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Abstract

In order to assess the effect of jumps on realised variance calculations, we study some
of the econometric properties of time-changed Lévy processes. We show that in general we
can derive the second order properties of realised variances and use these to estimate the
parameters of such models. Our analytic results give a first indication of the degrees of
inconsistency of realised variance as an estimator of the time-change in the non-Brownian
case. Further, our results suggest volatility is even more predictable than has been shown
by the recent econometric work on realised variance.

Keywords: Kalman filter, Lévy process, Long-memory, Quasi-likelihood, Realised vari-
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1 Introduction

1.1 Time-deformed Lévy processes

Here we study time-deformed Lévy processes. By doing this we can assess the impact of jumps

on using realised variances which recent work has demonstrated has significantly improved our

ability to forecast the volatility of financial markets. In particular this paper will derive the

first four moments of returns, the second order properties of realised variances and the degree of

inconsistency of the realised variance estimator of the time-change. These features will be used

to estimate parameters of time-deformed Lévy processes using a quasi-likelihood constructed

out of these moments, focusing on OU based models, superpositions, log-normal OU processes

and long-memory models.

Time-deformed Lévy processes have recently been introduced into financial economics by

Geman, Madan, and Yor (2003) and Carr and Wu (2003). To understand this class of pro-

cesses we start with the standard setup in asset pricing models. We let log-prices y∗ follow a
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semimartingale process

y∗(t) = α∗(t) + m∗(t), t ≥ 0,

where α∗ is a bounded variation process, m∗ is a local martingale and t represents time. Through-

out, for convenience of calculation and without loss of generality, we assume that α∗(0) = 0 and

m∗(0) = 0, which implies that y∗(0) = 0. Hence y∗ can be thought of as the return process. For

an excellent discussion of probabilistic aspects of semimartingales see Protter (1990), while its

attraction from an economic viewpoint is discussed by Back (1991).

We then follow Carr, Geman, Madan, and Yor (2003), Geman, Madan, and Yor (2003) and

Carr and Wu (2003) in basing the model on a time-deformed Lévy process. In particular we

take

y∗(t) = µt + z(τ∗(t)),

where z is a Lévy process (that is a process with independent and stationary increments i.e.

a continuous time random walk) with the added condition that Var(z(1)) < ∞ and z(0) =

0. Textbook expositions on Lévy processes can be found in Bertoin (1996), Sato (1999) and

Barndorff-Nielsen and Shephard (2003, Ch. 2). Here τ∗ is a time-change (that is a process

with non-decreasing paths) such that, for all t, τ∗(t) < ∞. A review of relevant aspects of such

time-change processes is given in Barndorff-Nielsen and Shephard (2003, Ch. 4). This structure

means that α∗(t) = µt + τ∗(t)E(z(1)) while m∗(t) = z(τ∗(t)) − τ∗(t)E(z(1)). Finally, we will

assume that the z and τ∗ processes are independent. This rules out leverage type effects.

The four most well known examples of Lévy processes in financial economics are

(i) z is a Brownian motion, the workhorse of modern financial economics (e.g. Duffie (1996)).

A sample path of a scaled Brownian motion is given in Figure 1(a).

(ii) z is a jump diffusion (Merton (1976)), that is the addition of Brownian motion and a

compound Poisson process with Gaussian jumps.

(iii) z is a variance gamma (also called a normal gamma) process (Madan and Seneta (1990)).

(iv) z is a zero mean normal inverse Gaussian process (Barndorff-Nielsen (1998)). A sample

path of a normal inverse Gaussian motion is given in Figure 1(b). It is designed to have the

same variance, per unit of time, as the corresponding Brownian motion given in Figure 1(a).

Brownian motion has continuous sample paths, while all non-Brownian Lévy processes have

jumps. Importantly example (ii) is fundamentally different from examples (iii) and (iv). (ii)

is said to be of finite activity for it has a finite number of jumps in any finite period of time.

(iii) and (iv) have the property that there are an infinite number of jumps in any finite period.

Unfortunately non-Brownian motion Lévy processes are often equated with stable processes in

the econometric literature (Mandelbrot (1963), Mandelbrot and Taylor (1967)). Such stable
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Figure 1: (a) Sample path of
√

0.02 times standard Brownian motion. (b) Sample path of a
NIG(0.2,0,0,10) Lévy process. Thus the increments of both processes have the same variance.
Code: levy graphs.ox.

processes have a poor record of accurately modelling the log-prices of returns through time,

e.g. they have infinite variances, while actual asset returns do not. Equating stable and Lévy

processes is simply a technical misunderstanding, the class of Lévy processes is much wider than

is commonly held in that literature.

The most well known example of a time-changed Lévy process is where z is Brownian motion,

a model developed by Bochner (1949) and first used in economics by Clark (1973). Econometric

research which followed these early papers include Stock (1988) and Ghysels and Jasiak (1994).

We additionally restrict our attention to time-changes of the form

τ∗(t) =
∫ t

0
τ(u)du,

where τ is a non-negative process. This means that τ∗ has a continuous, but not necessarily

differentiable, sample path. Under this assumption m∗ has a continuous sample path with

probability one iff z is Brownian motion. In the Brownian motion case this process is equivalent

to a stochastic volatility process. This is studied in, for example, Taylor (1982), Hull and White

(1987), Harvey, Ruiz, and Shephard (1994), Shephard (1996) and Ghysels, Harvey, and Renault

(1996).
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1.2 Returns and realised variance

Associated with the continuous time price process, is a sequence of discrete returns. In this

paper we will use them to study the properties of time-deformed Lévy processes, both in theory

and application. Here we establish a notation for returns and realised variances, which are a

function of high frequency returns.

Consider a fixed interval of time of length � > 0. For concreteness we typically refer to � as

representing a day. Traditional daily returns are computed as

yi = y∗ (i�) − y∗ ((i − 1) �) , i = 1, 2, ... ,

where i indexes the day. In the next Section we will calculate some of their properties and then

later use them to make inference on the parameters indexing time-change models.

We will also focus on the case where we additionally have M intra-� high frequency obser-

vations during each � time period. The j-th intra-� return for the i-th period (e.g. if � is a day

and M = 1440, then this is the return for the j-th minute on the i-th day) will be calculated as

yj,i = y∗
(

(i − 1) � +
�j

M

)
− y∗

(
(i − 1) � +

� (j − 1)
M

)
, j = 1, ..., M. (1)

High frequency returns allow us to compute

[y∗M ]i =
M∑

j=1

y2
j,i, (2)

the realised variance (RV) for the i-th day. In econometrics the RV is used to proxy the variability

of the i-th return. We will justify this in the context of time-changed Lévy processes by seeing

that RV is an estimator of Var(yi|τi) = τiVar(z(1)), where τi = τ∗ (i�) − τ∗ ((i − 1) �). That is

it estimates the variance of yi if we had known the path of τ∗.

RV has been studied in quite some detail, first by Comte and Renault (1998), Andersen and

Bollerslev (1998) and Barndorff-Nielsen and Shephard (2001). Later empirical and methodologi-

cal work by Andersen, Bollerslev, Diebold, and Labys (2001) has been influential. A distribution

theory for realised variance under time-changed Brownian motion was developed by Barndorff-

Nielsen and Shephard (2002a), while some of this work was extended by Meddahi (2002a). See

also Barndorff-Nielsen and Shephard (2002b) for a discussion of the multivariate case and An-

dersen, Bollerslev, and Diebold (2003) and Barndorff-Nielsen and Shephard (2003, Ch. 7) for

surveys of this area. Bai, Russell, and Tiao (2000) provide some simulation evidence for the

effects of jumps on realised variances.

The notation [y∗M ]i is designed to reflect the fact it is based on the y∗ process using M intra-�

observations and computed on the i-th day. The reason for the use of the square brackets will

become clearer later when we recall the idea of quadratic variation.
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The realised variance is related to, but different from, the standard empirical variance of

returns

1
M

M∑
j=1

y2
j,i −

 1
M

M∑
j=1

yj,i

2

=
1
M

M∑
j=1

y2
j,i −

1
M2

y2
i .

In high frequency finance this quantity does not make sense for it will converge in probability

to zero as M → ∞ . This is because the individual high frequency returns will shrink in size

as M increases. The realised variance is roughly M times the empirical variance of returns, the

difference being that realised variance ignores the 1
M y2

i term as it is stochastically of smaller

order than
∑M

j=1 y2
j,i.

1.3 Structure of the paper

The outline of this paper is as follows. In Section 2 we derive various cumulants of the returns

from time-deformed Lévy processes. In Section 3 we extend this to the RV case, giving us

a first analytic handle on the inconsistency of realised variance as an estimator of the time-

change hidden in the price process. In Section 4 we use these properties to derive rather simple

and computationally tractable quasi-likelihood estimators of the parameters which index time-

deformation models. We illustrate these results in Section 5 based on squared daily observations

estimating various short memory and long memory Lévy and Brownian motion based SV models.

In Section 6 we carry out the same exercise but using realised variances rather than squared

data. In Section 7 we calculate best linear filters of the time-change. We also use them to derive

news impact functions. Section 8 concludes.

2 Some cumulants of returns

2.1 Background material on cumulants

Here we will be interested in various moments of

y∗(t) = µt + z(τ∗(t)).

In order to do this it will turn out to be useful to have some knowledge of cumulants. To

start, recall that cumulants are derived via the cumulant function, which is log EeiθX for some

arbitrary random variable X. Then the j-th cumulant is defined as (assuming it exists)

κj =
∂j log E

(
eiθX

)
∂θj

∣∣∣∣∣
θ=0

, j = 1, 2, ... .

