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Complex Collective Decisions and the Probability of Collective Inconsistencies 
Christian List1 

 
Abstract. Many groups have to make decisions over multiple interconnected pro-positions. The “doctrinal 
paradox” or “discursive dilemma” shows that propositionwise majority voting can lead to inconsistent 
collective outcomes, even when individual judgments are all consistent. How likely is the occurrence of 
this paradox? This paper develops a simple model for determining the probability of the paradox’s 
occurrence, given various probability distributions over individual judgments. Several convergence results 
are proved, identifying conditions under which that probability converges to certainty as the number of 
individuals increases, and conditions under which it vanishes. The model is used for assessing the “truth-
tracking” performance of two escape-routes from the paradox, the premise- and conclusion-based 
procedures. Finally, the present results are compared with existing results on the probability of Condorcet’s 
paradox. It is suggested that the doctrinal paradox is likely to occur under plausible conditions. 

 
A new paradox of aggregation, the “doctrinal paradox” or “discursive dilemma”, has 
been the subject of a growing body of literature in the fields of law, economics and 
philosophy (Kornhauser and Sager 1986; Kornhauser 1992; Kornhauser and Sager 1993; 
Chapman 1998; Brennan 2001; Pettit 2001; List and Pettit 2002a, 2002b; Chapman 2001, 
2002; Bovens and Rabinowicz 2001a, 2001b). A simple example illustrates the problem. 
Suppose that a panel of three judges has to decide on whether a defendant is liable under 
a charge of breach of contract. Legal doctrine requires that the court should find that the 
defendant is liable (proposition R) if and only if it finds, first, that the defendant did some 
action X (proposition P), and, second, that the defendant had a contractual obligation not 
to do action X (proposition Q). Thus legal doctrine stipulates the connection rule (R ↔ (P 
∧ Q)). Suppose the opinions of the three judges are as in table 1. 
 
Table 1: The Doctrinal Paradox (Conjunctive Version) 

 P Q (R ↔ (P ∧ Q)) R 
Judge 1 Yes Yes Yes Yes 
Judge 2 Yes No Yes No 
Judge 3 No Yes Yes No 
Majority Yes Yes Yes No 

 
All judges accept the connection rule, (R ↔ (P ∧ Q)). Further, judge 1 accepts both P and 
Q and, by implication, R. Judges 2 and 3 each accept only one of P or Q and, by 
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implication, they both reject R. If the court applies majority voting on each proposition 
(including the connection rule), it faces a paradoxical outcome. A majority accepts P, a 
majority accepts Q, a majority (unanimity) accepts (R ↔ (P ∧ Q)), and yet a majority 
rejects R. Propositionwise majority voting thus yields an inconsistent collective set of 
judgments, namely the set {P, Q, (R ↔ (P ∧ Q)), ¬R} (corresponding to the last row of 
table 1). This set is inconsistent in the standard sense of propositional logic: there exists 
no assignment of truth-values to the propositions P, Q and R that will make all the 
propositions in the set simultaneously true. And this outcome occurs even though the sets 
of judgments of individual judges (corresponding to the first three rows of table 1) are all 
consistent. The doctrinal paradox is also related to Anscombe’s paradox, or Ostrogorski’s 
paradox (Anscombe 1976; Kelly 1989; Brams, Kilgour and Zwicker 1997). Like the 
doctrinal paradox, these paradoxes are concerned with aggregation over multiple 
propositions. Unlike the doctrinal paradox, however, they do not explicitly incorporate 
logical connections between the relevant multiple propositions.   

Pettit (2001) has argued that the doctrinal paradox occurs not only in the context 
of aggregation of judgments according to legal doctrine, but that it poses a more general 
“discursive dilemma”, which any group may face when it seeks to form collective 
judgments on the basis of reasons. Further, List and Pettit (2002a, 2002b) have shown 
that the paradox illustrates a general impossibility theorem. According to the theorem, 
there exists no procedure for aggregating individual sets of judgments over multiple 
interconnected propositions into collective ones, where the procedure satisfies a set of 
minimal conditions. The paradox is related to the impossibility theorem in a way that is 
analogous to the way in which Condorcet’s paradox of cyclical preferences is related to 
Arrow’s impossibility theorem.  

Versions of the present aggregation problem may arise, for example, when a 
committee has to make a decision that involves the resolution of several premises; or 
when a political party or interest group seeks to come up with an entire policy package, 
where such a package consists of several interconnected propositions. Although the label 
“doctrinal paradox” will be used here, the more general nature of the problem should be 
kept in mind.   

How serious is the threat posed by this paradox? It is one thing to recognize that a 
given paradox of aggregation is logically possible. It is another to claim that the paradox 
is also of practical significance. There are at least two possible reasons why a particular 
paradox might not (seem to) occur in practice. One is that many of those decision 
procedures that are used in practice do not explicitly reveal the paradox, even when 
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individual views have exactly the pattern that would give rise to the paradox. Two such 
procedures for making decisions over multiple interconnected propositions will be 
discussed below, namely the so-called premise-based and conclusion-based procedures. 
These procedures will not produce inconsistent collective sets of judgments, even when a 
pattern of individual views similar to the one in table 1 occurs. But it will become evident 
below that the question of how frequently such patterns occur is nonetheless relevant for 
assessing the performance of the two procedures. A second possible reason why the 
paradox might not occur in practice is that the patterns of individual views that generate 
the paradox might themselves be rare.  

So how likely is the occurrence of this paradox, or more precisely, how likely is 
the occurrence of patterns of individual views that generate the paradox? The aim of this 
paper is to give a theoretical answer to this question. Inevitably, a large range of other 
important questions raised by the doctrinal paradox cannot be addressed here. In section 
1, necessary and sufficient conditions for the occurrence of the paradox are identified. In 
section 2, a probability-theoretic model is developed for determining the probability of its 
occurrence, given various assumptions about the probability that individuals hold 
different sets of judgments. Some convergence results are proved, identifying conditions 
under which the probability of the paradox’s occurrence converges to 1 as the number of 
individuals increases, and conditions under which that probability converges to 0. In 
section 3, two escape-routes from the paradox, the premise- and conclusion-based 
procedures of decision-making, are discussed, and, following two recent papers by 
Bovens and Rabinowicz (2001a, 2001b), their performance in terms of "tracking the 
truth" is investigated. The present model yields alternative proofs as well as extensions of 
some of the results by Bovens and Rabinowicz. It is also shown that, under certain 
conditions, if each individual is better than random at tracking the “truth” on each of the 
premises, but not very good at it, then the probability of the occurrence of the doctrinal 
paradox (and the probability of a discrepancy between the premise- and conclusion-based 
procedures) converges to 1 as the number of individuals increases. Section 4 addresses 
extensions and generalizations of the present results. And, in section 5, finally, the 
present results are briefly compared with existing results on the probability of cycles in 
the realm of preference aggregation.  

Before embarking on the analysis, it is helpful to address one objection. Many of 
the theoretical results of this paper are convergence results concerning the behaviour of 
certain probabilities as the number of individuals increases. From the perspective of the 
typical size of those decision-making bodies faced with problems of aggregation over 
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multiple interconnected propositions, it is not immediately clear why such convergence 
results, or any results about large numbers of individuals, should be relevant. Typical 
examples of such decision-making bodies are courts, committees, panels of experts, or 
parliaments, with between a handful and a few hundred members.  

In response to this objection, four points should be noted. First, the theoretical 
framework developed in this paper is suitable for calculating the relevant probabilities for 
finite (and indeed small) numbers of individuals too; see in particular appendices 1 and 2. 
Second, ever since Condorcet’s famous work on jury decisions – which provides the 
motivation for the discussion of “truth-tracking” in sections 3 and 4 –, the convergence 
behaviour of the probabilities of various voting outcomes has been a central focus of 
attention, and hence it is theoretically interesting to address Condorcet’s traditional 
questions in the new context of aggregation over multiple interconnected propositions. 
Third, as table 3 in section 2 illustrates, convergence results may be relevant even to 
situations of just a few dozen or a few hundred decision-makers, as the speed of 
convergence of the relevant probabilities may often be quite high. Finally, the results may 
shed some light on several questions in democratic theory, such as (i) whether it is 
desirable to introduce large-scale political participation on complex issues by running 
more referenda over multiple propositions and (ii) what the optimal size of decision-
making bodies is for complex collective decisions. In section 5, some relevant anecdotal 
evidence from referenda in California will be cited. 
 
1 Necessary and Sufficient Conditions for the Occurrence of the Paradox 
 
Suppose that there are n individuals and three propositions, P, Q and R. Suppose further 
that all individuals accept the connection rule (R ↔ (P ∧ Q)). Admitting only consistent 
individual sets of judgments over P, Q and R, there are 4 logically possible sets of 
judgments an individual might hold, as shown in table 2. 
 
Table 2: All logically possible consistent sets of judgments over P, Q and R, given (R 
↔ (P ∧ Q)) 

Label Judgment on P Judgment on Q Judgment on R 
PQ Yes Yes Yes 

P¬Q Yes No No 
¬PQ No Yes No 

¬P¬Q No No No 
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Let nPQ, nP¬Q, n¬PQ, n¬P¬Q be the numbers of individuals holding the sets of judgments 
PQ, P¬Q, ¬PQ, ¬P¬Q, respectively. A collective inconsistency (a “doctrinal paradox”) 
occurs if and only if there are majorities for each of P and Q, and there is a majority 
against R. If there are ties, we allow that these may be broken in whichever way 
collective consistency requires.  
 
Proposition 1. Given the connection rule (R ↔ (P ∧ Q)), there will be a collective 
inconsistency under propositionwise majority voting if and only if (nPQ + nP¬Q > n/2) and 
(nPQ + n¬PQ > n/2) and (nPQ < n/2). 
 
Given unanimous acceptance of (R ↔ (P ∧ Q)), the conditions of proposition 1 are 
necessary and sufficient for the majority acceptance of the (inconsistent) set of 
propositions {P, Q, (R ↔ (P ∧ Q)), ¬R}. 

