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ABSTRACT. This paper presents a neural network model developed to simulate the endogenous
emergence of bounded-rational behavior in normal form games with unique Nash equilibria. There
exists an algorithm which, if learnt by a neural network, would enable it to perfectly select Nash
equilibria in never before seen games. However, finding this algorithm is too complex a task
for a biologically plausible neural network, and as such it will instead settle for converging to a
local error-minimizing algorithm, i.e. an approximation to Nash in a subset of games. Computer
simulations show that this imperfect algorithm will still allow the network to find the Nash
equilibrium of a game approximately 60% of the time. Dominance gets closer to explaining the
network’s actual behavior than Nash. Wee see that the network does display some strategic
awareness, decreasing in the levels of thinking required. The network goes for high payoff values,
and considers the temptation of the other player of deviating from Nash. It plays better in
higher stakes games, particularly if there is more conflict of interests with the other player. The
behavioral heuristics carry over when it faces new classes of games, games with multiple and zero
pure Nash equilibria, and in fact the network seems to find focal solutions in games with multiple

equilibria.
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1. INTRODUCTION

Consider a naive agent thrown into a world of Nash equilibrium players. For example, he may
be an infant who, first, starts playing games with parents and other relatives, and later with a
larger and larger circle of people; he also observes other people playing games, either in front

of him, or (say) on television. He does not always face the same game: on the contrary, he
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either plays or observes other subjects playing a wide range of games. Will he learn to play Nash
strategies right away as he grows up, when facing games never encountered before? If yes, at what
success rate? If the success rate is less than 100% but higher than chance, is it because the agent
has endogenously learnt rules of thumb allowing him to perform in a satisficing way when playing
new games? The rules of thumb would be learnt endogenously insofar as the agent’s behavior
would have always been reinforced according to Nash (he always plays with Nash players). This
would be an example of emergent bounded-rational behavior as in Simon (1955), Simon (1959) or
Rubinstein (1998): rather than playing the optimal strategy, the agent achieves a “good enough”
solution (hence, he is satisficing, in Simon’s terminology). Moreover, this would be a model of
bounded-rational behavior in games in which, differently from other models, for example, Osborne
and Rubinstein (1998), rules of thumb emerge endogenously as a result of the learning process
rather than being exogenously super-imposed on the agent.

The issue of the learnability of Nash equilibria play is also relevant in its own right. Playing
a Nash strategy in a game has long been thought a bare minimum requirement for rational play
in games, and is treated as such in countless theoretical and applied papers. The challenge is
to provide “a compelling argument for Nash equilibrium” (Mailath (1998), p. 1351). In the
behavioral reinforcement paradigm, what we typically have are agents capable of reaching Nash
equilibrium (or otherwise) in specific games, after a feasible long-run dynamic path as in Roth and
Erev (1995) and Roth and Erev (1998). In the evolutionary game theory paradigm, a good deal
of recent work has gone into justifying Nash equilibrium as a stable point in a dynamic learning
or evolutionary process, for example, Young (1993) or Kandori, Mailath, and Rob (1993); yet, by
itself it does not provide structural models of learning as Mailath (1998) is at pains to point out.
This has not gone unquestioned. Furthermore, what much of the work in both of these paradigms
has in common is an emphasis on learning to play a Nash strategy in a particular game. Start
with an arbitrary strategy in a game and determine whether agents converge to playing Nash
strategies, and thus a Nash equilibrium, in the long-run. This paper is very different, with the
emphasis being placed on how reasonable Nash behavior is in play across a number of games, or
throughout a player’s economic life. An implication of this is that these models typically make no
prediction, or predict naive behavior, when new games are faced.! Conversely, here the stress will
be on the ability of the ‘grown-up’ agent to play in a non-naive way in games never encountered
before, and even belonging to classes of games never encountered before.

In this paper, economic situations are modelled through normal form games. The network is
exposed to a series of example games where the Nash choice is highlighted as the optimal action.
Then the trained network faces a new series of games and is left to choose what strategies it sees
fit. A neural network could in theory learn to play games never seen before in a fully rational

way, picking Nash equilibria at the very first attempt, having been trained on a set of example

1Stahl (1998) provides an exception.
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games. However, if we use the most standard learning algorithm used in neural network research,
and assert the need for a minimum amount of biological and cognitive plausibility, we can show
that the Nash equilibrium learning problem is too complex for the neural network. This is not
something that can be addressed simply by having a more powerful learning algorithm, since, if
anything, this algorithm - backpropagation - is stronger than a biologically plausible algorithm
can be, as shown in Macleod, Plunkett, and Rolls (1998). The non-learnability result implies
that, in practice, a neural network is much more likely to learn a local error-minimizing algorithm
or LMA. The LMA is an algorithm that, if followed, minimizes the network’s error in a subset,
but only in a subset, of cases. LMAs are interesting because they correspond to one or more
behavioral heuristics that the bounded-rational agent has endogenously picked up to perform in
a satisfacing way on the decision problem (see Sgroi (2000)).

We present a neural network model that plays (up to) 3 x 3 games. A computer simulation
methodology is required to check whether, after training on games with unique pure Nash equi-
libria, the network remains entirely naive in playing new (i.e. never encountered before) games,
or it learns to play Nash, or it learns some LMA allowing it to perform in a satisfacing way on
the decision problem. The trained network is able to find pure Nash equilibria of games never
encountered before around 60% of the times, an empirically reasonable success rate as shown in
Stahl and Wilson (1994). We show that, however, criteria based on iterated deletion of strictly
dominated strategies (including rationalizability) outperform Nash whenever they yield a unique
solution.

We then develop a simple econometric technique to test what game features the network has
learnt to recognize to address the Nash solving problem in a satisficing way, as part of its LMA.
The network displays some strategic awareness, but this decreases in the levels of iterated deletion
of dominated strategies required. The network goes for high payoff values. It takes into account
of potential trembles of the other player. It plays better in higher stakes games, particularly if
there is more conflict of interests between itself and the other player.

The trained network’s behavioral heuristics allow it to play in a meaningful way not just on new
games, but on new classes of games, namely games with multiple and zero pure Nash equilibria.
Moreover, networks trained on different sets of games - all with a unique pure Nash equilibrium
- display focal points, when encountering games with multiple equilibria.

It may perhaps be considered a paradox that the non-learnability result is not here really
a problem with neural network modelling, but rather a virtue: it is what makes this approach
potentially innovative. It allows us to study how a toolkit of bounded-rational knowledge emerges
endogenously, simply as the outcome of the agent learning to cope with too difficult a problem.
This toolkit can then be analyzed using relatively straightforward regression analysis.

Neural networks are statistical pattern recognizers, and computer simulations employing neu-

ral networks are now a standard way to model categorization and learning in computer science,
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engineering and cognitive psychology. As yet, however, relatively little has been done within
game theory to capitalize on this research. A notable exception is Rubinstein (1993), who uses
perceptrons to capture the notion of a limit to forward-looking behavior in monopolistic compe-
tition. Another exception is the work summarized in Cho and Sargent (1996), on the usage of
networks for encoding dynamic strategies. None of this research, however, uses computer simula-
tions. Conversely, we believe that computer simulations can be helpful to study what strategies
are likely to be encoded in a network as a result of repeated exposure to examples, rather than
what strategies can in principle be encoded. Some computer simulations work has been done us-
ing neural networks as models of learning in single games, for example, Hutchins and Hazelhurst
(1991) or Macy (1996), in which case they can be seen as simple extensions of a Roth and Erev
(1995) style learning processes. Zizzo (2000c) shows how, through repeated exposure to different
economic environments, networks can help in the modelling of the endogenous determination of

preferences.

1.1. Overview. The rest of this paper is organized as follows. Section 2 provides a purely
intuitive introduction to neural networks and some additional motivation to the paper.

Part I of the paper encompasses sections 3 through 6, dealing with mainly theoretical issues.
Section 3 presents the game to be played, section 4 formally presents the neural network player,
and section 5 examines the learnability of the Nash solution by the neural network; section 6
develops the notion of the N P-hardness of the network’s task, ending with a formal definition of
a rule of thumb within this framework.

Part IT of the paper, incorporating sections 7 through 11, addresses what the network actually
learns, using computer simulations and simple econometric techniques. Section 7 introduces the
simulated neural network, and section 8 details several alternatives to the Nash solution concept
as possible alternative candidates for the neural network’s behavior. Computer simulations, and
an econometric analysis of the results, are described in section 9 for games with unique equilibria,
section 10 for games with multiple equilibria, and section 11 for games with no equilibria.

Section 12 concludes.

2. INTRODUCTION TO NEURAL NETWORKS

Neural networks can be loosely defined as artificial intelligence models inspired by analogy with
the brain and realizable in computer programs They typically learn by exposure to a series of
examples (a training set), and adjustment of the strengths of the connections between its nodes.
They are then able to do well not only on the original training set, but also when facing problems

never encountered before.

2.1. What is a Neural Network? A feature of biological brains is that the connections between
neurons are of different strengths, and that they can either increase or decrease the firing rate of

the receiving neuron. In neural networks, this is modelled by associating a connection weight to
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each connection. This weights the input from the sending node to the receiving node. Since the
weight can be either positive or negative, the activation of a node will either increase or decrease
the activation of the receiving node.

Figure 1 illustrates a simple example of a neural network. Networks can be usefully thought of
as agents that receive external stimuli, process them, and produce an output. A typical network
has an input layer of nodes receiving stimuli from the outside (as real numbers). This input is then
transmitted to the nodes the input layer is connected to, multiplied by the respective connection
weights. Each node on the downstream layer receives input from many nodes. The sum is then
transformed according to the activation function and the result is transmitted to the nodes in
the further downstream layer. In such a way, the network processes the input until it reaches the
output nodes (the output layer), in the form of new real-valued numbers. The activation level
of the output nodes expresses the outcome of network processing, i.e., the network’s decision.
A feature of biological brains is that the connections between neurons are of different strengths,
and that they can either increase or decrease the firing rate of the receiving neuron. In neural
networks, this is modelled by associating a connection weight to each connection. This weights
the input from the sending node to the receiving node. Since the weight can be either positive or
negative, the activation of a node will either increase or decrease the activation of the receiving

node.
[insert figure 1 here]

In other words, what the network does is a complex nonlinear transformation mapping the
input (a vector of numbers) into an output (another vector of numbers). Our network for economic
decision-making receives the payoff values of the game as inputs. As output, it produces a strategy.
We can then determine whether the network’s choice is optimal, and thus rational, or not. Since
we are dealing with normal form games of full information, the optimal choice will be the Nash
equilibrium strategy.

Generally, the optimum parameter or set of parameters cannot be calculated analytically when
the model is nonlinear, and so must rely on a form of numerical optimization. The network adjusts
connection weights during training following a basic learning algorithm (effectively a numerical
optimization technique) called backpropagation developed in Rumelhart, Hinton, and Williams
(1986)), discussed in the next section.

Intuitively, the economic decision-maker tries to learn how to perform better in the task. The
more disappointing the outcome, the deeper the change will be. If a player faces a Prisoner’s
Dilemma, and cooperates while the other player defects, he will not be very willing to repeat the
experience in the future. In the training set, the correct answer will be that dictated by the Nash
equilibrium. The greater the difference between the network’s behavior and the optimal (Nash

equilibrium) strategy, the greater the adjustment that the learning algorithm will trigger.
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2.2. Learning by Example. The key to the learning process is repeated exposure to examples.
The players are assumed not to have perfect access to models of the real world, nor are any rules
explicitly taught to the network; rather they are simply subjected to a sequence of example games,
and then asked to assimilate what general knowledge they can from these examples to play new,
never before seen, games.

This appears a plausible rule for the learning of more rational decision-making. On the one side,
economic agents face a large amount of decisions throughout their life. On the other side, it is
unlikely that most of them ever encounter teachers telling them explicitly what general algorithm
to follow in playing normal form games: rather, they implicitly learn to generalize their economic
know-how from the examples they experience and observe, and get reinforcement from (see Zizzo
(2000b)). So, as in Roth and Erev (1995), the basic idea is that of psychological reinforcement.
However, here reinforcement does not entail direct adjustments to economic behavior. Rather, it
operates directly on connection weights, and only indirectly on behavior.

The difference may appear subtle but is crucial. The behavioral learner learns how to behave
better in an economic situation, but will be completely naive as soon as it faces a new one: knowing
how to perform well in a coordination game tells me nothing on how to perform optimally in, say,
a Prisoner’s Dilemma. Instead, given enough exposure to examples, the neural network learner is
able to find a set of connection weights that enables it to perform optimally a majority of times
even in economic situations never encountered before. In other words, it learns how to generalize

1ts economic know-how.

2.3. Prototype vs. Exemplar-Based Categorization. The problem of a network with n
connections is to find an appropriate configuration of its connection weights in the n-dimensional
space of their possible combinations (Clark (1993)). If there are only a few examples, the network
will assimilate novel cases to the most similar one, producing a similar output; if there are many
examples, the network implements prototypical categorization (Way (1997)). Prototypes are the
results of a process that extracts specific complexes of features - the statistical central tendency
information - from a set of examples. Prototypical categorization is forced upon the network by
its property that knowledge tends to be distributed across various nodes and connection weights,
i.e. different examples tend to be coded over the same units; it follows that the features in which
the different examples are common tend to be reinforced, whereas their differences tend to cancel
out (Smith (1996)). New cases are assimilated to the nearest prototype, and the choice associated

to that prototype follows.

2.4. Many Games. Most evolutionary games, or learning dynamics, are based on the assump-
tion that only one game is of interest. They then look at whether a player can converge to Nash
behavior within that game. If we then consider another game we have to reset the dynamic
and start again, forgetting the long process of learning to play Nash completely, or else assume

that having mastered one game the player will simply pick a Nash equilibrium perfectly without
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any further need to learn. This paper goes well beyond these two simplifications. The decision
algorithm used by the player is formed out of a series of observed examples, the results being a

decision-rule in which the emphasis is on learning how to play games in general.

2.5. Why backpropagation? Backpropagation is the most standard learning algorithm used
for computer simulations using neural networks: as such, it is a natural candidate to use. The
basic intuition behind is that of psychological reinforcement: the economic decision-maker tries
to learn how to perform better in the task, and the more disappointing the outcome (relative to
the “correct” outcome), the deeper the change in connection weights will be. Backpropagation
requires a teacher explicitly telling the correct answer during training, and this might appear too
strong a requirement: it certainly makes backpropagation a more powerful algorithm than what
is biologically plausible. Backpropagation is more powerful also in another sense: as we shall
see, it adjusts individual connection weights using global information on how to best allocate
output error. This is unlikely to occur in biological brains (Macleod, Plunkett, and Rolls (1998)).
These limitations, however, should not be overstated: what they suggest is that backpropagation
might be a plausible upper bound to the learning of biological neural networks of some given size.
Conversely, stronger learning algorithms, of the kind used by White (1992) to show learnability,
are not either biologically or cognitively plausible (White (1992), p. 161).2 Hence, the non
learnability result with backpropagation discussed in Part 1 should be taken seriously, and the
methodology developed in Part 2 cannot be easily dismissed as an artificial product of too weak
a learning rule. In practice, we do know that a neurotransmitter, dopamine, plays a role in
biological neural networks analogous to that of the teacher in the backpropagation algorithm: the
activation level of dopamine neurons works as a “behavioral adaptive critic”, i.e. it tells the agent
how to adapt its behavior to successfully deal with a task (Zizzo (2000c)).