These cumulants are related to the more familiar uncentred moments. Recall (e.g. Barndorff-

Nielsen and Cox (1989, p. 7)) that if we write

µ′
j = E

(
Xj
)
, j = 1, 2, ... ,
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then
µ′

1 = κ1

µ′
2 = κ2 + κ2

1

µ′
3 = κ3 + 3κ1κ2 + κ3

1

µ′
4 = κ4 + 4κ1κ3 + 3κ2

2 + 6κ2
1κ2 + κ4

1.

(3)

Often we will be interested in the cumulants and moments of processes as a function of t. In

this case it is useful to include this explicitly in terms of the notation. Thus we will sometimes

write the cumulants and moments of some process z(t) as κj(t) and µ′
j(t), respectively.

Example 1 The leading case is where z(t) = βt + σw(t), with w being standard Brownian

motion. Then for this process

κ1(t) = βt, κ2(t) = σ2t and κj(t) = 0 for j > 2.

This implies that the uncentred moments are

µ′
1(t) = βt,

µ′
2(t) = σ2t + β2t2,

µ′
3(t) = 3βσ2t2 + β3t3,

µ′
4(t) = 3σ4t2 + 6β2σ2t3 + β4t4.

It is interesting to think of t as being small, for this will be relevant when we study RVs. Then

β effects only the higher order terms in µ′
2(t) and µ′

4(t).

�

2.2 Cumulants of Lévy processes

A characterising feature of Lévy processes is that the cumulants of the process z(t) at time t,

again written as κj(t), have a simple relationship to the cumulants of the process at time 1,

written as κj . Thus

κj(t) = tκj .

This follows from the fact that

E
{

eiςz(t)
}

=
{

Eeiςz(1)
}t

,

the fundamental property of continuous time processes with independent and stationary incre-

ments, which implies that the cumulant function has the feature that

log E
{

eiςz(t)
}

= t log Eeiςz(1).
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Example 2 Suppose z is a symmetric Lévy process. Then for this process κ3 = 0 and

µ′
1(t) = κ1t,

µ′
2(t) = κ2t + κ2

1t
2,

µ′
3(t) = 3κ1κ2t

2 + κ3
1t

3,

µ′
4(t) = κ4t + 3κ2

2t
2 + 6κ2

1κ2t
3 + κ4

1t
4.

This example contains Example 1 as a special case by setting κ1 = β, κ2 = σ2 and κ4 = 0. The

interesting change in the results is the impact on µ′
4(t), which now has a term involving just t.

For small t this term will be dominant, which will have important implications for our analysis

of RVs.

2.3 Conditional cumulants and moments of log-prices

We recall the model structure for log-prices is

y∗(t) = µt + z(τ∗(t)),

where we have assumed that z is independent from τ∗. We will initially focus on quantities

connected to the cumulants of y∗(t)|τ∗(t) which are, when they exist,

τ∗(t)κj . (4)

We can use this result and the relationship between cumulants and uncentred moments (3)

to derive the following results in terms of uncentred conditional moments. Throughout we set

µ = 0, although the corresponding results for µ �= 0 can be backed out straightforwardly.

Proposition 1 If κ4 < ∞, then

E(y∗(t)|τ∗(t)) = κ1τ
∗(t),

E
{
y∗(t)2|τ∗(t)

}
= κ2τ

∗(t) + κ2
1τ

∗(t)2, (5)

E
{
y∗(t)3|τ∗(t)

}
= κ3τ

∗(t) + 3κ1κ2τ
∗(t)2 + κ3

1τ
∗(t)3, (6)

E
{
y∗(t)4|τ∗(t)

}
= κ4τ

∗(t) +
(
4κ1κ3 + 3κ2

2

)
τ∗(t)2 + 6κ2

1κ2τ
∗(t)3 + κ4

1τ
∗(t)4.

Further,

Var(y∗(t)|τ∗(t)) = κ2τ
∗(t), (7)

Cov(y∗(t)2, y∗(t)|τ∗(t)) = κ3τ
∗(t) + 2κ1κ2τ

∗(t)2, (8)

Var(y∗(t)2|τ∗(t)) = κ4τ
∗(t) + 2

(
2κ1κ3 + κ2

2

)
τ∗(t)2 + 4κ2

1κ2τ
∗(t)3. (9)

E
[{

y∗(t)2 − κ2τ
∗(t)
}2 |τ∗(t)

]
= κ4τ

∗(t) +
(
4κ1κ3 + 2κ2

2

)
τ∗(t)2 + 4κ2

1κ2τ
∗(t)3 + κ4

1τ
∗(t)4.

�
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Proof. The first four results follow from (4) together with (3). (7)-(9) follow from the use of

these results with the standard formulae that, generically for some X and Y ,

Var(Y |X) = E
(
Y 2|X

)
− E (Y |X)2 , Var

(
Y 2|X

)
= E

(
Y 4|X

)
− E

(
Y 2|X

)2
,

and

Cov
(
Y 2, Y |X

)
= E

(
Y 3|X

)
− E

(
Y 2|X

)
E (Y |X) .

Finally,

E
[{

y∗(t)2 − κ2τ
∗(t)
}2 |τ∗(t)

]
= E

[{
y∗(t)4 − 2y∗(t)2κ2τ

∗(t) + κ2
2τ

∗(t)2
}
|τ∗(t)

]
= E

{
y∗(t)4|τ∗(t)

}
− 2κ2τ

∗(t)E
{
y∗(t)2|τ∗(t)

}
+ κ2

2τ
∗(t)2

= E
{
y∗(t)4|τ∗(t)

}
+ 3κ2

2τ
∗(t)2 − 2κ2

1κ2τ
∗(t)3

= κ4τ
∗(t) +

(
4κ1κ3 + 2κ2

2

)
τ∗(t)2 + 4κ2

1κ2τ
∗(t)3 + κ4

1τ
∗(t)4,

as stated

�

2.4 Unconditional moments of log-prices

In order to derive unconditional moments of y∗(t) we need to remind ourselves of the second

order properties of τ∗ when τ is covariance stationary.

Remark 1 Suppose τ is a second-order or covariance stationary process with ξ, ω2 and r be-

ing, respectively, the mean, variance and the autocorrelation function of the process τ . Then

Barndorff-Nielsen and Shephard (2001) showed that

E {τ∗(t)} = ξt, and Var{τ∗(t)} = 2ω2r∗∗(t) (10)

where

r∗(t) =
∫ t

0
r(u)du and r∗∗(t) =

∫ t

0
r∗(u)du. (11)

�

When this result is combined with Proposition 1 we have the following result.

Proposition 2 If κ4 < ∞ and τ is stationary and such that E
{
τ(t)4

}
< ∞, then

E(y∗(t)) = κ1tξ,

E
{
y∗(t)2

}
= κ2tξ + κ2

1

{
2ω2r∗∗(t) + (tξ)2

}
,

8



E
{
y∗(t)3

}
= κ3tξ + 3κ1κ2

{
2ω2r∗∗(t) + (tξ)2

}
+ κ3

1E
{
τ∗(t)3

}
,

E
{
y∗(t)4

}
= κ4tξ +

(
4κ1κ3 + 3κ2

2

){
2ω2r∗∗(t) + (tξ)2

}
+ 6κ2

1κ2E
{
τ∗(t)3

}
+ κ4

1E
{
τ∗(t)4

}
.

Consequently

Var(y∗(t)) = κ2tξ + 2κ2
1ω

2r∗∗(t),

Cov
[{

y∗(t)2 − κ2τ
∗(t)
}

, κ2τ
∗(t)
]

= κ2
1κ2E

{
τ∗(t)3

}
,

E
[{

y∗(t)2 − κ2τ
∗(t)
}2
]

= κ4tξ +
(
4κ1κ3 + 2κ2

2

){
2ω2r∗∗(t) + (tξ)2

}
+4κ2

1κ2E
{
τ∗(t)3

}
+ κ4

1E
{
τ∗(t)4

}
.

�

Proof. This follows by the application of iterative expectations and (10).

�

Example 3 The results in Proposition 2 were derived in Barndorff-Nielsen and Shephard (2001)

in the special case of κ1 = κ3 = κ4 = 0. They found that

E(y∗(t)) = 0, E
{
y∗(t)2

}
= κ2tξ, E

{
y∗(t)3

}
= 0,

and, most importantly from our viewpoint,

Cov
[{

y∗(t)2 − κ2τ
∗(t)
}

, κ2τ
∗(t)
]

= 0,

E
[{

y∗(t)2 − κ2τ
∗(t)
}2
]

= 2κ2
2

{
2ω2r∗∗(t) + (tξ)2

}
.

�

When κ1 �= 0, the third and fourth moments of the log-prices require us to calculate the

third and fourth moments of τ∗, which are non-standard. The following Proposition is helpful

in thinking about these extra terms when t is small, which will be important when we work with

RVs in the next Section.

Proposition 3 If αj = E{|τ(t) − ξ|j} is finite for some natural number j then

E{(τ∗(t) − ξt)j} = O(tj).

In fact,

|E{(τ∗(t) − ξt)j}| ≤ αjt
j .

�
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Proof.

|E{(τ∗(t) − ξt)j}| ≤ E
∣∣∣∣∫ t

0
. . .

∫ t

0
(τ(s1) − ξ) . . . (τ(sj) − ξ)ds1 . . .dsj

∣∣∣∣
≤

∫ t

0
. . .

∫ t

0
E {|τ(s1) − ξ) . . . (τ(sj) − ξ)|}ds1 . . . dsj .

Further, we can use the result that for arbitrary random variables x1, ..., xj we have

E{|x1 · · ·xj |} ≤ (E{|x1|j} · · ·E{|xj |j})1/j ,

which is a consequence of Jensen’s inequality. This implies that

|E{(τ∗(t) − ξt)j}| ≤
∫ t

0
. . .

