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The concept of preference structuration not only provides possible escape-routes from social-
choice-theoretic impossibility problems, but also points towards ways of formalizing notions of
'pluralism', 'consensus' and 'issue-dimensionality'. The present note introduces two methods of
(operationally) measuring preference structuration, giving attention to both their conceptual
characteristics and their computational feasibility. The method to be advocated, called the
'fractionalization' approach, combines well-known social-choice-theoretic criteria of preference
structuration (such as single-peakedness or value-restriction) with the frequently used Rae-Taylor
(1970) and Laakso-Taagepera (1979) approaches towards measuring the level of fractionalization,
and the effective number of components, in a system.

1. The Problem

Since Duncan Black's seminal work (1948), it is known that Condorcet's paradox and many
related social-choice-theoretic problems can be traced back to a 'lack of structure' within the
relevant profile of personal preference orderings. Black himself proved that single-peakedness
(jointly with the (harmless) technical condition that the number of individuals is odd) is a
sufficient condition for the existence of Condorcet winners, and a well-known corollary of
Black's insight is that Arrow's impossibility result (1951) fails to hold if the domain of
admissible preference profiles is restricted to the set of all single-peaked profiles of personal
preference orderings. Later on, several other conditions of preference structuration were
proposed, for example Inada's condition of single-cavedness (1964), Inada's condition of
separability into two groups (1964), Ward's condition of latin-square-lessness (1965), and
Sen's condition of (triple-wise) value-restriction (1966/1982). The most demanding condition
-- a limiting case -- of preference structuration is the condition of unanimity, i.e. the condition
that all personal preference orderings in a relevant profile be identical. Triple-wise value-
restriction can be shown to be the most general of all these structuration conditions (for an
account of how the different conditions are logically interrelated, see Sen, 1966/1982).
Moreover, each of these conditions shares with single-peakedness the property that it is
sufficient, though not necessary, for the existence of Condorcet winners, for avoiding Arrow's
impossibility result and, as easily provable, for avoiding the Gibbard-Satterthwaite result on
strategic manipulability (Gibbard, 1973; Satterthwaite, 1975).

Apart from pointing towards possible escape-routes from social-choice-theoretic impossibility
problems, the concept of preference structuration provides a formal framework for addressing
the question of how much 'pluralism' or 'consensus' is contained in a profile of personal
preference orderings. In particular, the concept of structuration enables us to say not merely
that a profile consists of identical orderings and thus reflects agreement, or that it consists of a
diverse range of orderings and thus reflects disagreement, but the concept of structuration also
provides the language for a more fine-grained analysis of the level and type of agreement or
disagreement reflected in a profile. The condition of single-peakedness, for instance, enables
us to distinguish between (what we might call) agreement/disagreement at a substantive level
and agreement/disagreement at a meta-level. Agreement at a substantive level would be the
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case of identical personal preference orderings. Disagreement at a substantive level would be
the case of diverse personal preference orderings. Agreement at a meta-level would be the
case of a single-peaked profile of personal preference orderings; if a profile is single-peaked,
then all orderings contained in that profile can be systematically aligned along a common
'structuring dimension'. Disagreement at a meta-level, finally, would be the case of non-
single-peakedness and thus the absence of a common 'structuring dimension'. Clearly,
disagrement at a substantive level is compatible with agreement at a meta-level. In this
terminology, agreement at a substantive level is not necessary, whilst agreement at a meta-
level is sufficient, for successful collective decision making in accordance with Arrow's
famous minimal conditions (i.e. transitivity of social orderings, the weak Pareto principle,
independence of irrelevant alternatives, non-dictatorship, replacing universal domain with a
suitable structuration condition).

These considerations should underline the analytic value of the concept of structuration,
whether we are directly concerned with social-choice-theoretic issues, or whether our aim is
primarily to analyse the level of 'pluralism' or 'consensus' or the 'number of issue-dimensions'
contained in a profile of personal preference orderings. Theorists of democracy, for instance,
may want to find out whether certain communication and deliberation processes can increase
the level of preference structuration (e.g. Miller, 1992; Dryzek & List, 1999): the deliberative
opinion polls conducted by Fishkin (1991) provide data about people's preferences both
before and after a period of deliberation, but to do the requisite analysis operational measures
of preference structuration are required.