2.6. Empirical Success. Neural networks are here treated as psychological models of how agents
actually face, and learn to face, problems never encountered before. There is certainly evidence
that children learn by example - either by direct experience or by observation of instances - as they
grow up (see Bandura (1977)). More importantly, they are able not only to learn the examples
observed (for example, to understand or utter words or sentences) but also to generalize from
those examples (for instance, learn to talk: Plunkett and Sinha (1992)). In cognitive science,
neural networks have been used as models, among other things, for how agents actually face
pattern recognition and categorization, as in Taraban and Palacios (1994), for child development,
as in Elman, Bates, Johnson, Karniloff-Smith, Parisi, and Plunkett (1996), for animal learning,
as in Schmajuk (1997), and even arithmetic learning, as in Anderson (1998).Important analytical
results (discussed in part I of the paper) exist on what the network can learn, but the focus

of these computer simulation models is different: it is in showing what neural networks learn in

?We discuss this point more in depth below.
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practice, and how they learn it. What networks learn in practice is also what, in this literature and
hopefully in this paper, makes neural networks useful for psychological modelling. For example, a
model of arithmetic learning that would predict the absence of mistakes is unlikely to be plausible
when dealing with human subjects (Anderson (1998)); it follows that the fact that in practice the
network converges to a solution algorithm with mistakes is more of interest than the fact that, in

theory, an algorithm achieving a 0% mistake rate is learnable by the network.

Part I: The Theory of Neural Network Learning in Games

3. THE MODEL

This section is devoted to a sequence of definitions, and a thorough explanation of the neural
network model. The notion of random games will also be introduced, the key feature of which is
that each game in a sequence will not have been played before by any player. This captures the
notion of play in a new and changing environment and rules out standard theories of evolutionary

learning in which the game to be repeatedly played is essentially unchanging.

3.1. Basic Definitions. For the purposes of this paper, a random game, G, is defined as a 3 x 3
normal form game of full information with a unique pure strategy Nash equilibrium and randomly
determined payoffs taken from a uniform distribution with support [0, 1]. More formally we can
define the simple game by a list G = <N AA U b N>. We will restrict the number of players,
indexed by 7, to N = 2. A; describes player actions available to a player in role i, with realized
actions given by a; € A;. In each game we consider the set of feasible actions available to each
player to be of size 3. Feasible action combinations are given by A = Ay X Ay. Payofls for both
players are given by u; : A; — R which is a standard von Neumann-Morgenstern utility function.
Payoffs are bounded, so 3@ > 0 such that | u; (a) |< @ for all a. More specifically we consider
the payoffs to be randomly drawn from a uniform (0, 1) and then revealed to the players before
they select an action, so V; 4, supu; (a;) = 1. We will place one further restriction on the game,

by requiring the existence of a single unique pure strategy Nash equilibrium. To summarize:

Definition 1. A random game is a list G = <N7 {Ai,ui}i€N>, such that N = 2 players meet to
play a game playing realized action a; € A;, where three action choices are allowed. The values of
the payoffs, u; : A; — R are randomly drawn from a uniform (0,1), made known to the players

before the game starts, and form a standard von Neumann-Morgenstern bounded utility function.

Now consider a population of ) players playing a series of random games, indexed by ¢ € N*+.
We consider a pair to be drawn from our population and then forced to play a given random game.
Define the unique pure strategy Nash strategy to be «a; € A; where a Nash strategy is defined as
the unique choice of pure strategy by player ¢« which, when taken in combination with the Nash

strategy chosen by the other member of the drawn pair, form the unique Nash equilibrium in the
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random game. So defining the specific Nash strategy for player 7 in a given random game to be

a;, and indexing the second player by 7 we have:
(1) ui(ai = a; | a; = az) > ui(a; # a | a; = ay)
We can say immediately that:

Proposition 1. Player i, taken from the population of size (2, wishing to mazximize u;, must play
the unique Nash strategy when drawn to play in G, and therefore the outcome will be the unique

Nash equilibrium in G.

This is trivial given the definition of a Nash equilibrium. To say more we must first define an

evolutionary stable strategy:

Definition 2. Let x andy be two mized strategies from the set of mized strategies in G. Now let
u(x,y) define the utility associated with the play of strategy x given the play of strategy y by the
other player. The strategy x is said to be an evolutionary stable strategy (ESS) if ¥, 2, > 0 s.t.
when 0 < e < gy:

(2) u(z, (1—e)z+ey) >uly,(1—e)z+ey)
Now we can show that:
Proposition 2. The unique Nash strategy of G is an evolutionary stable strategy (ESS).

Proof. This proof is simply a restatement of the well-known result that local superiority implies
evolutionary stability. Firstly, G has a unique Nash strategy by definition. Call this strategy «;
for player i. Now we know that u (o | aj = a;) > u(ai | a; # as,a; = ;) so by the uniqueness
of o; we know that any mix of o; with a; # o; will reduce w (a;, a;) where w (a;, a;) is the payoff
to player 7 from action a; € A given player j plays a; € A. Therefore the Nash equilibrium of
G must be strict. By strictness we know that u (a;, a;) > u(8;, a;) where 8; # a;. This in turn

implies local superiority, so:
iig(l) {(1 - o) ulau, a;) +cu(as, 3;) } > ilg(l) {1 —e)u (B, cu) +cu (s, 3;)
By linearity of expected utility in probabilities this implies:
u (g, (1 — &) oy + eﬁj) >u (B, (1—¢)a; + eﬁj) fore — 0
Which is simply a restatement of the definition of an ESS given in definition 2. I

We have a simple notion of a population of players playing Nash against each other and per-
forming well in terms of their payoffs. We now consider the mutation of a proportion ~ of the
population into neural network players. By proposition 2 we know the remaining population will

continue to play Nash strategies, if we let v — 0. We can retain this property by letting ¢ — oo
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and setting v to be fixed at a number strictly above zero, but finite. In particular, we can con-
sider a single member of the population to be a neural network player, but let () — oo to bring
~ arbitrarily close to zero. We can now examine the actions of this single neural network player
content in the knowledge that all other players will continue to play Nash strategies. Therefore,
we can be assured that the neural network’s best reply to the population will be to play a Nash

strategy.

4. THE NEURAL NETWORK PLAYER

Let us start with an intuitive account of the single neural network player in G. Consider a
young economic agent with no prior experience of play in any game. This agent will, however,
have a base of experience derived from a prior period spent learning “how to play”. We might
imagine a student’s time at school or observation of how older members of the population play
certain games. This agent has a store of observed example games, none of which will necessarily
fit exactly with any game he will face in the future, but which might share certain similarities.
We capture this notion of learning by example prior to entry into the economy, or marketplace
of games, through the use of a neural network. We first “train” the agent by subjecting him to a
series of example games with given actions and payoffs, we require him to be a utility maximizer,
and then use a form of backpropagation to allow him to develop a form of pattern recognition
which will enable him to “learn by example”, and attempt to learn to play the Nash strategy
in order to maximize his payoff. The question we ask is: can we introduce the network to a
marketplace modelled by a sequence of random games filled with Nash players and expect the
network to learn to play Nash? The key point is that he will be most unlikely to ever play the
same game twice and will be most unlikely ever to have seen the identical game in his training
period, so will his pattern recognition abilities be suflicient for him to intuitively recognize the
Nash strategy in an entirely new game and play it? We are now switching out of the evolutionary
framework and focusing on the play of a single player rather than the behavior of the population

in general. We first need to add some formal definitions.

4.1. Defining the Network. Consider a neural network, or more simply C' to be a machine
capable of taking on a number of states, each representing some computable functions mapping
from input space to output space, with two hidden layers of further computation between input

and output.® The following definition formalizes this.

Definition 3. Define the neural network as C' = (Q, X, Y, ') where Q is a set of states, X C R"

is a set of inputs, Y is a set of outputs and F : Q X X +— Y is a parameterized function. For

3Hidden layers can be thought of as intermediate layers of computation between input and output. Since we see
the input go in, and the output come out, but do not directly see the activity of intermediate layers, they are in
some sense hidden.
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any w the function represented by state w is hy : X — Y given by hy, (x) = F (w, x) for an input
x € X. The set of functions computable by C is {h, : w € Q}, and this is denoted by Hc.

Put simply, when the network, C', is in state w it computes the function h, providing it is
computable. In order to reasonably produce answers which correspond to a notion of correctness
(in this case the unique Nash strategy in a 3 x 3 game), we need to train the network. First we

will consider the form of the network in practice, and start by defining an activation function.

Definition 4. An activation function for node ¢ of layer k in the neural network C is of the

logistic form

1
(3) al =
k. k-1
1—exp<—zjwijuij )

where ufj is the output of node j in layer k — 1 sent to node j in layer k, and w;; is the weight
attached to this by node i in layer k. The total activation flowing into node 1, Zj wfjuf;l, can

be simply defined as t;.

Consider a set of 18 input nodes each recording and producing as output a different value
from the vector x; = (x,lw e x}f). This neatly corresponds to the payoffs of a 3 X 3 game. Now
consider a second set of 36 nodes (the first hidden layer). Each node in this second layer receives
as an input the sum of the output of all 18 input nodes transformed by the activation function
of node i in layer 2. All of the nodes in the second layer send this output a? to all nodes in the

second hidden layer, which weights the inputs from all ¢ of the first hidden layer, by the activation
3

function to produce a;. These numbers are sent to the final layer of two nodes to produce an
output y which forms a 2-dimensional vector which represents the choice of strategy in a 3 x 3
game. To explain this representation of a strategy in a 3 x 3 game for the row player, the vector
(1,0) would imply the pure Nash strategy is the top row (0,1) would imply the middle row, and

(0,0) the bottom row.

4.2. Training the Network. Training essentially revolves around finding the set of weights that
is most likely to produce the desired output. During training C' receives a sequence of random
games until some stopping rule determines the end of the training at some round 7' (discussed
below). The training sample consists of M random games. If T > M, then (some or all of) the
random games in M will be presented more than once.

Let us formally define the training sample. The vector zy = (x,lw ...,x,lvs) consists of 18 real-
valued numbers drawn from a uniform (0,1) representing the payoffs of a 3 x 3 game. It is
recorded in the first set of input nodes, and then sent and transformed by the two hidden nodes
before an output y, a two-dimensional vector, is produced and represented in the final layer.
This is repeated M times with a new set of inputs zx and outputs yx. Assume that each vector

xy is chosen independently according to a fixed probability distribution Pp on the set X. The
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probability distribution is fixed for a given learning problem, but it is unknown to C, and for our
purposes will be taken to be a uniform (0,1). The information presented to C' during training

therefore consists only of several sequences of numbers.

Definition 5. For some positive integer m, the network is given a training sample:

M = ((gc%, ...,x%s) , (gc%, ...,x%g) e (ac}\/[, ,x}\f,)) = (21, T2y ..., Tpr) € xM

The labelled examples x; are drawn independently according to the probability distribution Pr. A
random training sample of length M is an element of XM distributed according to the product

probability distribution PM .

Assume that T > M. In this case, training might be sequential: after ¢ x M rounds (for any
positive integer g s.t. ¢ x M <T'), M is presented again, exactly in the same order of games. If
training is random with replacement, it is less restricted to the extent that the order in which the
random games are presented each time is itself random. If training is random without replacement,
in each round the network is assigned randomly one of the random games in M, until round 7.

Having selected a sample sequence of inputs, x, and determined the unique Nash strategy
associated with each, a, we need to consider how C' learns the relationship between the two, to
ensure that its output ¢y will approach the Nash strategy. The method used is backpropagation.

First let us define the error function.

Definition 6. Define the network’s root mean square error € as the root mean square difference
between the output y and the correct answer o over the full set of ¢ X M games where individual

games are indexed by i, so our error function is:

£= (Z (yi — Oéi)2>

N =

i=1
The aim is to minimize the error function by altering the set of weights w;; of the connections
between a typical node j (the sender) and node i (the receiver) in different layers. These weights
can be adjusted to raise or lower the importance attached to certain inputs in the activation
function of a particular node. Backpropagation is a form of numerical analysis akin to gradient
descent search in the space of possible weights. Following Rumelhart, Hinton, and Williams (1986)

we use a function of the form:

Oe
Ow;; = kino;

(4) Awgj = —n

where w;; is simply the weight of the connection between the sending node j and receiving node

i. As e is the neural network’s error, de/0w;; measures the sensitivity of the neural network’s
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error to the changes in the weight between 7 and j. There is also a learning rate given by
n € (0,1]: this is a parameter of the learning algorithm and must not be chosen to be too small
or learning will be particularly vulnerable to local error minima. Too high a value of 1 may also
be problematic as the network may not be able to settle on any stable configuration of weights.
Define de/0w;; = —kipojp where o0, is the degree of activation of the sender node 0j,. The higher
0jp is, the more the sending node is at fault for the erroneous output, so it is this node we wish
to correct more. k;, is the error on unit 2 for a given input pattern p, multiplied by the derivative
of the output node’s activation function given its input. Calling g;, the goal activation level of

node : for a given input pattern p, in the case of the output nodes k;, can be computed as:

(5) kip = (gip — 0ip) ' (tip) = (9ip — 0ip)oip(1 — 0ip)

since the first derivative f’(£;) of the receiving node ¢ in response to the input pattern p is equal
to 0;,(1 — 0;) for a logistic activation function. Now assume that a network has N layers, for
N > 2. As above, we call layer 1 the input layer, 2 the layer which layer 1 activates (the first
hidden layer), and so on, until layer N the output layer which layer N — 1 activates.

We can now define the backpropagation learning process.

Definition 7. Using backpropagation, we first compute the error of the output layer (layer N)
using equation 5, and update the weights of the connections between layer N and N — 1, using
equation 4. We then compute the error to be assigned to each node of layer N — 1 as a function
of the sum of the errors of the nodes of layer N that it activates. Calling ¢ the hidden node, p the

current pattern and 3 an index for each node of layer N (activated by i), we can use:
(6) kip = f'(tip) Y kopwps
8

to update the weights between layer N — 1 and N — 2, together with equation 4. We follow this
procedure backwards iteratively, one layer at a time, until we get to layer 1, the input layer.
A wvariation on standard backpropagation would involve replacing equation 4 with a momentum
function of the form:

et

(7) Awfj =-n +p wzt‘fl

ang
where i € [0,1) and t € NTT denotes the time index (an example game, vector x, is presented in

each t during training).

Momentum makes connection changes smoother by introducing positive autocorrelation in the
adjustment of connection weights in consecutive periods. The connection weights of the network
are updated using backpropagation until round I". T itself can be determined exogenously by the
researcher, or it can be determined endogenously by the training process, i.e. training may stop

when the network returns the correct output with ¢ lower than a given target value.



14 DANIEL J. ZIZZO AND DANIEL SGROI

5. INADEQUATE LEARNING

We have now a clear idea of what the neural network is and the game that the neural network
will face. The training set is simply a sequence of vector pairs (z,y) where the inputs z € X
correspond to the set of actions A; for N players in M random games, and the outputs to the
payoffs u; : A — R for N players for each of the actions. We set A = 2000, N = 2 and restrict
the action set by assuming a 3 X 3 normal form game. This restriction is done without loss of
generality: potentially any finite normal form could be modelled in a similar way, while 2 X 2,
2 x 3 and 3 x 2 games count as a subclass of 3 x 3.2 We then allow the network to play 2000
further random games never encountered before, selecting a single input and recording a single
output. Since we force each game to contain a unique Nash equilibrium in pure strategies and we
restrict the network’s choice to be in pure strategies, we can then check the network’s success rate
as defined by the proportion of times the network selected the Nash strategy to within a given
threshold of mean squared error (as defined in definition 6). For example if the correct output is
(1,0) and the neural network returns (0.99,0) it easily meets an £ = 0.05 threshold).