∫ t

0
α

1/j
j . . . α

1/j
j ds1 . . .dsj

= αj

∫ t

0
. . .

∫ t

0
ds1 . . .dsj

= αjt
j .

�

If we combine Propositions 2 and 3, then we have immediately the following result.

Proposition 4 If κ4 < ∞ and τ is stationary and Eτ4(t) < ∞, then for t ↓ 0,

E
{
y∗(t)3

}
= κ3tξ + 3κ1κ2

{
2ω2r∗∗(t) + (tξ)2

}
+ O(t3),

E
{
y∗(t)4

}
= κ4tξ +

(
3κ2

2 + 2κ1κ3

){
2ω2r∗∗(t) + (tξ)2

}
+ O(t3),

while

Cov
[{

y∗(t)2 − κ2τ
∗(t)
}

, κ2τ
∗(t)
]

= O(t3),

E
[{

y∗(t)2 − κ2τ
∗(t)
}2
]

= κ4tξ +
(
4κ1κ3 + 2κ2

2

){
2ω2r∗∗(t) + (tξ)2

}
+ O(t3).

�

This result means that y∗(t)2 − κ2τ
∗(t) is, to a higher order approximation, uncorrelated to

κ2τ
∗(t) and that we can characterise the variability of y∗(t)2 − κ2τ

∗(t).

2.5 Second order properties of squared returns

Now let us look at the econometric properties of a sequence of returns over an interval of length

� > 0,

yi = y∗(�i) − y∗(�(i − 1)), i = 1, 2, . . . , n.

It will be convenient for us to also define the associated actual time-changes

τi = τ∗(�i) − τ∗(�(i − 1)), i = 1, 2, . . . , n.

10



If τ is stationary, then yi is stationary and so has the same marginal distribution as

y1 = y∗(�).

Hence Proposition 2 directly computes

E (yi) , E
(
y2

i

)
, E

(
y3

i

)
, E

(
y4

i

)
, Var

(
y2

i

)
, (12)

and

Var
{(

y2
i − τi

)}
, Cov

[(
y2

i − κ2τi

)
, κ2τi

]
by just setting t = �.

The only new issue is to give a discussion of the dynamics of yi and y2
i . Our analysis will be

based on a result in Barndorff-Nielsen and Shephard (2001) which showed that, for s �= 0,

Cov(τi, τi+s) = ω2♦r∗∗(�s) (13)

where

♦r∗∗(�s) = r∗∗((s + 1) �) − 2r∗∗(�s) + r∗∗((s − 1) �). (14)

This can be combined with an extension of Proposition 3 which is that as � ↓ 0 then

Cov (τi, τi+s) = O(�2), Cov
(
τi, τ

2
i+s

)
= O(�3), Cov

(
τ2
i , τ2

i+s

)
= O(�4).

The above results imply the following.

Proposition 5 If τ is covariance stationary and κ2 < ∞, then for s �= 0

Cov (yi, yi+s) = κ2
1Cov (τi, τi+s) , Cov

(
yi, y

2
i+s

)
= κ1κ2Cov (τi, τi+s) + κ3

1Cov
(
τi, τ

2
i+s

)
,

Cov
(
y2

i , y
2
i+s

)
= κ2

2Cov (τi, τi+s) + κ2
1κ2Cov

(
τ2
i , τi+s

)
+κ2κ

2
1Cov

(
τi, τ

2
i+s

)
+ κ4

1Cov
(
τ2
i , τ2

i+s

)
,

and

Cov
{(

y2
i − κ2τi

)
,
(
y2

i+s − κ2τi+s

)}
= κ4

1Cov
(
τ2
i , τ2

i+s

)
.

Further, for � ↓ 0 then

Cov (yi, yi+s) = κ2
1ω

2♦r∗∗(�s),

Cov
(
yi, y

2
i+s

)
= κ1κ2ω

2♦r∗∗(�s) + O(�3),

Cov
(
y2

i , y
2
i+s

)
= κ2

2ω
2♦r∗∗(�s) + O(�3),

Cov
{(

y2
i − κ2τi

)
,
(
y2

i+s − κ2τi+s

)}
= O(�4).

�
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Proof. First

Cov (yi, yi+s) = E {E(yiyi+s|τi, τi+s)} − E (yi)
2

= κ2
1E (τiτi+s) − κ2

1E (τi)
2

= κ2
1Cov (τi, τi+s) .

Second

Cov
(
yi, y

2
i+s

)
= E

{
E(yiy

2
i+s|τi, τi+s)

}
− E (yi) E

(
y2

i

)
= κ1κ2E (τiτi+s) + κ3

1E
(
τiτ

2
i+s

)
− κ1E (τi)

{
κ2E (τi) + κ2

1E
(
τ2
i

)}
= κ1κ2Cov (τi, τi+s) + κ3

1Cov
(
τi, τ

2
i+s

)
.

Third

Cov
(
yi, y

2
i+s

)
= E

{
E(y2

i y
2
i+s|τi, τi+s)

}
− E

(
y2

i

)2
= E

{(
κ2τi + κ2

1τ
2
i

) (
κ2τi+s + κ2

1τ
2
i+s

)}
−
{
κ2E (τi) + κ2

1E
(
τ2
i

)}2

= κ2
2Cov (τi, τi+s) + κ2

1κ2Cov
(
τ2
i , τi+s

)
+κ2κ

2
1Cov

(
τi, τ

2
i+s

)
+ κ4

1Cov
(
τ2
i , τ2

i+s

)
.

Finally

Cov
{(

y2
i − κ2τi

)
,
(
y2

i+s − κ2τi+s

)}
= E

{
E
(
y2

i − κ2τi

) (
y2

i+s − κ2τi+s

)
|τi, τi+s

}
−
{
E
(
y2

i+s − κ2τi+s

)}2

= κ4
1Cov

(
τ2
i , τ2

i+s

)
.

�

3 Cumulants of realised variance

3.1 Setting the scene: the theory of quadratic variation

It is well known that if y∗ is a semimartingale then the probability limit of [y∗M ]i as M → ∞ is

defined by quadratic variation. Recall the quadratic variation (QV) process is well defined (e.g.

Jacod and Shiryaev (1987, p. 55)) for any semimartingale y∗ and can be written as

[y∗](t) =p− lim
M→∞

M−1∑
j=0

{y∗(tj+1) − y∗(tj)}2, (15)

for any sequence of partitions t0 = 0 < t1 < ... < tM = t with supj{tj+1 − tj} → 0 for M → ∞.

Here p− lim denotes the probability limit of the sum. Thus QV can be thought of as the sum

12



of squares of returns computed over infinitesimal time intervals calculated during the period

from time 0 up to time t. Geman, Madan, and Yor (2002) has studied the joint law of τ∗(t)

and [y∗](t) in the case where z = w and τ∗ is a subordinator, that is a Lévy process with non-

negative increments. Winkel (2002) extends some of this work, in particular to more general

Lévy processes.

The definition of QV immediately implies that for all semimartingales as M → ∞

[y∗M ]i
p→ [y∗](�i) − [y∗](� (i − 1)) = [y∗]i.

Importantly, if α∗ is continuous then generically this simplifies to

[y∗M ]i
p→ [m∗]i = [m∗](�i) − [m∗](� (i − 1)).

This is very well known (e.g. Barndorff-Nielsen and Shephard (2002b)).

Example 4 Suppose α∗ and τ∗ have continuous sample paths and m∗(t) =
∫ t
0 τ1/2(u)dw(u) =

w(τ∗(t)), a SV process, then y∗(t) has continuous sample paths and [y∗](t) = [m∗](t). Further,

it can be shown that [m∗](t) = τ∗(t), which implies that

[y∗M ]i
p→ τ∗(i�) − τ∗((i − 1) �) = τi.

Hence RV consistently estimates the time change of the Brownian motion. Under some addi-

tional regularity assumptions Barndorff-Nielsen and Shephard (2002a) and Barndorff-Nielsen

and Shephard (2002b) have additionally proved that√
M
�

(
[y∗M ]i − τi

)√
2
∫ i�
(i−1)� τ2(u)du

d→ N(0, 1), (16)

as M → ∞. �

In the more general case of a time-changed Lévy process, m∗ = z(τ∗), we have the more

challenging situation that

[m∗](t) �= κ2τ
∗(t), so [y∗M ]i

p→ [y∗]i �= κ2τi.

3.2 Basic results on realised variance

3.2.1 Mean and variance of [y∗M ]i − κ2τi

It is clear that an econometrician interested in forecasting the variability of returns should focus

on forecasting κ2τi, which we estimate by [y∗M ]i. Here we study the properties of the RV error

[y∗M ]i − κ2τi.

13



Proposition 6 Suppose τ is covariance stationary and κ4 < ∞, then

E ([y∗M ]i − κ2τi) = κ2
1

{
2ω2Mr∗∗

(
�

M

)
+ M−1�2ξ2

}
Var ([y∗M ]i − κ2τi) = κ4�ξ +

(
4κ1κ3 + 2κ2

2

){
2ω2Mr∗∗

(
�

M

)
+ M−1�2ξ2

}
+ O(M−2),

Cov {([y∗M ]i − κ2τi) , κ2τi} = O(M−2)

and

Cov {([y∗M ]i − κ2τi) , ([y∗M ]i+s − κ2τi+s)} = O(M−3).

�

Proof. It is useful to write

τj,i = τ∗
(

(i − 1) � +
�j

M

)
− τ∗

(
(i − 1) � +

� (j − 1)
M

)
, j = 1, ..., M.

Then we can decompose

[y∗M ]i − κ2τi =
M∑

j=1

(
y2

j,i − τj,i

)
.