The present note discusses two approaches to measuring the level of structuration in a profile
of personal preference orderings. First we will discuss a simple and easily operationalizable
method, which we will call the 'maximal structured component' approach. Then a more
general, but computationally more demanding, method will be proposed, to be called the
'fractionalization' approach. The proposed method combines the above cited social-choice-
theoretic criteria of structuration with the Rae-Taylor (1970) and Laakso-Taagepera (1979)
approaches towards measuring the level of fractionalization, and the effective number of
components, in a system (see also Taagepera & Grofman, 1981).

2. The 'Maximal Structured Component' Approach

Let N = {1, 2, ..., n} be the relevant set of people, and let X = {x1, x2, ... xk} be the relevant set
of alternatives. We assume that n > 1 and k > 2.

Let Ri be person i's personal preference ordering on X. x1Rix2 is interpreted to mean "from the
perspective of person i, option x1 is at least as good as option x2". Each Ri also induces a
strong ordering Pi and an indifference relation Ii, defined as follows:

x1Pix2 if and only if x1Rix2 and not x2Rix1
x1Iix2 if and only if x1Rix2 and x2Rix1

We shall say that an individual i∈N is concerned with respect to a set of alternatives Y⊆X if i
is not indifferent between all the alternatives in Y.

Let {Ri}i∈N be the corresponding profile of personal preference orderings across all people in
N. Given a subset M⊆N, {Ri}i∈M is defined to be the sub-profile of {Ri}i∈N containing
precisely the personal preference orderings of all members of M.
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For each M⊆N, we can ask whether or not {Ri}i∈M satisfies a given structuration condition
(S). (S) could be chosen to represent any of the above cited structuration conditions; we will
here confine ourselves to formally defining single-peakedness, the most well-known one of
these conditions, and triplewise value-restriction, the most general one.

If (S) is the condition of single-peakedness, then {Ri}i∈M satisfies (S) if there exists at least
one strict linear ordering Ω  of the alternatives in X (a 'dimension') such that, for all i∈M and
all x, y, z ∈ X (such that i is concerned with respect to {x, y, z})2, if (xΩ  y and yΩ  z) or (zΩ  y
and yΩ  x) (i.e. "y is 'between' x and z on the 'dimension' defined by Ω "), then xRiy implies
yPiz.

If (S) is the condition of triplewise value-restriction, then {Ri}i∈M satisfies (S) if, for each
triple x, y, z ∈ X, there exists one alternative {x, y, z} and one value in {best, worst, medium}
such that, for all i∈M (such that i is concerned with respect to {x, y, z}), the alternative does
not have that value in the ordering Ri (in the case of Ri reflecting indifference, an alternative
can have more than one value).

A simple and easily operationalizable measure of structuration can be developed on the basis
of an idea that was first proposed by Niemi and Wright (1987). Niemi and Wright suggested
measuring the "degree of unidimensionality" in a profile of personal preference orderings in
terms of the "proportion of the preference orders [that] are consistent with single-peakedness".

Let nmax(S)({Ri}i∈N) be the maximal size of a subset M of N such that {Ri}i∈M satisfies (S). We
shall call {Ri}i∈ M a maximal structured component of {Ri}i∈N. Our primary index of
structuration is the quotient of nmax(S)({Ri}i∈N) to the size of N (i.e. n). Formally, let

max{|M| : M⊆N & {Ri}i∈M satisfies (S)}
(1) i(S)({Ri}i∈N) =                 .