5.1. Incomplete Neural Network Learning. We now need to examine how well a neural
network can do in theory, and fortunately various results exist in the literature to which we
can refer. One of the most well-known results comes from Hornik, Stinchombe, and White (1989)
reprinted in White (1992). Hornik, Stinchombe, and White (1989) show that standard feedforward
networks with only a single hidden layer can approximate any continuous function uniformly on
any compact set and any measurable function arbitrarily well in the p,, metric, which they define

as follows (in slightly amended form):

Definition 8. (Hornik, Stinchombe, and White (1989)). Let R be the set of real numbers, and
B" the Borel o-field of R". Let K" be the set of all Borel measurable functions from R” to R.
Given a probability measure p on (R",B") define the metric p, from K" x K" to Rt by p, ([, 9)
=inf {e>0:p{z:] f(z) —g(x)|>c} <e}

The main result, summarized in theorem 2.4 in Hornik, Stinchombe, and White (1989), effec-
tively concerns the existence of a set of weights which allow the perfect emulation of the algorithm

that the neural network is attempting to learn. There are three potential areas for failure:

1. Inadequate learning, or a failure of the learning dynamic to reach the global error-minimizing

algorithm.

4While the neural network model was designed with 3 X 3 games in mind, since all payoff values are drawn from a
uniform [0, 1], it is straightforward to train the current network on 2 X 2 games, by putting zeros on all the values
in the third row and third column of each game. Similarly we could construct 2 X 3 and 3 X 2 games by placing
zeros in the appropriate row or column. The choice of a 3 X 3 is therefore much more general than the choice of
2 X 2, and can include several interesting and well-known 2 X 2 games.
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2. Inadequate network size, or insufficient hidden units.

3. The presence of a stochastic rather than a deterministic relation between input and target.

Problem 3 can be extended to include poly-random functions (which cannot be distinguished
from random functions by any polynomial approximation) but is still not a problem for the class
of normal form games (G. Problem 2 introduces a parallel mechanism for examining bounded-
rational behavior. Along similar lines to the automata literature, we might restrict the number of
hidden units in order to force bounded-rational behavior upon our player.® However, regardless of
any attempts to raise the network size to cover for any potential problems, we cannot reasonably
deal with problem 1: it is the problem of inadequate learning and the nature of the learning

algorithm which is the focus of the rest of this section.

5.2. Learning and Learnability. A learning algorithm takes random training samples and
acts on these to produce a hypothesis h € H that, provided the sample is large enough is with
probability at least 1 — 6, e-good (with e defined as above) for Pp. It can do this for each choice
of g, 6 and Pp. To define this more formally:

Definition 9. Suppose that H is a class of functions that map X — Y. A learning algorithm
L for H is a function L : UﬁleM — H from the set of all training samples to H, with the
following property: for any ¥pe(0,1y,5e(0,1)3 an integer Mo (¢, 6) s.t. if M > Mo (e, 6) then, for any
probability distribution Pr on Z =X XY, if z is a training sample of length M drawn randomly
according to the product distribution PM, then, with probability at least 1 — &, the hypothesis
L (z) output by L is such that erp (L(z)) < opt, (H) + €. More compactly, for M > My (z,9),
PM {er, (L (2)) < opty (H) +e} >1-36.

To restate in slightly different terms we can define a function L as a learning algorithm, if Ja
function g9 (M, 6) s.t. Vs p,, with probability at least 1 — 6 over z € ZM chosen according to
PM er, (L(2)) < opt, (H) + 0 (M, 6), and Ysc (0,1, €0 (M,8) — 0 as M — oco. This definition
stresses the role of g (M, 6) which we can usefully think of as an estimation error bound for the

algorithm L. A closely related definition is:
Definition 10. We say that H is learnable if 3 a learning algorithm for H.

The function h,, can be thought of as representing the entire processing of the neural network’s
multiple layers, taking an input vector x and producing a vector representation of a choice of
strategy. Over a large enough time period we would hope that €' will return a set of optimal
weights which will in turn produce the algorithm h,, which will select the Nash strategy if 3

a learning algorithm for selecting Nash equilibria (H in this case). Or alternatively if we wish

5 Abreu and Rubinstein (1988) or Neyman (1985) provide examples of finite automata used in this way. In particular,
the finite states of the automata proxy for the limited memories of bounded-rational players.
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to attain some below perfect success rate, we can do so using a finite training sample, and the
success rate will grow as the number of examples increases. This all crucially rests on the ability of
backpropagation to pick out the globally error-minimizing algorithm for finding Nash equilibria.®
This now allows us to tightly define the learning problem faced by C.

Definition 11. C, using the learning algorithm given by definilion 7 faces a training sample
of size M x q. The Nash problem is to find an algorithm as defined in definition 9 for which

g0 (M,8) — 0 as M — oo where the error function € is as defined in definition 6.

5.3. Finding the Global Minimum. Having established the problem we now need to ver-
ify that the algorithm which successfully collapses =g (M, 8) to zero is indeed learnable. While
backpropagation is undoubtedly one of the most popular search algorithms currently used to
train feedforward neural networks, it is a gradient descent algorithm and therefore this approach
leads only to a local minimum of the error function (see for example, Sontag and Sussmann
(1989). White (1992), p. 160, makes the point: “...Hoornik et al (1989) have demonstrated that
sufficiently complex multilayer feedforward networks are capable of arbitrarily accurate approx-
imations to arbitrary mappings... An unresolved issue is that of “learnability”, that is whether
there exist methods allowing the network weights corresponding to these approximations to be
learned from empirical observation of such mappings.” White (1992), chapter 9, theorem 3.1,
provides a theorem which summarizes the difficulties inherent in backpropagation: he proves that
backpropagation can get stuck at local minima or saddle points, can diverge, and cannot even
be guaranteed to get close to a global minimum. Generally, however, this is hardly surprising as
backpropagation, for all its biologically plausibility, is after all a gradient descent algorithm.

The problem is exacerbated in the case of our neural network C' as the space of possible
weights is so large. Auer, Herbster, and Warmuth (1996) have shown that the number of local
minima for this class of networks can be exponentially large in the number of network parameters.
Sontag (1995) gives upper bounds for the number of such local minima, but the upper bound
is unfortunately not tight enough to lessen the problem. In fact as the probability of finding
the absolute minimizing algorithm (the Nash algorithm) is likely to be exponentially small, the
learning problem faced by C' falls into a class of problems known in algorithm complexity theory
as N P-hard.

6. ALGORITHM COMPLEXITY AND INTRACTABILITY

To fully understand the concept of N P-hardness first requires a primer in algorithm complexity
theory. This section provides such a primer, and then moves on to give a proposition concerning

the intractability of the Nash problem given in definition 11.7

5The exact algorithm for calculating the unique pure Nash strategy in a 3 x 3 normal form game with a single pure
Nash equilibrium is given in the appendix.
“For even more detail see the classic Garey and Johnson (1979).
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6.1. A Formal Treatment. We will start with one of the most standard machine intelligences
in computer science, the deterministic (one-tape) Turing machine (or DTM). This is finite in the
set of states (say @), including one distinguished start state (go), and two halt states (gy and qn),
each corresponding to a “yes” or “no” answer to a decision-problem. The DTM will halt after it

comes to a decision, either gy or qy. We next need to consider a language.

Definition 12. For any finite set X2 of symbols, denote by X* the set of all finite strings of symbols
from X. If A is a subset of X%, we say that A is a language over the alphabet 3.

Call an abstract decision-problem IlI, with a set Dy of instances and a subset Yy C Dy of
yves-instances. The correspondence between decision-problems and languages is brought about
by encoding schemes used for specifying the problems instances whenever we intend to compute
them.

Definition 13. An encoding scheme e for a problem Il provides a way of describing each instance

of Il by an appropriate string of symbols over some fized alphabet .

Thus the problem II and the encoding scheme e for 11 partition >* into three classes of strings:
those that are not encodings of instances of IlI, those that are encodings of instances of Il for
which the answer is “no”, and those that encode instances of Il for which the answer is “yes”.

This third class of strings is the language we associate with II and e, setting:

. 2 is the alphabet used by ¢, and o is the
Alll,e) =o€ X" ) .
encoding under ¢ of an instance of I € Yy;
If a result holds for the language A [II, €], then it holds for the problem IT under the encoding
scheme e.
Returning to our DTM, we say that a DTM program or algorithm I, with input alphabet X
accepts o € ¥* if and only if L halts in state ¢y when applied to input 0. We say a language Aps

recognized by the program M is given by:
Ay ={o € ¥*: L accepts o}
Now we are ready to consider the first complexity class, P:
P ={A: there is a polynomial time DTM program L for which A = Ay}

This requires some explanation. Polynomial time programs run in polynomial time, that is
a program or algorithm of inputs of size n is bounded by a running time of O (nk) for some
finite constant k. This is clearly restrictive in the sense that exponential time would provide a
far more generous bound for large n and any given k, but in all other senses seems a generous
notion of time. Returning to the set P we will say that a decision-problem II belongs to P under
the encoding scheme e if A[Il,e] € P, that is if there is polynomial time DTM program M that

“solves” II (i.e. reaches a decision) under encoding scheme e. It is standard within mathematical
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complexity theory and computer science to omit further references to e¢ as there is a high level of
equivalence between most encoding schemes.

Now consider a non-deterministic Turing machine (NDTM). This differs from a DTM in one
major way. The DTM essentially follows a program L (or algorithm) in an attempt to find a
solution (decision) for the problem II. However, a NDTM can instead “guess” a solution, and
then follow a stage similar to the DTM’s program stage, by attempting to verify whether the guess
was correct. The NDTM program is defined in the same way starting with gy and continuing until
a halting stage is reached, but this time the aim is to verify (or refute) the guess rather than record
a solution. The NDTM is said to record an accepting computation if it ends with the outcome gy,
so the guess is verified. All the other notation from the DTM carries over, including the notion

of languages, and recognition. In a similar way we can therefore define the complexity class, N P:

NP = {A: there is a polynomial time NDTM program L for which Ay, = A}

It should be noted that P C NP since any deterministic algorithm L could be used as the
checking algorithm in a non-deterministic computation. So II € P = Il € NP. The relationship
in the other direction is somewhat more complex. It is widely believed that P # NP, so NP is a
larger set than P, but this has yet to be proven. The rationale behind what is a standard belief in
computer science and mathematical complexity theory comes about because of the existence of a
number of problems belonging to the theorized set NP — P. Consider the abstract problem II1*,
which cannot be solved by a DTM in polynomial time, so I1* ¢ P, and consider such a problem
to be solvable in polynomial time by a NDTM, so [I* € NP. Furthermore, let us strengthen this
by defining II* to be the hardest possible problem solvable in polynomial time by a NDTM, but
not solvable by a DTM. Hardness in this sense has a very simple meaning: every other problem
in NP can be polynomially reduced to I1*. Therefore, if [1* could be solved by a DTM then so
could every other problem in NP and NP would collapse to P. In this way we could consider
the set containing I1* to be the set of the hardest problems in /NP, so hard that if solvable by a
DTM in polynomial time we could say without hesitation that NP = P; we call this set the set of
N P-complete problems. We have one member of N P-complete, but there is no reason to believe
there would only be one such hard problem; it might be that there exist many problems which
have the property that their solution by a DTM would collapse the NP set. As it happens there
are literally dozens of such problems, and Garey and Johnson (1979) list numerous examples.
Although a major research effort exists in computer science to attempt to solve these polynomial-
equivalent problems, none have ever been solved by a DTM in polynomial time, which is why
the concept of N P-completeness is such a strong one within complexity theory. The last concept
we need is that of NP-hardness. We say something is N P-hard if it is equivalent in hardness

to a member of the set of N P-complete problems. So it is a member, or rewritten version of a
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member, of the set of N P-complete problems. Perhaps a simpler way of saying this is that the

problem is essentially intractable.

6.2. NP-hardness. Finally we now have the tools we need to deal with the learnability of the
problem faced by C. Theorem 25.5 from Anthony and Bartlett (1999) succinctly states the
following (in a slightly amended form):

Theorem 1. (Anthony and Bartlett, 1999). The problem given in definition 11 faced by the class

of networks encompassing C' is N P-hard.

Anthony and Bartlett (1999) chapters 23 to 25, provides various forms of this theorem for
different types of network including the feedforward class of which C' is a member. The following

proposition is simply a restatement of theorem 1 with reference to the particular problem faced

by C.

Proposition 3. C supplemented by the backpropagation learning dynamic will not be able to learn

the Nash algorithm in polynomial time.

Proof. Backpropagation as a form of gradient descent is a DTM-algorithm. Therefore if the
problem to be faced is N P-hard, by the definition of N P-hardness any DTM will therefore
fail to find the minimizing algorithm L in polynomial time. A direct application of theorem 1

demonstrates that the problem is in fact N P-hard and we have our proof. i

Gradient descent algorithms attempt to search for the minimum of an error function, and
backpropagation is no exception. However, given the prevalence of local minima, a DTM cannot
consistently solve the problem in definition 9 and find an absolute minimum. The basins of attrac-
tion surrounding a local minimum are simply too strong for a simple gradient descent algorithm
to escape, so looking back to definition 9 we cannot expect e (M,8) — 0 as M — oo, and in
turn we cannot consider the task facing the network to be learnable in the sense of definition 10.8
However, if we were to supplement the algorithm with a guessing stage, i.e. add something akin
to grid search or one of several theorized additions or alternatives to backpropagation, then we

might expect to find the absolute minimum in polynomial time.? To restate this in terms of the

8This is intuitively seen to be reasonable with reference to two results. Fukumizu and Amari (2000) shows that
local minima will always exist in problems of this type, and Auer, Herbster, and Warmuth (1996) show that the
number of local minima for this class of networks is exponentially large in the number of network parameters. In
terms of the theory of NP-completeness, we might say the solution could be found in exponential time, but not
in polynomial time. For any network with a non-trivial number of parameters, such as C, the difference is great
enough for the term intractable to be applied to such problems.

White (1992), chapter 10, discusses a possible method which can provide learnability, using an application of
the theory of sieves. However, White (1992), p. 161, stresses: “The learning methods treated here are extremely
computationally demanding. Thus, they lay no claim to biological or cognitive plausibility.” The method is therefore
useful for computing environments and practical applications, rather than the modelling of decision-making. In
other words his method is an application of an NDTM method not a DTM method.
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search for an algorithm capable of providing Nash equilibria in never before seen games, back-
propagation cannot do this perfectly, while other far less biologically plausible methods involving
processor hungry guess and verify techniques, can produce consistent results.

So our player will find a decision-making algorithm that will retain some error even at the limit,
or to put this an alternative way, we may have to be content with an algorithm which is effective
in only a subclass of games, so it optimizes network parameters only in a small subspace of the
total space of parameters. In the case of normal form games we can summarize this section as:
our player will almost surely not learn the globally error-minimizing algorithm for selecting Nash
equilibria in normal form games. However, we can reasonably assume that some method will be
learned, and this should at least minimize error in some subset of games corresponding to the

domain of some local error-minimizing algorithm.