I make no claims as to whether it is empirically plausible to assume that 
individuals hold consistent sets of judgments. For the present purposes, it is sufficient to 
note that admitting only consisting individual sets of judgments makes the occurrence of 
inconsistent collective sets of judgments less likely rather than more likely. If we can still 
show that, in a large class of cases, collective inconsistencies will occur, then the 
argument will effectively have been strengthened rather than weakened by the exclusion 
of inconsistent individual sets of judgments. 
 
2 A Probability-Theoretic Framework 
 
To study the likelihood of the occurrence of collective inconsistencies, we assume that (i) 
each individual has probabilities pPQ, pP¬Q, p¬PQ, p¬P¬Q of holding the sets of judgments 
PQ, P¬Q, ¬PQ, ¬P¬Q, respectively (where pPQ + pP¬Q + p¬PQ + p¬P¬Q = 1); and (ii) the 
judgments of different individuals are independent from each other. 

The simplifications implicit in these assumptions follow the classical Condorcet 
jury theorem. Specifically, we assume (i) identical probabilities for different individuals, 
and (ii) independence between different individuals. However, it is known in the 
literature on the Condorcet jury theorem that the types of convergence mechanisms based 
on the law of large numbers invoked in the present paper apply, with certain 
modifications, also when probabilities vary across individuals or when there are certain 
dependencies between individuals (Grofman, Owen and Feld (1983) and Borland 
(1989)). We turn to a Condorcet jury framework more properly in section 3. 
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An impartial culture is the situation of perfect equiprobability across all logically 
possible sets of judgments, i.e. pPQ = pP¬Q = p¬PQ = p¬P¬Q. The function for calculating 
the probability of each logically possible combination of individual sets of judgments for 
a given number of individuals n is stated in appendix 1.  

Moreover, appendix 1 includes a formula for calculating the probability that there 
will be a collective inconsistency under propositionwise majority voting for various 
numbers of individuals n and various values of pPQ, pP¬Q, p¬PQ, p¬P¬Q, where the 
connection rule is (R ↔ (P ∧ Q)). To avoid complications raised by ties, we assume that 
the number of individuals is odd. Table 3 shows some sample calculations. 
 
Table 3: Probability that there will be a collective inconsistency under 
propositionwise majority voting (given (R ↔ (P ∧ Q))), for various scenarios  
 Scenario 1  

pPQ = 0.25 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 
0.25 

Scenario 2 
pPQ = 0.26 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 
0.24 

Scenario 3  
pPQ = 0.3 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 
0.2 

Scenario 4 
pPQ = 0.24 
pP¬Q = 0.27 
p¬PQ = 0.25 
p¬P¬Q = 
0.24 

Scenario 5  
pPQ = 0.49 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 
0.11 

Scenario 6  
pPQ = 0.51 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 
0.09 

Scenario 7 
pPQ = 0.55 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 
0.05 

Scenario 8 
pPQ = 0.33 
pP¬Q = 0.33 
p¬PQ = 0.33 
p¬P¬Q = 
0.01 

n = 3 0.0938 0.0975 0.1125 0.0972 0.1176 0.1224 0.1320 0.2156 
n = 11 0.2157 0.2365 0.3211 0.2144 0.3570 0.3432 0.2990 0.6188 
n = 31 0.2487 0.2946 0.4979 0.2409 0.5183 0.4420 0.2842 0.9104 
n = 51 0.2499 0.3101 0.5815 0.2405 0.5525 0.4414 0.2358 0.9757 
n = 71 ≈ 0.2500 0.3216 0.6417 0.2393 0.5663 0.4327 0.1983 0.9930 
n = 101 ≈ 0.2500 0.3362 0.7113 0.2375 0.5798 0.4201 0.1562 0.9989 
n = 201 ≈ 0.2500 0.3742 0.8511 0.2317 0.6118 0.3882 0.0774 ≈ 1.0000 
n = 501 ≈ 0.2500 0.4527  0.9754 0.2149 0.6729 0.3271 0.0124 ≈ 1.0000 
n = 1001 ≈ 0.2500 0.5426 0.9985 0.1897 0.7366 0.2634 0.0008 ≈ 1.0000 
n = 1501 ≈ 0.2500 0.6097 0.9999 0.1676 0.7808 0.2192 0.0001 ≈ 1.0000 

 
Slight differences in the probabilities that individuals hold the different possible sets of 
judgments correspond to substantial differences in the resulting probability that a 
collective inconsistency will occur under propositionwise majority voting. In the special 
case of an impartial culture (scenario 1), the probability of the occurrence of a collective 
inconsistency appears to converge to 0.25 as the number of individuals increases. Slight 
deviations from an impartial culture, however, entail a completely different convergence 
pattern. This is confirmed by the following convergence results, proved in appendix 3. 
 
Proposition 2. Let the connection rule be (R ↔ (P ∧ Q)).  
(a) Suppose (pPQ + pP¬Q > 1/2) and (pPQ + p¬PQ > 1/2) and (pPQ < 1/2). Then the 

probability of a collective inconsistency under propositionwise majority voting 
converges to 1 as n tends to infinity. 
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(b) Suppose (pPQ + pP¬Q < 1/2) or (pPQ + p¬PQ < 1/2) or (pPQ > 1/2). Then the probability 
of a collective inconsistency (given under propositionwise majority voting converges 
to 0 as n tends to infinity. 

 
Scenarios 2, 3, 5 and 8 in table 3 satisfy the conditions of proposition 2a, and scenarios 4, 
6 and 7 satisfy the conditions of proposition 2b. The numerical values in table 3 thus 
provide illustrations of the convergence mechanisms identified by proposition 2.  

The convergence results are effectively a consequence of the law of large 
numbers. If pPQ, pP¬Q, p¬PQ, p¬P¬Q are the probabilities that an individual holds the sets of 
judgments PQ, P¬Q, ¬PQ, ¬P¬Q, respectively, then npPQ, npP¬Q, np¬PQ, np¬P¬Q are the 
expected numbers of these sets of judgments across n individuals, and pPQ, pP¬Q, p¬PQ, 
p¬P¬Q are the expected frequencies (i.e. the expected numbers divided by n). If n is small, 
the actual frequencies may differ substantially from the expected ones, but as n increases, 
the actual frequencies will approximate the expected ones increasingly closely. In 
particular, if the probabilities pPQ, pP¬Q, p¬PQ, p¬P¬Q satisfy a set of strict inequalities, the 
actual frequencies (and by implication the actual numbers) are increasingly likely to 
satisfy a matching set of strict inequalities. But if these are the inequalities corresponding 
to the occurrence or absence of a collective inconsistency (compare proposition 1), this 
means that the probability of the occurrence or absence of such an inconsistency will 
converge to certainty. The described mechanism will be used to prove other convergence 
results below. Lemma 1 in appendix 3 captures the mechanism formally. 

The results of this section are also useful from the perspective of the general 
impossibility result on the aggregation of judgments over multiple interconnected 
propositions. They allow us to determine, under various assumptions about the 
probability of different individual judgments, how likely it is that a combination (or 
profile) of sets of views across individuals will fall into a problematic domain (one in 
which collective inconsistencies under propositionwise majority voting occur), and how 
likely it is that it will fall into an unproblematic one (one in which propositionwise 
majority voting leads to consistent outcomes).  
 
3 Voting for the Premises Versus Voting for the Conclusion 
 
Premise-based and conclusion-based procedures of decision-making have been proposed 
as possible escape-routes from the doctrinal paradox (see, for example, Pettit 2001). 
According to the premise-based procedure, the group applies majority voting on 
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propositions P and Q, the “premises”, but not on proposition R, the “conclusion”, and lets 
the connection rule, (R ↔ (P ∧ Q)), dictate the collective judgment on R, effectively 
ignoring the majority verdict on it. Given the individual judgments in table 1, the 
premise-based procedure leads to the collective acceptance of P and Q and, by 
implication, R. According to the conclusion-based procedure, the group applies majority 
voting only on R, but not on P and Q, thereby effectively ignoring the majority verdicts 
on these propositions. Given the individual judgments in table 1, the conclusion-based 
procedure leads to the collective rejection of R. This illustrates that the premise-based and 
conclusion-based procedures may produce divergent outcomes. 

As both Pettit (2001) and Chapman (2002) argue, the premise-based procedure is 
particularly attractive from the perspective of deliberative democracy, as it prioritises, 
and “collectivises”, the reasons underlying a given overall decision. A key concern of 
deliberative democracy is to make collective decisions based on publicly defensible 
reasons. The conclusion-based procedure, on the other hand, focuses solely on the 
conclusions that individuals privately reach, ignoring these individuals’ views on the 
premises. The conclusion-based procedure thus fails to make the underlying reasons for 
an overall collective decision explicit at the collective level. 

However, both Pettit’s and Chapman’s arguments are concerned almost 
exclusively with the procedural merits of the premise- versus conclusion-based 
procedures. Bovens and Rabinowicz (2001a, 2001b), by contrast, have compared the two 
procedures from an epistemic perspective (see also Pettit and Rabinowicz 2001; on the 
distinction between procedural and epistemic conceptions of democracy, see List and 
Goodin 2001). Supposing – in the framework of the Condorcet jury theorem – that there 
is an independent fact of the matter on whether each of P and Q is true (and, by 
implication, on whether R is true), they study the likelihood that the premise- and 
conclusion-based procedures reach the correct decision on R. In this section, the 
Condorcet jury framework will be connected with the present probability-theoretic 
framework, and the implications of the Condorcet jury assumptions for the probability of 
collective inconsistencies will be discussed. I also present alternative proofs as well as 
extensions of some of the results by Bovens and Rabinowicz, particularly convergence 
results (some of them in appendix 3). In section 4 below, I provide generalizations of the 
results to a disjunctive version of the doctrinal paradox as well as to cases of more than 
two premises. 

We assume (i) that each individual has probabilities p and q of making a correct 
judgment on P and on Q, respectively, where p, q > 0.5 (informally, these probabilities 
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are interpreted as the "competence" of the individual); (ii) each individual’s judgments on 
P and on Q are independent from each other; (iii) the judgments of different individuals 
are independent from each other. Again, these assumptions are in the spirit of the 
classical Condorcet jury theorem. At the end of this section we briefly address the effects 
of dependencies between the same individual's judgments on P and on Q. 

