage weights.

The implication is that we will simulate from particles which are associated with

large predictive likelihoods. Having sampled the joint density of g(�t+1; kjFt+1) R

times we perform a reweighting, putting on the draw (�
j
t+1; k

j) the weights propor-

tional to the so-called second stage weights

wj =
f(yt+1j�

j
t+1)

f(yt+1j�
kj
t+1)

; �j =
wjPR
i=1wi

; j = 1; :::; R:

The hope is that these second stage weights are much less variable than for the original

SIR method. We might resample from this discrete distribution to produce a sample

of size M .

By making proposals which have high conditional likelihoods we reduce the costs

of sampling many times from particles which have very low likelihoods and so will

not be resampled at the second stage of the process. This improves the statistical

e�ciency of the sampling procedure and means that we can reduce the value of R
substantially.

To measure the statistical e�ciency of these procedures we argued earlier that we
could look at minimizing E f�(�)2g. Here we compare a standard SIR with a SIR

based on our auxiliary variable. Then for a standard SIR based particle �lter, for
large R,

E
n
�(�)2

o
=

1
M

PM
k=1

R
f(yt+1j�t+1)

2dF (�t+1j�
k
t )n

1
M

PM
k=1

R
f(yt+1j�t+1)dF (�t+1j�

k
t )
o2 = M

PM
k=1 �

2
kfk�PM

k=1 �kf
�

k

�2 ;

where

fk =
Z (

f(yt+1j�t+1)

f(yt+1j�
k
t+1)

)2

dF (�t+1j�
k
t ) and f �k =

Z (
f(yt+1j�t+1)

f(yt+1j�
k
t+1)

)
dF (�t+1j�

k
t ).

The same calculation for a SIR based auxiliary variable particle �lter gives

E
n
��(�)

2
o
=

PM
k=1 �kfk�PM
k=1 �kf

�

k

�2 ;

which shows an e�ciency gain if

MX
k=1

�kfk < M
MX
k=1

�2kfk.

If fk does not vary over k then the auxiliary variable particle �lter will be more
e�cient as

PM
k=1 �k

1
M

= 1
M
�
PM

k=1 �
2
k. More likely is that fk will depend on k but

only mildly as f(�t+1j�
k
t ) will be typically quite tightly peaked (much more tightly

peaked than f(�t+1jYt)) compared to the conditional likelihood.
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3.2.2 Example: a time series of angles

The model In this section we will compare the performance of the particle and

auxiliary particle �lter methods for an angular time series model; the bearings-only

model. We consider the simple scenario described by Gordon, Salmond, and Smith

(1993). The observer is considered stationary at the origin of the x� z plane and the

ship is assumed to gradually accelerate or decelerate randomly over time. We use the

following discretisation of this system, where �t = (xt; vxt; zt; vzt)
0,

�t+1 =

0
BBB@

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1
CCCA�t +�

�

0
BBB@

1
2

0

1 0

0 1
2

0 1

1
CCCAut; ut � NID(0; I): (4)

In obvious notation xt, zt represent the ship's horizontal and vertical position at time

t and vxt, vzt represent the corresponding velocities. The state evolution is thus a

VAR(1) of the form �t+1 = T�t +Hut. The model indicates that the source of state

evolution error is due to the accelerations being white noise. The initial state describes

the ship's starting positions and velocities �1 � NID(a1;P1): This prior together with

the state evolution of (4) describes the overall prior for the states.
Our model will be based on a mean direction �t = tan�1(zt=xt). The measured

angle will be assumed to be wrapped Cauchy whose density is (see for example Fisher

(1993, p. 46))

f(ytj�t) =
1

2�

1� �2

1 + �2 � 2� cos(yt � �t)
; 0 � yt < 2�; 0 � � � 1: (5)

� is termed the mean resultant length.

The simulated scenario In order to assess the relative e�ciency of the particle
�lter and the basic auxiliary method, discussed in section 3.2, we have closely followed
the setup described by Gordon, Salmond, and Smith (1993). They consider �

�
= 0:001

and �" = 0:005, where ztj�t � NID(�t; �
2
"). We choose � = 1��2" (yielding the same

circular dispersion) for our wrapped Cauchy density. The actual initial starting vector

of this is taken to be �1 = (�0:05; 0:001; 0:2;�0:055)0. By contrast with Gordon,
Salmond, and Smith (1993), we wish to have an extremely accurate and tight prior
for the initial state. This is because we want the variance of quantities arising from

the �ltered posterior density to be small enabling reasonably conclusive evidence to

be formulated about the relative e�ciency of the auxiliary method to the standard
method. We therefore take a1 = �1 and have a diagonal initial variance P1 with the

elements 0:01� (0:52; 0:0052; 0:32; 0:012) on the diagonal.
Figure 1 illustrates a realization of the model for the above scenario with T = 10.