6.3. Local Error-Minimizing Algorithms. Given that backpropagation will find a local min-
imum, but will not readily find an absolute minimizing algorithm in polynomial time, we are left
with the question, what is the best our neural network player can hope to achieve? If we believe
the neural network with a large, but finite training set nicely models bounded-rational economic
agents, but cannot flawlessly select Nash strategies with no prior experience of the exact game
to be considered, this question becomes: what is the best a bounded-rational agent can hope to
achieve when faced with a population of fully rational agents?

In terms of players in a game, we have what looks like bounded-rational learning or satisficing
behavior: the player will learn until satisfied that he will choose a Nash equilibrium strategy
sufficiently many times to ensure a high payoff. We label the outcome of this bounded-rational
learning as a local error-minimizing algorithm (LMA).10

More formally, consider the learning algorithm L, and the ‘gap’ between perfect and actual
learning, o (M, 6). Recall that ZM defines the space of possible games as perceived by the neural

network.

Definition 14. If 3 a function o (M,6) s.t. Yars.p,, with probability at least 1 — 6 over all
z € ZM chosen according to PM, er, (L (2)) < opt, (H) 4 g0 (M, 6), and Ysc(0.1), 0 (M,5) — 0
as M — oo then this function is defined the global error-minimizing algorithm (GMA).

This simply states that for all possible games faced by the network, after sufficient training,
the function will get arbitrarily close to the Nash algorithm given in the appendix, collapsing the
difference to zero. This clearly requires an algorithm sufficiently close to Nash to pick a Nash

equilibrium strategy in almost all games.

Definition 15. A local error-minimizing algorithm (LMA) will select the same outcome as a

global error-minimizing algorithm for some z € ZM, but will fail to do so for all z € ZM.

19For more on this see Sgroi (2000).
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LMAs can be interpreted as examples of rules of thumb that a bounded-rational agent is likely
to employ (for example, Simon (1955) and Simon (1959)). They differ from traditionally conceived
rules of thumb in two ways. First, they do select the best choice in some subset of games likely to
be faced by the learner. Second, they are learned endogenously by the learner in an attempt to
maximize the probability of selecting the best outcome. The ‘best’ outcome can be determined

in terms of utility maximization or a reference point, such as the Nash equilibrium.
Part II: Analysis of Neural Network Learning

The network is unlikely to learn to play Nash at 100% success rate facing new games: it is facing
too complex (NP-hard) problem for it to be able to do so using backpropagation. What is then
the trained network actually learning to do? This is not a question that can be addressed analyt-
ically: however, computer simulations may help, together with simple statistical and econometric
techniques to analyze the results of the simulations.

We first focus on the performance of the Nash algorithm and the robustness of the results
to different parameter combinations: the results validate the unlearnability result in Part 1, but
they also show that the trained network has learnt something. In the following section we deepen
the analysis by analyzing the performance of different decision algorithms. We then develop an
econometric technique based on a regression analysis on the network error  to investigate what
game features characterize the LMA adopted by the network. Later we modify this econometric
technique to see how the trained network fares on games with zero and multiple pure Nash
equilibria (PNE).

6.4. Learning to Play Nash. The training set consisted of M = 2000 games with unique PNE.
Training was random with replacement, and continued until the error £ converged below 0.1, 0.05
and 0.02, i.e. three convergence levels ~ were used: more than one convergence level was used
for the sake of performance comparison. Convergence was checked every 100 games, a number
large enough to minimize the chance of a too early end of the training: clearly, even an untrained
or poorly trained network will get an occasional game right, purely by chance. The computer
determined initial connection weights and order of presentation of the games according to some
'random seed’ given at the start of the training. To check the robustness of the analysis, C'
was trained 360 times, that is once for every combination of 3 learning rates n (0.1, 0.3, 0.5), 4
momentum rates £ (0, 0.3, 0.6 and 0.9) and 30 (randomly generated) random seeds. Convergence
was always obtained, at least at the 0.1 level, except for a very high momentum rate.'! We will
henceforth call the simulated network C* once trained to a given convergence level.

C* was tested on a set of 2000 games with unique Nash equilibria never encountered before. We

considered an output value to be correct when it is within some range from the exact correct value.

UDetails on convergence can be found in Zizzo (2000c).
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If both outputs are within the admissible range, then the answer can be considered correct (e.g.,

Reilly (1995)). The ranges considered were 0.05, 0.25 and 0.5, in decreasing order of precision.
[insert table 1 here]

Table 1 displays the average performance of C™* classified by ~, n and pu. It shows that C*
trained until v = 0.1 played exactly (i.e., within the 0.05 range) the Nash equilibria of 60.03%
of the testing set games, e.g. of 2000 3 x 3 games never encountered before. This fits well with
the 59.6% average success rate of human subjects newly facing 3 x 3 games in Stahl and Wilson’s
(1994) experiment, although one has to acknowledge that the sample of games they used was far
from random. With an error tolerance of 0.25 and 0.5, the correct answers increased to 73.47 and
80%, respectively.

Further training improves its performance on exactness - the 0.02-converged C'* plays exactly
the Nash equilibria of a mean 66.66% of the games - but not on “rough correctness” (the 20%
result appears robust). This suggests (and indeed further training of the network confirms) that
there is an upper bound on the performance of the network.

Table 1 also shows that, once C' converges, the degree it makes optimal choices is not affected
by the combination of parameters used: the average variability in performance across different
learning rates is always less than 1%, and less than 2% across different momentum rates. This is
an important sign of robustness of the analysis.

We compared C'*’s performance with three null hypotheses of zero rationality. Nulll is the
performance of the entirely untrained C': it checks whether any substantial bias towards finding
the right solution was hardwired in the network. Null2 alternates among the three pure strategies:
if C*’s performance is comparable to Null2, it means all it has learnt is to be decisive on its choice
among the three. Null3 entails a uniformly distributed random choice between 0 and 1 for each
output: as such, it is a proxy for zero rationality. Table 2 compares the average performance of
C* with that of the three nulls. Formal t tests for the equality of means between the values of C*
and of each of the nulls (including Null2) are always significant (P<0.0005). C*’s partial learning
success is underscored by the fact, apparent from Tables 1 and 2, that when C* correctly activates
an output node it is very likely to categorize the other one correctly, while this is not the case for
the nulls.

[insert table 2 here]

So it appears that C* has learnt to generalize from the examples and to play Nash strategies
at a success rate that is significantly above chance. Since it is also significantly below 100%, the

next question we must address is how to characterize the LMA achieved by the trained network.
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7. ALTERNATIVES TO NASH

Our first strategy in trying to characterize the LMA employed by the trained network is to ask
ourselves whether there are simple alternatives to Nash capable of describing what the network
does better than Nash, on the games over which they are uniquely defined. Given the robustness
of our analysis in the previous section to different combinations of 1 and g, in this and the next
sections we just focus on the case with n = 0.5 and p = 0.'2 Hence, for testing we used the
30 networks trained with the 30 different random seeds but with the same learning (0.5) and
momentum (0) rates. Using these 30 networks, we tested the average performance of the various
algorithms on the same testing set of 2000 new games with unique PNE considered in the previous
section.

We consider the following algorithms in turn:

Minmax

Rationalizability

‘0-level strict dominance’ (0SD)

‘1-level strict dominance’ (1SD)

‘pure sum of payoff dominance’ (PSPD)
‘maximum payoff dominance’ (MPD)
‘nearest neighbor’ (NNG)

A .

7.1. Minmax. Minmax is often considered a form of reservation utility, and can be defined as:

Definition 16. Consider the game G and the trained neural network player C*. Index the neural
network by ¢ and the other player by j. The neural network’s minmax value (or reservation utility)
is defined as:

Ty = rrl%n [H}%X w; (aj, aj)]

The payoff r; is literally the lowest payoff player j can hold the network to by any choice of
a € A, provided that the network correctly foresees a; and plays a best response to it. Minmax
therefore requires a particular brand of pessimism to have been developed during the network’s
training on Nash equilibria. An algorithm which looks for the minmax payoff is of course a
local error-minimizing algorithm in the sense of definition 2 when the subclass of games faced is

zero-sum, or by a minor reworking of utility, constant sum.

12The robustness of the results with different parameter combinations ensures that this particular choice is not
really relevant. In any event, it was driven by two considerations: 1. any momentum greater than 0 has hardly any
real psychological justification, at least in this context; 2. given pu = 0, a learning rate of 0.5 had systematically
produced the quickest convergence.
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7.2. Rationalizability and Related Concepts. Rationalizability is widely considered a weaker
solution concept compared to Nash equilibrium, in the sense that every Nash equilibrium is ratio-
nalizable, though every rationalizable equilibrium need not be a Nash equilibrium. Rationalizable
sets and the set which survives the iterated deletion of strictly dominated strategies are equivalent
in two player games: call this set S}' for player : after n stages of deletion. To give a simple intu-
itive definition, S;" is the set of player :’s strategies that are not strictly dominated when players
j # i are constrained to play strategies in S;“l. So the network will delete strictly dominated
strategies and will assume other players will do the same, and this may reduce the available set of
strategies to be less than the total set of actions for ¢,resulting in a subset S C A;. Since we are
dealing with only three possible strategies in our game (7, the subset can be adequately described
as S? C A; with player j restricted to Sj1 C A,

The algorithm 0SD checks whether all payoffs for the neural network (the row player) from
playing an action are strictly higher than those of the other players, so no restriction is applied
to the action of player j # i, and player i’s actions are chosen from SY C A;. 1SD allows a single
level of iteration in the deletion of strictly dominated strategies: the row player thinks that the
column player follows 0SD, so chooses from S;-) C A;, and player #’s action set is restricted to
Sil C A;. Both of these algorithms can be viewed as weakened, less computationally demanding
versions of iterated deletion. In this terminology 2SD would be full rationalizability or the full

iterated deletion of strictly dominated strategies as defined above.!?

7.3. Payoff Dominance. PSPD and MPD are different ways of formalizing the idea that the
agent might try to go for the largest payoffs, independently of strategic considerations.

In the case of PSPD, an action a; = apgpp is chosen by the row player according to:

apspp = arg rax {ai | a; = A}
Where A; is defined as a perfect mix over all available strategies in A;. Put simply, apgpp is
the strategy which picks a row by calculating the payoff from each row, based on the assumption
that player ;3 will randomly select each column with probability %, and then chooses the row with
the highest payoff calculated in this way.

MPD is even more lowly in its required level of rationality. If following this algorithm, C*
simply learns to spot the highest conceivable payoff for itself, and picks the corresponding row,
hoping the other player will pick the corresponding column.

Both PSPD and MPD are strategically unsophisticated as candidate LMAs. What they catch
is the basic idea of ‘going for the highest pot of money’.

7.4. Nearest Neighbor. The NNG is an algorithm that draws its roots from cognitive science.

As we discussed in section 2, neural networks are considered models of the categorization process,

13Tt requires two levels of reasoning in the sense of Nagel (1995).
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of how decision-makers classify input in order to produce the correct output. We also mentioned
that one possible way in which networks may do this, when the sample is small enough, is
by behaving like an exemplar-based model of categorization: that is, they may assimilate the
instance to the nearest instance (example) encountered in the past, and solve the decision problem
accordingly.

The best way to formalize this approach is not in terms of expected utility theory, but rather in
terms of an alternative paradigm which emphasizes the role of past experiences in decision-making.
Gilboa and Schmeidler (1995) provide such a paradigm in the form of case based decision theory.
Altering the terminology to better match that used in this paper, Gilboa and Schmeidler (1995)
consider G¥ and A to be finite, nonempty sets, of games and strategies (or actions) respectively,
with all acts available at all problems p € G¥. X is a set of realized outcomes. ¢ is included
within X as the result “this act was not chosen”. The set of cases is C' = G x A x X, which lists
all conceivable combinations of games, strategies and realized outcomes. When a player considers
a current game, that player does so in terms of the game itself, possible strategies, and realized
outcomes which spring from particular choices of strategy. Importantly, the player is not asked
to consider hypothetical outcomes from untried stratagies, rather the player considers only past
experiences of realized outcomes. To make this concrete, given a subset of cases Cy C C, denote

its projection P by H. So,
H=H(C)={q¢ GP | 3a € A,z € X, such that (g,a,z) € Cs}

Where H denotes the history of games, and Cy C C' denotes the subset of cases recorded as
memory by the player, such that (i) for every ¢ € H (Cs) and a € A,3 a unique x = z¢, (¢, a)
such that (g, a,x) € Cs, and (ii) for every ¢ € H (Cs),3 a unique a € A for which z¢, (¢,a) # xo.
Memory is therefore a function that assigns results to pairs of the form (game, strategy). For
every memory Cs, and every ¢ € H = H (Cs), there is one strategy that was actually chosen at ¢
with an outcome x # zg, and all other potential strategies are assigned the outcome xg. So, our
agent has a memory of various games, and potential strategies, where one particular strategy was
chosen. This produced a result x # g, with other stratagies having never been tried, so given
the generic result xg.

When faced with a problem, our agent will examine her memory, Cs, for some similar problems
encountered in history, H, and assign these past problems a value according to a similarity
function s (p, ¢). These past problems each have a remembered action with a given result, which
can be aggregated according to the summation Z(q,a,m)ECs s (p,q) u(x), where u (z) evaluates the
utility arising from the realized outcome x. Decision making is simply a process of examining
past cases, assigning similarity values, summing, and then computing the act a to maximize
U @) = Une, (a) = S gummyecs, s (- 0) 0 (@).

Under this framework, the NNG algorithm examines each new game from G¥, and attempts to

find the specific game p from the training set (which proxies for memory) with the highest valued
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similarity function. In this paper, similarity is computed by summing the square differences
between each payoff value of the new game and each corresponding payoff value of each game
of the training set. This sum of squares is a measure of dissimilarity between the new game
and each game in the training set; if, in the limit, there were two identical games (which is
never the case), the value would be exactly equal to 0. The game with the lowest dissimilarity
index is defined as the nearest neighbor. The NNG algorithm looks for the game with the lowest
dissimilarity index and chooses the unique pure NE corresponding to the nearest neighbor. This is
somewhat different from the case based decision theory optimization which involves a summation
over all similar problems, but serves as a first approximation, and could be further generalized to

incorporate a more complex similarity function.

7.5. Existence. Since, by construction, all games in the training set have a unique pure NE, we
are virtually guaranteed to find a NNG solution for all games in the testing set.!* Clearly, a unique
solution, or indeed any solution, may not exist with other algorithms, such as rationalizability,
0SD and 1SD. A unique solution may occasionally not exist with other algorithms, such as MPD,
because of their reliance on strict relationships between payoff values.

We define a game as answerable by an algorithm if a unique solution exists. Table 3 lists
the number and percentage of non answerable games (out of 2000) according to each algorithm,

averaged out across the 30 neural networks trained with different random seeds, n = 0.5 and

w=0.

[insert table 3 here]

7.6. Algorithm Performance. Table 4 describes how well the various algorithms fare on the

testing set.
[insert table 4 here]

Algorithms are classified into two groups, according to their performance. MPD, PSPD, Min-
max and, most interestingly, NNG fare worse than Nash on the data. We should not be surprised
by the fact that the NNG still gets about half of the games right according to the 0.02 convergence
level criterion: it is quite likely that similar games will often have the same Nash equilibrium. The
failure of the NNG algorithm relative to Nash suggests that - at least with a training set as large
as the one used in the simulations (M = 2000) - the network does not reason simply working on
the basis of past examples. One must recognize, though, two limitations to this result. Firstly,

partial nearest neighbor effects cannot be excluded in principle on the basis of table 4. Secondly,

14The only potential (but unlikely) exception is if the nearest neighbor is not unique, because of two (or more)
games having exactly the same dissimilarity index. The exception never held with our game samples.
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perhaps C* does not simply rely on the nearest neighboring game; perhaps it relies on a weighted
average of most similar games, although placing the most weight on the nearest game: this more
sophisticated version of exemplar-based categorization would not be fully captured by the NNG.