Now Propositions 5, 4 and 1 tells us that

E(y2
j,i − τj,i) = κ2

1

{
2ω2r∗∗

(
�

M

)
+
(

�

M ξ
)2}

Var(y2
j,i − τj,i) =

κ4

(
�

M

)
ξ +

(
4κ1κ3 + 2κ2

2

){
2ω2r∗∗

(
�

M

)
+
(

�

M ξ
)2}

+4κ2
1κ2E

{
τ∗ ( �

M

)3}+ κ4
1E
{

τ∗ ( �

M

)4}
,

Cov(y2
j,i − τj,i, y

2
j+s,i − τj+s,i) = O(M−4).

This implies the desired result.

�

In the κ1 = κ4 = 0 and κ2 = 1 case this reproduces the Barndorff-Nielsen and Shephard

(2002a) result, who also showed that r∗∗(t) is O(t2) as t ↓ 0 and so Mr∗∗
(
�M−1

)
= O(M−1) as

M → ∞.

The above means our Proposition 6 tells us the following.

• The bias of [y∗M ]i as an estimator of κ2τi. We see this is O(M−1).

• The variability of [y∗M ]i − κ2τi, the RV error. When κ4 > 0 this involves a term which

does not disappear as M → ∞. This is important as this captures the inconsistency of

[y∗M ]i as an estimator of κ2τi in the non-Brownian time-change model. The next order

term is analytically calculable and is important even if κ4 = 0, while the other terms are

of O(M−2). Typically, all terms of O(1) and O(M−1) dominate the bias in terms of the

mean square error for the RV as an estimator of the time-change. Hence the bias has little

impact in practice.
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• The Cov {([y∗M ]i − κ2τi) , κ2τi} tells us that the time-change and RV error are, to a high

order, uncorrelated.

• The Cov {([y∗M ]i − κ2τi) , ([y∗M ]i+s − κ2τi+s)} informs us that to a very high order, the RV

errors are uncorrelated.

Overall, the movement from Brownian motion to the Lévy time-change model has really

only impacted the variability of the RV error. This is the most important point we make in this

paper.

3.2.2 Second order properties of [y∗M ]i

To carry out inference on these types of models it is helpful to know the second order properties

of [y∗M ]i.

Proposition 7 If κ4 < ∞ and τ is covariance stationary, then

E ([y∗M ]i) = κ2�ξ + κ2
1

{
2ω2Mr∗∗

(
�

M

)
+ M−1�2ξ2

}
,

Var ([y∗M ]i) = 2ω2κ2
2r

∗∗(�) + κ4�ξ +
(
4κ1κ3 + 2κ2

2

){
2ω2Mr∗∗

(
�

M

)
+ M−1�2ξ2

}
+ O(M−2),

while, for s �= 0,

Cov ([y∗M ]i, [y∗M ]i+s) = κ2
2Cov (τi, τi+s) + O(M−2)

= κ2
2ω

2♦r∗∗(�s) + O(M−2).

�

Proof. We have that

[y∗M ]i = κ2τi + ([y∗M ]i − κ2τi) .

Then (10) and Proposition 6 imply that

E ([y∗M ]i) = κ2�ξ + κ2
1

{
2ω2Mr∗∗

(
�

M

)
+ M−1�2ξ2

}
.

Likewise

Var ([y∗M ]i) = Var (κ2τi) + Var ([y∗M ]i − κ2τi) + 2Cov {([y∗M ]i − κ2τi) , κ2τi}

= 2ω2κ2
2r

∗∗(�) + κ4�ξ +
(
4κ1κ3 + 2κ2

2

){
2ω2Mr∗∗

(
�

M

)
+ M−1�2ξ2

}
+ O(M−2).

Finally,

Cov ([y∗M ]i, [y∗M ]i+s) = κ2
2Cov (τi, τi+s) + O(M−2).
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�

From now on in the paper we will ignore O(M−2) terms in the variability terms and O(M−1)

in the bias. This leads to the approximations

E ([y∗M ]i) 	 κ2�ξ, Cov {([y∗M ]i − κ2τi) , κ2τi} 	 0, Cov {([y∗M ]i − κ2τi) , κ2τi+s} 	 0,

Var ([y∗M ]i) 	 2ω2κ2
2r

∗∗(�) + κ4�ξ +
(
4κ1κ3 + 2κ2

2

){
2ω2Mr∗∗

(
�

M

)
+ M−1�2ξ2

}
,

Cov ([y∗M ]i, [y∗M ]i+s) 	 κ2
2ω

2♦r∗∗(�s),

4 Some implications for autocorrelation and quarticity

4.1 Autocorrelation function of realised variances

Notice that E ([y∗M ]i) and Cov ([y∗M ]i, [y∗M ]i+s) are unaffected by the jumps in the process. Taken

together these results mean that

Cor ([y∗M ]i, [y∗M ]i+s) =
κ2

2ω
2♦r∗∗(�s)

2ω2κ2
2r

∗∗(�) + κ4�ξ + 4κ2
2ω

2Mr∗∗
(

�

M

)
+ 2M−1κ2

2 (�ξ)2
.

Thus the autocorrelation function of [y∗M ]i is monotonically decreasing in κ4. Further, as M → ∞

and assuming κ2 = 1,

Cor ([y∗M ]i, [y∗M ]i+s) → ω2♦r∗∗(�s)
2ω2r∗∗(�) + κ4�ξ

= Cor ([y∗]i, [y∗]i+s)

≤ =
♦r∗∗(�s)
2r∗∗(�)

= Cor (τi, τi+s) .

Of course the equality, in the inequality, is obtained only in the Brownian case. Otherwise

the autocorrelation amongst the [y∗M ]i will systematically underestimate the autocorrelation

in the τi and so the predictability in the volatility process. This resonates with the modern

methodological literature on volatility forecasting by Andersen and Bollerslev (1998), Andersen,

Bollerslev, and Meddahi (2002a) and Andersen, Bollerslev, and Meddahi (2002b) which has

shown that the volatility of financial markets is much more predictable than is widely believed

in the academic literature.

An important alternative asymptotics is to allow κ4 → ∞, while fixing κ2 = 1. In this case

Cor ([y∗M ]i, [y∗M ]i+s) →
κ4→∞ 0,

as the variance of the squares of the returns becomes infinity. This holds whatever the value of

M and however dependent is the volatility process.
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The general result as M → ∞ implies that

Cor ([y∗M ]i, κ2τi) =
Var (κ2τi)√

Var (κ2τi) {Var (κ2τi) + Var(uM :i)}

=
2ω2κ2

2r
∗∗(�)√

2ω2κ2
2r

∗∗(�)
{

2ω2κ2
2r

∗∗(�) + κ4�ξ + 4κ2
2ω

2Mr∗∗
(

�

M

)
+ 2M−1κ2

2 (�ξ)2
}

→ r∗∗(�)√
r∗∗(�)

{
r∗∗(�) + κ4

2ω2κ2
2
�ξ
} ,

as M → ∞. Of course this is 1 iff κ4 = 0. Again this correlation can be driven to be arbitrarily

close to zero by allowing κ4 to become large.

4.1.1 Meddahi regression

In the Brownian case Meddahi (2002a) has argued that we should replace [y∗M ]i by the regression

estimator

κ̂2τi = (1 − βM ) E ([y∗M ]i) + βM [y∗M ]i, where βM =
Var (κ2τi)
Var

(
[y∗M ]i

) ∈ [0, 1].

Of course, as M → ∞,

βM =
Var (κ2τi)
Var

(
[y∗M ]i

)
=

2ω2κ2
2r

∗∗(�)
2ω2κ2

2r
∗∗(�) + κ4�ξ + 4κ2

2ω
2Mr∗∗

(
�

M

)
+ 2M−1κ2

2 (�ξ)2

→ r∗∗(�)
r∗∗(�) + κ4

2ω2κ2
2
�ξ

= β ≤ 1.

Now

κ̂2τi
p→

M→∞
(1 − β)κ2�ξ + β[y∗]i.

Again, inevitably, this is an inconsistent estimator of κ2τi for z �= w. Andersen, Bollerslev, and

Meddahi (2002a) and Andersen, Bollerslev, and Meddahi (2002b) have studied in detail other

properties of these estimators in the Brownian motion time-deformation case.

4.2 Quarticity

Barndorff-Nielsen and Shephard (2002a) introduced the idea of quarticity
∑M

j=1 y4
j,i as a measure

of the variability of [y∗M ]i − κ2τi. In the Brownian time-change model they showed that, under

suitable regularity conditions,

M

3�

M∑
j=1

y4
j,i →

∫ i�

(i−1)�
τ2(u)du,
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which can be used to convert the infeasible limit theory (16) into the feasible version M∑
j=1

y2
j,i − τi


√√√√2

3

M∑
j=1

y4
j,i

d→ N(0, 1).

An alternative feasible limit theory has recently been introduced by Barndorff-Nielsen and Shep-

hard (2002b). They showed that the dynamic quarticities

M

�

M−1∑
j=1

y2
j,iy

2
j+1,i

p→
∫ i�

(i−1)�
τ2(u)du, and

M

�

 M∑
j=1

y4
j,i −

M−1∑
j=1

y2
j,iy

2
j+1,i

 p→ 2
∫ i�

(i−1)�
τ2(u)du

which implies the alternative asymptotic relations M∑
j=1

y2
j,i − τi


√√√√2

M−1∑
j=1

y2
j,iy

2
j+1,i

d→ N(0, 1), or

 M∑
j=1

y2
j,i − τi


√√√√ M∑

j=1

y4
j,i −

M−1∑
j=1

y2
j,iy

2
j+1,i

d→ N(0, 1).

It is
∑M

j=1 y4
j,i −

∑M−1
j=1 y2

j,iy
2
j+1,i which will turn out in a moment to prove the most helpful in

the context of robustifying this result to Lévy jumps1.