The ship is moving in a South-Easterly direction over time. The trajectories given

by the posterior �ltered means from the particle SIR method and the auxiliary SIR
method (M = 300, R = 500 in both cases) are both fairly close to the true path

despite the small amount of simulation used.

Monte Carlo comparison The two methods are now compared using a Monte

Carlo study of the above scenario with T = 10. The \true" �ltered mean is cal-
culated for each replication by using the auxiliary method with M = 100; 000 and
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Figure 1: Plot of the angular measurements from origin, the true trajectory (solid line,

crosses), the particle �ltered mean trajectory (dashed line, boxes) and the auxiliary

particle mean trajectory (dotted line, circles). Ship moving South-East. T = 10,

M = 300, R = 500.

R = 120; 000. Within each replication the mean squared error for the particle method
for each component of the state over time is evaluated by running the method, with

a di�erent random number seed, S times and recording the average of the result-
ing squared di�erence between the resulting particle �lter's estimated mean and the
\true" �ltered mean. Hence for replication i, state component j, at time t we calculate

MSEP
i;j;t =

1

S

SX
s=1

(�i
t;j;s � e�i

t;j)
2;

where �i
t;j;s is the particle mean for replication i, state component j, at time t, for

simulation s and e�i
t;j is the \true" �ltered mean replication i, state component j, at

time t. The log mean squared error for component j at time t is obtained as

LMSEP
j;t = log

1

REP

REPX
i=1

MSEP
i;j;t: (6)

The same operation is performed for the auxiliary method to deliver the corresponding

quantity LMSEAM
j;t . For this study we set use REP = 40 and S = 20. We allow

M = 4; 000 or 8; 000, and for each of these values we set R = M or 2M . Figure 2

shows the relative performance of the two methods for each component of the state

vector over time. For each component j, the quantity LMSEAM
j;t �LMSEP

j;t is plotted
against time. Values close to 0 indicate that the two methods are broadly equivalent
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Figure 2: Plot of the relative mean square error performance (on the log-scale) of

the particle �lter and the auxiliary based particle �lter for the bearings only tracking

problem. Numbers below zero indicate a superior performance by the auxiliary particle

�lter. In these graphs M = 4; 000 or 8; 000 while R = M or R = 2M . Throughout

SIR is used as the sampling mechanism. Top left: �t1 = xt, Bottom left: �t3 = zt,

while Top right: �t2 = vxt and Bottom right: �t4 = vzt.

in performance whilst negative values indicate that the auxiliary method performs
better than the standard particle �lter.

The graphs give the expected result with the auxiliary particle �lter typically

being more precise, but with the di�erence between the two methods falling as R
increases.

3.3 Examples of adaption

3.3.1 Basics

Although the above generic scheme can usually reduce the variability of the second

stage weights, there are sometimes other adaption schemes which use the speci�c

structure of the time series model which allow us to achieve yet more even weights.

If we can achieve exactly equal weights then we say that we have fully adapted the
procedure to the model, for now we can produce i.i.d. samples from (2). This situation
is particularly interesting as we are then close to the assumptions made by Kong, Liu,

and Wong (1994) for their sequential importance sampler.
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3.3.2 Non-linear Gaussian measurement model

In the Gaussian measurement case, the absorption of the measurement density into

the transition equation is particularly convenient. Consider a non-linear transition

density with �t+1j�t � N f� (�t) ; �
2 (�t)g and yt+1j�t+1 � N(�t+1; 1). Then

f(�t+1; kjFt+1) / f(yt+1j�t+1)f(�t+1j�
k
t ) = gk(yt+1)f(�t+1j�

k
t ; yt+1);

where ���2
k = 1 + ��2

�
�k
t

�
and

f(�t+1j�
k
t ; yt+1) = N

�
��k; �

�2
k

�
; ��k = ��2k

8<
:
�
�
�k
t

�
�2
�
�k
t

� + yt+1

9=
; :

This implies that the �rst stage weights are

gk(yt+1) /
��k

�
�
�k
t

� exp
8><
>:
��2k
2��2k

�
�
�
�k
t

�2
2�2

�
�k
t

�
9>=
>; :