Suppose the truth-values of P and Q are fixed (though not necessarily known). 
Then the values of p and q induce corresponding values of pPQ, pP¬Q, p¬PQ, p¬P¬Q. In 
other words, from the probabilities corresponding to each individual's decisions on P and 
Q, we can infer the probabilities corresponding to each individual's holding each of the 
sets of judgments PQ, P¬Q, ¬PQ, ¬P¬Q. The four possible cases are shown in table 4. 
 
Table 4: pPQ, pP¬Q, p¬PQ, p¬P¬Q as derived from p and q 
 P Q pPQ pP¬Q p¬PQ p¬P¬Q 

Case 1 true true pq p(1-q) (1-p)q (1-p)(1-q) 
Case 2 true false p(1-q) pq (1-p)(1-q) (1-p)q 
Case 3 false true (1-p)q (1-p)(1-q) pq p(1-q) 
Case 4 false false (1-p)(1-q) (1-p)q p(1-q) pq 

 
Proposition 3. Let the connection rule be (R ↔ (P ∧ Q)).  
(a) Suppose P and Q are true.  

• Suppose 0.5 < p, q < √(0.5). Then the probability of a collective inconsistency 
under propositionswise majority voting converges to 1 as n tends to infinity.  

• Suppose p, q > √(0.5). Then the probability of a collective inconsistency under 
propositionwise majority voting converges to 0 as n tends to infinity. 

(b) Suppose that not both P and Q are true and p, q > 0.5. Then the probability of a 
collective inconsistency under propositionswise majority voting converges to 0 as n 
tends to infinity.  

 
See appendix 3 for a proof. Proposition 3 shows that convergence of the probability of 
the paradox to certainty (as the number of individuals increases) occurs when all 
premises are true and individual competence is better than random but not particularly 
high. Convergence of the probability of the paradox to 0 occurs when either at least one 
of the premises is false or individual competence is very high. As the premise- and 
conclusion-based procedures will produce divergent outcomes precisely in those cases in 
which a collective inconsistency occurs, proposition 3 immediately implies that, when all 
premises are true and individual competence is low (but better than random), the 
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probability of a discrepancy between the two procedures will also converge to certainty 
as the number of individuals increases. To the extent that cases of true premises and low 
competence are plausible, discrepancies between the two procedures may thus be 
frequent. This observation motivates the question of which of the two procedures we 
should use from the perspective of making the correct decision. 

Bovens and Rabinowicz distinguish between reaching the truth for the right 
reasons, and reaching it regardless of reasons. Reaching the truth for the right reasons 
requires deducing the correct decision on the conclusion from correct decisions on each 
of the premises, whereas reaching the truth regardless of reasons includes the possibility 
of reaching the correct decision on the conclusion accidentally, while making a wrong 
decision on at least one of the premises. Which of the two truth-tracking criteria we 
regard as the more compelling one depends on the account of democracy we hold. 
Deliberative democrats or lawyers in the common law tradition stress the importance of 
giving public reasons underlying collective decisions (Pettit 2001 and Chapman 2002), 
and would hence endorse the criterion of reaching the truth for the right reasons. Pure 
epistemic democrats or pure consequentialists, by contrast, focus primarily on reaching 
correct outcomes reliably, irrespective of the underlying reasoning process, and would 
therefore endorse the criterion of reaching the truth regardless of reasons. 

Table 5 shows the conditions, in terms of the present framework, under which the 
premise- and conclusion-based procedures reach the correct decision on R (i) regardless 
of reasons and (ii) for the right reasons, for different truth-values of P and Q. 
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Table 5: Conditions under which the premise- and conclusion-based procedures 
reach the correct decision on R (given (R ↔ (P ∧ Q))) (i) regardless of reasons and 
(ii) for the right reasons, for different truth-values of P and Q 

Premise-based procedure reaches correct 
decision on R 

Conclusion-based procedure reaches 
correct decision on R 

 
 
 

P 

 
 
 

Q 
regardless of 
reasons 
if and only if … 

for the right 
reasons 
if and only if … 

regardless of 
reasons 
if and only if … 

for the right 
reasons 
if and only if … 

true true there are majorities for each of P and Q  
i.e.  
(nPQ + nP¬Q > n/2) and (nPQ + n¬PQ > n/2) 

 
(1) 

there is a single majority supporting 
both P and Q  
i.e.  
nPQ > n/2                                                   

(2) 
true false there is a majority 

for P and a 
majority against Q 
i.e.  
(nPQ + nP¬Q > n/2) 
and (nP¬Q + n¬P¬Q > 
n/2) 

(4) 

there is a single 
majority 
supporting P and 
rejecting Q 
i.e.  
nP¬Q > n/2 

(8) 

false true there is a majority 
against P and a 
majority for Q 
i.e.  
(n¬PQ + n¬P¬Q > n/2) 
and (nPQ + n¬PQ > 
n/2) 

(5) 

there is a single 
majority rejecting 
P and supporting 
Q 
i.e.  
n¬PQ > n/2 

(9) 
false false 

there are not 
majorities for each 
of P and Q 
i.e. 
(nPQ + nP¬Q < n/2) or 
(nPQ + n¬PQ < n/2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3) 

there are 
majorities against 
each of P and Q 
i.e.  
(n¬PQ+n¬P¬Q>n/2) 
and (nP¬Q + n¬P¬Q > 
n/2) 

(6) 

there is not a single 
majority 
supporting both P 
and Q 
i.e.  
nPQ < n/2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(7) 

there is a single 
majority rejecting 
both P and Q 
i.e.  
n¬P¬Q > n/2 
 
 

(10) 

 
Bovens and Rabinowicz show in detail that the premise-based procedure is always better 
at reaching the correct decision on R for the right reasons, whereas the conclusion-based 
procedure may sometimes be better at reaching it regardless of reasons. Some of these 
results can be derived from table 5.  
• Suppose we are concerned with reaching the correct decision on R for the right 

reasons. To compare the two procedures, we need to compare the relevant conditions 
corresponding to the four logically possible combinations of truth-values on P and Q. 
Condition (2) implies condition (1), condition (8) implies condition (4), condition (9) 
implies condition (5), and condition (10) implies condition (6). Hence the premise-



 12 

based procedure is always at least as good as the conclusion-based procedure in terms 
of reaching the correct decision on R for the right reasons. 

• Suppose we are concerned with reaching the correct decision on R regardless of 
reasons. Here we need to distinguish two cases. 

o Suppose both P and Q are true. Again, condition (2) implies condition (1), and 
hence the premise-based procedure is always at least as good as the 
conclusion-based procedure in terms of reaching the correct decision on R 
regardless of reasons. 

o Suppose not both P and Q are true. Here condition (3) implies condition (7), 
and hence the conclusion-based procedure is always at least as good as the 
premise-based procedure in terms of reaching the correct decision on R 
regardless of reasons. 

These results are compatible with results by Grofman (1985) showing that, when a group 
decision on a conjunctive composite proposition can be disaggregated into separate group 
decisions on each of the conjuncts, disaggregation is superior in terms of reaching the 
correct decision (regardless of reasons) for true propositions, but not for false decisions.  

Appendix 2 shows, in terms of the present framework, how to calculate the 
probabilities that, for a fixed number of individuals n and fixed truth-values of P and Q, 
the premise- and conclusion-based procedures reach the correct decision on R (i) 
regardless of reasons and (ii) for the right reasons. 

The results by Bovens and Rabinowicz also imply several results on the 
convergence of these probabilities as the number of individuals increases. The present 
framework provides alternative proofs of some of these results, given in appendix 3. 
 
Proposition 4. Let the connection rule be (R ↔ (P ∧ Q)). The probabilities, as n tends to 
infinity, that the premise- and conclusion-based procedures reach a correct decision on R 
(i) regardless of reasons and (ii) for the right reasons, under various scenarios, are as 
shown in table 6. 
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Table 6: Probability, as n tends to infinity, of a correct decision on R (given (R ↔ (P 
∧ Q))) under the premise- and conclusion based procedures (i) regardless of reasons 
and (ii) for the right reasons, under various scenarios 

Premise-based procedure: 
Probability, as n tends to infinity, of … 

Conclusion-based procedure: 
Probability, as n tends to infinity, of … 

 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 
 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 

 
0.5 < p, q < √(0.5) 
P and Q both true 

 
0 

(b) 
0.5 < p, q < √(0.5) 

not both  
P and Q true 

 
1 

(c) 

 
0 

(d)
 

p, q > √(0.5) 

 
 
 
1 
 
 
 
 

(a) 

 
1 

(e) 

 
For a large class of conditions, the performance of the conclusion-based procedure is 
poor. If we are concerned with tracking the “truth” for the right reasons, the probability 
that the conclusion-based procedure will be successful will always converge to 0 as the 
number of individuals increases, unless the competence of individuals exceeds √(0.5). If 
we are concerned with tracking the “truth” regardless of reasons, then the probability that 
the conclusion-based procedure will be successful will still converge to 0, unless at least 
one of the premises is false. By contrast, the probability that the premise-based procedure 
tracks the “truth”, both for the right reasons and regardless of reasons, will converge to 1 
as soon as the competence of individuals is above 0.5. However, when P and Q are not 
both true, then the probability that the conclusion-based procedure reaches the correct 
decision on R regardless of reasons converges to 1 faster than the probability that the 
premise-based procedure reaches the correct decision on R regardless of reasons. This 
follows from the fact (remarked above) that condition (3) in table 5 implies condition (7), 
whereas the converse implication does not hold. 