This implies that if κ4 < ∞ and τ is stationary and Eτ4(t) < ∞, then as M → ∞

E
{
y4

i,j

}
= κ4

(
�

M

)
ξ +

(
3κ2

2 + 4κ1κ3

){
2ω2r∗∗

(
�

M

)
+
(

ξ
�

M

)2
}

+ O(M−3),

while

E
(
y2

j,iy
2
j+1,i

)
= κ2

2

{
ω2♦r∗∗

(
�

M

)
+
(

ξ
�

M

)2
}

+ O(M−3).

The important point is that the expectation of y2
j,iy

2
j+1,i is unaffected by κ1, κ3 and, most

importantly, κ4.

It will be helpful to remind ourselves that Barndorff-Nielsen and Shephard (2002a) calculated

the moments of
∑M

j=1 y4
j,i, under covariance stationarity of τ and Brownian motion. Now

3M2

{
2ω2r∗∗

(
�

M

)
+
(

ξ
�

M

)2
}

→ 3�2
(
ω2 + ξ2

)
,

as M → ∞, using the fact proved by Barndorff-Nielsen and Shephard (2002a) that 2M2r∗∗
(

�

M

)
→

�2. Likewise

E

M
M−1∑
j=1

y2
j,iy

2
j+1,i

→ �2
(
ω2 + ξ2

)
.

1The non-negativity follows from the result that for all a, b then a2 − 2ab + b2 ≥ 0. Hence
∑M

j=1 y4
j,i −∑M−1

j=1 y2
j,iy

2
j+1,i is zero iff yj,i = 0 for all j.
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Thus
M∑

j=1

E
(
y4

j,i

)
−

M−1∑
j=1

E
(
y2

j,iy
2
j+1,i

)
= κ4�ξ +

(
2κ2

2 + 4κ1κ3

) �2

M

(
ω2 + ξ2

)
+ o(M−1).

Hence
∑M

j=1 y4
j,i−

∑M−1
j=1 y2

j,iy
2
j+1,i is a model free, although noisy, higher order unbiased estimator

of the variance of the RV error so long as either κ1 = 0 or κ3 = 0.

5 Quasi-likelihood estimation

5.1 Based on low-frequency squared returns

The theory we have been developing show that if κ1 = 0 and κ4 < ∞ and τ is second order

stationary then we can compute the unconditional mean and covariance of y =
(
y2
1, . . . , y

2
n

)′ as

a function of the parameters of the model. We write the parameter vector as θ. Here n denotes

the sample size.

We can define a Gaussian quasi-likelihood function

log LQ(θ) = −n

2
log 2π − 1

2
log
∣∣Cov(y)

∣∣− 1
2
{
y − E(y)

}′ {Cov(y)
}−1 {

y − E(y)
}

,

which allows us to find

θ̂Q = arg max
θ

log LQ(θ).

Clearly θ̂Q is suboptimal as y is not Gaussian, however it should be consistent and its asymptotic

distribution theory can be computed using the general theory of method of moments estimation

using the fact that the score has zero expectation under the second order properties of the model.

In particular, if we write

J = lim
n→∞

1
n

Cov
(

∂ log LQ(θ)
∂θ

)
and I = − lim

n→∞
1
n

E
{

∂2 log LQ(θ)
∂θ∂θ′

}
,

then
√

n
(
θ̂Q − θ

)
d→ N(0, I−1J I−1).

Typically, in theory, we have to estimate J using spectral matrix methods (e.g. Newey and

West (1987)). However, extensive empirical work we have carried out suggests that the serial

dependence in the elements of the quasi-score vector is very small indeed.

In practice, when it comes to the estimation of the parameters which index these models, it

makes sense to constrain κ2 = 1 and allow κ4 to be freely determined. This type of constraint

has to be imposed when the model is estimated using just the second order properties of y2
i or

[y∗M ]i. Otherwise the model will be unidentified.

Usually n is quite large in financial economics when � = 1 represents one day and so com-

puting logQ is onerous due to the need to compute the inverse of the n×n matrix Cov(y), which
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is typically an O
(
n3
)

operation. However, stationarity of τ means that y is itself stationary and

so Cov(y) must be Toeplitz. The Durbin algorithm2 (e.g. Golub and Van Loan (1989, p. 187)

and Doornik and Ooms (2003, p. 29)) can be used to compute log LQ in O
(
n2
)
. This works

with the Choleski decomposition of the inverse of Cov(y). We write Cov(y) as LDL′, where L

is lower triangular and D is diagonal, so

log LQ(θ) = −n

2
log 2π − 1

2
log |D| − 1

2
e′e, where e = L−1D−1/2

{
y − E(y)

}
.

Note that L−1 is also lower triangular. Importantly the i-th diagonal elements of D are the

variances of the best linear, unbiased one-step ahead forecasts of y2
i ,

ŷ2
i|i−1 = PL

(
y2

i |y2
1, ..., y

2
i−1

)
while the i-th element of e has the associated one-step ahead forecast errors

ei = y2
i − ŷ2

i|i−1.

We should note that Engle (2002) has recently used simulation to approximate these best linear

estimators in the context of the Brownian-SV models.

Great computational gains can be made in the special case where τi can be represented as

τi = ξ + x�i, �i+1 = T �i + vi, (17)

where x is a selection matrix, T is a fixed matrix which may be indexed by some parameters,

the “state vector” �i is a fixed, finite dimension and vi is a zero mean, weak white noise process.

Then we can compute log LQ in O(n) computations using the Kalman filter (e.g. Harvey (1993,

Ch. 4) and Durbin and Koopman (2001, Ch. 4.2) for textbook expositions and Koopman,

Shephard, and Doornik (1999) for computational tools for carrying out the calculations). This

follows from the fact that

y2
i = κ2τi + ui,

where the properties of ui were given in Proposition 2, can be combined with (17) to put y2
i

into a linear state space representation. In particular if we write the best linear predictor of �i

using y2
1, y2

2, . . . , y
2
i−1 as ai|i−1 and the associate mean square error matrix as Pi|i−1, then

τ̂i|i−1 = ξ + xiai|i−1, fi = xPi|i−1x
′ + Var(ui),

and so3

logQ(θ) = −n

2
log 2π − 1

2

n∑
i=1

log fi −
1
2

n∑
i=1

f−1
i

(
y2

i − κ2τ̂i|i−1

)2
. (18)

2Most matrix languages have functions which carry out the Durbin algorithm, e.g. in Ox it is pacf.
3Of course, this relates back to the output from Durbin’s algorithm with ŷ2

i|i−1 = κ2τ̂i|i−1 and fi being the

diagonal elements of the D matrix.
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Informal checks suggest that when n = 3, 000 and the dimension of the state space is two

then the Kalman filter computes log LQ around 20 times faster than when we use the Durbin

algorithm, although we should note that the Kalman filter’s computational load is quadratic in

the dimension of the state and so can become slower than the Durbin algorithm for very large

dimensional state vectors. When n is under 1, 000 the difference between the two algorithms is

not very substantial. Overall, in both the cases of the Durbin algorithm or the Kalman filter

the calculation of the likelihood is, using a modern PC, very fast.

Being able to write τi into (17) is restrictive. We will give a number of examples where this

is possible, however typically models with long-memory features will not be able to be written

in this way. In this case we are forced back to the somewhat slower method of Durbin.

Before we move on we note there is a very large and stimulating literature on alternative

ways of estimating SV models. Some of this literature is reviewed in Shephard (1996) and

Ghysels, Harvey, and Renault (1996). Broadly this literature splits into (i) simulation based

Bayesian analysis via Markov chain Monte Carlo (e.g. Kim, Shephard, and Chib (1998)), (ii)

simulation based indirect inference (e.g. Gourieroux, Monfort, and Renault (1993), Gallant and

Tauchen (1996)), (iii) generalised method of moments (e.g. Andersen and Sorensen (1996)),

(iv) simulation based maximum likelihood using important sampling (e.g. Durham and Gallant

(2002)).

5.2 Inference based on realised variances

Precisely the same approach can be used when we replace squared returns with RVs. Now

we can argue exactly when κ1 = κ3 = 0 or asymptotically approximately for large M when

this does not hold. In either case we can also compute the asymptotic approximations to the

unconditional mean and covariance of [y∗M ] = ([y∗M ]1, . . . , [y∗M ]n)′ as a function of the parameters

of the model.

We can define a Gaussian realised quasi-likelihood function

log LRQ(θ) = −n

2
log 2π − 1

2
log
∣∣∣Cov

(
[y∗M ]

)∣∣∣
−1

2

{
[y∗M ] − E

(
[y∗M ]

)}′ {
Cov

(
[y∗M ]

)}−1 {
[y∗M ] − E

(
[y∗M ]

)}
,

which allows us to define

θ̃RQ = arg max
θ

log LRQ(θ).

Again θ̃RQ is suboptimal as [y∗M ] is not Gaussian, however it is again consistent and its asymptotic

distribution theory can be computed using the general theory of method of moments estimation.

Further, informally, one would expect it to be much more efficient than inference based on
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log LQ(θ) as the added noise [y∗M ]i − κ2τi is much smaller when M is large. Again the quasi-

likelihood function can be computed using the Durbin algorithm as [y∗M ]i is stationary in O(n2)

while in the special case where [y∗M ]i can be placed into a linear state space form then log LRQ(θ)

can be computed in O(n).

Previous related work on estimating parameters of SV models includes Bollerslev and Zhou

(2002) and Barndorff-Nielsen and Shephard (2002a). The former paper looked at using a method

of moments procedure on some special cases of Brownian time-change models, while Barndorff-

Nielsen and Shephard (2002a) used the above quasi-likelihood in the case where the model can

be handled by the Kalman filter.