                             |Ν|
 
Then i(S)({Ri}i∈ N) is the maximal proportion of individuals in N whose preference orderings
are consistent with condition (S), for example, in the case of single-peakedness, whose
preference orderings have no more than one peak with respect to a single common 'dimension'
Ω . If (S) is the condition of single-peakedness, a simple algorithm of linear complexity in n is
available for computing i(S)({Ri}i∈N).3   
                                                       
2 If we omit (as in the standard definition of single-peakedness) the bracketed condition, condition (S) becomes
more demanding. Moreover, if we use this more demanding variant of (S), a representation of the form (4) below
may not always exist. This problem can be solved by allowing Nr in (4) to be a 'residual' set for which {Ri}i∈Nr
fails to satisfy (S). The same remark applies to the bracketed condition in our definition of triplewise value-
restriction.
3 The algorithm for determining isingle-peaked({Ri}i∈N) can be schematically summarized as follows:

Begin;
get the input N, X and {Ri}i∈N;
define imax := 0;
for every logically possible strict ordering Ω  of the alternatives in X do

(define iΩ := 0;
 for i:=1 to n do
 if Ri has at most one peak with respect to Ω  then define iΩ := iΩ + 1;
 if iΩ  > imax then define imax := iΩ);

produce the output imax/|N|;
end.
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Unless i(S)({Ri}i∈N) = 1, it is not the case that the personal preference orderings of all members
of N are simultaneously consistent with (S). i(S)({Ri}i∈N) itself is insensitive to the level of
structuration amongst the preference orderings outside any maximal structured component of
{Ri}i∈N. Consider the following two cases:

(2) N = N1 ∪  N2, where N1 ∩  N2 = ∅  and N1, N2 ≠ ∅
such that

(i) {Ri}i∈N1 is a maximal structured component of {Ri}i∈N, and
(ii) {Ri}i∈N2 is a maximal structured component of {Ri}i∈N \ N1;

(3) N = N1 ∪  N2  ∪  N3, where i ≠ j implies Ni ∩  Nj = ∅  and N1, N2, N3 ≠ ∅
such that

(i) {Ri}i∈N1 is a maximal structured component of {Ri}i∈N

(and N1 is chosen so as to maximize nmax(S)({Ri}i∈N \ N1)),
(ii) {Ri}i∈N2 is a maximal structured component of {Ri}i∈N \ N1, and
(iii) {Ri}i∈N3 is a maximal structured component of {Ri}i∈ (N \ (N1∪ N2)).

In both cases N can be partitioned into two or more (maximal) subsets for which the
corresponding sub-profiles of {Ri}i∈N satisfy (S). We assume that the largest component of the
partition has the same size in both cases, and hence i(S)({Ri}i∈N) is the same in case (2) and
case (3). Intuitively, however, case (3) exhibits less structure than case (2), and our primary
index of structuration does not capture this intuition.

More generally, suppose that N can be partitioned into a set of disjoint non-empty subsets
such that, for each component of the partition, the corresponding sub-profile of {Ri}i∈N

satisfies condition (S). Formally,

(4) N = N1 ∪  N2  ∪  ... ∪  Nr, where i ≠ j implies Ni ∩  Nj = ∅  and N1, N2, ..., Nr ≠ ∅ ,
such that, for each j ∈ {1, 2, ..., r}, {Ri}i∈Nj satisfies (S).

Then our primary index of structuration focuses only on the largest component of a partition
of the form (4) and asks how large this largest component can possibly be.

One solution to this problem is to define secondary, tertiary, ... indices of structuration by
focusing, respectively, on the second largest, third largest, ... components of a partition of the
form (4) and asking how large these components can possibly be. To state these definitions
formally, we must first identify a specific partition of the form (4) as 'maximal' in a relevant
sense. Given the set of all partitions of N of the form (4), we can define a lexical ordering on
this set as follows: a partition N = N1 ∪  N2  ∪  ... ∪  Nr lexically precedes a partition N =
N'1 ∪  N'2  ∪  ... ∪  N'r' if only if the r-tuple <|N1|, |N2|, ..., |Nr|> is lexically greater than the r'-
tuple <|N'1|, |N'2|, ..., |N'r'|>, where <a1, a2, ..., ar> is lexically greater than <b1, b2, ..., br'> if
and only if there exists i ≤ min(r, r') such that ai > bi and, for all j < i, ai = bi. Now a partition
N = N1 ∪  N2  ∪  ... ∪  Nr of the form (4) will be called a maximal structured component
partition if it is not lexically preceded by any other partition of the form (4).