It is important to note that the results of this section are very much dependent on 
the assumption that each individual’s judgments on P and on Q are independent from 
each other. If there is a high degree of dependency, the probability of a collective 
inconsistency and of a discrepancy between the premise- and conclusion-based 
procedures is drastically reduced. In the limiting case, if each individual makes a correct 
judgment on P if and only if he or she makes a correct judgment on Q, then the 
individual’s competence on the conclusion R  is equal to his or her competence on each 
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of the premises P and Q. And, so long as that competence exceeds 0.5, the classical 
Condorcet jury theorem can then be applied to show that the probability of a correct 
decision under the conclusion-based procedure converges to 1 as the number of 
individuals increases. In this case of perfect dependency between an individual’s 
judgments on P and on Q, the premise- and conclusion-based procedures will always 
coincide and there will be no collective inconsistencies. 
 

4 Extensions and Generalizations 
 
So far we have discussed only one specific version of a problem of aggregation over 
multiple interconnected propositions, namely the conjunctive version of the doctrinal 
paradox, where the conjunction of two premises is a necessary and sufficient condition 
for a conclusion. It is known that the paradox can be generalized. Disjunctive versions of 
the paradox have been discussed, as well as extensions to more than two propositions 
(see, amongst others, Chapman 1998 and Pettit 2001). Moreover, for any system of 
multiple propositions with certain logical interconnections, collective inconsistencies 
under propositionwise majority voting are possible (List and Pettit 2002a). The aim of the 
present section is to illustrate that the present method of determining the probability of 
collective inconsistencies under propositionwise majority voting is applicable to other 
problems of aggregation over multiple propositions too. I will discuss two applications of 
the method, first an application to the disjunctive version of the doctrinal paradox, and 
second an application to the conjunctive version of the paradox with more than two 
premises. 
 
4.1 The Disjunctive Version of the Doctrinal Paradox 
 
Table 7: The Doctrinal Paradox (Disjunctive Version) 

 P Q (R ↔ (P ∨ Q)) R 
Judge 1 Yes No Yes Yes 
Judge 2 No Yes Yes Yes 
Judge 3 No No Yes No 
Majority No No Yes Yes 

 
In the disjunctive version of the doctrinal paradox, there are two premises, P and Q (e.g. 
“there is possibility 1 for jurisdiction” and “there is possibility 2 for jurisdiction”), and a 
conclusion, R (“there is a possibility for jurisdiction, all things considered”), and all 
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judges accept that the disjunction of P and Q is necessary and sufficient for R. Given the 
individual judgments in table 7, a majority accepts R, a majority (unanimity) accepts (R 
↔ (P ∨ Q)), and yet majorities reject each of  P and Q. A majority of judges may, for 
example, hold that there is a possibility for jurisdiction, all things considered, and also 
that this possibility for jurisdiction must be supported by at least one of two justifications 
(P or Q), but the judges may feel to reach any majority agreement on which of the two 
justifications obtains. 

Once again, there are 4 logically possible consistent sets of judgments an 
individual might hold, as shown in table 8. 
 
Table 8: All logically possible consistent sets of judgments over P, Q and R, given (R 
↔ (P ∨ Q)) 

Label Judgment on P Judgment on Q Judgment on R 
PQ Yes Yes Yes 

P¬Q Yes No Yes 
¬PQ No Yes Yes 

¬P¬Q No No No 

 
Note that the connection rule (R ↔ (P ∨ Q)) is logically equivalent to (¬R ↔ (¬P ∧ 
¬Q)). Therefore all the results on the conjunctive version of the paradox in section 2 can 
be restated for the disjunctive version too. To state the corresponding results for the 
disjunctive version of the paradox, we simply need to swap P and ¬P, Q and ¬Q and R 
and ¬R in all the propositions and proofs. 

The following proposition is the counterpart of propositions 1 and 2 above. Let 
nPQ, nP¬Q, n¬PQ, n¬P¬Q be the numbers of individuals holding the sets of judgments PQ, 
P¬Q, ¬PQ, ¬P¬Q in table 8, respectively. 
 
Proposition 5. Let the connection rule be (R ↔ (P ∨ Q)). 
(a) There will be a collective inconsistency under propositionwise majority voting if and 

only if (n¬P¬Q + n¬PQ  > n/2) and (n¬P¬Q + nP¬Q > n/2) and (n¬P¬Q < n/2). 
(b) Suppose (p¬P¬Q + p¬PQ  > 1/2) and (p¬P¬Q + pP¬Q > 1/2) and (p¬P¬Q < 1/2). Then the 

probability of a collective inconsistency under propositionwise majority voting 
converges to 1 as n tends to infinity. 

(c) Suppose (p¬P¬Q + p¬PQ  < 1/2) or (p¬P¬Q + pP¬Q < 1/2) or (p¬P¬Q > 1/2). Then the 
probability of a collective inconsistency under propositionwise majority voting 
converges to 0 as n tends to infinity. 
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Given unanimous acceptance of (R ↔ (P ∨ Q)), the conditions of 5a are necessary and 
sufficient for the majority acceptance of the (inconsistent) set of propositions {¬P, ¬Q, 
(R ↔ (P ∨ Q)), R}. The proofs of 5b and 5c are are analogous to the proofs of 2a and 2b. 

If scenarios 1 to 8 in table 3 are replaced with scenarios 1* to 8*, as shown in 
table 9 below, the probability that there will be a collective inconsistency under 
propositionwise majority voting for the new connection rule (R ↔ (P ∨ Q)) can be read 
off directly from table 3. 
 
Table 9: Scenarios corresponding to the probability that there will be a collective 
inconsistency under propositionwise majority voting (given (R ↔ (P ∨ Q))) 
Scenario 1*  
pPQ = 0.25 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 0.25 

Scenario 2* 
pPQ = 0.24 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 0.26 

Scenario 3*  
pPQ = 0.2 
pP¬Q = 0.25 
p¬PQ = 0.25 
p¬P¬Q = 0.3 

Scenario 4* 
pPQ = 0.24 
pP¬Q = 0.25 
p¬PQ = 0.27 
p¬P¬Q = 0.24 

Scenario 5*  
pPQ = 0.11 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 0.49 

Scenario 6*  
pPQ = 0.09 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 0.51 

Scenario 7* 
pPQ = 0.05 
pP¬Q = 0.2 
p¬PQ = 0.2 
p¬P¬Q = 0.55 

Scenario 8* 
pPQ = 0.01 
pP¬Q = 0.33 
p¬PQ = 0.33 
p¬P¬Q = 0.33 

 
The conditions of proposition 5b – convergence of the probability of a collective 
inconsistency to 1 – are satisfied in scenarios 2*, 3*, 5* and 8*; the conditions of 
proposition 5c – convergence of the probability of a collective inconsistency to 0 – are 
satisfied in scenarios 4*, 6* and 7*. 

We will now again use the Condorcet jury framework introduced in section 3. 
 

Proposition 6. Let the connection rule be (R ↔ (P ∨ Q)).  
(a) Suppose P and Q are both false.  

• Suppose 0.5 < p, q < √(0.5). Then the probability of a collective inconsistency 
under propositionswise majority voting converges to 1 as n tends to infinity.  

• Suppose p, q > √(0.5). Then the probability of a collective inconsistency under 
propositionwise majority voting converges to 0 as n tends to infinity. 

(b) Suppose that at least one of P and Q is true and p, q > 0.5. Then the probability of a 
collective inconsistency under propositionswise majority voting converges to 0 as n 
tends to infinity.  

 
The premise- and conclusion-based procedures of decision-making provide escape-routes 
from the disjunctive version of the doctrinal paradox too. In analogy to proposition 3, 
proposition 6 can be interpreted as showing that the probability of a discrepancy between 
the two procedures (which occurs precisely when the paradox occurs) will converge to 
certainty (as the number of individuals increases) when both premises are false and 
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individual competence is low (but better than random). Again, this motivates the question 
of which of the two procedures performs better from the perspective of truth-tracking. As 
in the conjunctive case, we can distinguish between reaching the correct decision for the 
right reasons and reaching it regardless of reasons. Table 10 shows the conditions under 
which the premise- and conclusion-based procedures reach the correct decision on R 
(given (R ↔ (P ∨ Q))) (i) regardless of reasons and (ii) for the right reasons, for different 
truth-values of P and Q. 
 
Table 10: Conditions under which the premise- and conclusion-based procedures 
reach the correct decision on R (given (R ↔ (P ∨ Q))) (i) regardless of reasons and 
(ii) for the right reasons, for different truth-values of P and Q 

Premise-based procedure reaches correct 
decision on R 

Conclusion-based procedure reaches 
correct decision on R 

 
 
 

P 

 
 
 

Q 
regardless of 
reasons 
if and only if … 

for the right 
reasons 
if and only if … 

regardless of 
reasons 
if and only if … 

for the right 
reasons 
if and only if … 

false false there are majorities against each of P 
and Q 
i.e. 
(n¬P¬Q + nP¬Q > n/2) and (n¬P¬Q + n¬PQ > 
n/2) 

(1) 

there is a single majority against both P 
and Q 
i.e.  
n¬P¬Q > n/2                                                   

(2) 
true false there is a majority 

for P and a 
majority against Q 
i.e.  
(nPQ + nP¬Q > n/2) 
and (nP¬Q + n¬P¬Q > 
n/2) 

(4) 

there is a single 
majority 
supporting P and 
rejecting Q 
i.e.  
nP¬Q > n/2 

(8) 
false true there is a majority 

against P and a 
majority for Q 
i.e.  
(n¬PQ + n¬P¬Q > n/2) 
and (nPQ + n¬PQ > 
n/2) 

(5) 

there is a single 
majority rejecting 
P and supporting 
Q  
i.e.  
n¬PQ > n/2 

(9) 
true true 

there is a majority 
for at least one of P 
and Q 
i.e. 
(nPQ + nP¬Q > n/2) or 
(nPQ + n¬PQ > n/2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3) 

there are 
majorities for each 
of P and Q 
i.e.  
(n¬PQ+nPQ>n/2) and 
(nP¬Q + nPQ > n/2) 

(6) 

there is not a single 
majority against 
both P and Q 
i.e.  
n¬P¬Q < n/2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(7) 

there is a single 
majority 
supporting both P 
and Q 
i.e.  
nPQ > n/2 

(10) 

 
In table 10, the same implications as in table 5 hold, and we can deduce the following 
propositions: 
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• The premise-based procedure is always at least as good as the conclusion-based 
procedure in terms of reaching the correct decision on R for the right reasons. 

