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1. The Stationary Distribution of Wealth with Random Shocks

Christopher Bliss1

1.1. Introduction

The Neoclassical convergence model has been in‡uential in recent years. See in particular
Barro (1991), Barro and Sala-i-Martin (1992 and 1995). In its basic form the model says
that all units within the relevant population2 - which might be countries, regions, even
individual families, as desired - tend to converge to a common level of capital and output
per head. The theory leads to a relationship similar to:

kt+1 = h [kt] (1)

where kt is the logarithm of wealth (or income), and there is a unique stable value of k = k¤,
such that k¤ = h [k¤]. The function h [¢] will be called the Transfer Function, because it
indicates how the underlying dynamics of the system take it from kt to kt+1. This model
refers to wealth, that is capital including human capital. And the economic theory to which
the leading writers appeal applies to wealth accumulation. Empirical studies, however,
typically use income rather than wealth, because income is far better measured. In what
follows I shall always refer to wealth, even when discussing studies which use income. When
it is precisely an income measure which is used, income may be interpreted as a proxy for
wealth. Nothing essential in what follows is a¤ected by the income-wealth distinction.

Much of the convergence literature reads as if all units within the population will move
closer and closer to k¤. Or, in an approach, which Robert Barro has built and elaborated,
individual countries have di¤erent k¤ values, depending on numerous additional variables,
such as democracy or the share of government expenditure in GDP. Barro (1997) is a
convenient reference.

As an econometric model based on (1) has to include an error term, it is essential that
random departures from the strict model be taken into account. Therefore (1) is modi…ed
to become:

kt+1 = h [kt] + ²t (2)

This is the equation of a non-linear stochastic process. Economic theory will impose
various restrictions on its form, see below. An argument may arise as to whether the shocks

1Department of Economics, University of Oxford, and Nu¢eld College, Oxford OX1 1NF, England.
christopher.bliss@nuf.ox.uk.ac
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2For countries many recent studies claim convergence to be conditional on qualifying properties, such as
economic openess, or the protection of property rights.
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²t show true exogenous random shocks, or whether they represent the impact of missing
variables, or both. Note that if shocks re‡ect missing variables they will not be i.i.d. The
presence of unobserved e¤ects for a particular country will surely be serially correlated. To
follow that line would take the argument into the type of conditional convergence model
promoted by Barro [see Barro (1997)]. Su¢ce it to say that in that model almost any
stationary distribution is possible, depending upon the distribution of conditioning variables
across the population of units observed.

Concentrating therefore on the case in which all units are essentially identical except
for initial conditions, it will not be the case that all will converge to a common k¤ if
random shocks constantly disturb the dynamic adjustment process which is represented in
a simple form by (1). If random errors are important in their magnitudes they a¤ect the
process of convergence. And if shocks are important, there will never be strict convergence.
Then an interesting issue arises concerning which the current literature is notably silent.
What will the stationary distribution of k values be when a convergent process such as
(1) is modi…ed by random shocks? The stationary distribution is that which replicates
itself under the combined e¤ects of the process (1) and the addition of random shocks. In
particular one may ask, what are the respective contributions to the form of the stationary
wealth distribution of:

² the shape of the function h [¢]

² the probability distribution of shocks

The problem addressed in this paper has been introduced in terms of the well-known
convergence model of Barro and others. Formally, however, the same problem is encountered
whenever an adjustment process of the form of (1) is shocked. Thus kt might be the
advertising budget of a …rm with (1) representing slow adjustment of that budget to a
long-run equilibrium level equal to k¤. If one can imagine such an adjustment process
being regularly shocked, a stationary frequency distribution of k values shows the long-run
probability that k will be found to be in any particular interval at a randomly chosen time.

Note that, as this last example indicates, treating kt as being continuously distributed
does not imply that k takes an uncountable in…nity of values at any time. The integral
over an interval in the density of the distribution may measure the probability of …nding k
within that interval of values.

Returning to wealth accumulation, consider an empirical study based on a linearized
and re-arranged version of the relation (2), viz:

kt+1 ¡ kt = f [kt] ¡ kt = ®¡ ¯ ¢ kt + ²t (3)

With the normal …nding 0 < ¯ < 1, equation (3) says that on average poor units (coun-
tries) grow faster than rich units. This has been called ¯ ¡ convergence. This concept of
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convergence is not the same as ¾¡ convergence, which means that the variance of the pop-
ulation of k values declines over time3. Friedman (1992) claims that interpreting a negative
coe¢cient on kt in a regression like (3) as convergence exhibits “Galton’s Fallacy”, on the
ground that a negative coe¢cient is consistent with no tendency for the variance of kt to
decrease with time: it may even increase4.

That point …ts well with the argument of this paper. If kt is distributed according to
a stationary distribution, which replicates itself, there is plainly no ¾-convergence. Take a
value of kt far from k¤. The expected value of kt+1 conditional on such a value of kt will be
closer to k¤. It is ® ¡ (¯ ¡ 1) ¢ kt when (3) applies. Here, while individual dispersed units
tend to converge, their density is made good by units, including the less-dispersed, pushed
outwards by random shocks. A stationary distribution of k values is invariant over time in
the sense that it reproduces itself next period, although individual values will vary, partly
systematically, showing ¯-convergence, and partly randomly, due to stochastic realisations
of ²t.

In an important contribution Quah (1993) considers income generation as a pure Markov
process. See also Quah (1996a) and (1996b). He looks at observed transition patterns, with-
out considering the stationary distribution. Also, he does not derive his Markov transitions
from economic theory. The aim is to confront theoretically derived convergence models with
the hard facts shown in the data. He …nds a tendency for convergence within two groups
- high and low income. He names this …nding “twin peaks”. There are non-negligible
probabilities that a country will shift from one group to the other, but these transition
probabilities are too low to iron out the twin peaks in the distribution. Quah’s approach
revives an older tradition in which wealth distribution, its change over time, and long-
run equilibrium distributions, are modelled from some speci…cation of the process which
transfers individuals from one wealth-state to another. See Champernowne (1953), Steindl
(1972) and Wold and Whittle (1957).

The paper is organized as follows. Section 2 is concerned with clarifying terminology and
explaining central concepts. These include asymptotic properties, stationarity of stochastic
processes and what is here called long-memory. Sextion 3 de…nes the transfer function
and notes how the presence of random shocks may a¤ect optimal adjustment. Section 4
examines the conditions under which a transfer function will exhibit ¯-convergence. Section
5, entitled Why do the Poor not save More?, mounts an all-out assault on the assumption
of invariance of the elasticity of marginal utility. This assumption, which has become
almost standard in the literature, is shown to be both highly restrictive and empirically
questionable. Section 1.6 shows how the distribution of wealth is the sum of two o¤setting
e¤ects, called convergence and scattering. For a stationary distribution these two e¤ects

3For a clear exposition of the two concepts of convergence, and empirical discussion, see Sala-i-Martin
(1996).