                                                                                                                                                                            
Regarding the complexity of this algorithm, note that for computing isingle-peaked({Ri}i∈N) no more than k!*n steps
are required. (In fact, (k!/2)*n steps are sufficient, since, for each pair of orderings that are mirror images of each
other, it is sufficient to consider only one.)
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In terms of a maximal structured component partition N = N1 ∪  N2  ∪  ... ∪  Nr, our primary
index of structuration satisfies

(5) i(S)({Ri}i∈N) = |N1| / |N1 ∪  N2  ∪  ... ∪  Nr| = |N1| / |N|.

Analogously, our secondary index of structuration can be defined to be

(6) |N2| / |N2  ∪  ... ∪  Nr| = |N2| / (|N|-|N1|),

and a tertiary index can be defined to be

(7) |N3| / |N3  ∪  ... ∪  Nr| = |N3| / (|N|-|N1|-|N2|).

The secondary and tertiary indices are, respectively, the maximal proportion of individuals in
N but outside N1 whose preference orderings are consistent with condition (S) and the
maximal proportion of individuals in N but outside N1 ∪  N2 whose preferences orderings are
consistent with (S).

Again, unless the secondary (tertiary) index equals 1, it is not the case that the personal
preference orderings of all members of N \ N1 (of N \ (N1∪  N2)) are simultaneously consistent
with (S), and the secondary (tertiary) index itself is insensitive to the level of structuration
amongst those preference orderings that are in {Ri}i∈N \ N1 (in {Ri}i∈N \ (N1∪ N2)) but outside any
maximal structured component of {Ri}i∈ N \ N1 (of {Ri}i∈N \ (N1∪ N2)) In analogy to examples (2)
and (3) above, examples can be constructed to illustrate that this insensitivity may be at odds
with our intuitions about structuration. If we extend the sequence of primary, secondary,
tertiary, ... indices further, the same insensitivity problem will recur at each stage in this
process. Of course, it is possible to respond to this problem by considering this sequence in its
entirety (if (S) is the condition of single-peakedness or any condition entailed by single-
peakedness, the length of this sequence is bounded above by the number of different logically
possible 'structuring dimensions', i.e. k!/2), and to use this sequence to define a lexical
ordering on the set of all logically possible profiles of personal preference orderings. For each
logically possible profile {Ri}i∈ N we can consider the corresponding r-tuple <primary index,
secondary index, ..., r-ary index>, where r is chosen such that the r-ary index of structuration
for {Ri}i∈N equals 1. We can then define a profile {Ri}i∈N to be more structured than a profile
{R'i}i∈N if the r-tuple corresponding to {Ri}i∈N is lexically greater than the r'-tuple
corresponding to {R'i}i∈N. If giving lexical priority to maximal structured components
conforms to our intuitions about preference structuration, this may be an acceptable -- and in
practice easily operationalizable -- method of measuring structuration4. However, I will now
propose another method, which applies well-known methods of measuring fractionalization to
the problem of measuring preference structuration.

3. The 'Fractionalization' Approach

Given a partition of the form (4), the 'maximal structured component' approach always
focuses on individual components of this partition and asks how large each of these

                                                       
4 An alternative way of avoiding the insensitivity problems of the 'maximal structured component' approach
would be to define an index of structuration in terms of the ratio of the number of (non-empty) subsets M⊆ N for
which {Ri}i∈M satisfies (S) to the number of logically possible (non-empty) subsets of N. However, a problem of
this index might be its computational complexity: the number of logically possible (non-empty) subsets of N, i.e.
2n-1, grows exponentially with the number of persons in N. (I am indebted to Robert Luskin for this suggestion.)
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components can possible be. But apart from the size each individual component, the number
of components may be of interest too. Specifically, we may ask what the minimal number of
components required to partition N in the form (4) is, formally

(8) d(S)({Ri}i∈N) = min{r : ∃N1, N2, ..., Nr such that (4) is satisfied}

(Again, if (S) is the condition of single-peakedness or any condition entailed by single-
peakedness, this number is bounded above by k!/2).