• Suppose we are concerned with reaching the correct decision on R regardless of 
reasons. Here we need to distinguish two cases. 

o Suppose both P and Q are false. Then the premise-based procedure is always 
at least as good as the conclusion-based procedure in terms of reaching the 
correct decision on R regardless of reasons. 

o Suppose at least one of P and Q is true. Then the conclusion-based procedure 
is always at least as good as the premise-based procedure in terms of reaching 
the correct decision on R regardless of reasons. 

These results are also compatible with results by Grofman (1985). Grofman showed that, 
when a group decision on a disjunctive composite proposition can be disaggregated into 
separate group decisions on each of the disjuncts, disaggregation is superior in terms of 
reaching the correct decision (regardless of reasons) for false propositions, but not for 
true decisions. 
 
Proposition 7. Let the connection rule be (R ↔ (P ∨ Q)). The probabilities, as n tends to 
infinity, that the premise- and conclusion-based procedures reach a correct decision on R 
(i) regardless of reasons and (ii) for the right reasons, under various scenarios, are as 
shown in table 11. 
   
Table 11: Probability, as n tends to infinity, of a correct decision on R (given (R ↔ 
(P ∨ Q))) under the premise- and conclusion based procedures (i) regardless of 
reasons and (ii) for the right reasons, under various scenarios 

Premise-based procedure: 
Probability, as n tends to infinity, of … 

Conclusion-based procedure: 
Probability, as n tends to infinity, of … 

 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 
 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 

 
0.5 < p, q < √(0.5) 
P and Q both false 

 
0 

(b) 
0.5 < p, q < √(0.5) 

at least one of 
P and Q true 

 
1 

(c) 

 
0 

(d)
 

p, q > √(0.5) 

 
 
 
1 
 
 
 
 

(a) 

 
1 

(e) 
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As in the conjunctive case, for a large class of conditions, the performance of the 
conclusion-based procedure is poor, particularly if we are concerned with tracking the 
“truth” for the right reasons. Unlike in the conjunctive case, however, the probability that 
the conclusion-based procedure will track the “truth” regardless of reasons converges to 1 
if at least one of the premises is true. Here, when P and Q are not both false, then the 
probability that the conclusion-based procedure reaches the correct decision on R 
regardless of reasons converges to 1 faster than the probability that the premise-based 
procedure reaches the correct decision on R regardless of reasons. This follows from the 
fact that condition (3) in table 10 implies condition (7), whereas the converse implication 
does not hold (compare the remarks on the conjunctive case in section 3 above). 
 
4.2 The Conjunctive Version of the Doctrinal Paradox with More than Two Premises 
 
First we will generalize propositions 1 and 2 to the case of three premises. We will then 
generalize propositions 3 and 4 to the case of k premises. 
 
Table 12: The Doctrinal Paradox (The Case of Three-Premises) 

 P Q R 
 

(S ↔  
(P ∧ Q ∧ R)) 

S 

Individual 1 Yes Yes No Yes No 
Individual 2 No Yes Yes Yes No 
Individual 3 Yes No Yes Yes No 

Majority Yes Yes Yes Yes No 

 
If the individual judgments are as in table 12, there are propositionwise majorities for 
each of the three premises, P, Q and R; all individuals accept that the conjunction of the 
three premises is necessary and sufficient for the conclusion, S; and yet S is unanimously 
rejected.  

This time there are 8 logically possible consistent sets of judgments an individual 
might hold, as shown in table 13. 
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Table 13: All logically possible consistent sets of judgments over P, Q, R and S, given 
(S ↔ (P ∧ Q ∧ R)) 

 P Q R S 
PQR Yes Yes Yes Yes 

PQ¬R Yes Yes No No 
P¬QR Yes No Yes No 

P¬Q¬R Yes No No No 
¬PQR No Yes Yes No 

¬PQ¬R No Yes No No 
¬P¬QR No No Yes No 

¬P¬Q¬R No No No No 

 
Let nPQR, nPQ¬R, nP¬QR, nP¬Q¬R, n¬PQR, n¬PQ¬R, n¬P¬QR, n¬P¬Q¬R be the numbers of 
individuals holding the sets of judgments in table 13, and let pPQR, pPQ¬R, pP¬QR, pP¬Q¬R, 
p¬PQR, p¬PQ¬R, p¬P¬QR, p¬P¬Q¬R be the corresponding probabilities.  
 
Proposition 8. Let the connection rule be (S ↔ (P ∧ Q ∧ R)).  
(a) There will be a collective inconsistency under propositionwise majority voting if and 

only if (nPQR+nPQ¬R+nP¬QR,+nP¬Q¬R  > n/2) and (nPQR+nPQ¬R+n¬PQR+n¬PQ¬R  > n/2) 
and (nPQR+nP¬QR+n¬PQR+n¬P¬QR > n/2) and (nPQR < n/2).  

(b) Suppose (pPQR+pPQ¬R+pP¬QR,+pP¬Q¬R  > 1/2) and (pPQR+pPQ¬R+p¬PQR+p¬PQ¬R  > 1/2) 
and (pPQR+pP¬QR+p¬PQR+p¬P¬QR > 1/2) and (pPQR < 1/2). Then the probability of a 
collective inconsistency under propositionwise majority voting converges to 1 as n 
tends to infinity. 

(c) Suppose (pPQR+pPQ¬R+pP¬QR,+pP¬Q¬R  < 1/2) or (pPQR+pPQ¬R+p¬PQR+p¬PQ¬R  < 1/2) or 
(pPQR+pP¬QR+p¬PQR+p¬P¬QR < 1/2) or (pPQR > 1/2). Then the probability of a collective 
inconsistency under propositionwise majority voting converges to 0 as n tends to 
infinity. 

 
The proof of proposition 8 is given in appendix 3. To illustrate, the conditions of 
proposition 8b – convergence of the probability of a collective inconsistency to 1 – are 
satisfied when pPQR = 0.126, p¬P¬Q¬R = 0.124 and pPQ¬R = pP¬QR = pP¬Q¬R = p¬PQR = 
p¬PQ¬R = p¬P¬QR = 0.125; or when pPQR = 0.49, p¬P¬Q¬R = 0.03 and pPQ¬R = pP¬QR = 
pP¬Q¬R = p¬PQR = p¬PQ¬R = p¬P¬QR = 0.08. The conditions of proposition 8c – 
convergence of the probability of a collective inconsistency to 0 – are satisfied when pPQR 
= 0.124, p¬P¬Q¬R = 0.126 and pPQ¬R = pP¬QR = pP¬Q¬R = p¬PQR = p¬PQ¬R = p¬P¬QR = 0.125; 
or when pPQR = 0.51, p¬P¬Q¬R = 0.01 and pPQ¬R = pP¬QR = pP¬Q¬R = p¬PQR = p¬PQ¬R = 
p¬P¬QR = 0.08. 
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We will now generalize propositions 3 and 4 to the case of k premises. This 
generalization will serve to illustrate how easily a collective inconsistency can occur 
when the number of propositions is large. We will consider an aggregation problem with 
k premises, P1, P2, ..., Pk, whose conjunction is necessary and sufficient for a conclusion, 
R. Again, we assume (i) that each individual has probabilities (individual “competence”) 
p1, p2, ..., pk of making a correct judgment on P1, P2, ..., Pk, respectively, where p1, p2, ..., 
pk > 0.5; (ii) each individual’s judgments on P1, P2, ..., Pk are independent from each 
other; (iii) the judgments of different individuals are independent from each other. The 
proofs of propositions 9 and 10 are perfectly analogous to the proofs of their counterparts 
for two premises (propositions 3 and 4 above). Note that the probability that an individual 
holds the conjunction of correct judgments on P1, P2, ..., Pk is the product p1 p2 ... pk. In 
particular, if p1, p2, ..., pk < k√(0.5), then p1 p2 ... pk < 0.5; and if p1, p2, ..., pk > k√(0.5), 
then p1 p2 ... pk > 0.5. 
 
Proposition 9.  Let the connection rule be (R ↔ (P1 ∧ P2 ∧ ... ∧ Pk)). 
(a) Suppose P1, P2, ..., Pk are true.  

• Suppose 0.5 < p1, p2, ..., pk < k√(0.5). Then the probability of a collective 
inconsistency under propositionswise majority voting converges to 1 as n 
tends to infinity.  

• Suppose p, q > k√(0.5). Then the probability of a collective inconsistency 
under propositionwise majority voting converges to 0 as n tends to infinity. 

(b) Suppose that not all of P1, P2, ..., Pk are true and p1, p2, ..., pk > 0.5. Then the 
probability of a collective inconsistency under propositionswise majority voting 
converges to 0 as n tends to infinity.  

 
Proposition 10. The probabilities, as n tends to infinity, that the premise- and 
conclusion-based procedures reach a correct decision on R (i) regardless of reasons and 
(ii) for the right reasons, under various scenarios, are as shown in table 14. 
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Table 14: Probability, as n tends to infinity, of a correct decision on R (given (R ↔ 
(P1 ∧ P2 ∧ ... ∧ Pk))) under the premise- and conclusion based procedures (i) 
regardless of reasons and (ii) for the right reasons, under various scenarios 

Premise-based procedure: 
Probability, as n tends to infinity, of … 

Conclusion-based procedure: 
Probability, as n tends to infinity, of … 

 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 
 

a correct decision 
on R regardless of 
reasons 
 

a correct decision 
on R for the right 
reasons 

 
0.5 < p1, p2, ..., pk 
< k√(0.5) 

P1, P2, ..., Pk all 
true 

 
0 

(b) 

0.5 < p1, p2, ..., pk 
< k√(0.5) 

not all of P1, P2, 
..., Pk true 

 
1 

 
(c) 

 
0 

(d)
 

p1, p2, ..., pk 

> k√(0.5) 

 
 
 
 
1 
 
 
 
 
 

(a) 

 
1 

(e) 

 
Several points can be noted from propositions 9 and 10. For a large number k of 
premises, the level of individual competence required for the avoidance of collective 
inconsistencies (when all premises are true) is very high; the requisite lower bound on 
each of p1, p2, ..., pk, namely k√(0.5), converges to 1 as k increases. Moreover, unless the 
competence of individuals is above that bound, the performance of the conclusion-based 
procedure in terms of reaching a correct decision on the conclusion for the right reasons 
is very poor. Moreover, if the premises are all true, the conclusion-based procedure will 
also perform poorly in terms of reaching a correct decision on the conclusion regardless 
of reasons. The premise-based procedure, by contrast, will reach a correct decision on the 
conclusion more reliably, both for the right reasons and regardless of reasons (a remark 
on the differential speed of convergence similar to the one in section 3 applies). Again, 
the results are dependent on the assumption that each individual’s judgments on the 
different premises are independent from each other. 
 