The Gaussian measurement density implies the second stage weights are all equal.
An example of this is a Gaussian ARCH model (see, for example, Bollerslev, Engle,

and Nelson (1994)) observed with independent Gaussian error. So we have

ytj�t � N(�t; �
2); �t+1j�t � N(0; �0 + �1�

2
t ):

This model is fully adaptable. It has received a great deal of attention in the econo-

metric literature as it has some attractive multivariate generalizations: see the work
by Diebold and Nerlove (1989), Harvey, Ruiz, and Sentana (1992) and King, Sentana,

and Wadhwani (1994). As far as we know no likelihood methods exist in the literat-
ure for the analysis of this type of model (and its various generalizations) although a
number of very good approximations have been suggested.

3.3.3 Log-concave measurement densities

Suppose again that f(�t+1j�
k
t ) is Gaussian, but the measurement density is log-

concave as a function of �t+1, then we might extend the above argument by Taylor

expanding log f(yt+1j�t+1) to a second order term, again around �kt+1, to give the

approximation

log g(yt+1j�t+1; �
k
t+1) = log f(yt+1j�

k
t+1) +

�
�t+1 � �kt+1

�
0 @ log f(yt+1j�

k
t+1)

@�t+1

+
1

2

�
�t+1 � �kt+1

�
0 @2 log f(yt+1j�

k
t+1)

@�t+1@�
0

t+1

�
�t+1 � �kt+1

�
;

then

g(�t+1; kjFt+1) / g(yt+1j�t+1;�
k
t+1)f(�t+1j�

k
t ):

Rearranging, we can express this as

g(�t+1; kjFt+1) / g(yt+1j�
k
t+1)g(�t+1j�

k
t ; yt+1;�

k
t+1);
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which means we could simulate the index with probability proportional to g(yt+1j�
k
t+1)

and then draw from g(�t+1j�
k
t ; yt+1; �

k
t+1). The resulting reweighted sample's second

stage weights are proportional to the hopefully fairly even weights for j = 1; :::; R

with

wj =
f(yt+1j�

j
t+1)f(�t+1j�

kj

t )

g(yt+1j�
kj
t+1)g(�

j
t+1j�

kj
t ; yt+1; �

kj
t+1)

=
f(yt+1j�

j
t+1)

g(yt+1j�
j
t+1;�

kj
t+1)

; �j =
wjPR
i=1wi

:

Thus, we can exploit the special structure of the model, if available, to improve upon

the auxiliary particle �lter.

3.3.4 Stochastic volatility and rejection sampling

The same argument carries over when we use a �rst order Taylor expansion to con-

struct g(yt+1j�t+1; �
k
t+1), but in this case we know that g(yt+1j�t+1; �

k
t+1) � f(yt+1j�t+1)

for any value of �kt+1 due to the assumed log-concavity of the measurement density.

Thus

f(�t+1; kjYt+1) / f(yt+1j�t+1)f(�t+1j�
k
t )

� g(yt+1j�t+1;�
k
t+1)f(�t+1j�

k
t )

= g(yt+1j�
k
t+1)g(�t+1j�

k
t ; yt+1;�

k
t+1)

/ g(�t+1; kjYt+1):

Thus we can perform rejection sampling from f(�t+1; kjFt+1) by simply sampling k

with probability proportional to g(yt+1j�
k
t+1) and then drawing �t+1 from g(�t+1j�

k
t ; yt+1;�

k
t+1).

This pair is then accepted with probability

f(yt+1j�t+1)=g(yt+1j�t+1;�
k
t+1):

This argument applies to the stochastic volatility (SV) model

yt = �t� exp(�t=2); �t+1 = ��t + �t; (7)

where �t and �t are independent Gaussian processes with variances of 1 and �2 re-
spectively. Here � has the interpretation as the modal volatility, � the persistence in

the volatility shocks and �2� is the volatility of the volatility. This model has attrac-
ted much recent attention in the econometrics literature as a way of generalizing the

Black-Scholes option pricing formula to allow volatility clustering in asset returns;

see, for instance, Hull and White (1987). MCMC methods have been used on this
model by, for instance, Jacquier, Polson, and Rossi (1994), Shephard and Pitt (1997)

and Kim, Shephard, and Chib (1998).
For this model log f(yt+1j�t+1) is concave in �t+1 so that, for �

k
t+1 = ��k

t ,

log g(yt+1j�t+1;�
k
t+1) = const�

1

2
�t+1 �

y2t
2�2

exp(��kt+1)
n
1�

�
�t+1 � �kt+1

�o
:

The implication is that

g(�t+1j�
k
t ; yt+1;�

k
t+1) = N

"
�kt+1 +

�2

2

(
y2t
�2

exp
�
��kt+1

�
� 1

)
; �2

#
= N(��kt+1; �

2):
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Likewise

g(yt+1j�
k
t+1) = exp

�
1

2�2

�
��k2t+1 � �k2t+1

��
exp

(
�

y2t
2�2

exp
�
��kt+1

� �
1 + �kt+1

�)
:

Finally the log-probability of acceptance is

�
y2t
2�2

h
exp(��t+1)� exp(��kt+1)

n
1�

�
�t+1 � �kt+1

�oi
:

Notice that as �2 falls to zero so the acceptance probability goes to one.

Finally, the same argument goes through when we use a SIR algorithm instead of

rejection sampling. The proposals are made in exactly the same way, but now instead

of computing log-probabilities of accepting these become log-second stage weights.

Simulation experiment The basic SV model was de�ned in Section 3.3.4. We

construct 100 times the compound daily returns on the US Dollar against the UK

Sterling from the �rst day of trading in 1997 and for the next 200 days of active
trading. This data is discussed in more detail in Pitt and Shephard (1999b), where

the parameters of the model were estimated using Bayesian methods. Throughout
we take � = 0:9702, �� = 0:178 and � = 0:5992, the posterior means of the model for
a long time series of returns up until the end of 1996.

Figure 3 graphs these daily returns against time. The Figure also displays the
estimated quantiles of the �ltering density, f f� exp(�t=2)jFtg computed using an

auxiliary particle �lter. Throughout the series we set M = 5; 000, R = 6; 000. We
have also displayed the posterior mean of the �ltering random variable. This is always
very slightly above the posterior median as �tjYt is very close to being symmetric.

The picture shows that the �ltered volatility jumps up more quickly than it tends
to go down. This re
ects the fact that the volatility is modelled on the log scale.

To compare the e�ciency of the simple particle �lter, our basic auxiliary particle

�lter and the (rejection based) fully adapted particle �lter discussed in Section 3.3.4,
we again conducted a simulation experiment measuring mean square error for each

value of t using the above model and again having n = 50. The data was simulated
using the model parameters discussed above. The results are reported (using a log
scale) in Figure 4. To make the problem slightly more realistic and challenging we

set "21 = 2:5 for each series, so there is a signi�cant outlier at that point. For this

study we set use REP = 40 and S = 20. We allowM = 2; 000 or 4; 000, and for each

of these values we set R =M or 2M . For the rejection based particle �lter algorithm

it only makes sense to take M = R and so when R > M we repeat the calculations
as if M = R. Finally, the rejection based method takes around twice the time of the

SIR based particle �lter when M = R.

Figure 4 shows that the fully adapted particle �lter is considerably more accurate
than the other particle �lters. It also has the advantage that it does not depend on

R. The auxiliary particle �lter is more e�cient than the plain particle �lter, but the
di�erence is small re
ecting the fact that for the SV model the conditional likelihood

is not very sensitive to the state.
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Figure 3: Bottom graph shows the daily returns on the Dollar against UK Sterling
from the �rst day of trading in 1997 for 200 trading days. We display in the top graph
the posterior �ltered mean (heavy line) of � exp(�t=2)jYt, together with the 5, 20, 50,

80, 95 percentage points of the distribution. Notice the median is always below the
mean. M = 5; 000, R = 6; 000.

3.3.5 Mixtures of normals

Suppose f (�t+1j�t) is Gaussian, but the measurement density is a discrete mixture
of normals

PP
j=1 �jfj(yt+1j�t+1). Then we can perfectly sample from f(�t+1; kjFt+1)

by working with

f(�t+1; k; jjFt+1) / �jfj(yt+1j�t+1)f
�
�t+1j�

k
t

�
= wj;kfj(�t+1j�

k
t ; yt+1):

Then we sample from f(�t+1; k; jjFt+1) by selecting the index k; j with probability

proportional to wj;k and then drawing from fj(�t+1j�
k
t ; yt+1). The disadvantage of this

approach is that the complete enumeration and storage of wj;k involves PM calcu-

lations. This approach can be trivially extended to cover the case where f (�t+1j�t)

is a mixture of normals. MCMC smoothing methods for state space models with

mixtures have been studied by, for example, Carter and Kohn (1994) and Shephard

(1994).