6 Illustration based on daily returns

6.1 Single factor model

We start with the simplest model for τ where

r(s) = Cor(τ(t), τ(t + s)) = exp(−λs).

This is the autocorrelation function of an OU process, suggested in this context by Barndorff-

Nielsen and Shephard (2001) and also for the CIR variance process (e.g. Heston (1993)). Then

r∗∗(s) = λ−2(e−λs − 1 + λs), which is enough to analytically characterise the autocovariance

function of y2
i and so compute the quasi-likelihood function directly using Durbin’s method.

In order to use the Kalman filter in this context we need to perform more analytic calcula-

tions. A straightforward manipulation from (13) implies that

Cov(τi, τi+s) = ω2λ−2(1 − e−λ�)2e−λ�(s−1),

which is the autocovariance function of an ARMA(1, 1) process and hence can be placed into a

linear state space form with a two dimensional state. We write this representation as

(τi − �ξ) = φ (τi−1 − �ξ) + ei + θei−1.

The autoregressive root is φ = e−λ�. Barndorff-Nielsen and Shephard (2002a) noted this but

then worked out θ and Var(ei) using numerical methods. We now see that the moving average

root and variance of ei can be found analytically using the following lemma. This result is

based on having analytically available Var(τi) and Cor(τi, τi−1), which is the case in this class

of models.

Lemma 1 (after a related result by Meddahi (2002b) on the process for y2
i ). Straightforwardly

Var(ei)
(
1 + θ2 + 2θφ

)
= Var(τi)

(
1 − φ2

)
. Now write ci = τi − φτi−1, then ci = ei + θei−1 so
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that

Var (ci) =
(
1 + φ2

)
Var(τi) − 2φCov(τi, τi−1)

and

Cov(ci, ci−1) =
(
1 + φ2

)
Cov(τi, τi−1) − φVar(τi) − φCov(τi, τi−2)

=
(
1 + φ2

)
Cov(τi, τi−1) − φVar(τi) − φ2Cov(τi, τi−1)

= Cov(τi, τi−1) − φVar(τi)

= Var(τi) {Cor(τi, τi−1) − φ} .

Note that Cor(τi, τi−1) ≥ φ as eλ� − e−λ� ≥ 2λ�. Write

ρ1 =
Cov(ci, ci−1)

Var (ci)
∈
[
0,

1
2

]
, then θ =

1 −
√

1 − 4ρ2
1

2ρ1
∈ [0, 1].

Remark 2 Note that

ρ1 =
{Cor(τi, τi−1) − φ}

(1 + φ2) − 2φCor(τi, τi−1)
,

which only depends on λ and �. Hence this is also true for θ. Numerical experiments suggest

that for a wide set of parameter values θ is usually around 0.25 when � = 1.

For this model we can place it into a linear state space form with τi = ξ + (1 0)�i and

�i+1 =
(

(τi+1 − ξ�)
θei+1

)
=
(

φ 1
0 0

)
�i +

(
1
θ

)
ei,

which allows a very fast quasi-likelihood evaluation when n = 3, 000. For these models the

estimation is carried out in just a couple of seconds.

6.2 Empirical results

To illustrate these methods we will study the value of various exchange rates against the US

Dollar recorded daily by Datastream from 26 July 1985 to 28th July 2000. Throughout, for

simplicity of exposition, we report 100 times the returns.

Table 1 shows the maximum quasi-likelihood estimates of this simple model, with and with-

out Lévy effects. The Table suggests that Lévy based time-deformation models dominate Brow-

nian SV models in a consistent manner using this criteria. When we impose Brownian motion

we set κ4 to be zero. Throughout when κ4 is allowed to be freely determined on the positive

half-line, it is estimated to be strongly positive and leads to an increase in the quasi-likelihood.

Further, this Table shows that the presence of the Lévy process allows the estimated value of ξ

to be in-line with the empirical version of E
(
y2

i

)
. Hence the model will exhibit so-called variance

tracking — the estimated model will have returns with the same unconditional variance as that
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Currency QML estimators Implied
Implied moments ξ = E

(
y2

i

)
ω2 κ4 λ log LQ Var

(
y2

i

)
Can .110 .00633 .0322 730.4 .0434

Ê
(
y2

i

)
= .0890 .0887 .00495 .135 .0400 734.0 .0424

V̂ar
(
y2

i

)
= .0424

DM .616 .110 .0196 -5626.3 1.09

Ê
(
y2

i

)
= .464 .464 .0722 .893 .0370 -5619.0 1.06

V̂ar
(
y2

i

)
= 1.06

FF .576 .172 .0343 -5729.1 1.17

Ê
(
y2

i

)
= .449 .448 .129 .803 .0448 -5724.2 1.14

V̂ar
(
y2

i

)
= 1.14

SF .724 .128 .0160 -6172.8 1.43

Ê
(
y2

i

)
= .562 .563 .0867 .904 .0286 -6167.3 1.40

V̂ar
(
y2

i

)
= 1.40

Yen .560 .430 .245 -6623.4 1.82

Ê
(
y2

i

)
= .530 .529 .310 .684 .147 -6621.2 1.81

V̂ar
(
y2

i

)
= 1.81

UK .535 .104 .00613 -5145.7 .886

Ê
(
y2

i

)
= .388 .397 .0700 .820 .0122 -5143.5 .852

V̂ar
(
y2

i

)
= .849

Table 1: Quasi-likelihood fit for the Brownian SV and tim deformed Lévy models using a single
factor variance process. Code: quasi track.ox

observed in the data. Further, the Lévy based model brings the implied variance of the squared

returns in-line with the empirical variance. We will call this kurtosis tracking. Another inter-

esting feature is that the estimated value of λ is moderated by the presence of the Lévy process,

with initial high values being made to fall and low values increasing. Hence the estimated Lévy

based model is more consistent across the series than the Brownian special case.

Figure 2 focuses on the Canadian Dollar case. Figure 3 will deal with the other rates later.

Figure 2 shows the correlogram of the squared data together with the implied fitted autocor-

relation function for the Brownian based process and that of the Lévy OU time deformation

process (we will return to the line denoted Lévy-OU2 later). We can see that the autocorrelation

function for the Brownian based model is higher than that for the Lévy-OU process. The Lévy

based model has slightly less memory in it than the Brownian based case and we can just about

discern this from the graph.

Remark 3 If we approximate the setup in Lemma 1 by setting θ = 0, then the linear represen-
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Figure 2: Empirical correlogram for squared returns and the implied fit for the autocorrelation
function for different SV models fitted by QML for the Canadian Dollar. Drawn are the implied
fits from a BM-OU, Lévy-OU and Lévy-OU2. On the graph the BM-OU symbol is used to
indictate which curve is the one corresponding to the fitted BM-OU process. Likewise for the
Lévy-OU process. Code: quasi.ox.

tation is

y2
i = ξ� + �i + ui, �i+1 = (τi+1 − ξ�) = φ�i + ei.

Writing ai = PL

(
�i|y2

1, . . . , y
2
i−1

)
, the Kalman filter implies that

ai+1 = φai + ki

(
y2

i − ξ� − ai

)
, ki = φ

pi

pi + Var(ui)
∈ [0, φ) ,

where pi = E
(
(�i − ai)

2 |y2
1, . . . , y

2
i−1

)
with

pi+1 = φ2pi − φkipi + Var(vi) ≥ 0.

Rearranging the equation for ai+1 and writing τ̂i+1|i = ξ� + ai+1 then

τ̂i+1|i = ξ� + φ
(
τi|i − ξ�

)
+ ki

(
y2

i − τi|i
)

= (1 − φ)ξ� + (φ − ki) τ̂i|i−1 + kiy
2
i

≥ 0
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if τ̂i|i−1 ≥ 0. So long as Var(vi) > 0 then pi converges from above to a steady state, which

implies that for moderate i the recursion for τ̂i+1|i takes the form of a GARCH(1, 1) recursion.

This was first discussed in Barndorff-Nielsen and Shephard (2001).

6.3 J factor model

When we move to a superposition model the results change somewhat. We assume that

r(s) =
J∑

j=1

wj exp(−λjs) where
J∑

j=1

wj = 1 and wj ≥ 0. (19)

Related work on building models for the spot variance out of Markov component models includes

Shephard (1996), Engle and Lee (1999), Gallant, Hsu, and Tauchen (1999), Alizadeh, Brandt,

and Diebold (2002), Barndorff-Nielsen and Shephard (2001), Barndorff-Nielsen and Shephard

(2002a) and Chernov, Gallant, Ghysels, and Tauchen (2002).

Again the resulting process is analytically tractable with

r∗∗(s) =
J∑

j=1

wjλ
−2
j (e−λjs − 1 + λjs),

so the log LQ can easily be calculated via the Durbin algorithm as terms such as

Cov(τ∗(t)) = 2ω2r∗∗(t)

= 2ω2
J∑

j=1

wjλ
−2
j (e−λjt − 1 + λjt),

are straightforward to calculate. Further, we can write τi as the sum of J uncorrelated ARMA(1, 1)

processes. The parameters of each of these ARMA(1, 1) components can be calculated indepen-

dently and analytically from the one factor results given in Lemma 1. An attractive feature of

this setup is that we can again write this into a linear state space form with

τi = �ξ = (1 0 1 0 . . . 1 0)�i,

and

�i+1 =



φ1 1 0 0 0 0
0 0 0 0
0 0 φ2 1 0 0
0 0 0 0 0 0

0 0 0 0
. . .

...
...

...
...

...
... φJ 1

0 0 0 0 · · · 0 0


�i +



1 0 0
θ1 0 0
0 1 0
0 θ2 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · θJ




e1,i

e2,i

eJ,i

 .