5 The Probability of Inconsistent Collective Sets of Judgments Compared with the 
Probability of Cycles 
 
The doctrinal paradox invites comparison with Condorcet’s paradox concerning voting 
over multiple options, according to which consistent individual preferences can lead to 
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inconsistent collective preferences under pairwise majority voting (the parallels between 
the two paradoxes are discussed in List and Pettit 2002b). To state Condorcet’s paradox, 
suppose there are three individuals, where one prefers option x1 to option x2 to option x3, 
the second prefers option x2 to option x3 to option x1, and the third prefers option x3 to 
option x1 to option x2. Then there is a majority for x1 against x2, a majority for x2 against 
x3, and a majority for x3 against x1, a cycle. 
 Several recent papers have addressed the likelihood of the occurrence of 
Condorcet's paradox in a large electorate (Tangian 2000; Tsetlin, Regenwetter and 
Grofman 2000; List and Goodin 2001). The robust finding is that, given plausible 
assumptions about the distribution of individual preferences, the probability of cyclical 
collective preferences vanishes as the number of individuals increases. In what follows, I 
will briefly discuss the parallels between existing results on the probability of cycles and 
the present results on the probability of inconsistent collective sets of judgements, using 
the example of the conjunctive version of the doctrinal paradox.  

We have seen in section 2 that slight deviations from an impartial culture can 
imply convergence of the probability of collective inconsistencies under propositionwise 
majority voting to either 0 or 1 as the number of individuals increases, depending on the 
precise pattern of deviation. A similar result holds for the aggregation of preferences.  

If there are three options, x1, x2 and x3, there are 6 logically possible strict 
preference orderings, as shown in table 15. 
 

Table 15: All logically possible strict preference orderings over three options 
Label 1st preference 2nd preference 3rd preference 
PX1 x3 x1 x2 
PY2 x3 x2 x1 
PZ1 x2 x3 x1 
PX2 x2 x1 x3 
PY1 x1 x2 x3 
PZ2 x1 x3 x2 

 
Let pX1, pX2, pY1, pY2, pZ1, pZ2 be the probabilities that an individual holds the orderings 
PX1, PX2, PY1, PY2, PZ1, PZ2, respectively (where the sum of the probabilities is 1). As 
before, an impartial culture is the situation in which pX1 = pX2 = pY1 = pY2 = pZ1 = pZ2. 

In an impartial culture, the probability of a cycle increases as the number of 
individuals increases (Gehrlein 1983). But, as in the case of the doctrinal paradox, an 
impartial culture is a special case (see in particular Tsetlin, Regenwetter and Grofman 
2000). Given suitable systematic, however slight, deviations from an impartial culture, 
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the probability of a cycle under pairwise majority voting will converge to either 0 or 1 as 
the number of individuals increases.  
 

Proposition 11 (List 2001). Let δ = |pX1 - pX2| + |pY1 - pY2| + |pZ1 - pZ2|. 

(a) Suppose ((pX1 > pX2 and pY1 > pY2 and pZ1 > pZ2) or (pX1 < pX2 and pY1 < pY2 and pZ1 < 

pZ2)) and (|pX1 - pX2| < δ/2) and (|pY1 - pY2| < δ/2) and (|pZ1 – pZ2|< δ/2). Then the 

probability of a cycle under pairwise majority voting converges to 1 as n tends to 

infinity. 

(b) Suppose ((pX1 < pX2 or pY1 < pY2 or pZ1 < pZ2) and (pX1 > pX2 or pY1 > pY2 or pZ1 > pZ2)) 
or (|pX1 - pX2| > δ/2) or (|pY1 - pY2| > δ/2) or (|pZ1 – pZ2| > δ/2). Then the probability of 
a cycle under pairwise majority voting converges to 0 as n tends to infinity. 

 
Propositions 11a and 11b correspond, respectively, to propositions 2a and 2b above. 
Proposition 11a, like proposition 2a, states conditions under which the probability of an 
inconsistent (here cyclical) outcome converges to 1. Proposition 11b, like proposition 2b, 
states conditions under which that probability converges to 0.  

Thus, in the cases of both the probability of cycles and the probability of 
inconsistent collective sets of judgments, an impartial culture is a special case, implying a 
non-zero probability of the paradox. Further, in both cases, systematic deviations from an 
impartial culture imply convergence of that probability to either 0 or 1. Can we 
nonetheless find a criterion for determining whether the occurrence of one of the two 
paradoxes is empirically more likely than that of the other? The criterion would have to 
determine what distributions of probabilities over all logically possible preference 
orderings, or over all logically possible sets of judgments, are empirically plausible. We 
would then have to ask, in the case of the doctrinal paradox, whether these distributions 
satisfy the conditions of proposition 2a or those of proposition 2b, and in the case of 
Condorcet’s paradox, whether they satisfy the conditions of proposition 11a or those of 
proposition 11b. 

An initial inspection suggests that both the conditions of proposition 2a and those 
of proposition 2b can easily be met. For instance, the conditions of proposition 2a – 
convergence of the probability of a collective inconsistency to 1 – are already met if pPQ  
= 1/4 + ε, p¬P¬Q = 1/4 - ε and p¬PQ = pP¬Q = 1/4, for any arbitrarily small number ε > 0. 
The conditions of proposition 2b – convergence of that probability to 0 – are already met 
if pPQ  = 1/4 - ε, p¬P¬Q = 1/4 + ε and p¬PQ = pP¬Q = 1/4. By contrast, the conditions of 
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proposition 11b – convergence of the probability of cycles to 0 – appear to be logically 
less demanding than those of proposition 11a – convergence of that probability to 1. 
While the former are already met if at least one of pX1 < pX2, pY1 < pY2, pZ1 < pZ2 and at 
least one of pX1 > pX2, pY1 > pY2, pZ1 > pZ2 hold, the latter would require all of (pX1 < pX2 
and pY1 < pY2 and pZ1 < pZ2) or all of (pX1 > pX2 and pY1 > pY2 and pZ1 > pZ2) and three 
additional conjuncts. For instance, the conditions of proposition 11b are already satisfied 
if pX1 = 1/6 - ε, pY1 = 1/6 + ε and pX2 = pY2 = pZ1 = pZ2 = 1/6, while no equally simple 
deviation from an impartial culture is sufficient for the conditions of proposition 11a.  

A more sophisticated a priori method of comparing the probabilities of the two 
paradoxes would be to compare [the volume (in R6) of the set of all probability vectors 
satisfying condition 11a divided by the volume (in R6) of the set of all possible 
probability vectors] and [the volume (in R4) of the set of all probability vectors satisfying 
condition 2a divided by the volume (in R4) of the set of all possible probability vectors]. 
However, the interpretation of such a comparison is not straightforward, and an a priori 
inspection of the conditions alone can hardly settle the question of whether the 
occurrence of one of the two paradoxes is empirically more likely than that of the other. 

Nonetheless, to identify one criterion by which we might break the apparent 
correspondence between conditions 11a and 2a and between conditions 11b and 2b, we 
will again invoke a Condorcet jury framework. In the cases of both voting over multiple 
options and aggregation over multiple interconnected propositions, we will consider a 
suitable minimal Condorcet-jury-like competence assumption and then ask whether this 
assumption implies convergence of the probability of the relevant paradox – respectively, 
Condorcet’s paradox and the doctrinal paradox – to 0 or to 1.  

First, let us state the minimal competence assumption in the case of voting over 
multiple options. We suppose there are k options, x1, x2, ..., xk, where (i) each individual 
has probabilities p1, p2, ..., pk of choosing x1, x2, ..., xk as their first choice, respectively, 
and (ii) the preferences of different individuals are independent from each other. We 
consider the special case k = 3.  

 
Minimal Competence Assumption C1: Voting over Multiple Options. If xj is the 
"correct" option, then, for all i (where i≠j), pj > pi.  
 
Further, supposing that the correct option is fixed, the values of p1, p2 and p3 given by 
assumption C1 can be used to induce values of pX1, pX2, pY1, pY2, pZ1, pZ2, corresponding 
to each individual's holding each of the 6 logically possible strict preference orderings. 
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Specifically, we define the probability for the strict ordering xi1 > xi2 > xi3 (where i1, i2, i3 
∈ {1, 2, 3}) to be pi1 pi2 / (1-pi1) (see List and Goodin 2001). This corresponds to the way 
in which the values of  p and q induce values of pPQ, pP¬Q, p¬PQ, p¬P¬Q, as discussed in 
section 3.  

Assumption C1 implies that the probability distribution over all logically possible 
strict preference orderings is skewed, however slightly, in favour of preference orderings 
which rank the “correct” option above the other options. Note, however, that in such a 
skewed distribution there may still be a level of preference diversity that is arbitrarily 
close to an impartial culture. It is thus a "minimal" competence assumption, in so far as it 
can be satisfied in any ε-neighbourhood of an impartial culture. 

In the case of aggregation over multiple interconnected propositions, the minimal 
competence assumption is given by the Condorcet jury framework introduced in section 
3.  
 
Minimal Competence Assumption C2: Aggregation over Multiple Interconnected 
Propositions. Each individual has probabilities p and q of making a correct judgment on 
P and Q, respectively, where 0.5 < p, q < √(0.5).  
 