Rationalizability, 0SD and 1SD outperform Nash for the games they can solve in a unique
way. 0SD, 1SD and rationalizability predict C*’s behavior in 80.98%, 76.25% and 74.36% of their
answerable games, respectively: this is 8-14% above Nash, and even more striking considering that
these algorithms were not taught to the network. It does appear as if C™* were able to do some
strategic thinking (it still gets about three quarters of the rationalizable games exactly right), but
the more the level of iterations (one relative to zero, full rationalizability relative to one) the more
difficult it is for the network to do this properly.

C"*’s behavior is best describable by algorithms based on iterated deletion of strictly dominated
strategies. However, it is not equally clear that these alternatives to Nash fully describe the
network’s LMA. This is true not only because the network still fails to apply these methods
perfectly, but also and more importantly because the network can still play reasonably well in
games that are non answerable according to the alternatives: this explains why, if one considers
the overall set of 2000 games rather than just the answerable games, Nash is still the single
best predictor. An objection to this result is that the right half of Table 3 is biased against the
comparative success of the algorithms vs. Nash: it does not consider the fact that C* might be
playing randomly on the non answerable games and, in so doing, it would still get an average 1/3
of these games correct by chance. However, even if we augment rationalizability, 0SD and 15D
with random play on their non answerable games, and so we credit 1/3 of their non answerable
games as correct, it is still the case that Nash outperforms. Augmented rationalizability gets
closest, with 57.68% of the 2000 games correct (with v = 0.02): this is still 9 points below Nash
(see Table 4).

We might conjecture that the successful alternatives to Nash are successful because they char-
acterize game features that are also considered by the LMA achieved by C*, but, also, that the
LMA achieved by C* does not simply coincide with these successful alternatives. We now need

to make this conjecture more precise.

8. GAME FEATURES

A second strategy that we may use to gather information about the network’s LMA is to
analyze the game features that it has learnt to detect. If the LMA uses certain game features
that it exploits to perform well on the game-solving task, then C* will perform better on games
that have those game features to a high degree. This means that the network error £ will be less
for games having these features. We can use this intuition to develop an econometric technique
allowing us to get information on the game features detected by C* to address the task, and,

hence, on what C* has actually learnt. The econometric technique simply consists in running
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tobit regressions of game features on ¢; tobit regressions need to be used because the distribution
is truncated at 0, the lowest possible «.

In a prototype-based view of categorization, we could say that games in which those features
were to be present to a high degree would be prototypical games, i.e. games that the network 2
would be able to classify (perfectly or almost perfectly) as best examples of games associated with
playing an action from A;. In an exemplar-based view of categorization, if the network were to
be sensitive to the specific examples encountered in the training set, and if the Nash equilibrium
were also the nearest neighbor, we would expect that the network would perform significantly
better in these games than otherwise. This would be true regardless of whether weight is given
only to the nearest neighbor game in the exemplar-based algorithm, as we would expect the most
weight to be given to the nearest neighbor (neighbor 1) relative to neighbor 2,3, ..., n.

In our case, we can use the average « of the thirty neural networks trained with n = 0.5 and
p = 0, and achieving a convergence level v = 0.02, as the dependent variable. 30 observations
presented 0 values, implying a perfect performance by the neural network whatever the random
seed.

The game features that were used are listed in figure 3 together with the results; they can be
classified in three groups:

1. Algorithm related features. These are dummy variables equal to 1 when the feature is present,
and to 0 otherwise. MPD and Minmax Existence look at whether a unique MPD or Minmax
solution exists for the game; the “Same As” variables look at whether the algorithm (e.g., PSPD)
has the same prediction as the Nash strategy for the game. Existence variables are not defined
for algorithms that always exist (e.g., NNG). In the case of the strict dominance algorithms, we
chose instead to use three dummy variables for the cases in which zero and exactly zero, one and
exactly one, two and exactly two iteration levels are required to achieve a unique solution: these
dummies are represented by “Strict Dominance: Level 0 Sufficient”, “Strict Dominance: Need for
Level 1”7 and “Strict Dominance: Need for Level 2”7, respectively. NE Action 1 and 2 are simply
dummies equal to 1 when the Nash strategy is actually 1 (Top) or 2 (Middle), respectively.

2. Payoff and Temptation variables. These variables relate to the size of the Nash equilibrium
payoff for the network and the other player, and to the size of deviating from this equilibrium.
Own Generic Temptation is a crude average of the payoff from deviating from Nash, assuming
that the other player plays randomly. Max and Min Own Temptation are the maximum and
minimum payoff, respectively, from deviating from Nash, taking the behavior of the other player
as given. Clearly, while the Generic Temptation variable assumes no strategic understanding, the
Max and Min Own Temptation variables do assume some understanding of where the equilibrium
of the game lies. Ratio variables reflect the ratio between own and other’s payoff in the Nash
equilibrium, minus 1: if the result is positive, then the Positive NE Ratio takes on this value,
while the Negative NE Ratio takes a value of 0; if the ratio is negative, then the Positive NE
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Ratio takes a value of 0, while the Negative NE Ratio takes on the negative value, in absolute
terms.

3. General game features. These variables are mostly based on the moments of the game
payoff distribution. We consider the mean, standard deviation, skewness and kurtosis of the
game payoffs for each game; we also consider the difference between their values observed for each
game and their average value across the 2000 games. The Game Harmony Index is presented in
the appendix, and discussed in Zizzo (2000a). It is a measure of how harmonious or disharmonious
the players’ interests are in the game: it is equal to 0 if the game is perfectly harmonious, such as
in the case of a pure coordination game; it take greater values the greater the conflict of interests.
The index is derived from the Gini coeflicient of income distribution and is bounded between 0
and 1.

[insert table 5 here]

Table 5 presents the results of three tobit regression models: likelihood-ratio tests accept the
reduction to the simplest model, Model 3.

The results yield a wealth of information on what the network is actually doing:

1. Go for high numbers, especially if they are yours. The network gives better answers when
the NE is associated with a high payoff - particularly for itself. The Same As MPD, the Same
As PSPD and the Strict Dominance variables all work in the same direction. The coefficients on
these variables are relatively small, though: this suggests that, although the network’s behavior
can be best described by the strict dominance algorithms (relative to the others) in the context
of games with a unique PNE, the network may actually be picking game features associated with
strict dominance, rather than simply following strict dominance as a rule of thumb.

2. Feel and fear trembling hands. The greater the temptation, the greater the chance of
deviating from the right answer. The fear of the other player’s temptation may be related to an
expectation of potential trembles by the other player, trembles that might be assumed greater
the greater the temptation. Again, more weight is given to one’s own temptation than to the
other player’s, but the network does appear to give some strategic weight to the temptation of the
other. More weight is also given to deviations from Nash playing taking the action of the other
player as given, another sign of some strategic reasoning in feeling or fearing the temptation of
random trembles.

3. The greater the strategic complexity, the greater the difficulty. The coefficients on one’s own
temptation from deviating from Nash taking the action of the other player as given is higher than
the coeflicient on the other’s temptation taking one’s own action as given; however, the coefficient
on the other’s generic temptation is higher than that on one’s own generic temptation. The own
Nash deviation temptation requires just a model of the other player’s as taking one’s own action as

given; whereas a consideration of the other player’s Nash deviation temptation requires one more
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level of strategic understanding (in the sense of Nagel (1995)), namely a model of the other player
having a model of oneself as taking the other player’s action as given. Faced with a more difficult
task, the neural network puts more weight on the other player’s generic temptation. There are
two other signs that, the greater the strategic complexity, the greater the difficulty for the neural
network. One is that the network puts more weight on one’s own than on the other’s payoff;
the other is that the coefficient on Strict Dominance: Need for Level 0 is significantly higher (in
absolute terms) than the one on Need for Level 1, which is higher (again, in absolute terms),
albeit insignificantly so, than the one on Need for Level 2.

4. High stakes provide ‘motivation’ to the agent. C* finds difficult to process payoff values
distant from the mean payoff value (of 0.50154), but finds still more difficult to process games
for low stakes (because of the negatively signed Game Harmony x Mean term; the negative
Skewness term is also indicative). This is an interesting and plausible prediction: in any laboratory
experiment setting subjects have to be motivated enough by the stakes at play; similarly, C”* makes
smaller mistakes when the stakes are higher, as if ‘motivation’ were required.

5. Keeping game harmony constant, an increase in payoff variance induces less correct answers.
Insofar as it is not correlated to greater game disharmony, a greater standard deviation is likely
to proxy an increase in the variance in one’s own, or the other player’s, possible payoffs. The
prediction here is that the agent may be less keen playing the Nash strategy than he otherwise
would be, if there is an increase in the variance in one’s own possible payoffs.

6. When the game is for high enough stakes, higher game disharmony induces more correct
answers. An increase in the Game Harmony Index (GI) implies greater game disharmony. In
Model 3, this feeds into the error ¢ through two channels: one, positively signed, is the Standard
Deviation, because an increase in GI is also likely to increase SD (Pearson r = 0.526); the other,
negatively signed, is the GI Index x Mean term. The two effects operate in opposite directions
and, also, the second channel will be stronger the higher the mean. In order to analyze which
effect is likely to dominate, we ran an OLS regression of SD on GI; the coefficient on GI is 0.19
(S.E.=0.007), and used this as a proxy for (ASD)/(AGI). We analyzed how, for various mean
levels, GI increases between 0.05 and 0.5 affect e; figure 2 plots the results for AGI=0.1, 0.3 and
0.5. The results are ambiguous for low mean payoff values, but as soon as the game has stakes
high enough the GI Index x Mean effect dominates and produces substantial decreases in . This
effect of game disharmony in improving the likelihood of Nash strategy play is an interesting
prediction for experimental settings. In thinking about situations in which rational agents find
difficult to decide, economists often think at games with high or perfect game harmony (e.g. the

Prisoner’s Coordination Game of Sugden (1993)).

[insert figure 2 here]
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7. Nearest-neighbor effects exist but are limited. The coefficient on Same As Nearest Neighbor
is significant and with the expected sign, but the effect is not large. While more sensitive to
examples than a pure prototype model would be, C* follows more a prototype-based approach to
the categorization of the new games it encounters.

8. Other processing features. Kurtosis has a small but significant positive effect on . The
network also has a slightly higher error with actions 1 and 2, quite possibly because of its greater

familiarity in producing zeros than ones as outputs.

In conclusion, C* appears to have found ways to get around the problem of attempting to find
a Nash strategy in never before seen games. They rely on a plausible mix of payoff dominance and
potential trembles, and on some strategic awareness that decreases in the strategic complexity
required. While not being taught to the network, they are games features that correspond to
emergent behavioral heuristics characterizing the LMA endogenously chosen by the bounded-

rational agent.

9. MULTIPLE EQUILIBRIA

In this section we still consider the network trained purely on games with unique PNE, but ask
ourselves what its behavior will be when faced not just with new games, but with a new class of
games, namely games with multiple PNE.

If C* has learned to categorize games according to some game features, we would expect the
network to apply a similar set of tools as much as possible, when faced with games with multiple
equilibria. This, of course, may be impossible if C*’s LMA were inapplicable to this context. For
example, if C' just followed iterated deletion of strictly dominated strategies, our best describing
algorithm for the single PNE case, then the network should be unable to choose among the
plurality of PNE, as these all correspond to rationalizable solutions. On the basis of section 8,
however, we hypothesize that this will not be the case, even if the network has never faced games

with multiple PNE in the training stage.

9.1. Focal Points. A second, stronger hypothesis is that the network will be displaying focal
points: we interpret this in the present context as meaning that different networks should tend to
converge to the same PNE in games with multiple PNE. Why this should be the case is different
according to whether we view networks as working mainly as an exemplar or as a prototype-
based model of categorization. In an exemplar-based perspective, different networks, trained
under different random seeds but with the same training set and parameters, will tend to choose
the action corresponding to the solution of the nearest neighbor to the game with multiple PNE:
hence, there will be a focal solution. However, one might wonder whether the differences in
random seeds are really so important, particularly given the fact that training is random but with

replacement: perhaps, we are dealing with basically the same neural networks in each case, and
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so the finding of focal points may be considered uninteresting as a model of what might be focal
in the real world. We shall talk in this case about focal points “in a weak sense”, or w-focal points.

If the neural network works mainly as a prototype-based model of categorization, we would
expect focal points even if the network has been trained with different training sets, as long as
they are drawn from the same distribution. This is because the latter condition is sufficient to
ensure that the different neural networks will extract about the same game features. We shall
talk in this case about focal points “in a strong sense”, or s-focal points.

We considered two sets of neural networks. The first set of thirty networks (Set 1) is the
standard group considered in the previous sections, trained with the same training set, n = 0.5,
p = 0, but with different random seeds. The second set of thirty networks (Set 2) was trained
again with n» = 0.5 and g = 0, but varying not only the random seed but also the training
set in each case; in addition, training was random without replacement. Thirty training sets of
M = 2000 games each drawn from a uniform distribution [0,1] were used.

On the basis of the results from our previous sections, we hypothesize that the network works
mainly as a prototype-based model of categorization, and that, therefore, it will display not only
w-focal points but also s-focal points. Since it retains some (intuitively plausible) sensitivity to
examples, however, we might expect the percentage of neural networks converging to w-focal
points to be slightly higher than the one converging to s-focal points.

The testing set was made of 2000 games again, namely 100 games with three PNE and 1900
games with two PNE. Let us call a choice “decided” if both outputs are within 0.25 of a pure
strategy value. Let us then consider the number of decided choices (between 0 and 30) corre-
sponding to each action (1,2,3), for each game. We can formulate two null hypotheses for the
absence of focal points in terms of the distribution of decided choices across actions. According to
the first null hypothesis, the player would simply choose randomly which action to take, i.e. the
player would be entirely naive in facing games with multiple PNE: in this case, we would expect
the number of decided choices to be the same across actions, and we shall take them as equal
to the average number of decided choices. According to the second null hypothesis, the agent
would be able to detect the pure Nash equilibrium, but would only be able to choose among them
randomly. On average, in this case we would expect the same number of decided choices for each
pure Nash equilibrium. Clearly, this second null hypothesis can be meaningfully distinguished
from the first only in the case of games with two, rather than three, PNE.

For the three PNE dataset (n = 100) under both nulls, x? = 2531.256,198 d.f., for Set 1,
and x? = 1853.324,198 d.f., for Set 2. For the 2 PNE dataset (n = 1900) under the first null,
x? = 67653.74,3798 d.f., for Set 1, and x? = 56174.93,3798 d.f.. For the 2 PNE dataset under
the second null, x? = 30785.17, 1898 d.f., for Set 1,!® and y? = 23985.49, 1899 d.f. for Set 2. In

150One game had to be removed in relation to this test because the corresponding expected values were zero for the
second null.
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all cases, using x? tests the null hypotheses are strongly rejected (at p < 0.001) for both Set 1
and Set 2.