4 Fixed lag �ltering

The auxiliary particle �lter method can also be used when we update the estimates

of the states not by a single observation but by a block of observations. This idea
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Figure 4: Plot of the mean square error performance (on the log-scale) of the particle

�lter to the auxiliary based particle �lter and an adapted particle �lter. The lower the

number the more e�cient the method. Top graphs have M = 2; 000, the bottom have

M = 4; 000. The Left graphs have R =M , while the right ones have R = 2M

appeared in the initial working paper version of Pitt and Shephard (1999a) which was
circulated in 1997, but was taken out of the paper which appeared in the journal.

Again suppose that we approximate the density of �tjFt = (y1; :::; yt)
0 by a dis-

tribution with discrete support at the points �1
t ; :::; �

M
t ; with mass

n
1
M

o
. Then the

task will be to update this distribution to provide a sample from �t+1; :::; �t+pjFt+p.

At �rst sight this result seems specialized as it is not often that we have to update
after the arrival of a block of observations. However, as well as solving this problem
it also suggests a way of reducing the bias caused by using the empirical prediction

density as an approximation to f(�t+1jFt). Suppose that instead of updating p future
observations simultaneously, we store p � 1 observations and update those observa-
tions together with an empirical prediction density for f(�t�p+2jFt�p+1). This would

provide us with draws from f(�t+1jFt+1) as required. We call this �xed lag �ltering.

The hope is that the in
uence of the empirical prediction density will be reduced as

it will have been propagated p times through the transition density. This may reduce
the in
uence of outliers on the auxiliary method.

This can be carried out by using a straightforward particle �lter using SIR, rejec-

tion sampling or MCMC, or by building in an auxiliary variable so that we sample

from �t+1; :::; �t+p; kjFt+p. Typically the gains from using the auxiliary approach is

greater here for as p grows so naive implementations of the particle �lter will become

less and less e�cient due to not being able to adapt the sampler to the measurement

density.
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To illustrate this general setup consider the use of an auxiliary particle �lter where

we take

g(kjFt+p) /

Z
f(yt+pj�

k
t+p):::f(yt+1j�

k
t+1)dF (�t+pj�t+p�1):::dF (�t+1j�

k
t )

= f(yt+pj�
k
t+p):::f(yt+1j�

k
t+1);

and then sampling the index k with weights proportional to g(kjFt+p). Having selec-

ted the index kj we then propagate the transition equation p steps to produce a draw

�
j
t+1; :::; �

j
t+p, j = 1; :::; R: These are then reweighted according to the ratio

f(yt+pj�
j
t+p):::f(yt+1j�

j
t+1)

f(yt+pj�
kj
t+p):::f(yt+1j�

kj
t+1)

:

This approach has three main di�culties. First it requires us to store p sets of

observations and p �M mixture components. This is more expensive than the pre-

vious method as well as being slightly harder to implement. Second, each auxiliary

variable draw now involves 3p density evaluations and the generation of p simulated
propagation steps. Third, the auxiliary variable method is based on approximating

the true density of f(k; �t�p+1; :::; �tjYt), and this approximation is likely to deteri-
orate as p increases. This suggests that the more sophisticated adaptive sampling
schemes, discussed above, may be particularly useful at this point. Again however,

this complicates the implementation of the algorithm.
We will illustrate the use of this sampler at the end of the next section on an

outlier problem.

5 Reduced random sampling

5.1 Basic ideas

The generic auxiliary particle �lter given in Section 3.2 has two sets of weighted
bootstraps and that this introduces a large degree of randomness to the procedure.

This is most stark in the case where f(yt+1j�t+1) does not depend on �t+1 and so
yt+1 is uninformative about �t+1. For such a problem the �rst stage weights are �k /

g(kjFt+1) / 1 while the second stage weights wj / 1. The implication is that it would
have been better simply to propagate every �k

t through f(�t+1j�
k
t ) once to produce

a new �k
t+1. This would produce a more e�cient sample than our method which

samples with replacement from these populations, twice killing interesting particles
for no good reason.

This observation has appeared in the particle �ltering literature on a number of

occasions. Liu and Chen (1995) discuss carrying weights forward instead of resampling

in order to keep alive particles which would otherwise die. Carpenter, Cli�ord, and

Fearnhead (1998) think about the same issue using strati�cation ideas taken from
sampling theory.