As we have seen in section 3, the values of  p and q induce values of pPQ, pP¬Q, p¬PQ, 
p¬P¬Q. 

Assumption C2 implies that the probability distribution over all logically possible 
individual sets of judgments is skewed, however slightly, in favour of the “correct” 
judgment on each premise. Assumption C2 is also a "minimal" competence assumption, 
in that it can be satisfied in any ε-neighbourhood of an impartial culture. Assumption C2 
imposes not only a lower bound, 0.5, but also an upper bound, √(0.5), on the individuals’ 
probabilities of making correct judgments on the premises. A similar (or even more 
stringent) upper bound may be imposed on individual competence in assumption C1 
without affecting any of the results stated here. 

We are now in a position to compare the implications of assumption C1 with 
those of assumption C2. In the case of voting over multiple options, C1 implies that the 
probability that the “correct” option will beat all other options in pairwise majority voting 
converges to 1 as the number of individuals increases (List and Goodin 2001). 
Specifically, C1 implies the conditions of proposition 11b, and, in consequence, the 
probability of a cycle will converge to 0.  
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Let us turn to the aggregation over multiple propositions. If the premises P and Q 
are both true, then C2 implies the conditions of proposition 2a, and the probability of a 
collective inconsistency under propositionwise majority voting converges to 1 as the 
number of individuals increases (see proposition 3).  
 These considerations break the apparent similarity between the probability of 
cycles and the probability of inconsistent collective sets of judgments. In short, C1 
implies the conditions of proposition 11b, whereas C2 implies the conditions of 
proposition 2a. If individuals have a level of competence that is better than random but 
not especially high, then the probability of a Condorcet paradox will converge to 0 while 
the probability of a doctrinal paradox will converge to 1. Given the results of section 4, 
we may expect this effect to be even greater when the number k of premises is large. If 
there are k premises (supposing, for our argument, all are true), any level of individual 
competence above 0.5 but below k√(0.5) implies that the probability of inconsistent 
collective judgments converges to 1 as the number of individuals increases. 

The predicted discrepancy between the probability of cycles and the probability of 
inconsistent collective sets of judgments seems consistent with two pieces of anecdotal 
evidence. The predicted low probability of cycles in a large electorate (so long as we are 
not in an impartial culture) seems consistent with the striking lack of empirical evidence 
for cycles (see Mackie 2000 for a critique of several purported empirical examples of 
cycles). The predicted higher probability of doctrinal paradoxes in a large electorate 
(even when we are not in an impartial culture) seems consistent with the findings of an 
empirical study of voting on referenda (Brams, Kilgour and Zwicker 1997). The study 
showed that, for three related propositions on the environment in a 1990 referendum in 
California, less than 6% of the (sampled) electorate individually endorsed the particular 
conjunction of these three propositions (acceptance of two, rejection of the third) that 
won under propositionwise majority voting. If the winning combination of propositions 
were to serve as jointly necessary and sufficient premises for some other conclusion or if 
a separate vote had been taken on the particular winning conjunction (which would 
presumably fail to get majority support), we would have a straightforward instance of an 
inconsistent collective set of judgments. 
 
6 Conclusion  
 
The aim of this paper has been to discuss the likelihood of collective inconsistencies 
under propositionwise majority voting. We have developed a model for determining the 



 28 

probability of such inconsistencies, and applied the model to conjunctive and disjunctive 
versions of the doctrinal paradox with two premises, and also to the conjunctive version 
of the paradox with more than two premises.  

We have identified conditions under which the probability of collective 
inconsistencies under propositionwise majority voting converges to 1 and conditions 
under which it converges to 0. Both sets of conditions can occur in plausible 
circumstances. In the case of the conjunctive version of the doctrinal paradox, 
convergence of the probability of the paradox to 1 is implied by standard competence 
assumptions in a Condorcet jury framework when all premises are true and individual 
competence is not particularly high. Convergence of the probability of the paradox to 0 
occurs when either at least one of the premises is false or individual competence is very 
high. In the disjunctive case, convergence of the probability of the paradox to 1 occurs 
when all premises are false and individual competence is not particularly high. 
Convergence of the probability of the paradox to 0 occurs when either at least one of the 
premises is true or individual competence is very high.  

Since decision problems with medium individual competence seem empirically 
plausible, the occurrence of the doctrinal paradox may be quite likely. This reinforces the 
importance of identifying escape-routes from the paradox and of asking what methods 
groups can and do employ to avoid the paradox (see also List and Pettit 2002a).  

With regard to possible escape-routes, following Bovens and Rabinowicz (2001a, 
2001b), we have seen that, for a large class of cases, the premise-based procedure of 
decision-making is superior to the conclusion-based procedure in terms of tracking the 
“truth” (where there is a truth to be tracked), especially when we are concerned with 
tracking the “truth” for the right reasons. This suggests a happy coincidence between 
epistemic and procedural perspectives on the two alternative decision procedures. While 
the arguments offered by Pettit (2001) and Chapman (2002) can be interpreted as 
procedural arguments in favour of the premise-based procedure, we have here seen that, 
in a large class of cases, the premise-based procedure will also be preferred on epistemic 
grounds. Finally, we have compared the present results with existing results on the 
probability of Condorcet's paradox.  

The present results should be viewed as initial results, not as the final word, on 
the probability of collective inconsistencies under propositionwise majority voting. More 
sophisticated probability-theoretic models could be constructed, for instance allowing 
different probabilities corresponding to different individuals, and certain dependencies 
between the judgments of different individuals or between the same individual's 
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judgments on different propositions (compare the discussion at the end of section 3). But 
even the present initial results support one conclusion. The occurrence of the doctrinal 
paradox is not implausible at all, and the paradox deserves attention. 
 
Appendix 1: Calculating the Probability of a Collective Inconsistency under 
Propositionwise Majority Voting for Finite Values of n 
 
Let XPQ, XP¬Q, X¬PQ, X¬P¬Q be the random variables whose values are the numbers of 
individuals holding the sets of judgments PQ, P¬Q, ¬PQ, ¬P¬Q, respectively. The joint 
distribution of XPQ, XP¬Q, X¬PQ, X¬P¬Q is a multinomial distribution with the following 
probability function: 
 
 P(XPQ=nPQ, XP¬Q=nP¬Q, X¬PQ=n¬PQ, X¬P¬Q=n¬P¬Q) 
 
           n! 
  =   pPQ

nPQ  pP¬Q
nP¬Q p¬PQ

n¬PQ p¬P¬Q
n¬P¬Q . 

       nPQ! nP¬Q! n¬PQ! n¬P¬Q!    
 
Using proposition 1 and the stated probability function, we can infer the following 
proposition on the probability of collective inconsistencies under propositionwise 
majority voting. 
 
Proposition 12. Let the connection rule be (R ↔ (P ∧ Q)). Suppose there are n 
individuals,  where each individual has independent probabilities pPQ, pP¬Q, p¬PQ, p¬P¬Q 
of holding the sets of judgments PQ, P¬Q, ¬PQ, ¬P¬Q, respectively. Then the 
probability that there will be a collective inconsistency under propositionwise majority 
voting is 
 

P((XPQ + XP¬Q > n/2) and (XPQ + X¬PQ > n/2) and (XPQ < n/2)) 
 

             n! 
= ∑<nPQ,nP¬Q,nP¬Q,n¬P¬Q>∈NPQ¬R  pPQ

nPQ  pP¬Q
nP¬Q p¬PQ

n¬PQ p¬P¬Q
n¬P¬Q, 

                 nPQ! nP¬Q! n¬PQ! n¬P¬Q!    
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where NPQ¬R := {<nPQ, nP¬Q, n¬PQ, n¬P¬Q> : (nPQ + nP¬Q > n/2) and (nPQ + n¬PQ > n/2) and 
(nPQ < n/2) and (nPQ + nP¬Q + n¬PQ + n¬P¬Q = n)} (set of all vectors <nPQ, nP¬Q, n¬PQ, 
n¬P¬Q> for which there are majorities for each of P and Q, and a majority against R). 
 
The probabilities of all other logically possible combinations of majorities for or against 
P, Q and R can be calculated analogously. 
 
Appendix 2: Calculating the Probability of the Various Scenarios in Table 5 
 
For each of the 10 scenarios in table 5, let M be the set of all vectors <nPQ, nP¬Q, n¬PQ, 
n¬P¬Q> (with sum n) for which the condition corresponding to the relevant scenario is 
satisfied. Using the probability function for the joint distribution of XPQ, XP¬Q, X¬PQ, 
X¬P¬Q (see appendix 1), the desired probability is 
 
     n! 
       ∑<nPQ,nP¬Q,nP¬Q,n¬P¬Q>∈M  pPQ

nPQ  pP¬Q
nP¬Q p¬PQ

n¬PQ p¬P¬Q
n¬P¬Q. 

                nPQ! nP¬Q! n¬PQ! n¬P¬Q!    
 
For example, if P and Q are both false and we are interested in the probability that the 
conclusion-based procedure reaches the correct decision on R for the right reasons 
(scenario 10), then we simply put M := {<nPQ, nP¬Q, n¬PQ, n¬P¬Q> : (n¬P¬Q > n/2) and 
(nPQ + nP¬Q + n¬PQ + n¬P¬Q = n)}.  
 
Appendix 3: Proofs 
 
A condition φ on a set of k probabilities, p1, p2, …, pk, is a mapping whose domain is the 
set of all logically possible assignment of probabilities to p1, p2, …, pk and whose co-
domain is the set {true, false}. Whenever φ(p1, p2, …, pk) = true, we shall say that the 
probabilities p1, p2, …, pk satisfy φ; and whenever φ(p1, p2, …, pk) = false, we shall say 
the probabilities p1, p2, …, pk violate φ. 
 