Hence, the network is displaying not only w-focal points but also s-focal points. Interestingly,
the y? is lower with Set 2 than with Set 1 in a comparable sample of two PNE or three PNE
games, suggesting that the importance of focal points is somehow lower with s-focal points, as it
might be expected by the limited exemplar effect. Nevertheless, the strong evidence for s-focal
points suggests once again that the network is mainly reasoning as a prototype-based model of
categorization. Different neural networks, trained on the same game distribution although on
different games, must be displaying focal points because they have learnt to detect the same game
features and so they tend to choose the same solution.

A criticism of this conclusion might be that, although we have shown that the number of decided
choice tends to be focal on specific choices, we have not shown that the number of decided choices
is high in the first place in games with multiple PNE. However, the number of decided choices
only drops from an average of 8.97 per game action in the unique pure Nash equilibrium dataset
to 8.52 with Set 1 and 8.49 with Set 2: taking into account that, if all choices were “decided”,
the value should be equal to 10, it is apparent that the neural network is quite decided in general

in its choices, and is only slightly more indecisive in games with multiple PNE.

9.2. Features of Focal Games. What are the game features that make a solution focal? Un-
fortunately, we cannot use the econometric technique discussed in section 8, because in games
with multiple equilibria there is not a correct solution relative to which compute . We therefore
need to develop a different technique. Let us define three data-points for each game, in corre-
spondence to each action: one data-point corresponding to the number of decided choices from
playing action 1, one from playing action 2 and one from playing action 3. This allows to obtain,
in principle, a dataset of 6000 observations, in correspondence to the 2000 games: let us label
these observations as NDecided! if they are based on the number of decided choices with Set 1,
and NDecided? if they are based on the number of decided choices with Set 2. We can now do
ordered probit regressions of a variety of game and action features on NDecided1l and NDecided2,
in order to determine what makes the network choose an action rather than another one.'6

Many of the features considered are identical or similar to the ones previously considered; a
few are new ones:

1. Algorithm related features. As before, these are dummy variables equal to 1 when the feature
is present, and to 0 otherwise. Same As 0SD and 1SD refer to the case in which the action is

dominated according to 0 or 1 iteration level strict dominance.!'” Same As NE When 2NE marks

18Tt might be better to estimate an ordered probit model with random effects, but unfortunately we were unable to
compute it. OLS regression models with random effects do not pass the Hausman specification test. OLS regression
models with fixed effects display insignificant fixed effects, the joint deletion of which is easily accepted with F tests.
Similar considerations apply, and similar results results were obtained, in relation to the work of the next section.
1"More than one iteration is never needed with games with multiple PNE.
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the case in which the action corresponds to one of exactly two PNE present in the game - for
the games with three PNE, each action is a pure Nash equilibrium, so it would not be a useful
marker. Conversely, Presence of 3NE marks the games with three PNE. Same As Utilitarian Best
is a marker for when the action corresponds to the best pure Nash equilibrium from a utilitarian
perspective (e.g., that of the sum of the payoffs).

2. Payoff and Temptation variables. We need to modify these variables because we are con-
sidering the desirability of each action, not just of PNE actions. We reformulate the variables in
terms of Best Response (BR): given that the neural network chooses a particular action, what
is the strictly best response of the other player? BR outcomes will be defined for all actions in
which the top payoff for the column player in correspondence to the action being considered is
strictly higher than the others. This is the case for all but three observations in our sample; in
the regression analysis, we drop these three observations and restrict ourselves to a sample of
n = 997 observations. We also add two sets of new variables. First, we introduce temptation
variables (Own/Other’s BR Max/Min Temptation) on the basis of the (min/max, own/other’s)
BR payoffs from playing the other action. Second, we introduce two interaction terms: Game
Harmony x Own Temptation and Game Harmony x Other’s Temptation.

3. General game features. These are similar to those previously considered.
[insert tables 6 and 7 here]

Tables 6 and 7 present the result of ordered probit regressions on NDecided1l and NDecided?2;
the restrictions entailed by the simpler models in both figures are, once again, accepted using
likelihood-ratio tests. There are some differences between the two figures - particularly, game
harmony appears a somehow better predictor of NDecided2 than NDecidedl -, but in general the

picture is quite similar.

9.3. Results. We can now summarize some results.

1. Go for high numbers, especially if they are yours. This appears to be still true, as shown by
the coefficient values on Own and Other’s Payoff, Same as PSPD, Same As MPD and Same as
Utilitarian Best. As before, more weight is put on one’s own payoff than on the other player’s.
On the other hand, consideration of potential trembles may make the network weigh the other
player’s welfare, both directly (Other’s Payoff) and indirectly - utilitarianism appears a salient
feature to choose among PNE.

2. Feel and fear the trembling hands. This is still true, as shown by the generally negative
significant temptation effects. Coeflicients are mostly larger for one’s own temptation, but the
reverse is true for the minimum temptation of the other player.

3. Strategic awareness. The neural network appears capable of detecting relevant strategic

features, as shown not only by the weight put on most BR temptation variables, but also by Same
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As Utilitarian Best (which requires the utilitarian solution to be a PNE) and, more importantly,
by Same As NE When 2 NE. Considering the positive coefficient on Presence of 3NE, this means
that, plausibly, the network makes more decided choices in relation to PNE actions when there
are 2 PNE, than when there are 3 PNE, and last when there is not a PNE. Additional weight is
given if the action is strictly dominant, even if just so using 1-level iteration of strictly dominated
strategies.

4. High stakes provide ‘motivation’ to the agent. This is still true, as shown by the large
coeflicient on Mean.

General game features appear to play less of a role in tables 6 and 7 than they did in table 5.
This is not really surprising: table 6 was a regression in relation to the best (i.e. Nash equilibrium)
action only, whereas here we are regressing in relation to all actions, good and bad, and these will
share the same general game features. Hence, the only way this may matter is in increasing the
overall level of decided choices in the game - but not really in making the neural network more
decisive towards one action relative to another.

In conclusion, C* displays both w-focal points and s-focal points in games with multiple PNE.
It does so because it tries to apply to these games, as much as possible, the same LMA that
it has learnt to apply to games with unique PNE in a satisficing way. The existence of s-focal
points corroborates once again the view that C* mainly reasons on the basis of prototypical
categorization; moreover, most of the game features it has learnt do not yield to undecidability
paradoxes when facing games with multiple PNE (as, say, the PNE or rationalizability logic
would), and so can be applied successfully to coordinate on focal choices. These results are the

more striking because C* never faced a single game with multiple PNE during training.

10. GAMES WITH NO EQUILIBRIA

Unfortunately, the models of the previous section cannot be compared to those of section 8
in two important respects: (i) the usage of different endogenous variables, which has led to the
usage of partially different exogenous variables (e.g., based on the concept of Best Response); (ii)
the application to different sets of games; games with a unique PNE in one case, and games with
multiple PNE in the other case. A third limitation of the previous analysis is that, although we
have analyzed cases with 1, 2 or 3 PNE, for sake of generality we should also analyze games with
0 PNE. After all, if the claims of the previous section are correct, we would expect the neural
network to play in a meaningful bounded-rational way also in this set of games.

In this section we try to address these three concerns. To do this, we computed 6000 NDecided1
observations in relation to the games with unique PNE analyzed in sections 6 through 8. We also
computed 2000 games with 0 PNE, and used these games to test the thirty networks trained with
n = 0.5, p = 0 and thirty different random seeds; we were then able to derive 6000 NDecided1

observations in relation to these games with 0 PNE. Again we exclude the observations in relation
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to which there is not a strictly dominant Best Response on the part of the column player: this
leaves us with n = 5993 with the games with 1 PNE and n = 5983 with the games with 0 PNE. We
then ran ordered probit regressions using the same set of regressors as much as possible.'® There
are less regressors with 0 PNE games because, unavoidably, there are more strategic features that
cannot be exploited, either by us, or by the network. The average number of decided choices
per action in the 0 PNE dataset is 8.28, lower not only than games with a unique PNE but also
than games with multiple PNE. Nevertheless, it is still a considerably high amount, given that

the maximum is 10.
[insert tables 8 and 9 here]

Tables 8 and 9 contain the results of the ordered probit regressions, in relation respectively
to games with 1 and 0 PNE. The neural network still tends to go for high numbers, especially
for itself. Same as 0SD is wrongly (i.e., negatively) signed in table 8, but this is really just a
reduction of the positive effect that zero-iteration dominant action has on NDecidedl. This is
true, first, because Same as 1SD will always be equal to 1 when Same as 05D is equal to 1, and
the coefficient on Same as 1st is large and positive; second, because, in the present sample, 0SD is
always a sufficient condition for PSPD and MPD, which implies an additional and large positive
effect. Similarly, the occasional wrong signs on the Temptation variables can be explained because
of a partial counterbalancing of the large interaction effects with Game Harmony. This is not the
case, however, for Own and Other’s Min Temptation with games with 0 PNE.

Game Harmony plays a significant role in games with unique and zero PNE (unlike games with
multiple PNE). In line with the findings of section 9, a higher game harmony index, i.e. greater

game disharmony, induces more decisive choices.

11. CONCLUSIONS

This paper has presented a neural network model to simulate the endogenous emergence of
bounded-rational behavior in a normal form game framework. Potentially any finite normal form
could be modelled in this way, though we have concentrated on 3 X 3 games, and noted that
2x 2, 2x 3 and 3 x 2 games count as a subclass of 3 X 3. The inclusion of a neural network
player in a population of Nash players does not change the behavior of the Nash players, and
the neural network player, having seen a sufficiently large sample of example games in which
the Nash outcome was highlighted, could potentially learn the Nash algorithm. However, this is
highly unlikely because of the complexity (NP-hardness) of the Nash problem: effectively, the Nash

189ome differences are made necessary by the way the datasets are constructed: for example, we clearly cannot use
Same As NE as a regressor in the dataset of games with 0 PNE! Similarly, since the utilitarian criterion used in
section 8 was made dependent on a choice among PNE, it cannot be introduced in the datasets with either 1 or 0

PNE.
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algorithm is intractable by a network that uses learning algorithms, such as backpropagation, with
a minimum of biological and cognitive plausibility. Hence, the network is much more likely to find
some simpler way to solve the problem, that allows it to get sufficiently close in a large enough
number of cases to leave the network satisfied that it has found a suitable way of playing new
games. This local error-minimizing algorithm would allow the network to achieve a ‘satisfacing’
level of success in finding a Nash equilibrium in a never-before-seen game, though it would not
achieve 100% success. It would correspond to one or more behavioral heuristics endogenously
learnt by the bounded-rational agent.

The simulation results suggest a figure of around 60% success on games never encountered
before, as compared with 33% as the random success benchmark or the 59.6% experimental figure
from Stahl and Wilson (1994). Such simulations also indicate that solution concepts other than
Nash and based on dominance get closer to explaining the simulated network’s actual behavior.
We develop simple econometric techniques based on regression on the network error and on the
‘decidedness’ of the network’s choice to characterize the local error-minimizing algorithm it has
achieved. The network displays some strategic awareness, but this is not unbounded, and is
decreasing in the levels of iterated deletion of dominated strategies required. The network goes
for high payoff values. It takes into account potential trembles due to the temptation of the other
player of deviating from Nash. It plays better in higher stakes games, particularly if there is more
conflict of interests between itself and the other player.

The trained network’s behavioral heuristics carry over to a relevant degree when it faces not just
new games, but new classes of games, namely games with multiple and zero pure Nash equilibria.
Moreover, networks trained on different games - all with a unique pure Nash equilibrium -, are
able to coordinate on the same focal solution, when encountering games with multiple equilibria.

Our results suggest that, perhaps paradoxically, the fact that the network converges to a local
error-minimizing algorithm is not a problem but a virtue. It is what makes the research approach
used in this paper - based on neural network simulations, and econometric techniques developed
to analyze the results of these simulations - potentially interesting. It has allowed us to model and
make predictions about bounded-rational behavior in normal form games, with rules of thumb
emerging endogenously as a result of the learning process rather than being exogenously super-

imposed on the agent.
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APPENDIX

A. The Nash Algorithm. Consider a 2 player 3 x 3 normal form game G with payoff matrix
X,

Ty Ty I3 T4 Ts Tg

X = Ty Trg Tg Tio L1l T12

T13 T4 Ti5 Tig Tir T8
Where payoffs are in pairs, so x1 and x9 are the payoffs to players 1 and 2 respectively from
the realised outcome (top, left). Strateg1es are a; € {al, a;, Z} for players 1 = 1,2. More
specifically, for the row player (i=1), al = “top”, a2 = “mzddle”7 and a® = “bottom”, and for
the column player (i = 2), a2 = “left”, a2 = “maddle” and a2 = “right”. Now let the vector
y denote the choice of strategy for player 1 so y = (1,0) < a; = a}, y = (0,1) & a; = a? and
= (0,0) & a; = a?. Now express the unique Nash strategy for player 1 as y*. The Nash

algorithm for 3 x 3 games with a unique Nash strategy is then:

(21 > max {7, z13} & z9 > max{x4,x6}) or
(8) =(1,0) if (x3 > max {zg, z15} & x4 > max{zq,x6}) or
(x5 > max {z11,z17} & z6 > max{xg,x4})

(x7 > max {1,713} & xg > max {x19,212}) or
(9) y*=(0,1) if (x9 > max{z3,z15} & x10 > max {rs,x12}) or
(211 > max{zs,z17} & x19 > max {zs,z10})

(213 > max{z1,z7} & w14 > max {r16,218}) or
(10) y* =(0,0) if (x15 > max{z3,z9} & w16 > max {r14,218}) or
(x17 > max {x5, 211} & 218 > max{z14,z16})

The restrictions on GG ensure that y* # () and at most one of expressions 8, 9 and 10 are true.

B. The Gini-Based Index of Game Harmony.! Tet ay; be the payoff of player s for some
given normal form game outcome j (out of m possible outcomes), where the game has n players.
The Gini-based index of Game Harmony can be computed in three steps. The first step is ratio-
normalisation of payofls, by finding, for each payofl value, ag; = as; /> asj, i.e., by dividing each
payoff by the sum of all possible payoffs for the player. Rat10—n0rmal1sat10n is essential because,

otherwise, the measure would mirror the average payoff distribution of the game, but not the

19For more on this see Zizzo (2000a).
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extent to which the players’ interests in achieving one or another game outcome are the same or
are in conflict.

The second step is to compute the payoff distribution index for each possible outcome j, using
the Gini Index formula (Gini, 1910), but multiplied by n/(n — 1) to ensure boundedness between
0 and 1 with non-negative payoffs: labeling this normalised index as I ]G for some outcome j, and
ordering subjects from “poorest” (i.e., that with the lowest payoff) to “wealthiest” (i.e., that with
the highest payoff), we can define IjG as:

n n * n n *
IG _ n 2 2 :8 a* ZS:l aSj _ 1 2 2 :8 a* ZS:l aSj

J T, n * sj - n * sj
n—1n Zs:l a’sj s—1 n n—1 Zs:l a’sj s—1 n

The third step is to find the normalised Gini-based game harmony index G H¢ as a simple average

of the IjG, so GHg = (1/m) Z;nzl IjG. In the case considered in this paper, n = 2 and m = 9

(since games are 3 x 3).
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FIGURE 1. An Example Neural Network

Features of economic problem at hand, expressed as numbers (e.g., payoffs of game)

@ @ 1) Input nodes
(receiving input
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from economic
environment).

2) All input nodes are
connected to al the nodes of
the downstream layer (the
connections are shown for
one input node only).