If (S) is the condition of single-peakedness, d(S)({Ri}i∈N) could be interpreted as the 'formal
dimensionality' or 'number of formal structuring dimensions' of the preference profile {Ri}i∈N.

However, while d(S)({Ri}i∈N), unlike i(S)({Ri}i∈ N), is sensitive to the (minimal) number of
components of a partition of the form (4), it is insensitive to the size of the different
components.

To define a measure of structuration which combines both desired sensitivities, we shall use
the Rae-Taylor (1970) and Laakso-Taagepera (1979) methods of measuring the level of
fractionalization, and the effective number of components, in a system.

The intuition underlying these methods can be introduced as follows: the students at an
educational institutions may have a different perception of the average class size from the
administration. For a total of |N| = n students partitioned into r disjoint non-empty classes,
N1, N2, ..., Nr, the administration perceives an average class size of 1/r(|N1| + |N2| + ... + |Nr|),
while the students perceive an average class size of (|N1|*|N1| + |N2|*|N2| + ... + |Nr|*|Nr|) / (|N1|
+ |N2| + ... + |Nr|) = 1/n(|N1|2 + |N2|2 + ... + |Nr|2), since, for each j ∈ {1, 2, ..., r}, a class size of
|Nj| is perceived by the |Nj| students in class Nj (see Taagepera & Grofman, 1981). The former
average, the arithmetic mean, is highly sensitive to the total number of classes in a partition
and thus to the addition or removal of tiny, residual components. Operationally, the arithmetic
mean may therefore lack robustness in the light of a potential empirical uncertainty regarding
such components. By contrast, the latter average, the grass-roots average, has the
characteristic of weighting each component according to its size and is therefore relatively
robust with regard to changes in a partition affecting only small components. It is this
combination of a sensitivity to the size and number of components in a system with a
robustness to changes affecting affect only very small components that makes the grass-roots
average theoretically and operationally attractive as a basis for measuring fractionalization.

Formally, given a partition of N into r disjoint non-empty classes, N1, N2, ..., Nr, the grass-
roots average of the component size is

(9) 1/|N|∑ j ∈ {1, 2, ..., r}|Nj|2,

and the grass-roots average of the fractional shares of the r components, also called the
Herfindahl-Hirschmann index of concentration, is

(10) HH = ∑ j ∈  {1, 2, ..., r}(|Nj|/|N|)2,

an index that ranges from arbitrarily close to zero (for extremely low concentration) to one
(for complete concentration).

The frequently used Rae-Taylor index of fractionalization is simply
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(11) RT = 1 - HH,

ranging from zero (for a single-component partition) to arbitrarily close to one (for extreme
fractionalization).

The Laakso-Taagepera index of the effective number of components in a system is based upon
the intuition that the reciprocal of HH can be interpreted as the number of components that
would be required to generate the given value of HH in a partition with perfectly equally sized
components. Hence this reciprocal can be seen as a measure of the 'effective number' of
components in the partition, formally

(12) LT = 1 / HH = 1 / (1 - RT).

Now the 'fractionalization' approach towards measuring preference structuration is based upon
the idea that, for any partition of the form (4), we can immediately compute the corresponding
values of HH, RT and LT. However, a profile of personal preference orderings, {Ri}i∈N, does
not determine a unique partition of the form (4). In order to reconstrue HH, RT and LT as
meaningful measures of structuration, we therefore need to single out a 'privileged' partition
of the requisite form. As in our definition of d(S)({Ri}i∈N) above, the most obvious way to do
this is to select a partition of the form (4) which minimizes the level of fractionalization
according to HH, RT and LT. Formally, we can use HH to define an index of structuration as
follows:

(13) structure(S)({Ri}i∈N) = max{∑ j ∈ {1, 2, ..., r}(|Nj|/n)2 : N1, N2, ..., Nr satisfy (4)}.