4See also Quah (1993) and Bliss (1999) and (2000).
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must precisely o¤set each other. Therefore their e¤ects on each moment of the distribution
must be of equal magnitude and opposite sign. Section 7 examines the joint e¤ects of
transfer and scattering and shows that these imply the satisfaction of integral equations.
In particular a stationary distribution satis…es a particular Fredholm integral equation in
which the same function appears outside and under the integral. Section 8 is concerned
with special cases in which one of the two grand e¤ects - transfer and scattering - is assumed
to take a simple form, so that the in‡uence of important features in the other e¤ect can
emerge clearly. Section 9 extends this last approach to elucidate two important features of
a stationary distribution - asymmetry and single-peakedness. Section 10 concludes.

1.2. Asymptotic Properties and Stationary Distributions

This section is concerned with clarifying terminology and some concepts employed in
the paper.

Definition 1. A stationary distribution is one for which the probability of …nding k
within any interval is the same next period as in the current period.

A stationary wealth distribution may be compared to a liquid in thermodynamic equi-
librium. Its macro properties are invariant. Temperature and pressure in any part of the
liquid do not alter with time. Even so, microscopic inspection will reveal local random
changes (Brownian motion) involving a small number of molecules. In practice these move-
ments always average out to no change at the macroscopic level. The implication that a
thermodynamic equilibrium is only static in a statistical sense - the expected value of the
system next observation period is the same as the current distribution - applies equally to
a wealth distribution. Given the possibility of su¢ciently large shocks, everyone may be
twice as wealthy tomorrow as they are today. Unfortunately we may have to wait a very
long time for this happy outcome to occur. The remaining age of the Earth may not be
su¢cient to make the probability as high as 0.01%.

A stationary distribution requires stationarity of the stochastic process. This is one of
the most basic and important properties of a stochastic process. Put simply a stochastic
process is stationary if the probability density which attaches to any sub-sequence of values
is independent of the dates at which those events are observed. Then (2) de…nes a stationary
process if the ²t values are always drawn independently from the same distribution (are i.i.d.
in the usual terminology). For in that case the sequence:

fkt; ::::; kt+ng (4)

requires the random variable ² to take speci…c values in the ordered sequence:

f²t; :::; ²t+n¡1g (5)
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Then those same ² values ordered as in (5) will generate the equally probable sequence:

fkT ; ::::; kT+ng (6)

starting at a di¤erent date.
Stationarity must be distinguished from a property which will play an important role

below.

Definition 2. A stochastic process which generates the values fx1; :::; xt; :::g will be said
to have long-memory if the probability that xT 2 I, where I is a closed interval of values
of x, is not asymptotically independent of x1 as t! 1.

Long-memory corresponds to what in economic theory is sometimes called path-dependence.
This means roughly that the economic system may be in a subset of its state space which
it will never leave, although when it is not in that subset it never enters it. David (1993)
discusses the implications of path-dependence in economic history. In another famous pa-
per, David (1985), the same author argues that the QWERTY arrangement of keys on a
standard typewriter is the result of historical accident, but is now locked in because the
costs of change prohibit its substitution by a layout more e¢cient for modern machines.
Further examples of this type are easily found.5 However, where a stochastic process de-
scribes the economy, the conditions for long-memory are more demanding than is the case
with a deterministic economy, as will be made clear by the example which follows shortly.
The opposite of long-memory is short-memory, taken here to mean simply that the condi-
tion speci…ed by De…nition 2 is not satis…ed, so that we have asymptotic independence of
x1.

Bradford DeLong (1999) describes a short-memory system as ergodic. In this paper the

term ergodic has been avoided. Too many meanings have been attached to it, ranging from
the precise but highly abstract, to the vague and hand-waving (as Granger and Terasvirta
(1993), p.10). Probably all would agree that a long-memory system is not ergodic. For that
case we now have another precise term to hand.

Some of the distinctions made above are illustrated well by an example which falls
outside Barro’s model of optimal economic growth, which is based on the Ramsey model.
The objective function is the standard:

5Consider the keywork on a standard modern ‡ute. Theobald Boehm, who is credited with the design
of the precursor of today’s ‡utes, preferred an open G# design. This respects the simple principle that
putting down …ngers produces lower notes. However because ‡ute players of that time were used to closed
G# …ngering, closed G# ‡utes were made by Boehm and his followers, and today this …ngering is standard
for mass-produced ‡utes and teaching manuals. This is so despite the fact that closed G# gives rise to
formidable intonation di¢culties for E in the third-octave, requiring more keywork to solve the problem.
While soloists, who have their ‡utes hand-made to their own speci…cation, often choose to play open G#
instruments, the huge economies of scale which attach to the closed G# design allow it to predominate.
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Z 1

0
[c(t)] e¡±tdt (7)

In place of the usual concave production function substitute a non-concave function
which has the property that the marginal product of capital goes almost to zero for medium
levels of capital, but above a range where the marginal product is low, the marginal product
rises sharply, although it later falls away when capital is extremely high. This economy is
like two concave economies stitched together, yet su¢ciently separated to allow optimal
growth paths to exist in two regions and to converge to di¤erent levels of k. Figure 1
illustrates the form of the h [¢] function. The dynamics of the system when no random
shocks intervene is plain. There are three values of k such that k = h [k], labelled A, B and
C. B is unstable, the other two points, A and C are stable.

Without random shocks the system has long memory. Ignoring the zero-measure point
B, all initial values of k lie in one of two basins of attraction from which k asymptotes either
to A or to C, according to which basin applies. Furthermore, as the curve through B is
steep, k is thrown some distance to the left or to the right away from B by the transfer
process by itself. Then if the distribution of ² values is uniform on [¡a; a] with a small, the
random e¤ects can never overcome the powerful centrifugal force of the transfer process,
and the system can never move from one basin of attraction to the other. Even with random
shocks in this case, there is long-memory.

The next theorem builds on the example illustrated in Figure 1 in the following sense.
The properties on which it depends are precisely those which are violated by the example.
First a regularity condition on the distribution of ² values makes the proof of the theorem
straightforward, and does not exclude any case likely to be of interest.