Hence the Kalman filter can be used to rapidly compute log LQ.

In this subsection we apply this in the case of J = 2 to the exchange rate data discussed

above. See Table 2. In the cases of the Canadian Dollar and Japanese Yen when κ4 is estimated
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QML estimators
ξ ω2 κ4 λ w log LQ

Can .0838 .0124 (1.47, .0286) (.680, .319) 741.1
DM .625 .102 (.0478, .000622) (.638, .361) -5620.2

.468 .0736 .861 (.0489, .00405) (.847, .152) -5618.4
FF .593 .157 (.0540, .00109) (.766, .233) -5725.3

.452 .130 .774 (.0533, .00421) (.898, .101) -5723.7
SF .729 .125 (.0301, .000176) (.677, .322) -6168.9

.563 .0867 .904 .0286 -6167.3
Yen .502 .514 (.694, .0143) (.798, .201) -6603.7
UK .528 .108 (.0558, .00164) (.347, .652) -5141.8

.410 .0813 .674 (.0634, .00361) (.583, .416) -5141.1

Table 2: Quasi-likelihood fit for the Brownian and Lévy based SV models using a two factor
variance process. Code: quasi track.ox

it came out to be zero and so we do not repeat the row in the Table. The Table shows that

the move to the superposition model removes some or all of the importance of the Lévy term.

Instead, empirically, we have that sometimes it is enough to have an additional component of

volatility which is quite fast decaying.

An interesting feature of the QML fit is the implied moments of the estimated model. The

corresponding autocorrelation function for the squared process is given in Figure 3, which shows

that even these rather simple models seem to match rather well the correlogram of the squared

process.

6.4 Log-normal OU process

An important class of models is where we put log τ as a N(ξlog, ω
2
log)-OU process. This appeared

in the work of, for example, Hull and White (1987) while discrete time versions of this model

was pioneered by Taylor (1982) in the SV literature. We call this the log-normal OU process,

denoted LNOU. In that case

r(s) =
exp

(
ω2

loge
−λ|s|

)
− 1

1 − e−ω2
log

,

while

ξ = eξlog+ω2
log/2 and ω2 = e2ξlog+ω2

log

(
eω2

log − 1
)

.

This model can be thought of as being a sup-OU process, an infinite dimensional superposition

of OU process, for we can write

r(s) = EX

(
e−λsX

)
=

∞∑
j=1

Pr(X = j)e−λsj ,
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Figure 3: Implied fit for the autocorrelation function for squared returns for different SV models
fitted by QML using 6 different currencies. Drawn are the implied fit from an OU or OU2 and
the empirical correlogram. Code: quasi.ox.
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where

X ∼ Po>0(ω2
log),

a truncated Poisson variable with the atom at 0 being knocked out and the probability function

being renormalised so it sums to one over the strictly positive integers. This representation is

helpful for we can use software for superposition models to compute the quasi-likelihood function.

A similar, but rather differently motivated, type of approach is used by Meddahi (2001) in his

work on eigenfunction process approximation to other processes. In practice we tend to place a

large upper bound (e.g. 10) on the support of the truncated Poisson distribution. In this case

the Durbin algorithm is highly competitive in terms of computational speed compared to the

Kalman filter.

We have estimated this class of models in the BM-LNOU SV and Lévy-LNOU SV cases.

The results are given in Table 3. We can see that the BM-LNOU SV processes has a slightly

better fit in terms of the log LQ than the BM-OU SV process, although the improvement is very

modest indeed. The implied E(y2
i ) and Var(y2

i ) are very similar. We have not drawn the implied

autocorrelation function of the squared returns of the two models as they are so close it is hard

to tell them apart graphically.

Table 3 shows that when we move to the Lévy case the models become even more similar.

It is not possible to give any general preference for one model over the other.

QML estimators Implied parameters
ξlog ω2

log κ4 λ log LQ ξ = E(y2
i ) ω2 Var(y2

i )

Can -2.40 .416 .0279 730.8 .110 .00634 .0433
-2.66 .493 .133 .0348 734.4 .0887 .00502 .0424

DM -.608 .253 .0158 -5625.9 .617 .109 1.09
-.912 .290 .890 .0308 -5619.0 .464 .0727 1.06

FF -.758 .416 .0283 -5728.9 .576 .172 1.17
-1.05 .498 .796 .0375 -5724.3 .448 .130 1.14

SF -.430 .218 .0131 -6172.5 .725 .128 1.43
-.695 .243 .898 .0243 -6167.4 .563 .0877 1.40

Yen -1.01 .866 .205 -6622.1 .560 .432 1.82
-1.01 .756 .658 .126 -6620.2 .529 .316 1.81

UK -.772 .303 .00521 -5145.4 .537 .102 .884
-1.10 .366 .816 .0104 -5143.2 .398 .0701 .851

Table 3: Quasi-likelihood estimation of various LNOU SV processes. Fitted are both the Brow-
nian motion and Lévy based models. Code: quasi track.ox
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6.5 A long memory model

Suppose we parameterise r

r(s) =
∫ ∞

0
e−sλπ(dλ),

where π is a probability measure on λ. This autocorrelation function arises as the limit of

a superposition process, with the number of components potentially going off to infinity. A

rigourous theory for this is provided by Barndorff-Nielsen (2001), whose work is related to

earlier papers on building long-memory models by the addition of short memory processes by

Mandelbrot (1971) and subsequently by Granger (1980) and Granger and Joyeau (1980). We do

not know of any papers which estimate genuine long-memory continuous time time-deformation

models without employing some form of discretisation. Papers which employ discretisation

include Comte and Renault (1998), Gallant, Hsu, and Tauchen (1999) and Meddahi (2001). See

also the earlier work on long memory SV models by Harvey (1998).

In the present setting, letting ε(t; λ) = λ−1(1 − e−λt) and ε∗(t; λ) = λ−2
(
e−λt − 1 + λt

)
, we

have that

r∗(t) =
∫ ∞

0
ε(t; λ)π(dλ) and r∗∗(t) =

∫ ∞

0
ε∗(t; λ)π(dλ).

Example 5 In the special case where π corresponds to a Γ(2H, α). Recall a Γ(ν, α) density is

f(x) =
αν

Γ (ν)
xν−1 exp(−αx), x > 0,

so then

r(u) =
(
1 +

u

α

)−2H
.

Thus we find that for H < 1/2 (which deliver long-memory models)

r∗(t) = (1 − 2H)−1α

{(
1 +

t

α

)1−2H

− 1

}

and

r∗∗(t) = (1 − 2H)−1α2

[
(2 − 2H)−1

{(
1 +

t

α

)2−2H

− 1

}
− t

α

]
.

An attractive feature of this model is that it can be added to a short memory model, like an

OU process, to deliver an autocorrelation function which has flexibility over both the shorter and

longer runs.

Table 4 shows the results from fitting Brownian and Lévy time-changed processes. These are

quite encouraging. If we focus first on the Brownian motion case, then the four parameter model

seems to have a better fit than simple three parameter OU based models (whose fit is given in

Table 1), although the fit is quite similar and slightly worse than a five parameter superposition
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model with two components (given in Table 2). An interesting feature is that the estimated κ4

is quite similar between the long-memory model and the OU2 process.

QML estimators
ξ ω2 κ4 α H log LQ Implied Vary2

i

Can .0765 .0177 0 .0456 .143 736.3 .0435
DM .625 .101 8.03 .223 -5621.7 1.08

.468 .0790 .834 16.5 .471 -5619.6 1.06
FF .587 .162 15.3 .421 -5726.9 1.16

.454 .145 .697 14.4 .457 -5725.5 1.15
SF .727 .125 11.6 .251 -6170.4 1.42

.566 .0996 .833 19.2 .453 -6168.7 1.40
Yen .469 .644 0 .308 .274 -6606.8 1.81
UK .526 .110 9.00 .124 -5141.9 .882

.405 .0815 .699 17.1 .249 -5141.5 .855

Table 4: Estimates of a pure gamma long memory variance model using squared daily returns
from a variety of exchange rates. Code: quasi track.ox

The estimates of the long-memory parameters H increase as we move from the Brownian

model to the Lévy model. Half the series have estimates of H which are larger than 0.4 in the

Lévy cases, which suggests the long-memory models provides a parsimonious and reasonable

description of the dynamics.

We can mix the long memory variance model with a short memory OU. We do this by writing

that

r(u) = w
(
1 +

u

α

)−2H
+ (1 − w) e−λu, w ∈ [0, 1] , λ > 0.

Clearly, with this structure

r∗∗(u) = w(1 − 2H)−1α2
[
(2 − 2H)−1

{
(1 +

u

α
)2−2H − 1

}
− u

α

]
+ (1 − w)λ−2

(
e−λu − 1 + λu

)
,

which is straightforward to calculate and so we can use Durbin’s method to compute the quasi-

likelihood. The resulting estimates are given in Table 5 in the Brownian and Lévy process

cases.

In this Table in the Brownian motion case the estimated values of H and α do not vary

very much across the series, with the long-memory component having only a minor part of the

variation of the series. The only exception to this is the UK Sterling, which again has quite a

small value of H. Throughout λ is estimated to be quite large, which means this component is

modelling very short term fluctuations in the spot variance. Hence its main use is in modelling

the fat tails of the series.
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QML estimators
ξ ω2 κ4 α λ H w log LQ Implied Vary2

i

Can .0776 .0138 0 19.0 1.69 .453 .340 740.27 .0426
DM .469 3.04 16.5 44.5 .463 .0258 -5619.6 1.06

.468 .0836 .831 16.1 17.8 .470 .946 -5619.6 1.06
FF .456 1.88 14.4 32.2 .461 .0766 -5725.6 1.15

.454 .151 .696 14.7 32.1 .463 .955 -5725.5 1.15
SF .563 .472 0 26.1 3.17 .462 .194 -6167.5 1.41
Yen .481 .541 0 26.8 .800 .458 .245 -6604.2 1.81
UK .405 .486 0 17.2 7.34 .235 .167 -5141.3 .856

Table 5: Estimation of a mixed OU and gamma long memory variance model for squared daily
returns using a variety of exchange rates. Code: quasi track.ox

When we add the flexibility of a Lévy process the quasi-likelihood function hardly moves.