3) All nodes in downstream
layer are connected to the
output node.

!

The network makesits economic choice, expressed as a number from the output node (e.g., the

strategy to be played in a game)



TABLE 1. Percentage of Correct Answers

At Least 1 Correct Output

Correct Answer Given

Convergence Error tolerance criterion Error tolerance criterion
Level y 0.05 0.25 0.5 0.05 0.25 0.5
0.1 85.12 91.76 94.31 60.03 73.47 80
0.05 87.26 92.24 94.31 64.12 74.75 80.09
0.02 88.52 92.51 94.25 66.66 75.47 79.96
At Least 1 Correct Output Correct Answer Given
Learning Error tolerance criterion Error tolerance criterion
Raten 0.05 0.25 0.5 0.05 0.25 0.5
0.1 86.88 92.3 94.42 63 74.48 80.22
0.3 86.75 92.06 94.25 63.3 74.42 79.89
0.5 86.81 92.04 94.2 63.66 74.54 79.94
At Least 1 Correct Output Correct Answer Given
Momentum Error tolerance criterion Error tolerance criterion
Rate p 0.05 0.25 0.5 0.05 0.25 0.5
0 86.87 92.36 94.5 62.86 74.63 80.47
0.3 86.77 92.27 94.42 62.89 74.49 80.22
0.6 86.91 92.09 94.23 63.73 74.53 79.9
0.9 86.6 91.52 93.8 64.05 74.05 79.04

Percentage of games solved by the network under different combinations of n, y and p. The level of
convergence y simply measures how much correct we ask the network to be: the smaller it is, the stricter the
criterion. The learning rate n is a coefficient that determines the speed of the adjustment of the connection
weights when the network fails to play the Nash equilibrium behavior. A positive momentum rate 1 introduces
autocorrelation in the adjustments of the connection weights when successive examples are presented. The
error tolerance criterion measures how close the answer given by the network must be to the exact answer in
order to consider the answer right. The smaller the error tolerance criterion, the tighter it is. The numbers given
under ‘At least 1 Correct Output’ are the % of cases in which at least 1 of the two output nodes is correct. The

numbers given under ‘Correct Answer Given' are the % of casesin which both output nodes are correct.



TABLE 2. Average Performance of the Trained Network ver sus Three Null Hypotheses

At Least 1 Correct Output Correct Answer Given

Error tolerance criterion Error tolerance criterion

0.05 0.25 0.5 0.05 0.25 0.5
Trained C 86.82 92.13 94.29 63.31 74.48 80.02
Nulll (Untrained C) 0 0.005 67 0 0 0
Null2 (Strategy Switcher) 78.85 78.85 78.85 22.8 22.8 22.8
Null3 (Random) 0.091 435 75.1 0.003 0.06 25.5

Average performance of the trained C versus three null hypotheses. The smaller the error tolerance
criterion, the tighter the criterion used to consider C's strategy choice correct. The numbers given under
‘At least 1 Correct Output’ are the % of cases in which at least 1 of the two output nodes is correct. The

numbers given under ‘Correct Answer Given' are the % of casesin which both output nodes are correct.



TABLE 3. Number and Percentage of Non Answer able Games

Non Nash Algorithm Non Answer able Games
Number Percentage
Minmax 5 0.25
Rationalizability 813 40.65
0 Level Strict Dominance 1634 81.7
1 Level Strict Dominance 1205 60.25
Pure Sum of Payoff Dominance 0 0
Maximum Payoff Dominance 8 0.4
Nearest Neighbor 0 0

Non answerable games are games for which a non Nash algorithm does not provide a unique, or any,

solution. Percentage is equal to (Number of Non Answerable Games)/2000.



TABLE 4. Describability of C'sBehavior by Non Nash Algorithms

Algorithm % of Correct Answers |[% of Correct Answers
Over Answerable GameqOver Full Testing Set
y=0.5 y=0.25 y=0.05| y=0.5 y=0.25 vy=0.05
Nash 80.38 75.7 66.53| 80.38 75.7 66.53
Partial Overperformers
0SD 90.83 87.79 80.98| 16.62 16.06 14.82
1SD 87.63 84 76.25] 3483 3339 3031
Rationalizability 86.44 8257 7436 51.3 49.01 44.13
Under performers
PSPD 67.71 6348 55.97| 67.71 6348 5597
MPD 61.08 57.02 49.95| 60.84 56.79 49.75
Minmax 5775 53.83 46.89| 57.6 53.7 46.77
Nearest Neighbor 62.97 5878 51.48| 6297 5878 5148

% of Correct Answers Over Answerable Games = (Number of Correct Answers) / (Number of Answerable
Games). Answerable games are games for which the algorithm identifies a unique solution. % of Correct
Answers Over Full Testing Set = (Number of Correct Answers) / (Number of Answerable Games). 0SD:
‘O-level strict dominance’. 1SD: ‘1-level strict dominance’. PSPD: ‘pure sum of payoff dominance’. MPD:

‘maximum payoff dominance’.



TABLE 5. Tobit Regression on the Average Root M ean Square Error (continueson next page)

Modd 1 Modd 2
Explanatory Variables Cod. SE Prob. Sg || Cod. SE Prob. Sg
MPD Exigence 0037 0061 0549
Minmax Exigence 0067 0077 0332
Same AsPSPD 0095 0011 0 ****| -0098 001 Q  xxHx
Same AsMPD -0037 001 0 x| 004 001 Q  xxx
Same As Minmax -0005 0011 0615
Same As Nearest Nel ghbour -0085 0008 0 ****| .0085 0008 Q |****
Own NE Payoff -0339 0063 0 ****| 0391 0029 Q  *Hx*
Other's NE Payoff -0237 0049 0 x| 0202 0034 Q R
Poditive Payoff Ratio -0025 0013 0057 * || -0018 0011 0101
Negative Payoff Ratio 0058 0062 035
Own Generic Temptation 0104 0048 0031 ** | 0105 0048 003 **
Other's Generic Temptation 0317 0055 0 ***| 0317 0054 Q  (***x
Game Harmony Index -0311 066 0.638
Mean -0326 0314 03 -0237 0208 025
Game Harmony * Meaen -0667 0779 0392 -0857 0507 0091 *
Deviation from Avg. Mean 0192 0147 019 0174 013 0181
Standard Deviation 0587 0602 033 0833 0349 0012 **
DeviationfromAvg SD -0147 0274 0591 -0027 0018 0125
Skenness -003 0018 00% * | -0032 0014 0023 **
Kurtosis -0033 0014 002 ** | 0056 0026 0032 **
Deviation from Avg Skewvness 0055 0026 0034 ** | 0016 0014 0264
Deviation from Avg Kurtos's 0019 0015 0224
NE Action 1 0024 001 0012 ** || 0025 001 001 **
NE Action 2 0037 001 0 **x| 0038 001 Q  xxx
Strict Dominance: Leve 0 Sufficient -0079 0014 0O ****|| -0082 0013 Q0  **x*
Strict Dominence: Need for Leve 1 0058 0011 O ****|| -0059 0011 QO  **x*
Strict Dominance: Need for Leve 2 0049 0011 O ****|)| 0056 0011 QO  |F*x*
Max Oan Temptation 0288 0026 0 ***] 0280 0026 Q |****
Min Own Termptation 0038 002 o004 * 00 002 005 *
Max Cther's Temptation 0142 0025 0 ***| 0143 0025 Q | ***x
Min Other's Temptation 0002 0024 0946
GameHamony * SD. 1266 1565 0418 0528 0817 0518
Congtant 0404 0286 0158 033 0085 Q0  x¥x*




VI

TABLE 5. (Continues from previous page)

Modd 3
Explanatory Variables Coef. SE. Prob. Sg.
MPD Existence
Minmax Existence
Same As PSPD -0.098 0.01 0  Frxx
Same AsMPD -0.034 001 0  Frxx
Same As Minmax
Same As Nearest Ne ghbour -0.086 0008 Q  ***x
Own NE Payoff -0.392 0029 Q  FF**
Other's NE Payoff -0201 0034 Q  ****
Positive Payoff Retio -0.017 0011 0.108
Negative Payoff Ratio
Own Generic Temptation 0.108 0.048 0.025 **
Other's Generic Temptation 032 0054 0  x***
Game Harmony Index
Mean -0.347 0135 001 **
Game Harmony * Mean -0551 0131 O  *Fx*
Deviation from Avg. Mean 0213 02121 0077 *
Standard Deviation 113 0201 O  ***xx
Deviation from Avg. SD -0.026 0018 0.14
Skewness -0.025 0013 005 *
Kurtosis 0055 0.026 0.035 **
Deviation from Avg Skewness
Deviation from Avg Kurtosis
NE Action 1 0025 001 0011 **
NE Action 2 0038 0.01 0  Frxx
Strict Dominance: Level 0 Sufficient -0.081 0013 QO  xx**
Strict Dominance: Need for Leve 1 -0.059 0011 QO  xx**
Strict Dominance: Need for Leve 2 -0.05 0011 0O  *rxx
Max Own Temptation 0288 0026 Q  Fxx*
Min Own Temptation 0037 002 0063 *
Max Other's Temptation 0145 0.025 Q  *xx*
Min Other's Temptation
Game Harmony * S.D.
Constant 035 0.082 0 ***x

Log-Likelihood (Model 1): 662.536. Log-Likelihood (Model 2): 661.275. Log-Likelihood (Model 3): 660.263.
LR Test (Model 1-Model 2): x}(7)=2.52, P=0.925; LR Test (Model 1 Model 3): x%(9)=4.55, P=0.872; LR
Test (Model 2 Model 3): x*(2)=2.02, P=0.364. Numbers are approximated to the third decimal value. ****,

*x% *% and * stand for significance at the 0.001, 0.01, 0.05 and 0.1 levels, respectively.
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FIGURE 2. Effect of a Change in Game Harmony on the Root Mean Square Error, for Different

Payoff Mean Levels
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The figure analyzes the approximate effect of an increase in the Game Harmony Index on the root mean
square error, for different mean levels of the game payoff vaues. RMS Error: Root Mean Square Error. Gl

Change: change in the Game Harmony | ndex.



IX

TABLE 6. Ordered Probit Regressions on NDecided1, Games with M ultiple PNE, n=5997 (continues

on next page)

Modd 1 Modd 2
Explanatory Variables Coef. SE. Prob. Sg. || Coef. SE. Prob. Sg.
Same AsPSPD 0549 0041 O ****|| 0548 0041 0O ****
Same AsMPD 0054 0039 0.169 0055 0039 0159
Same As Minmax 0066 0038 0078 * 0067 0038 0076 *
Same As0SD -0046 0.103 0.652
Same As1SD 0151 0103 0.145 0117 0072 0104
Same As Utilitarian Best 0217 0045 0 ****[ 0217 0045 O ****
Pogitive Payoff Reatio -0042 0.029 0151 -0.043 0.028 0.126
Negetive Payoff Retio 023 0192 0231 0228 0191 0.233
Own BR Max Temptetion -1071 0116 0O ****f 1078 0113 Q  *x**
Other's BR Max Temptation -1044 0166 0O ****f 1058 0157 Q@ rxxx
Own BR Min Temptation 001 0.082 00903 001 0081 0904
Other's BR Min Temptation -0791 01203 O ****f 0797 0102 Q Fxxx
Own BR Payoff 2072 021 0 **** 2063 0205 Q *x**
Other's BR Payoff 041 0157 0009 *** 04 0.153 0.009 ***
Own Max Temptetion -1499 0208 0 ****f -1488 0.09 0
Other's Max Temptation -0464 0.289 0.109 -0403 008 Q0  FF**
Own Min Temptation -0478 0099 0 ****[ 0475 0.097 Q | Fx*x
Other's Min Temptation -0705 0.089 0 ****[ 0704 0.088 0 rx*x
Own Generic Temptation 2143 0336 0 *rxxf 2158 0332 0 rrxx
Other's Generic Temptation -0.325 023 0158 -0.328 023 0.153
Presence of 3NE 0315 0083 0 ****[ 0316 0082 0 ****
Game Harmony Index 0295 1348 0.827
Same As NE When 2NE 0557 0067 O **** 0559 0067 0O ****
Game Harmony x Own BR Temptation 0036 0.789 0.963
GameHarmony x Other'sBR Temptation| 0.172 0.763 0.822
Mean 6.227 1258 0 ****[ 5997 0.669 0 Fx**
Game Harmony X Mean -0722 3156 0.819 003 0439 0946
Deviation from Avg. Mean -0032 0511 09
Standard Deviation -0216 0.889 0.808
DeviationfromAvg. SD -0.083 0.795 0.916
SKewness -0076 0.065 0.247 -0076 0.065 0.239
Kurtoss -0041 0.04 0449 -0.033 0.043 0443
Deviation from Avg Skewness 0032 0.09%6 0.738 0025 008 075
Deviation from Avg Kurtoss 0055 0.05%5 0.318 0.05 005 0311
NE Action 1 -0.087 0.037 0018 =** || -0.087 0.037 0018 **
NE Action 2 -0229 0035 0 ****f 02290 0035 0 Fr**




X

TABLE 6. Ordered Probit Regressions on NDecided1, Games with M ultiple PNE, n=5997 (continues

from previous page)

M odel 3
Explanatory Variables Coef. S.E. Prob. Sig.
Same As PSPD 0.559 0.04 0  *x*x
Same As MPD 0.064 0.038 0.095 *
Same As Minmax 0.073 0.037 0.052 *
Same As0SD
Same As 1SD 0.115 0.071 0.108
Same As Utilitarian Best 0.219 0.045 0  *x*x
Positive Payoff Ratio
Negative Payoff Ratio
Own BR Max Temptation -1.061 0.11 0  *xxx
Other's BR Max Temptation -1.099 0.147 0  *xxx
Own BR Min Temptation
Other's BR Min Temptation -0.8 0.099 0  *xxx
Own BR Payoff 1.842 0.096 0  *xxx
Other's BR Payoff 0.565 0.099 0  *xxx
Own Max Temptation -1.465 0.09 0  *xxx
Other's Max Temptation -0.403 0.085 0  *xxx
Own Min Temptation -0.49 0.096 0  *x*x
Other's Min Temptation -0.732 0.088 0  *xxx
Own Generic Temptation -1.943 0.277 0  *xxx
Other's Generic Temptation
Presence of 3NE 0.309 0.082 0  xx*x
Game Harmony Index
Same As NE When 2NE 0.555 0.064 0  xx*x
Game Harmony x Own BR Temptation
Game Harmony x Other's BR Temptation
Mean 5.822 0.481 0  xx*x
Game Harmony x Mean
Deviation from Avg. Mean
Standard Deviation
Deviation from Avg. SD
Skewness
Kurtosis
Deviation from Avg Skewness
Deviation from Avg Kurtosis
NE Action 1 -0.087 0.037 0.019 **
NE Action 2 -0.23 0.035 Q0  *x*x

Log-Likelihood (Modd 1): -13880.315. Log-Likelihood (Modd 2): -13880.504. Log-Likelihood (Modd 3): -
13883.739. LR Test (Model 1 Model 2): x%(7)=0.38, P=1; LR Test (Model 1-Mode 3): X*(16)=6.85, P=0.976;
LR Test (Model 2 Mode 3): x%(9)=6.47, P=0.692. White robust estimators of the variance were used to compute
standard errors. Numbers are approximated to the third decimal value. **** *** ** gnd * stand for significance at

the 0.001, 0.01, 0.05 and 0.1 levels, respectively.
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TABLE 7. Ordered Probit Regressions on NDecided2, Games with M ultiple PNE, n=5997 (continues

on next page)