Definition 3. Let a probability density function for values of the random shocks ² be
de…ned on [¡1;+1], and denoted ¼ (²). Then the distribution of shocks will be said to be
Regular if:
(i) ¼ (²) is continuous in ²; and
(ii) given any four values ²1,²2,²3 and ²4, with ²1 < ²2 < ²3 < ²4:

Z ²2

²1
¼ (²) d² > 0 and

Z ²4

²3
¼ (²) d² > 0 (8)

implies: Z ²3

²2
¼ (²) d² > 0 (9)

The de…nition excludes distributions with “holes” in them; that is ranges with zero
probability density enclosed between ranges with positive probability density. Empty tails,
such as are seen with the uniform distribution are not excluded.
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Theorem 1. If
kt+1 = h [kt] (10)

has a unique stable solution for a constant k (k = h [k]), and the values ²t come from a
regular i.i.d. generator, then

kt+1 = h [kt] + ²t (11)

de…nes a short-memory process.
Proof: Is in two parts. Let the constant solution be k¤. First it is shown that given any
interval centered on k¤, I¢ = [k ¤ ¡¢; k ¤ +¢], and any initial value k1, the probability
that kt will never be in I¢ tends to zero as t ! 1. Secondly, given any closed interval
I = [k0; k00] and an initial value k1, the probability that kT will be in I is a continuous
function of k1.
These two results together imply the theorem. The …rst result entails that for any two
starting values of k, k11 and k21, both the paths leading from these values will enter I¢ at
some time (not necessarily the same time for each series) with limiting probability 1. Then
we can reset the clocks for each realization of the process so that k11 and k21 will now both
be in I¢ at t = 1. By further choosing ¢ suitably small, and now using the second part
of the proof (continuity of the probability that kT will be in I as a function of k1), we can
make the probabilities that the two paths will each be in I at T (on the respective reset
clocks) as close together as desired. This contradicts long-memory.
Part 1 First suppose that k1 > k ¤ +¢. Then for the transfer process not to take k into
I¢, either the average of ²t realizations must be positive, however large t, or any negative
realizations of ²t must be · ¡2¢. Therefore k starting from a value > k ¤+¢ not to enter
I¢ eventually requires a hole in the distribution of ² at least over the interval [¡¢; 0]. By
symmetry, should k start from a value< k¤+¢, a hole in the distribution of ²must be found
at least over the interval [0;+¢]. In summary there must be a hole in the distribution of ²
at least over the interval [¡¢;+¢]. This contradicts the assumption that the distribution
of ² is regular.¤
Part 2 Take the interval I = [k0; k00] and an initial value k1. Denote by Prhkt 2 I j k1i
the probability that kt will be in I conditional on k taking the value k1 at t = 1. Then
Prhkt 2 I j k1i =

R
E ¼ (²), where E is the set of all realizations of the ² values such that k1

is transferred to kt by the process (11). Now consider Prhkt 2 I j k1 + ±i, where ± may be
arbitrarily small, Then relative to any speci…c element of E, the realizations of ² may be
modi…ed so as to make k follow the sequence:

½
k1 + ±; k1 + ±

t¡ 2
t¡ 1

; k1 + ±
t¡ 3
t¡ 1

; ::::; kt
¾

(12)

Notice that (12) establishes a one-to-one correspondence between paths from k1 to kt and
paths from k1 + ± to kt. Plainly any path from k1 to kt has a unique partner de…ned by
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(12). Equally a path from k1 + ± to kt has a unique partner given by:
½
k1 ¡ ±; k1 ¡ ± t¡ 2

t¡ 1
; k1 ¡ ± t¡ 3

t¡ 1
; ::::; kt

¾
(13)

The importance of this one-to-one correspondence lies in the fact that in integrating over
all paths to kt to determine summed probabilities we will always be integrating over sets
of equal measure regardless of starting point, so that only di¤erences in probabilities will
matter.
For ± su¢ciently small alterations to the ² values can be made arbitrarily small, in which
case the alteration to

R
E ¼ (²) may be made arbitrarily small. It follows that Prhkt 2 I j k1i

is continuous in k1 as required.¤
The proof is complete.¤

If capital accumulation is a short-memory process we reach the type of striking conclu-
sion, already noted by Quah, that if we only wait long enough, Bangladesh will be richer
than the US in per capita terms at some t with probability 1. Barro’s conditional con-
vergence would apparently destroy that conclusion. However one might believe that the
US will certainly become undemocratic, closed and without secure property rights, etc., as
t! 1. These speculations underline the curious nature of asymptotic results.

1.3. Convergence and the Transfer Function

It is convenient to work with the logarithm of wealth because it is not bounded below by
zero, which makes possible in…nite-tail distributions, such as the normal. Obviously, were k
to be normally distributed, wealth itself would be distributed as the log-normal distribution.
Starting with the model (1), we add i.i.d. errors ² with mean zero to obtain:

kt+1 = h [kt] + ²t (14)

The equation (14) is a stochastic non-linear di¤erence equation in kt. The study of
the time series generated by di¤erence equations has become a central concern of modern
econometric theory. Hamilton (1994) provides a wide-ranging account of this …eld, and
other texts, for instance Øksendal. (1998), treat the theory of stochastic processes at a
more advanced mathematical level. Despite the existence of a substantial literature, some
questions which the present economic theory brings to the foreground are not answered
by the econometrics literature. Much of the latter concentrates on linear di¤erence equa-
tions, which are too limited for our needs here. Also while the stationary distribution is
a natural long-run model for economic theory, econometricians have been more interested,
understandably, in the estimation of equation parameters, or spectral analysis of time series
generated by di¤erence equations, and even in models other than the i.i.d. case.
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The transfer function shows how much capital would be held one period later, starting
from a level kt, were no random shock to arrive to throw the adjustment process o¤ its
intended path. The agent starts with kt, turns that into h [kt] by saving, or dissaving as the
case may be, and ends up with kt+1 after the shock has taken e¤ect. One could assume:

kt+1 = h [kt + ²t] (15)

meaning that shocks a¤ect wealth before the adjustment decision is made. However (14)
…ts most simply with existing econometric approaches.

The model is altered more radically if one assumes:

kt+1 = h [kt; ²t] (16)

which means that shocks a¤ect the adjustment process in a non-linear manner. This for-
mulation represents a consequence of some problems examined Binder and Pesaran (1999),
who consider what happens when a Solow, or an AK, model (but not an optimal saving
model) includes stochastic technical progress or stochastic labour supply. These authors
show that such changes undermine the short-memory of the process. In any case, (16) is a
far more complex stochastic process than those that will be considered in the present paper.

It is important in interpreting (14) to understand what is implied by the i.i.d. assump-
tion, and what is not implied by it. The additive i.i.d. shock entails that the value of h [¢] is
una¤ected by the particular value taken by ². That does not imply that h [¢] is una¤ected by
the distributional properties of ², in particular by the fact that ² does not always take the
value zero. As h [¢] shows an optimal saving (adjustment) rule, that rule may be in‡uenced
by the existence of uncertainty. Computing the properties of optimal saving rules under
uncertainty is formidably di¢cult and will not be attempted below. As will shortly be seen,
there is ambiguity for an important property of h [¢] even when the saving decision takes no
account of uncertainty. When h [¢] shows an optimal saving rule which re‡ects the existence
of uncertainty, it does not use information on the current value of ².

For stability one must have:
·
@h [k]
@k

¸

k=k¤
< 1 (17)

1.4. The Transfer Function and ¯-Convergence

Recall that ¯-convergence requires that the growth rate of k should decline as k increases.
So with k being the logarithm of capital, we have strict ¯-convergence if:

dh(k)
dk

¡ 1 < 0 (18)
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From (17) plus continuity we must have ¯-convergence close to k = k¤. Therefore if
k tends asymptotically to k¤, we must have ¯-convergence in the limit. With stochastic
shocks there will not be strict asymptotic convergence to k¤, so this last point is without
force. In any case an asymptotic property cannot con…ne what may happen globally, see
below.