Here we use a method which is similar to an idea discussed by Liu and Chen (1998)

in this context. We resample from a population �1
t ; :::; �

M
t with weights �1t ; :::; �

M
t to

produce a sample of size R in the following way. We produce strati�ed uniforms
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eu1t ; :::; euRt by writing

eukt = (k � 1) + ukt
R

; where ukt
iid
� UID(0; 1):

This is the scheme suggested by Carpenter, Cli�ord, and Fearnhead (1998). Then we

compute the cumulative probabilities

e�rt =
rX

s=1

�st ; r = 1; :::;M:

We allocate nk copies of the particle �k
t to the new population, where nk is the number

of eu1t ; :::; euRt in the interval  
k�1X
s=1

�st ;
kX

s=1

�st

#
:

The computation of each of
neukt o, fe�rt g and nnko is straightforward and so this type of

strati�ed sampling is very fast. In fact it is much faster than simple random sampling.
Although, as we noted above, this idea is not new it is particularly useful in

the context of our generic auxiliary particle �lter suggestion which has two weighted

bootstraps | while a typical SIR based particle �lter only has one. Hence we might
expect the gains to be made over the original suggestion in Pitt and Shephard (1999a)

would be particularly large.

5.2 Simple outlier example

We tried random and strati�ed sampling using �xed lag versions of SIR based particle
and auxiliary particle �lters on a di�cult outlier problem where the analytic solu-

tion is available via the Kalman �lter. We assume the observations arise from an
autoregression observed with noise

yt = �t + "t; "t � NID(0; 0:7072)
�t+1 = 0:9702�t + �t; �t � NID(0; 0:1782);

(8)

where "t and �t are independent processes. The model is initialised by �t's stationary

prior. We added to the simulated yn=2 a shock 6:5 � 0:707, which represents a very
signi�cant outlier. Throughout we set M = R = 500 and measure the precision of

the �lter by the log mean square error criteria (6), taking REP = 30 and S = 20.
As the problem is Gaussian the Kalman �lter's MSE divided by M provides a lower

bound on the mean square error criteria.

Figure 5 shows the results from the experiment, recording the mean square errors
and bias of the various particle �lters. It is important to note that the mean square
errors are drawn on the log10 scale. The main features of the graphs are that: (i)

when there is no outlier all the particle �lters are basically unbiased with strati�cation

being important. The use of the auxiliary variable does not have much impact in

this situation (although it is still better). (ii) during an outlier, the ASIR methods
dominate both in terms of bias and MSE. Strati�cation makes very little di�erence

in this situation. (iii) after the outlier, strati�ed ASIR continues to work well while

ASIR returns to being less e�ective than strati�ed SIR. (iv) The introduction of �xed
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Figure 5: The mean square error (MSE), using a log10 scale, and bias of four di�erent

particle �lters using no and two �ltered lag �lters. The x-axis is always time, but we

only graph results for t = T=4; T=4 + 1; :::; 3T=4 in order to focus on the crucial

aspects. The four particle �lters are: SIR, ASIR, strati�ed SIR and strati�ed ASIR.

The results are grouped according to the degree of �xed lag �ltering. In particular:

(a) shows the MSE when p = 0, (b) shows the MSE when p = 2. (c) shows the

bias when p = 0, while (d) indicates the bias with p = 2. Throughout we have taken

M = R = 500.

lag �ltering reduces the bias of all methods by an order of magnitude while the MSE

reduces quite considerably.
In order to benchmark these results, we have repeated the same experiment but

now with M = R = 2500. The results are given in Figure 6. This picture is remark-
ably similar to Figure 5 but with smaller bias and MSE. An important feature of this

experiment is that the reduction in bias and MSE of a �ve fold increase in M and R

produces around the same impact as the introduction of �xed lag �ltering.

6 Conclusion

This Chapter has studied the weaknesses of the very attractive particle �ltering
method originally proposed by Gordon, Salmond, and Smith (1993). The SIR imple-

mentation of this method is not robust to outliers for two di�erent reasons: sampling
e�ciency and the unreliability of the empirical prediction density in the tails of the

distribution. We introduce an auxiliary variable into the particle �lter to overcome

the �rst of these problems, providing a powerful framework which is as simple as
SIR, but more 
exible and reliable. We show that when it is possible to adapt the
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Figure 6: Repeat of Figure but with M = R = 2500.

particle �lter then this can bring about large e�ciency gains. The �xed-lag �lter
partially tackles the second problem, which suggests a possible real improvement in
the reliability of these methods.
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