Examples of φ for the probabilities pPQ, pP¬Q, p¬PQ, p¬P¬Q are  
• (pPQ + pP¬Q > 1/2) and (pPQ + p¬PQ > 1/2) and (pPQ < 1/2) 
• (pPQ  ≥ 1/2) 
• (pPQ  > 1/2) and (pP¬Q > 1/2) 
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A condition φ is consistent if there exists at least one logically possible assignment of 
probabilities to p1, p2, …, pk satisfying φ. A condition φ is strict if, for every assignment 
of probabilities p1, p2, …, pk satisfying φ, there exists an ε > 0 such that, whenever the 
probabilities p*1, p*2, …, p*k lie inside a sphere in Rk with centre p1, p2, …, pk and radius 
ε, then the probabilities p*1, p*2, …, p*k also satisfy φ. It is easily seen that the condition 
(pPQ + pP¬Q > 1/2) and (pPQ + p¬PQ > 1/2) and (pPQ < 1/2) is both consistent and strict; the 
condition (pPQ  ≥ 1/2) is consistent, but not strict; and the condition (pPQ  > 1/2) and (pP¬Q 
> 1/2) is not consistent. 

Let X1, X2, …, Xk be a set of k random variables whose joint distribution is a 
multinomial distribution with the following probability function: 
 
                   n! 
 P(X1=n1, X2=n2, …, Xk=nk) =   p1

n1  p2
n2 … pk

nk,  
                             n1! n2! … nk!    
 
where n1 + n2 + … + nk = n. 
 
Lemma 1 (Convergence Lemma). Let φ be any consistent strict condition on a set of k 
probabilities, and suppose the probabilities p1, p2, …, pk satisfy φ. Then P(X1/n, X2/n, …, 
Xk/n satisfy φ) converges to 1 as n tends to infinity. 
 
Proof of lemma 1. Consider the vector of random variables X* = <X*1, X*2, …, X*k>, 
where, for each i, X*i:= Xi/n. We know that the joint distribution of nX* is a multinomial 
distribution with mean vector np = <np1, np2, …, npk> and with variance-covariance 
matrix nΣ = (sij), where, for each i, j, sij = npi(1-pi) if i=j and sij = -npipj if i≠j. By the 
central limit theorem, for large n, (X*-p)√(n) has an approximate multivariate normal 
distribution N(0, Σ), and X*-p has an approximate multivariate normal distribution N(0, 
1/n Σ). Let fn : Rk → R be the corresponding density function for X*-p. Using this density 
function, P(X1/n, X2/n, …, Xk/n satisfy φ) ≈ ∫t∈S fn(t)dt, where  

S:= {t = <t1, t2, ..., tk> ∈ Rk : (t1+p1), (t2+p2), ..., (tk+pk) satisfy φ}.  
By assumption, the probabilities p1, p2, …, pk satisfy φ, and hence 0∈S. Since φ is strict, 
there exists an ε>0 such that S0,ε ⊆ S, where S0,ε  is a sphere in Rk around 0 with radius ε. 
Then, since fn is nonnegative, ∫t∈S fn(t)dt ≥ ∫t∈S0,ε fn(t)dt. But, as fn is the density function 
corresponding to N(0, 1/n Σ), ∫t∈S0,ε fn(t)dt → 1 as n → ∞, and hence ∫t∈Sfn(t)dt → 1 as n →  
∞, as required.  
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Proof of proposition 2.  
(a) (pPQ + pP¬Q > 1/2) and (pPQ + p¬PQ > 1/2) and (pPQ < 1/2) is a consistent strict 

condition. By lemma 1, P((XPQ + XP¬Q > n/2) and (XPQ + X¬PQ > n/2) and (XPQ < n/2)) 
→ 1 as n → ∞. The result then follows from proposition 1.  

(b) (pPQ + pP¬Q < 1/2) or (pPQ + p¬PQ < 1/2) or (pPQ > 1/2) is a consistent strict condition. 
By lemma 1, P((XPQ + XP¬Q < n/2) or (XPQ + X¬PQ < n/2) or (XPQ > n/2)) → 1 as n → 
∞. The result then follows from proposition 1.  

 
Proof of proposition 3.  
(a) P and Q are true.  

The relevant case in table 4 is case 1. For the first part, it is sufficient to show that 
pPQ, pP¬Q, p¬PQ, p¬P¬Q satisfy the conditions of proposition 2a. Suppose 0.5 < p, q < 
√(0.5). Then 

 pPQ + pP¬Q = pq + p(1-q) = p > 0.5 
pPQ + p¬PQ = pq + (1-p)q = q > 0.5 
pPQ = pq < 0.5, 

as required. For the second part, it is sufficient to show that pPQ, pP¬Q, p¬PQ, p¬P¬Q 
satisfy the conditions of proposition 2b. Suppose √(0.5) < p, q. Then 

 pPQ = pq > 0.5, 
as required.  

(b) Not both P and Q are true.  
The relevant cases in table 4 are cases 2, 3 and 4. It is sufficient to show that pPQ, 
pP¬Q, p¬PQ, p¬P¬Q satisfy the conditions of proposition 2b. Suppose 0.5 < p, q.  
In case 2, pPQ + p¬PQ = p(1-q) + (1-p)(1-q) = 1-q < 1/2, as required. 
In case 3, pPQ + pP¬Q = (1-p)q + (1-p)(1-q) = 1-p < 1/2, as required. 
In case 4, pPQ + pP¬Q = (1-p)(1-q) + (1-p)q = 1-p < 1/2, as required.  

 
Proof of proposition 4.  
(a) Suppose 0.5 < p, q. It is sufficient to show that the probability that the premise-based 

procedure reaches a correct decision on R for the right reasons (implying also that it 
reaches a correct decision regardless of reasons) converges to 1 as n tends to infinity. 
Consider the four cases in table 4.  
Case 1: pPQ + pP¬Q = pq + p(1-q) = p > 0.5 and pPQ + p¬PQ = pq + (1-p)q = q > 0.5, 

a consistent strict condition. By lemma 1, P((XPQ + XP¬Q > n/2) and (XPQ + 
X¬PQ > n/2)) → 1 as n → ∞ (compare condition (1) in table 5). 
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All other cases are analogous. In each case, the relevant consistent strict condition 
will be identified, and the result will follow from lemma 1. 
Case 2: pPQ+pP¬Q  = p(1-q) + pq = p > 0.5 and pP¬Q + p¬P¬Q = pq + (1-p)q = q > 

0.5. P((XPQ + XP¬Q > n/2) and (XP¬Q + X¬P¬Q  > n/2)) → 1 as n → ∞  
(compare condition (4) in table 5). 

 Case 3: p¬PQ + p¬P¬Q = pq + p(1-q) = p > 0.5 and PQ +p¬PQ = (1-p)q+pq = q > 0.5.  
P((X¬PQ + X¬P¬Q > n/2) and (XPQ + X¬PQ  > n/2)) → 1 as n → ∞  
(compare condition (5) in table 5). 

 Case 4: p¬PQ+p¬PQ = p(1-q) + pq = p > 0.5 and pP¬Q+p¬P¬Q = (1-p)q+pq = q > 0.5.  
P((X¬PQ + X¬PQ > n/2) and (XP¬Q + X¬P¬Q > n/2)) → 1 as n → ∞  
(compare condition (6) in table 5). 

(b) Suppose 0.5 < p, q < √(0.5), and both P and Q (and by implication R) are true. Then 
pPQ = pq < 0.5. P(XPQ < n/2) → 1 as n → ∞ (compare condition (2) in table 5).  

(c) Suppose 0.5 < p, q < √(0.5), and not both P and Q are true. By part (a) (cases 2, 3 and 
4), the probability that there will not be a majority for P and a majority for Q 
converges to 1 as n tends to infinity. This implies in particular that P(XPQ < n/2) → 1 
as n → ∞ (compare condition (7) in table 5). 

(d) Suppose 0.5 < p, q < √(0.5). The relevant cases in table 4 are cases 2, 3 and 4. 
 Case 2: pP¬Q  = pq < 0.5. P(XP¬Q < n/2) → 1 as n → ∞  

(compare condition (8) in table 5). 
 Case 3: p¬PQ = pq < 0.5. P(X¬PQ < n/2) → 1 as n → ∞ 

(compare condition (9) in table 5). 
 Case 4: p¬P¬Q = pq < 0.5. P(X¬P¬Q < n/2) → 1 as n → ∞  

(compare condition (10) in table 5). 
(e) Suppose p, q > √(0.5). It is sufficient to show that the probability that the conclusion- 

based procedure reaches a correct decision on R for the right reasons (implying also 
that it reaches a correct decision regardless of reasons) converges to 1 as n tends to 
infinity. Consider the four cases in table 4.  

 Case 1: pPQ  = pq > 0.5. P(XPQ > n/2) → 1 as n → ∞  
(compare condition (2) in table 5). 

 Case 2:  pP¬Q  = pq > 0.5. P(XP¬Q > n/2) → 1 as n → ∞  
(compare condition (8) in table 5). 

 Case 3: p¬PQ = pq > 0.5. P(X¬PQ > n/2) → 1 as n → ∞  
(compare condition (9) in table 5). 

 Case 4: p¬P¬Q = pq > 0.5. P(X¬P¬Q > n/2) → 1 as n → ∞  
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(compare condition (10) in table 5).  
 
Proof of proposition 8.  
Given unanimous acceptance of (S ↔ (P ∧ Q ∧ R)), the conditions of proposition 8a are 
necessary and sufficient for the majority acceptance of the (inconsistent) set of 
propositions {P, Q, R, (S ↔ (P ∧ Q ∧ R)), ¬S}. To prove propositions 8b and 8c, it is 
sufficient to note that  

(pPQR+pPQ¬R+pP¬QR,+pP¬Q¬R  > 1/2) and (pPQR+pPQ¬R+p¬PQR+p¬PQ¬R  > 1/2) and 
(pPQR+pP¬QR+p¬PQR+p¬P¬QR > 1/2) and (pPQR < 1/2)  

and 
(pPQR+pPQ¬R+pP¬QR,+pP¬Q¬R  < 1/2) or (pPQR+pPQ¬R+p¬PQR+p¬PQ¬R  < 1/2) or 
(pPQR+pP¬QR+p¬PQR+p¬P¬QR < 1/2) or (pPQR > 1/2) 

are each consistent strict conditions. The desired results then follow from lemma 1 and 
proposition 8a.  
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