Thinking on terms of the level of capital K, rather than its logarithm k, (18) can be
written:

dKt+1

dKt
1
Kt+1

¡ 1
Kt
< 0 (19)

which is the same as requiring that the elasticity of next period’s capital with respect
to current capital shall be less than unity. Can this property, which would both entail
¯-convergence, and also help to detail features of the stationary distribution, be assumed?
An examination of this seemingly technical question throws up points which the current
literature on convergence has pushed aside.

Suppose that (1) shows the outcome of the optimal wealth accumulation of a Ramsey-
style agent, who maximizes:

1X

t=1

±t¡1U [f (Kt) +Kt ¡Kt+1] (20)

where K is wealth itself, not its logarithm k. K1 is given; ± < 1 ; U [¢] is a strictly
concave utility function; f (¢), which is the production function in per capita terms, is
strictly concave, and the argument of U [¢], f (Kt) +Kt ¡Kt+1 shows consumption at t.

The maximization of (20) with respect to Kt requires:

±t¡1U1 [f (Kt) +Kt ¡Kt+1] ff1 (Kt) + 1g ¡ ±t¡2U1 [f (Kt¡1) +Kt¡1 ¡Kt] = 0 (21)

where subscripts, apart from those indicating time, denote di¤erentiation. Rearranging
and showing consumption levels explicitly gives:

U1 [Ct]
U1 [Ct¡1]

=
1

± ff1 (Kt) + 1g (22)

This is the equivalent to the optimality condition for the continuous case (see Barro and
Sala-i-Martin (1995), p.63, equation (2.8)) and Blanchard and Fischer (1989), p.40 equation
(7b4).

Taking logarithms of both sides of (22) gives:

lnU1 [Ct] ¡ lnU1 [Ct¡1] = ¡ ln ± ¡ ln ff1 (Kt) + 1g (23)
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Or, ·
¡CmU11 [C

m]
U1 [Cm]

¸ ·
¡Ct ¡ Ct¡1

Cm

¸
= ¡ ln ± ¡ ln ff1 (Kt) + 1g (24)

where Cm is a value chosen to satisfy the requirement of the mean-value theorem. Denote
¡CmU11[Cm]U1[Cm]

, the elasticity of marginal utility, by ³. Equation (24) can be interpreted as
follows:

[Elasticity of marginal utility = ³] [-Growth rate of consumption]

= ¡ ln ± ¡ ln fMarginal product of capitalg (25)

where the growth rate of consumption in (25) is measured on the base of a mean-value
theorem level, and ³ is evaluated at the same point.

The larger is the value of Kt the smaller is f1 (Kt), then the larger is the right-hand side
of (25). For the left-hand side of (25) to be correspondingly larger, either the growth rate
of consumption must be smaller, or ³ must be larger. If we follow Barro and Sala-i-Martin
(1995, p.64) and assume ³ to be a constant, we arrive at a standard type of result. The
growth rate of consumption must be smaller when Kt is larger. In that particular sense we
have ¯-convergence.

To move from this ¯-convergence result to a conclusion concerning how the growth
rate of K depends upon the level of K involves some complex calculation. See Barro and
Sala-i-Martin (1995), Appendix 2C to Chapter 2, for analysis of the parallel. problem for
the continuous case. Here there is no need to pursue the issue further. As will be argued
vigorously below, in the next section, the supposition that the elasticity of marginal utility
might be a constant is, despite its convenience and popularity, highly dubious. Therefore,
if we cannot be sure that consumption will grow more rapidly when K is small, we surely
cannot require that the growth rate of K should be smaller when K is large.

1.5. Why do the Poor not Save More?

Empirical cross-section studies of economic growth show the hypothesis of ¯-convergence
to be well supported for fairly homogenous cross-sections (OECD countries or US States
from about 1960) and poorly supported for broader cross sections (all countries in the
Summers-Heston data set). In the latter case in particular poor countries have not grown
as fast as the ¯-convergence hypothesis would have one suppose. In a similar manner
the wealth of poor families in national samples does not typically grow as rapidly as an
optimistic convergence view would have one expect. Why is this?

The argument could easily become complex, because so many factors and in‡uences
might be involved. To keep the discussion as simple as possible, the focus here will be on
the saving rate of the poor, de…ned as the share of saving in total income. When the saving
rate is independent of wealth, as in the Stigltiz (1969) model, we obtain ¯-convergence, and
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the wealth of the poor grows more rapidly than that of the rich. Under the approach of
Barro and Sala-i-Martin, where growth is determined by consumer optimization, we again
arrive at ¯-convergence, as long as ³ is constant. Then these authors, and Barro (1997),
allow numerous extra variables, from the share of government expenditure in output to
religion, to explain why poor countries do not grow as fast as a simple ¯-convergence model
would predict.

Everything here hangs on the idea that the wealth of poor units will grow rapidly
because:

² they will enjoy a higher return to saving, having less capital relative to their labour;
and

² their utility discount rate will be the same as everyone else’s

Given these presumptions and equation (18), the poor must have their consumption
growing faster than the rich. Yet the pain of saving when one is poor is not only measured
by the utility discount rate and the rate at which consumption grows over time. Inspection
of equation (18) reveals that if capital holding is low, when the marginal product of capital
will be high; and given the value of ±, the growth rate of consumption may yet be low if ³
should be large.

This is not an unreasonable case. The value of ³ could be said to measure the ease
with which the intertemporal substitution of consumption takes place. A high value of
³ corresponds to intertemporal substitution being di¢cult. Imagine an agent poor and
hungry. He can eat a little less and is guaranteed a high return on any such saving. In
comparing his current marginal utility with its future value he is no more subject to myopic
discounting than any one else (he shares the value of ± that applies to richer individuals).
Yet the issue remains of how fast his consumption has to rise over time to equate the ratio
of his discounted future marginal utility to his current marginal utility with the high net
return on his saving. That growth rate of consumption may be low if ³ is low.

In this connection the argument of Barro and Sala-i-Martin (1995), which claims cor-
rectly that ³ must be constant asymptotically, is irrelevant. As all units in this type of
model must converge in the limit to the same level of consumption, ³ must similarly con-
verge. That proposition says nothing about the global constancy of ³. Without assuming
³ to be invariant, we lose any guarantee of ¯-convergence, and we have to abandon the
imposition of simple restrictions on the form of h(k); beyond its root property of being an
increasing function.

To conclude this part of the argument, the description of a stationary distribution for
wealth needs to take into account wider possibilities for the transfer function than are
embraced by a model which gives ¯-convergence. If the transfer function for the logarithm
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of wealth should be linear, ¯-convergence follows [see equation (18) above]. However non-
linearities in the transfer function greatly enrich the range of possible stationary wealth
distributions and they have to be taken into account. In a similar spirit we may note that
non-normality and asymmetry in the generating process for the shocks ² is a feature which
has to be taken seriously, and this in turn may shape a stationary wealth distribution which
a “well-behaved” case would not allow. All this will become clearer below.