In accordance with our intuitions, structure(S)({Ri}i∈N) = 1 if and only if {Ri}i∈N satisfies
condition (S). If the value of structure(S)({Ri}i∈ N) is close to zero, by contrast, this means that
{Ri}i∈N is badly structured with respect to condition (S), in the sense that any partition of the
form (4) would be highly fractionalized.

Similarly -- and in particular if (S) is the condition of single-peakedness or (S) has a suitable
interpretation in terms of dimensionality --, we can interpret the effective number of
components in a minimally fractionalized partition of the form (4), measured by HH or LT, as
the 'effective number of formal dimensions' in the preference profile {Ri}i∈N, formally

(14) dim(S)({Ri}i∈N) = min{1 / [∑ j ∈ {1, 2, ..., r}(|Nj|/n)2] : N1, N2, ..., Nr satisfy (4)}.

Again, in accordance with our intuitions, dim(S)({Ri}i∈N) = 1 if and only if {Ri}i∈N satisfies
condition (S), i.e. if and only if {Ri}i∈N is perfectly 'unidimensional' according to condition
(S).

A computational disadvantage of structure(S)({Ri}i∈N) and dim(S)({Ri}i∈N) may be that the
number of logically possible partitions to be considered for determining the relevant maximal
or minimal values of HH or LT, respectively, is potentially very large.

It is, however, possible to combine the 'fractionalization' approach with the basic idea of the
'maximal structured component' approach so as to construct computationally simplified (and
intuitively appealing) variants of structure(S)({Ri}i∈N) and dim(S)({Ri}i∈N). If we attach
intuitive significance to maximal structured component partitions, as defined in the section 2.,
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then we can simply use the values of HH and LT for a maximal structured component
partition as our measures of structuration and effective formal dimensionality in a profile
{Ri}i∈N}.

(15) structure'(S)({Ri}i∈ N) = {∑ j ∈  {1, 2, ..., r}(|Nj|/n)2 : N = N1 ∪  N2  ∪  ... ∪  Nr is a maximal
   structured component partition with respect to {Ri}i∈N}.

(16) dim'(S)({Ri}i∈N) = {1 / [∑ j ∈  {1, 2, ..., r}(|Nj|/n)2] : N = N1 ∪  N2  ∪  ... ∪  Nr is a maximal
      structured component partition with respect to {Ri}i∈N}.

An algortithm of linear complexity in n is available for computing structure'(S)({Ri}i∈N) and
dim'(S)({Ri}i∈N).5

Clearly, structure'(S)({Ri}i∈N) ≤  structure(S)({Ri}i∈N) and dim'(S)({Ri}i∈N) ≥  dim(S)({Ri}i∈N). An
open question to be pursued further is what, for each choice of condition (S), the precise
relation between structure'(S)({Ri}i∈N) and  structure(S)({Ri}i∈N) (and, equivalently, between
dim'(S)({Ri}i∈N) and  dim(S)({Ri}i∈N)) is. However, to the extent to which we regard maximal
structured component partitions as 'privileged', we may regard structure'(S)({Ri}i∈N) and
dim'(S)({Ri}i∈N) as attractive solutions to the problem of measuring preference structuration.

4. Concluding Remarks

As indicated at the beginning of this note, there are at least two substantive motivations for
designing formal measures of preference structuration: one such motivation is a concern with
the practical significance of social-choice-theoretic impossibility problems, and a second
motivation is a more general concern with questions of 'pluralism', 'consensus' and 'issue-
dimensionality'. While the proposed measures of preference structuration may be useful from
the perspective of both motivations, two caveats need to be added, the first regarding the
social-choice-theoretic significance of the proposed measures, and the second regarding their
usefulness for capturing the ideas of 'pluralism', 'consensus' and 'issue-dimensionality'.