Modd 1 Modd 2
Explanatory Variables Cod. SE Prob. 9g. | Cod. SE Prob. Sg
SareAsPSD 0664 0041 O ***| 0668 004 Q ****
Sare AsMFD 004 0038 0014 ** || 00O 0038 0009 **=*
Sare AsMinmex 0069 0036 006 * | 008 003x%6 0029 **
SareAs0D -0074 0105 0434
SreAs1D -02 014 0847
SareAsPado 0264 004 0 **| 0264 0044 (Q ***=*
Rogtive Payoff Retio 0001 003 09%6
Neggetive Payoff Retio 003 0191 0876
OwnBRMax Tenrptaion 1287 0116 O ¥ 1257 0112 QxR
Other'sBR Max Tamptetion 1136 0158 0 ***| -1122 0147 QxR
OwnBRMin Temptation 0092 00/M° 0247 -00M™9 0078 0313
Other'sBRMin Temptation 0968 009 0 *** 097 006 0 ***=*
Own BR Paydff 221 027 0 **| 22 00% 0 ****
Other'sBR Payoif 0713 0158 0 ****| 0733 00% Q ****
OwnMax Temptetion 1762 0286 0 ****| -1620 0088 0 ****
Other'sMax Temptetion 0646 027 0017 ** | 0718 0083 Q ****
OwnMin Tenrptation 052 004 0 *** 0546 002 0 ****
Other'sMin Tenrptation 0647 008 0 *** 066 0088 0 ****
Own Gagic Tamaetion 2307 0319 0 *¥* 2267 0282 Q0 **x*
COther'sGangic Tarptaion 0148 0223 0508
Rresnced 3NE 024 0078 0002 ***| 0271 007 Q ‘****
GameHamony Index 094 1293 0461
Sare ASNEWhen 2NE 0458 0063 0O ****| 0493 0053 Q ****
GameHamony x Oamn BR Tenptation 0333 0767 064
GameHamony x Other'sBR Terptation | -0189 0711 0.791
Meen 6966 1200 0 ****| 6045 0545 (0 ***=*
GareHamony x Meen -1972 3057 0519 0324 0393 0409
DevidgionfromAvg. Meen -0046 0502 0927
Sandard Deviation 0224 083 072
DevidgionfromAvg. D 0280 078 0712
Skenness 0106 004 0097 * | -004 0062 0129
Kutods -0034 0052 0518
DevigionfromAvg Skemness 0067 0092 04e9 0032 008 0576
DevidionfromAvg Kurtoss 0012 002 0817
NEAdion1 0084 00x% 0021 ** | -0083 0036 002 **
NEAdion 2 0159 004 0 *** 0150 0034 0 ****
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TABLE 7. Ordered Probit Regressions on NDecided2, Games with M ultiple PNE, n=5997 (continues

from previous page)

M odel 3
Explanatory Variables C oef. S.E. Prob. Sig.
Same As PSPD 0.664  0.039 0 *oxkk
Same As M PD 0.096 0.037 0.01  *=*
Same As Minmax 0.078 0.036 0.029 *=*
Same As0SD
Same As 1SD
Same As Pareto 0.263 0.044 0 *xkk
Positive Payoff Ratio
Negative Payoff Ratio
Own BR Max Temptation -1.278 0.111 0 *oxkk
Other's BR M ax Temptation -1.147  0.14 0 *ok ok
Own BR Min Temptation
Other's BR Min Temptation -0.958 0.095 0 *ok ok ok
Own BR Payoff 2.216 0.096 0 x>
Other's BR Payoff 0.725 0.095 0 *ok ok ok
Own Max Temptation -1.616 0.088 0 *ok ok ok
Other's M ax Temptation -0.707 0.082 0 *okok ok
Own Min Temptation -0.555 0.091 0 *okok ok
Other's Min Temptation -0.668 0.087 0 *okok ok
Own Generic Temptation -2.341 0.266 0 *okok ok
Other's Generic Temptation
Presence of 3NE 0.274 0.07 0 *R ok ok
Game Harmony Index
Same AsNE When 2NE 0.514 0.051 0 *xkk
Game Harmony x Own BR Temptation
Game Harmony x Other's BR Temptation
M ean 6.477 0.459 0 x>
Game Harmony x M ean
Deviation from Avg. M ean
Standard Deviation
Deviation from Avg. SD
Skew ness
Kurtosis
Deviation from Avg Skewness
Deviation from Avg Kurtosis
NE Action 1 -0.085 0.036 0.019 *=*
NE Action 2 -0.159 0.034 0 x>

Log-Likelihood (Modd 1): -14505.105. Log-Likelihood (Modd 2): -14507.422. Log-Likelihood (Modd 3): -
14510.319. LR Test (Model 1-Model 2): x%(13)=4.63, P=0.982; LR Test (Model 1-Mode 3): x¥(17)=10.43,
P=0.885; LR Test (Model 2 Mode 3): x*(4)=5.79, P=0.215. White robust estimators of the variance were used to
compute standard errors. Numbers are approximated to the third decimal value. **** *** ** gnd * stand for

significance at the 0.001, 0.01, 0.05 and 0.1 levels, respectively.



X1

TABLE 8. Ordered Probit Regressons on NDecidedl, Games with a Unique Pure Nash

Equilibrium, n=5993 (continues on next page)

Modd 1 Modd 2

Explanatory Variables Cod. SE Prob. Sg| Cod. SE Prab. Sg
SareAsNE 132 0089 0 ***| 1393 0059 (O **x*
SareAsPSPD 04% 0049 0 ****| 0498 0049 (Q ‘Fx**
SareAsMFD 028 004 O *** 028 004 QO *xx*
Sare AsMinmex 0046 0043 0288 0047 0043 0274
SareAsRdiondisdility 008 007 0247 0082 000 024
SareAs0D 0177 008 0028 ** | -017%6 008 0028 **
SareAs1D 0266 0075 0O ****| 0261 0074 (Q *x**
Pogtive Payoff Retio 008 0057 0133 -0074 0086 0.191
Negative Payoff Retio 0181 0207 0.3 0155 0194 0421
OwnBRMax Temptation -1453 0101 O  *+ 21398 0097 0O *e*
Other'sBRMax Temptation 093 0164 0 **** 0845 0158 0 ****
Own BRMin Terrptation 0211 00 0019 ** | 026 003 0011 **
Other'sBRMin Tenptation 0301 0104 004 ***| -0285 0103 0006 ***
Own BR Payoif 2182 0343 0 x| 2242 035 QR
Other's BR Payoif 0012 0409 0977

OwnMax Tamptation 0088 0101 034 0083 0101 0413
Other'sMax Taptation 012 008 0071 * | -0130 0034 009 *
OwnMin Tenpttion 0145 010 0183 0116 0108 028
Other'sMin Tenpttion -0078 0098 0428 -0088 0098 030
Own Gangric Terrptation 4081 0308 0 **** 4041 0303 0 ****
Other's Ganeric Temptation ;102 0195 0 ¥ L1104 019% Q0w
NE Action 1 -0103 0037 0006 ***| -0102 0038 0006 ***
NE Action 2 013 0037 0 *** 0136 0037 0 ****
GareHarmony Index 1919 1491 0198 251 0518 (Q (***x
GareHamony x OMnBR Tampation || -2057 0672 0002 *** || -2086 0635 0001 ***
GareHarmony x Other’'sBR Terptation | -0797 0952 0402 0638 0423 0131
Mean 672 13 0 **x| 7086 0661l 0O *rx*
GareHamony X Meen 0747 3234 0817 049 0387 0197
DevidtionfromAvg. Mean -0438 05% 0431

Sandard Devidion 130 0837 0117

DevigionfromAvg. D 0112 0878 0838

Semess 0106 007 0133 0125 0068 0068 *
Kurtoss 0015 0059 0.79

DevidtionfromAvg. Skemess 0057 0104 0586

DevigionfromAvg. Kurtoss 0016 0063 0.7%
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TABLE 8. Ordered Probit Regressons on NDecidedl, Games with a Unique Pure Nash

Equilibrium, n=5993 (continues from previous page)

Model 3
Explanatory Variables Coef. SE. Prob. Sig.
Same AsNE 1422 0.054 Q  **x*
Same As PSPD 0,538 0043 0  ***x
Same AsMPD 0.281 0039 0  ***x
Same As Minmax
Same As Rationalisability
Same As0SD -0.162 0.078 0.039 **
Same As 1SD 0.319 0.06 0  *rx*
Positive Payoff Ratio -0.02 0.038 0.592
Negative Payoff Ratio -0.371 0.135 0.006 ***
Own BR Max Temptation -1.342 0.091 Q  *x**
Other's BR Max Temptation -0835 0.155 Q  ****
Own BR Min Temptation 0.255 0.088 0.004 ***
Other's BR Min Temptation -0.247 0.101 0.015 **
Own BR Payoff 2026 0285 0  Fx**
Other's BR Payoff
Own Max Temptation
Other's Max Temptation -0.183 0.072 0.011 **
Own Min Temptation
Other's Min Temptation
Own Generic Temptation -3.959 0.285 O  Fx**
Other's Generic Temptation -1.161 0.193 O  *x**
NE Action 1 -0.103 0.038 0.006 ***
NE Action 2 -0.136  0.037 Q0  **x*
Game Harmony Index 2028 0409 0O  ****
Game Harmony x Own BR Temptation -2.016 0.623 0.001 ***
Game Harmony x Other's BR Temptation
Mean 6.974 0634 0  *x*x
Game Harmony X Mean
Deviation from Avg. Mean
Standard Deviation
Deviation from Avg. SD
Skewness 0.125 0.068 0.067 *
Kurtosis

Deviation from Avg. Skewness
Deviation from Avg. Kurtosis

Log-Likelihood (Modd 1): -10602.456. Log-Likelihood (Modd 2): -10605.244. Log-Likelihood (Modd 3): -
10610.995. LR Test (Model 1-Mode 2): x%(7)=5.58, P=0.590; LR Test (Model 1-Mode 3): x(14)=17.09,
P=0.252; LR Test (Model 2 Modd 3): x*(7)=11.51, P=0.118. White robust estimators of the variance were used to
compute standard errors. Numbers are approximated to the third decimal value. **** *** ** gnd * stand for
significance at the 0.001, 0.01, 0.05 and 0.1 levels, respectively.
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TABLE 9. Ordered Probit Regressons on NDecidedl, Games with Zero Pure Nash Equilibria,

n=5983 (continues on next page)

Modd 1 Modd 2

Explanatory Variables Cod. SE Prab. g Cod. SE Prob. Hg
SareAsPSD 0745 0038 0 ***| 076 00H 0O ***=*
Sare AsMFD 0509 0033 0 ***| 058 0033 0 ***=*
Sare AsMinmex -002 0037 0556

Rogtive Payoff Retio -0067 0058 0247 -0081 0056 0146
Neggetive Payoff Retio 0656 018 0001 ***| 0748 0165 0O ****
OwnBRMax Tenrptation 0552 0081 O ****| 0563 0079 0 ****
Other'sBR Max Tenptetion 012 0131 03%

OwnBRMin Temptation -0097 009 035

Other'sBRMin Temptation 0295 0092 0001 ***| 0317 0083 Q ****
Own BR Paydff 2130 0317 0 **x) 2248 026 0 ****
Other'sBR Payoif 034 0373 0343

OwnMax Temptetion 02%6 0073 0 ***| 0204 0072 0 ****
Other'sMax Temptetion 005 0076 0509

OwnMin Tenrptation 0313 0072 0 ***| 0306 0072 0 ****
Other'sMin Tenrptation 029 0074 0 ** 0317 00688 0 ****
Own Gagic Tamptetion -1818 02 0 A 21846 0187 0O
Other'sGangric Tamptation 0195 0183 0288 0116 0175 0506
NEAdion1 0277 0034 0 ***| 0277 0034 0 ****
NEAdion2 0202 0033 0 ***| 0203 0033 0 ****
GameHamony Index 2685 1257 0033 ** [ 1818 0349 (0 ‘****
GareHamony x Oawn BR Tenpttion 0512 05% 03383 0518 058 0377
GareHamoy x Othe'sBRTenpttion | -3006 0767 0 ****[ -2309 0208 (0 ****
Meen 0208 0927 082

Game Hamony x Meen -081 2115 0687

DevidgionfromAvg. Meen -0303 0426 0476

Sanderd Deviation 0124 0604 0837

DevidgionfromAvg. D -0129 0791 0871

Skenness -0041 0057 0475

Kutods 0027 0051 0593

DevidgionfromAvg. kemess -002 0038 08

DevidgionfromAvg. Kurtass 0007 005 09%

Log-Likelihood (Modd 1): -15596.259. Log-Likelihood (Modd 2): -15598.954. Log-Likelihood (Modd 3): -
15600.497. LR Test (Model 1-Mode 2): x%(14)=5.39, P=0.980; LR Test (Model 1-Model 3): X3(17)=8.48,
P=0.955; LR Test (Model 2 Mode 3): x%(3)=3.09, P=0.378. White robust estimators of the variance were used to
compute standard errors. Numbers are approximated to the third decimal value. **** *** ** gnd * stand for

significance at the 0.001, 0.01, 0.05 and 0.1 levels, respectively.
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TABLE 9. Ordered Probit Regressons on NDecidedl, Games with Zero Pure Nash Equilibria,

n=5983 (continues from previous page)

M odel 3
Explanatory Variables Coef. S.E. Prob. Sig.
Same As PSPD 0.733 0.035 Q  *xx*
Same As MPD 058 0.033 0 ***x
Same As Minmax
Positive Payoff Ratio
Negative Payoff Ratio 0.663 0.157 0  ****
Own BR Max Temptation -0.56 0.079 0  *xxx
Other's BR Max Temptation
Own BR Min Temptation
Other's BR Min Temptation 0.282 0.073 0  ****
Own BR Payoff 2336 0191 Q0  ****
Other's BR Payoff
Own Max Temptation -0.293 0.072 0  *xxx
Other's Max Temptation
Own Min Temptation 0.308 0.072 0  ****
Other's Min Temptation 0.302 0.064 0O  ****
Own Generic Temptation -1.865 0.186 0  *x*x
Other's Generic Temptation
NE Action 1 -0.277 0.034 Q0  xxx*
NE Action 2 -0.204 0.033 Q0  *xx*
Game Harmony Index 1.889 0.242 Q  x***
Game Harmony x Own BR Temptation
Game Harmony x Other's BR Temptation || -2.119 0.255 0  ****
M ean
Game Harmony x M ean
Deviation from Avg. Mean
Standard Deviation
Deviation from Avg. SD
Skewness
Kurtosis
Deviation from Avg. Skewness
Deviation from Avg. Kurtosis

Log-Likelihood (Modd 1): -15596.259. Log-Likelihood (Modd 2): -15598.954. Log-Likelihood (Modd 3): -
15600.497. LR Test (Model 1-Mode 2): x%(14)=5.39, P=0.980; LR Test (Model 1-Model 3): X3(17)=8.48,
P=0.955; LR Test (Model 2 Mode 3): x%(3)=3.09, P=0.378. White robust estimators of the variance were used to
compute standard errors. Numbers are approximated to the third decimal value. **** *** ** gnd * stand for

significance at the 0.001, 0.01, 0.05 and 0.1 levels, respectively.