1.6. Convergence and Scattering

The e¤ect on the distribution of wealth in moving from one period to the next is the
sum of two separate transformations. First each k value maps to h [k]. This is optimal
adjustment without any shock; called h-transfer. Next all values are scattered by the
addition of random shocks ²t. We call this scattering.

Applying the mathematical expectation operator E to (3) gives:

Ek = Eh [k] (26)

The relation of Eh [k] to h [Ek] depends upon the concavity/convexity of h [¢], which is
ambiguous. Subtracting (3) from (25) and rearranging gives:

E [kt ¡Ek]2 = E
©
[h [kt] ¡Eh [k] + ²t]2

ª

= E
©
h [k]2

ª
+ E


fEh [k]g2

®
+ E

©
²2t

ª
¡ 2E fh [k]Eh [k]g (27)

= E
©
²2

ª
+ E

©
h [k]2

ª
¡ fEh [k]g2

where time subscripts have been dropped, because they are irrelevant when a stationary
distribution is under consideration. On account of ²t being i.i.d., expectations of products
involving ²t have been equated to zero.

Notice that the variance of h(k) is given by:

E fh(k) ¡ Eh(k)g2 = E
©
h(k)2 + [Eh(k)]2 ¡ 2h(k)Eh(k)

ª

= E
©
h(k)2

ª
¡ fEh(k)g2 (28)

Now equations (27) and (28) together can be interpreted in a very natural result.

Theorem 2. An h¡transformation always subtracts variance from the distribution of k.
For a stationary distribution it subtracts precisely the amount of variance that is added by
scattering.
Proof: Notice that the result is not trivial. While h¡transformation obviously moves every
k closer to k¤, there is no immediate guarantee that it moves every k closer to the mean
of the k values. However from (27) the second moment of the distribution of k in general,



Christopher Bliss 15

and hence the same moment in a stationary distribution, is the sum of the variances of h(k)
and of ². In that case, k itself must have a larger variance than h(k). Evidently scattering
restores equality, as required.¤

Similar calculations for the third moment of the distribution of k, assuming E f²3g = 0,
produce:

E fk ¡Ekg3 = E
©
h(k)3

ª
¡ 3E fh(k)gE

©
h(k)2

ª
+ 2 [E fh(k)g]3 (29)

Theorem 3. If the distribution of shocks ²t has a third moment about its mean equal to
zero; hence in particular if it is symmetrical about zero; an h¡transformation applied to a
stationary distribution does not a¤ect the third moment of k about its mean.
Proof: The right-hand side of (29) is the third moment h(k) about its mean. Therefore the
result follows immediately.¤

1.7. The Shape of the Stationary Distribution: Transfer Plus Scattering

In this section, like the last, the joint e¤ects of h-transfer and scattering are taken into
account without making simplifying assumptions on either side. Thus confers the bene…t
of great generality. The cost is that one is then confronted with the complex product of
the two e¤ects, in manner which will be made fully precise. In that case it is not always
easy to see how the separate in‡uences of convergence and scattering a¤ect the shape of a
stationary wealth distribution. In later sections simpler cases will be displayed which make
the separate e¤ect of one or other of the two in‡uences more transparent.

In analysing the distribution of k values, it is sometimes convenient to work in terms of
the cumulative distribution. Hence ¢(k) is the proportion of the population with wealth
not greater than k. Clearly ¢(¡1) = 0 and ¢(1) = 1.

Recall that the e¤ect on the distribution of wealth in moving from one period to the
next is the sum of two separate transformations. First each k value maps to h [k]; that is h-
transformation. Next all values are scattered by the addition of random shocks ²t. Consider
the …rst step. Before h-transformation the probability density of k, ¤ [k], is given by:

¤ [k] =
d¢ [k]
dk

(30)

Whereas the cumulative distribution of k after h-transformation, ¡ [k], satis…es:

¡ [k] = ¢
£
h¡1 [k]

¤
(31)

Then:

d¡ [k]
dk

=
d¢ [h¡1 [k]]
d [h¡1 [k]]

d [h¡1 [k]]
dk

=
¤ [h¡1 [k]]
dh[k]
dk

(32)
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is the density of wealth distribution after h¡transformation. Equation (32) de…nes how the
adjustment function a¤ects the distribution of wealth in the absence of random e¤ects.

Denote the transformed distribution by ©(k). So:

©(k) =
¤ [h¡1 [k]]
dh[k]
dk

(33)

Consider a maximum of ©(k) at k = k0. Then:
½
d¤ [h¡1 [k]]
dk

¡ ¤
£
h¡1 [k]

¤ d2h [k]
dk2

¾

k=k0
= 0 (34)

Equation (34) is useful when locating a maximum, including a mode, of a wealth distri-
bution after h¡transformation when the location of a maximum of ¤ [k] is known. Suppose,
for instance, that h [k] is so nearly linear in the relevant range that d

2h[k]
dk2 may be replaced

by zero. Then (34) says that one should look for a maximum of ©(k) to the left (right) of
a maximum of ¤ [k] according as k is less than (greater than) k¤.

The sequential e¤ects of h¡transfer and scattering in a stationary case can be exhibited
mathematically as follows. Take any value of k. Suppose k < k¤ . A symmetrical argument
works for the other side. For any level of wealth between h¡1 [k] and k, h¡transfer will carry
wealth across the border marked by k from lower to higher values of wealth. Next, after
h¡transformation, scattering will carry a certain mass of wealth across the same border,
travelling in the same direction, while scattering will also carry another mass of wealth
across the border in the opposite direction. It is an evident equilibrium condition for a
stationary distribution that the net movement of wealth across the border shall be zero.
That condition is expressed in the following equation.

Z k

h¡1[k]
¤ [·] d·+

Z k

¡1
f1 ¡ ¦ (k ¡ ·)g©(·)d· =

Z +1

k
¦ (k ¡ ·) ©(·)d· (35)

where ¦(¢) is the cumulative distribution of i.i.d. shocks; that is the probability that ²t will
be · the argument of ¦ (¢).

As (35) holds as an identity in k, we may di¤erentiate it with respect to k to obtain:

¤ [k] ¡ ¤ [h¡1 [k]]
dh[k]
dk

+ f1 ¡ ¦(0)g©(k) ¡
Z k

¡1
¼ (k ¡ ·)©(·)d·

= ¡¦ (0)©(k) +
Z +1

k
¼ (k ¡ ·) ©(·)d· (36)

Notice that if the distribution of shocks is symmetrical about 0, then ¦(0) = 1
2 . However

the argument does not use that property. Simplifying (36) gives:

¤ [k] =
Z +1

¡1
¼ (k ¡ ·) ¤ [h¡1 [·]]

dh[·]
d·

d· (37)
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Changing variable in (37) - ¸ = h¡1(·) - provides another integral equation description of
a stationary equilibrium.