First, given the admissible choices for condition (S), we know that structure'(S)({Ri}i∈N) = 1
(or, equivalently, dim'(S)({Ri}i∈N) = 1)  is a sufficient (but not necessary) condition for
avoiding the standard social-choice-theoretic impossibility results. Intuitively, we also expect
the frequency of cycles and social-choice-theoretically 'problematic' preference configurations
to decrease with an increase in structure'(S)({Ri}i∈N) (or, equivalently, with a decrease in
dim'(S)({Ri}i∈N)). However, to test this intuition, further work is required. Gehrlein (1983)
computed the proportion of profiles without a Condorcet winner amongst the set of all
logically possible profiles of personal preference orderings, given fixed values of n and k.
Gehrlein's research design could be modified to compute, for each interval [a, b] ⊆  [0, 1] (and
fixed values of n and k), the proportion of 'problematic' profiles amongst the set of all profiles
                                                       
5 Note that, if (S) is the condition of single-peakedness, the algorithm stated in note (3) can be modified to
determine a maximal structured component partition of N, namely in the following way. Using a variant of this
algorithm, (k!/2)*n steps are sufficient to determine all potential choices of N1 (such that |N1| is maximal). There
are at most k!/2 potential choices of N1 (corresponding to the k!/2 possible 'dimensions' Ω ). For each potential
choice of N1, using our algorithm again, (k!/2)*(n-|N1|) steps are sufficient to determine all potential choices of
N2 (such that |N2| is maximal). Moreover, given a fixed N1, there are at most (k!/2)-1 potential choices of N2

(corresponding to the (k!/2)-1 remaining 'dimensions' Ω ). Next, for each potential choice of N2, (k!/2)*(n-|N1|-
|N2|) steps are sufficient to determine all potential choices of N3, and, given fixed N1 and N2, there are at most
(k!/2)-2 potential choices of N3. Continuing, we find that no more than (1+(k!/2)!)*((k!/2)*n) steps are required
to determine a maximal structured component partition N = N1 ∪  N2  ∪  ... ∪  Nr.
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{Ri}i∈N such that structure'(S)({Ri}i∈N) ∈ [a, b] (in these terms, Gehrlein's work can be
interpreted as the special case in which [a, b] = [0, 1]). Using this design, we could ask
whether higher levels of structuration according to structure'(S)({Ri}i∈N) are indeed conducive
to solving social choice problems.

Secondly, suppose that we have identified a partition N = N1 ∪  N2  ∪  ... ∪  Nr that satisfies (4),
possibly a maximal structured component partition. This means that, for each j, {Ri}i∈Nj
satisfies the structuration condition (S). For instance, if (S) is the condition of single-
peakedness, this means that, for each j, there exists a common 'dimension' Ω  with respect to
which the preference orderings of everyone in Nj have no more than one peak. However, this
is first and foremost a purely formal statement about the 'geometrical' representability of the
preferences of each person in Nj. In particular, such a formal statement does not entail
anything about how each person in Nj actually conceptualizes (his or her preference over) the
options. For instance, there typically exists more than one 'dimension' Ω  with respect to
which a given personal preference ordering has no more than one peak. This means that,
while the observation that a sub-profile {Ri}i∈M of {Ri}i∈N satisfies condition (S) can be taken
as a formal symptom of something like 'agreement at a meta-level', it may ultimately need to
be supplemented with suitable semantic considerations, in order to give a substantive (and not
merely formal) account of the level of 'consensus' or 'pluralism' within the relevant group of
people. In the case of single-peakedness, asking whether a 'structuring dimension' Ω   has an
obvious interpretation or rationalization may be a good starting-point. In particular, the larger
the number of people whose preference orderings are structured by the same formal 'frame'
(by virtue of satisfying condition (S)), the more plausibly we might try explain this common
structure in 'semantic' terms.

Undoubtedly, further work is required. But this note hopes to emphasize the interest of social-
choice-theoretic concepts for formally approaching issues of 'pluralism', 'consensus' and
'issue-dimensionality' and for devising suitable operationalizable measures of preference
structuration.
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