¤ [k] =
Z +1

¡1
¼ [k ¡ h [¸]] ¢ ¤ [¸] d¸ (38)

Or, denoting the variable of integration again by ·:

¤ [k] =
Z +1

¡1
¼ [k ¡ h [·]] ¢ ¤ [·] d· (39)

The integral on the right-hand side of (39) is the sum of all transitions from · to k weighted
by the probability that the initial value is ·, which is ¤ [·], and the probability of a transition
to k, which is the probability that ²t takes the value k ¡ h [·]. Placing the same function
¤ [¢] on both sides of (39) identi…es a stationary …xed point outcome.

Equation (39) is a Fredholm Equation of the second kind6. This derivation is somewhat
similar to the so-called Theory of Breakage which leads to the equation:

Fj (x) =
Z

u
Hj

hx
u

i
dFj¡1 [u] (40)

for which see Aitchison and Brown (1957), pp.26-7.
The process:

kt+1 = h [kt + ²t] (41)

generates another Fredholm Equation, viz:

¤ [k] =
Z +1

¡1
¼

£
h¡1 [k] ¡ ·

¤
¢ ¤ [·] d· (42)

which is quite similar.
To keep things simple, we concentrate below on the Fredholm Equation (39).

Results from the Fredholm Equation. To be able to write down an equation
showing a stationary solution as (39) is encouraging. Unfortunately this equation cannot
be solved for ¤ [k]. However it yields two useful results.

Theorem 4. The set of functions satisfying (39) is convex7.
Proof: Is immediate. If ¤1 [k] and ¤2 [k] both satisfy (39), then:

¸ ¢ ¤i [k] =
Z +1

¡1
¼ [k ¡ h [·]] ¢ ¸ ¢ ¤i [·] d· (43)

6See Hildebrand (1961) p. 381-2. In section 4.5 of the same chapter the author explains the connection
between this type of equation and the joint e¤ect of many causes.

7To say that the set of functions is convex is not, of course, to say that the functions are convex functions.
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for i = 1 or 2, and for any value of ¸. Hence:

¸ ¢ ¤1 [k] + (1 ¡ ¸) ¢ ¤2 [k]

=
Z +1

¡1
¼ [k ¡ h [·]] ¢

©
¸ ¢ ¤1 [·] + (1 ¡ ¸) ¢ ¤1 [·]

ª
d· (44)

¤

The next theorem uses the Fredholm equation to establish continuity of ¤ [k] with respect
to k. It assumes that ¼ [¢] is uniformly continuous. For a probability density function this
is a mild condition. For note that, because any continuous function is uniformly continuous
on a compact support; if there is any problem with uniform continuity of ¼ [¢], it can only
arise from extraordinary behaviour of the function in its tails.

Theorem 5. If ¼ [¢] is uniformly continuous, a stationary distribution value for ¤ [k] is
continuous in k.
Proof: From (33) it will be seen that for a stationary distribution of k, the continuity of
¤ [k] is implied by the continuity of:

Z +1

¡1
¼ [k ¡ h [·]] ¢ ¤ [·] d· (45)

Take a sequence of values k1; k2; :::; kn; :: with limit k. Then the sequence of values

¤ [k] ¡ ¤ [k1] ;¤ [k] ¡ ¤ [k2] ; :::;¤ [k] ¡ ¤ [kn] ; :: (46)

are given by terms of the form:
Z +1

¡1
f¼ [k ¡ h [·]] ¡ ¼ [kn ¡ h [·]]g ¢ ¤ [·] d· (47)

which are less than or equal to:
Z +1

¡1
j¼ [k ¡ h [·]] ¡ ¼ [kn ¡ h [·]]j ¢ ¤ [·] d· (48)

From uniform continuity it follows that for any µ > 0, jk ¡ knj su¢ciently small implies
that (48) is less than:

µ
Z +1

¡1
¤ [·] d· = µ (49)

From which the continuity of ¤ [k] follows.¤

Continuity of ¤ [k] does not rule out the possibility that an stationary density might
split into two or more disjoint segments: say a high wealth segment with positive density; a
low wealth segment with positive density; and a region between these two where ¤ [k] = 0.
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We have encountered such a possibility with the long-memory example of page 7 above.
There in the context of long/short memory we saw that in the limit k will be found in one
of two (but in general it could be three or more) zones of attraction, and once inside such a
zone k will always remain in that zone. It is immediate that this situation can only arise if
the distribution of shocks ² has one or more bounded tails. Otherwise a shock greater than
or equal in absolute value to that required to throw the system form one zone to another
will occur with probability 1 in the limit, and the system will have short-memory.

Definition 4. The distribution of shocks ² will be said to be regular if the set of closed
intervals over which the probability measure for ² is positive is a convex set.

The de…nition will surely be satis…ed by any distribution likely to be of interest. Here
speci…cally the de…nition excludes the possibility that zero probability will attach to a closed
interval of values of ², while positive probability attaches to closed intervals for values of ²
both above and below that interval.

Theorem 6. If the distribution of shocks ² is regular, and

kt+1 = h [kt] (50)

is a short-memory process, a stationary density cannot be disjoint.
Proof: If the distribution is disjoint there will exist at least two open intervals of values of
k such that ¤ [k] > 0 for values of k in those intervals. Call the said intervals k1and I 00.
Between I 0 and I 00will be found an interval such that ¤ [k] = 0 for all values of k in that
interval. Call this last interval I000. Because the process (50) is short-memory, k will transit
between I 0 and I 00with probability 1 during any in…nite history. Consider such a transit
which will satisfy:

k2 = h [k1] + ²1 (51)

for k1 2 I 0 and k2 2 I
00
. Then a transit from k1 2 I 0 to k3 2 I 000could occur, with k3 closer

to k1 than is k2, if ² were to take a value closer in absolute value to zero than is ²1. As the
mean of ² is zero, the support of ² must include both positive and negative intervals. Hence
because the distribution of shocks is regular, positive probability must attach to transits to
I 000 . Then there cannot be zero probability density on I 000, not in the limit of any history,
hence not in particular for a stationary distribution.¤

1.8. The Shape of the Stationary Distribution: Special Cases

The general analysis of Section 1.7 above denies us simple insights into the way in
which the stationary distribution is shaped by the separate forces operating on it. For
that understanding it is helpful to look at models which are designed to isolate particular
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e¤ects, while other in‡uences which combine to make up the Fredholm integral are muted
by simplifying special assumptions.

In the following section the focus is on the form of the transfer function, in particular
the e¤ect of non-linearities in the transfer function; so only the most simple speci…cations
for the distribution of shocks are admitted. In section after the next the focus is on the
in‡uence of the shocks themselves. In that case a linear transfer function is ideal, and the
outcome with that assumption will be examined.

The Shape of the Stationary Distribution: The form of the Transfer Function.
To elucidate the stationary distributional properties of a variable generated by the stochastic
process (2), the following strange, yet understandable, hydraulic model may be helpful.

A Hydraulic Model. In the centre is a rift valley, running due north-south, and
viewed in cross section. Rivers ‡ow down from highlands on the east side and from the
west. Position is measured by a variable k which runs from ¡1 (inde…nitely far west) to
+1 (inde…nitely far east).

These are not normal rivers, fed by springs, and rainfall originating outside the river
system. The system is completely closed. All rainfall originates from water in the rivers
themselves. Evaporation constantly redistributes water within the system. The amount of
water evaporated depends on the volume at a point. One molecule of water may travel
any distance, east or west. The probability of any such journey depends upon the absolute
distance travelled, and it decreases monotonically with absolute distance. Elevation as such
has no e¤ect on precipitation. Indeed the high highlands are dry, because they are far from
the great mass of water. Finally water runs down hill and it runs faster the steeper the
absolute gradient.

The bottom of the rift valley is at k¤. The ‡ow of river water towards the valley
represents non-stochastic transformation of values of k through the function h [k]; which is to
say that it represents neoclassical convergence. Evaporation and the random redistribution
of water represent the e¤ect of i.i.d. shocks, which called scattering as above. The depth of
water at any point k represents the density of wealth at that point. When this hydraulic
system is in a stationary state, depth is constant at any point. The rivers ‡ow always
towards k¤. However evaporation and the random redistribution of water frustrate that
process. A deep lake may build up around k¤. Yet if redistribution is signi…cant, the lake
can never contain all the water in the system, because redistribution will always throw some
water back into the highlands.

The hydraulic model o¤ers a helpful mental picture of how the type of non-linear stochas-
tic process under consideration in this paper might appear in a stationary equilibrium. It
is plain that non-linearities in the slopes of the valley walls will shape the stationary distri-
bution, almost as a potter’s hands shape the …nal pot. More detail on how non-linearities
have their e¤ects will follow below.
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The Shape of the Stationary Distribution: The In‡uence of Shocks. Take an
arbitrary value of k, k0, and follow its random path as it is repeatedly transformed by the
process (3). This can be written as:

kt+1 ¡ k¤ = h [kt] ¡ h [k¤] + ²t (52)

Or,

ekt+1 = ekth0
£
kMt

¤
+ ²t (53)

where ekt = kt ¡ k¤, the prime 0 denotes di¤erentiation, and kMt is the value of k which
makes (53) correct. The mean-value theorem says that such a value lying between k and
k¤ always exists. From (53):

ekt+1 =
n
ekt¡1h0

£
kMt¡1

¤
+ ²t¡1

o
h0

£
kMt

¤
+ ²t (54)

Which simpli…es to:

ekt+1 = ekt¡1¦ts=t¡1h0
£
kMs

¤
+ ²t¡1h0

£
kMt

¤
+ ²t (55)

Similarly, repeated substitutions give:

ekt+1 = ek0¦ts=1h
0 £kMs

¤
+ S (56)

where S is equal to:

²t + ²t¡1h0
£
kMt

¤
+ ²t¡2h0

£
kMt

¤
h0

£
kMt¡1

¤
+ ::+ ²1¦tq=2h

0 £kMq
¤

(57)

If the unshocked system is globally stable, the …rst term on the right-hand side of (56)
will go to zero as t! 1. A su¢cient condition for that property is:

h0 [k] · ³ < 1 all k (58)

While (5) ensures that (58) is satis…ed at k = k¤, the fact that h [¢] may have any
concavity/convexity, shown above, implies that is not necessarily satis…ed everywhere.

Given global stability and that the …rst term of the right-hand side of (56) goes to zero,
the limit of (56) as t ! 1 gives the frequency distribution of k. It would be incorrect
to conclude that because this distribution is independent of k0, the process must be short-
memory. So long as h [¢] is non-linear, the in‡uence of k0 may make itself felt via the
particular values of h0

£
kMs

¤
that appear in (57). Should h [¢] be linear, which possibility

cannot be excluded, the limiting distribution of k depends only upon the distribution of the
shock values ² and upon powers of the constant slope coe¢cient.
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Equation (57) can be employed to give insight into how non-linearity in the adjustment
function h [k] translates into asymmetry in the stationary distribution. Suppose that h [k]
is linear to the left of k¤, and also to the right of k¤, but the two slopes di¤er. Let the
slope to the left, hl, be larger than the slope to the right, hr. As negative realizations of
the random variable ² will on average be associated with k < k¤, and positive realizations
of the random variable ² will on average be associated with k > k¤, (57) can be read to say
that negative values of ² will be more heavily weighted, and the stationary distribution will
have greater density to the left of k¤ than to the right. The fact that convergence to k¤ is
more rapid from the right than from the left accounts for this asymmetry.

Figure 2 illustrates this case in which non-linearity of h(k) combines with symmetrical
shocks to produce an asymmetrical distribution. If capital is at the point A, and ignoring
shocks at this point, it is seen that increase in k is relatively modest. Starting from point
B, however, the decline in capital is far larger. These e¤ects will cause the stationary
distribution to bunch to the right of k¤ and to spread to the left of k¤, as required.

Equation (57) provides further insight if we transfer attention to another simple case.
Now h [k] is linear, but the distribution of ² values is asymmetric about zero. It is clear
that the asymmetry of the distribution ¼ [²] is re‡ected in a similar asymmetry in the
stationary distribution of k values. In the context of the theory of wealth accumulation this
possibility is intriguing. We can always make the expected value of ² equal zero, as adding
or subtracting a constant to the ² values, and subtracting or adding the same value to h [k]
makes no di¤erence. That point does not dispose of the possibility that higher probability
density may attach to large negative shocks (bad growth set-backs) than to large positive
shocks of similar size. In the type of case just described the stationary distribution will be
fat to the left of k¤ relative to its density at a similar distance from k¤ to the right.

Theorem 7. If the stochastic process is standard and h [k] is linear, a stationary distribu-
tion is symmetric with its centre at k¤.
Proof: If h(k) is linear, it follows that h0(k) in (57) will be a constant, denoted H (0 < H <
1), and that this expression will become:

²t + ²t¡1H + ²t¡2H2
t + ::+ ²1H

t¡1 (59)

In this case the process is short-memory, in the sense that the limiting probability that k
lies in any interval is independent of its initial value. Suppose that the limiting probability
that k lies in the closed interval of positive values [k¡; k+] is p0. This is equivalent to:

Limt!1
Z

P

©
²t + ²t¡1H + ::+ ²1Ht¡1

ª
¦tµ=1¼ [²µ] = p0 (60)

where the integration over P in (60) is over all values of ²µ such that the integral, and hence
its limit, is equal to p0 . In that case it seems that (60) says nothing. It being the case that
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the integration on the left-hand side is over all values of ² such that the integral takes the
value p0, it conveys no information to state that all the integrals, and hence their limit as
t! 1, take the value p0. For our present purposes however, what matters is not that (60)
is satis…ed, but rather the manner, exhibited in (60), in which the various values of ² and
their probability densities combine to produce a value p0. Consider the closed interval of
negative values [¡k+;¡k¡], and the limit of a sequence of integrals:

Limt!1
Z

P¡

©
²t + ²t¡1H + ::+ ²1Ht¡1

ª
¦tµ=1¼ [²µ] (61)

where integration over P¡ is over all values of ²µ such that k lies in the closed interval of
negative values [k¡; k+] : By symmetry of the density function ¼ [²], (61) takes the value p0,
which is the result required.¤

1.9. The Shape of the Stationary Distribution:
Asymmetry and Single-Peakedness

Definition 5. The wealth distribution will be said to be single-peaked if all its local max-
ima are attained on one convex set of values of k.

The de…nition allows a “table mountain” case in which the maximum value is attained
over a connected range of values of k. That case apart, the de…nition rules out multiple
local maxima as distinct peaks. In the standard case, a linear h [k] function produces a
symmetric stationary distribution. That does not by itself imply single-peakedness, as a
symmetric distribution might have many isolated local maxima. However an argument
similar to the proof of Theorem 7 shows that if the distribution of ² values is symmetric
around zero with probability density a declining function of the absolute distance from zero,
a stationary distribution of k values has the same qualitative form.

Without excluding any case likely to be of interest, we may con…ne attention to distribu-
tions of ² values which are centred on zero and with density monotonically decreasing in the
absolute distance from zero, but not necessarily at the same rate for positive and negative
values of ². Within that class of cases, we may, by collecting implications of results derived
above, throw considerable light on the question of asymmetry in a stationary distribution
of k values. Asymmetry can come about only from at least one of the following features:

² non-linearity of the adjustment function h [k];

² asymmetry of the density ¼ [²].

The hydraulic system described in above can also throw light on single-peakedness.
Suppose that the steepness of the rift valley walls on both sides increases monotonically
with absolute distance from k¤, and is symmetrical on the two sides. Far from k¤ water is
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moved quickly towards k¤. All the water that far out has been transported a long distance.
There cannot be much of it, and swift running rivers must be shallow. As one moves closer
to the ‡oor of the valley, the absolute gradient becomes lower and rainfall rises, because the
total water not too far away increases. Now rivers ‡ow slowly and are deep. Therefore the
depth of water rises until it reaches its maximum at k¤. The density of water is symmetric
around k¤.

Now modify the model just described. On the west side insert a range of values of k
along which the gradient is quite ‡at. Follow it by a very steep interval closer to k¤, and
then return to a similar gradient to that prevailing on the opposite valley wall. The amount
of water above these ranges will hardly be a¤ected if redistribution is strong and the ranges
described cover short intervals. Therefore water will move through the intervals …rst slowly,
next rapidly, then it will slow down. Depth will be high, then lower, then high again. The
depth of water, which is to say the density of wealth, will exhibit twin peaks.

For the accumulation of wealth the model just described corresponds to the following
state of a¤airs. For a range of low levels of wealth, is accumulated towards k¤, but at a slow
rate. Then, when wealth gets a bit higher, the pace of accumulation picks up sharply. Later
it moderates. If we allow the elasticity of marginal utility to vary with wealth, economic
theory cannot exclude such a case. The only way to avoid a twin-peak outcome in such
a case is to have a high density in the steep (fast-‡owing) section. That will never be
a stationary equilibrium because that high density would be rapidly dissipated by ‡ow
towards k¤ which rainfall could not replace.

An informal mathematical version of this pictorial argument runs as follows. Take a
regular model with no twin-peaks in a stationary wealth distribution. Over a range of
values of k < k¤ which is small relative to a range which contains much of the density of
¼ [¢], distort the h [¢] function so as to make its derivative large. Figure 3 sketches this case.
Recall that with k the logarithm of wealth, the value h(k)¡ k measures the rate of growth
of capital. In the …gure this growth rate is the height of the thick non-linear curve above
the linear 450 line through the origin. It will be seen that starting from the lowest levels
of capital the growth rate of capital is successively rapid, slow, rapid slow. Ranges with
these respective qualities are shown on the …gure by the letters R and S. Given a suitable
distribution of shocks the case illustrated points to the possibility of a twin-peak stationary
distribution.

An example of this type depends upon the magnitude of dh[k]dk varying considerably over
a narrow range: …rst rising then falling. It has been argued above that such severe non-
linearities cannot be assumed away. Within the family of standard Ramsey growth models
are to found examples in which growth proceeds slowly for very poor units, then rapidly
for medium-income units, and the again slowly closer to k¤. To say that such an example
contradicts the constancy of the elasticity of marginal utility is like saying that total sales
revenue for a market falling as total sales increase contradicts the assumption that the
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elasticity of demand for that market is unity. The statement is correct but uninformative.
When Quah8 published his empirical evidence showing the twin-peak pattern in in-

ternational cross section per capita income data, I read it as evidence against the simple
convergence model, as no doubt did many other readers. It is interesting to note that Quah
himself advances no such claim. First he is very clear that he is describing the development
of income distribution over a short period of time. Secondly, Quah is aware of the possibil-
ity that even the apparently disconnected distributions he observes may be generated by a
process which in the long run is ergodic. Now the theoretical investigation of a stationary
wealth distribution has shown that it may have twin (indeed multiple) local peaks. So it
seems that even such a surprising feature may be completely consistent with a standard
convergence model.

That is not a good way of looking at matters. To be worthy of study, an economic model
has not only to be true in some high abstract sense; it has to be useful. A twin peak case
can only arise when h [k] is severely non-linear. The estimation of such a model presents
many di¢culties. In a way the strength of the Baumol-Barro convergence model is its crude
simplicity. If it has to be rescued by re…ned mathematical argument, it loses its appeal.
Also, in the example, and more generally, twin peaks in a stationary distribution can only
happen over a range within the reach of a single-period realization of the random shock.
Therefore if twin peaks are an important feature of the distribution, it must be the case
that shocks are large in absolute value. This is another way of saying that the explanatory
power of the model is weak.

1.10. Concluding Remarks

The long history of the analysis of income or wealth distributions, going back to Pareto,
includes di¤erent approaches. One is purely empirical. The shape of the distribution is
examined and the …tness of simple mathematical speci…cations is investigated. Another
approach is to start with postulates concerning the process which generates the distribu-
tion and then to investigate mathematically what is the limiting distribution which results.
Yet the limiting distribution does not have to be the object of concern. The shorter term
conditional transfer process can itself be the focus of investigation. Indeed for some neo-
classical convergence theorists that is all that can be done, because for them the limiting
distribution is trivial, being a state in which all countries - or individuals in the case of a
personal distribution - are at the common limit point k¤. When the adjustment process is
taken to include random e¤ects there are wider possibilities than when it is modelled using
non-stochastic economic theory.

The present paper marries two di¤erent traditions. They are the pure neoclassical
approach, according to which wealth accumulation is systematic and deliberate; and the

8See Quah (1996a) and (1996b).
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random shocks approach, according to which wealth accumulation is purely haphazard. As
would be expected, such a model is complicated, and direct mathematical solution is hardly
possible. Even so, we have been able to obtain a series of results which together reveal
many features of a stationary distribution of wealth levels.
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