In cases where κ4 is estimated to be non-zero, the impact of the short-memory component is

small with w being estimated to be over 0.9. Hence, for these series the long-memory component

dominates. Overall, for daily data there seems to be little point in both having a Lévy process

and a second, short memory, component of volatility.

7 Illustration based on realised variances

7.1 The data and realised variances

In this Section we will use the theory of RV in the context of time-changed Lévy processes to es-

timate various volatility models. We start out with a discussion of high frequency data, together

with its relevant stylised facts. Then we estimate OU based models and their superposition ex-

tensions. We then compare their fit to those built out of log-OU processes and long-memory

models.

To illustrate some of the empirical features of RV we have used a similar return dataset

employed by Andersen, Bollerslev, Diebold, and Labys (2001), although we have made slightly

different adjustments to deal with some missing data. These are described in detail in Barndorff-

Nielsen and Shephard (2002a). This series records the United States Dollar/ German Deutsche

Mark series. It covers the ten year period from 1st December 1986 until 30th November 1996.

The original dataset records every 5 minutes the most recent mid-quote to appear on the Reuters

screen. It has been kindly supplied to us by Olsen and Associates in Zurich, who document their

path breaking work in this area in Dacorogna, Gencay, Müller, Olsen, and Pictet (2001).

Figure 4(a) shows the implied daily returns over this period and Figure 4(b) the correspond-

ing correlogram for squared daily returns. The correlations tend to be quite small, although
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with a preponderance of positive numbers. Figure 4(c) shows the RV for each day based on the

full 5 minute dataset. Hence for this series M = 288, while � represents one day. The time

series shows changing level of the variability of the series. Figure 4(d) shows the correlogram

of the RVs. The correlogram starts at around 0.55 and quickly falls to around zero at lag 100,

although at longer lags the correlations tend to be positive.
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2.5

(a) Daily returns
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(b) ACF: Squared daily returns
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(c) Realised Variance
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Figure 4: DM against the Dollar, based on the Olsen dataset. (a) Implied daily returns. (b) Cor-
relogram for the squared daily returns. (c) Daily realised variance based on the 5 minute returns.
(d) Correlogram for the realised variance for the DM series. Code: realised quasi track.ox.

7.2 Superposition model

Table 6 shows the fitted results for the OU and superposition of OU processes for squared

daily returns. This corresponds to M = 1. This suggests the move from the Brownian time-

deformation model to the Lévy version improves the fit of the model, but not dramatically in

terms of quasi-likelihood fit. The Lévy motion has better variance tracking properties than the

corresponding estimated Brownian models. In both the Brownian and Lévy models we have

that the components of the superpositions are well separated with one component representing

quite persistent shocks to the volatility, while the other component is more rapidly reverting. In

both of these cases the components have roughly equal weight. A move to a fourth component
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does not improve the quasi-likelihood.

QML estimators Empirical Implied Empirical
ξ ω2 κ4 λ w log LQ E ([y∗M ]i) V ([y∗M ]i) V ([y∗M ]i)

.644 .104 .0170 -3582.3 .504 1.14 1.11

.504 .0731 .772 .0311 -3579.0 .504 1.11 1.11

.504 .0773 .753 (.0146,.0686) (.479,.520) -3578.7 .504 1.11 1.11

Table 6: Quasi-likelihood fit to the DM data using squared daily data. This is the same as using
the realised variance using M = 1. Code: realised quasi track.ox

Table 7 gives the corresponding results using M = 288. Before we discuss the details of the

estimated model we can see that although the average value of [y∗M ]i is very close to that of y2
i

for the daily data, the variance of [y∗M ]i is much lower than the corresponding y2
i . This reflects

the fact that the RV is a much more accurate estimator of the integrated variance. It provides

a much more informative basis for estimating the parameters of these models.

Table 7 shows that the fit of the model continually improves as we increase the complexity of

the model. Now, the estimated parameters change quite a lot with the Brownian based model.

However, at all stages the model is well tracked, with the implied and empirical expectations and

variances of the RVs being comparable. Here we will discuss in some detail the DM example, as

this is typical of the results for the other rates.

For the single OU DM case Figure 7(a) shows that the estimated model has little memory

in it and provides a poor match to the empirical observations. The reason for this is that the

three parameter model is not sufficiently flexible to simultaneously fit the average value of RV,

its variance and its decay in the autocorrelation function. In effect, the quasi-likelihood chooses

to highly weight the mean, variance and very short lags in the autocorrelation function. This

then almost entirely neglects higher lags in the autocorrelation function.

The second order Brownian based model is much more reasonable, although it tends to under

weight the longer lags in the acf. When we fitted the third order superposition model one of

the component has a value for λ which is above 200. This is basically almost instantly mean

reverting and so can be thought to proxy very short term deviations from the local Gaussian

assumption. Many researchers would model this using a jump type process.

In the Lévy case the estimated model based on the OU process is quite poor, but is much

better than the Brownian version. Figure 7(b) shows the memory of the acf last to around 50

lags, which is still of course too short. When we move to the second order model the implied

acf is similar to that implied by the third order Brownian model. This seems a reasonable

description of the empirical correlogram. The move to a third order model allows the implied
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Figure 5: Empirical and implied autocorrelation functions for the realised variances for the DM
against the Dollar using M = 288 . (a) Brownian motion based model. (b) Lévy based model.
Code: realised quasi track.ox.

acf to have more memory at long lags. This additional component has a value of λ which is

0.007 and a weight of 0.03. Although this may make some difference to very long forecasts,

which can been seen from the fitted autocorrelation function drawn in Figure 7(b), it does not

really impact the fit of the model in terms of the quasi-likelihood.

Although the Brownian and Lévy based models are rather similar for large order superposi-

tion models, for short order models the Lévy based model is preferable. It is more stable as we

change the model, adding new OU components.

Very similar results hold when we fit the model using M = 144. These results are given in

Table 7.

Again as we take M down so that M = 72 the parameters do not move very much. Impor-

tantly, for the simplest Brownian model the estimated value of λ is quite large, which means the

fitted model has very little memory in it. This changes quite a lot when we allow for Lévy effects

for then the estimated value of λ falls dramatically down to around 0.1. When the superposition

model is added the estimated values of λ are around 0.03 and 1. This allows a component of
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M QML estimators Empir Implied
(V̂ [y∗M ]i) ξ ω2 κ4 λ w log LQ E[y∗M ]i V[y∗M ]i

288 .530 .328 1.16 -1356.2 .528 .235
(.237) .527 .140 .190 .133 -1222.4 .528 .237

.526 .385 (2.85,.0432) (.741,.258) -1195.5 .528 .236

.525 .193 .130 (.975,.0328) (.543,.456) -1190.0 .528 .237

.525 4.68 (203,.973,.0328) (.958,.0223,.0188) -1190.0 .528 .237

.523 .193 .131 (.983,.0361,.00728) (.541,.420,.0380) -1189.9 .528 .237
144 .511 .373 1.43 -1552.2 .509 .253

(.255) .507 .121 .260 .0851 -1398.9 .509 .255
.507 .482 (3.88,.0430) (.796,.203) -1382.7 .509 .254
.506 .174 .193 (.970,.0330) (.495,.504) -1378.4 .509 .255
.506 4.48 (.966,155,.0330) (.0191,.961,.0195) -1378.4 .509 .255
.504 .174 .193 (.982,.0367,.00880) (.493,.458,.0475) -1378.3 .509 .255

72 .491 .393 1.42 -1671.5 .488 .275
(.277) .487 .125 .296 .0996 -1547.2 .488 .276

.487 .486 (3.48,.0437) (.802,.197) -1528.8 .488 .276

.486 .188 .213 (.990,.0342) (.545,.454) -1524.6 .488 .276

.486 4.67 (.988,199,.0342,) (.0219,.959,.0183) -1524.6 .488 .276

.486 .188 .213 (.992,.0114,.0349) (.544,.0101,.445) -1524.6 .488 .276
2 .738 .158 .0104 -3123.1 .491 .860

(.774) .489 .0735 .794 .0410 -3114.2 .491 .774
.723 .178 (.00003,.0420) (.589,.410) -3116.5 .491 .878
.488 .0750 .792 (.0560,.0143) (.758,.241) -3114.1 .491 .774

1 .644 .104 .0170 -3582.3 .504 1.14
(1.11) .504 .0731 .772 .0311 -3579.0 .504 1.11

.639 .109 (.0633,.00390) (.506,.494) -3580.8 .504 1.14

.504 .0773 .753 (.0686,.0146) (.520,.479) -3578.7 .504 1.11

Table 7: Quasi-likelihood fit to the DM data using the realised variance, for a variety of values
of M . Code: realised quasi track.ox

the variance process which has a great deal of memory.

Finally, Table 7 gives the corresponding result for M = 2. This is in line with the analysis

based on squared daily data. This shows that we need the Lévy effects in order to produce

variance tracking.

7.3 Log-OU models

The corresponding results for the estimated log-OU based time-deformation models are given

in Table 8. This Table shows that the model is quite unstable as M changes in the Brownian

case. The Lévy version of the model does not vary much as M alters. It also has a much

higher quasi-likelihood, although for small values of M there is not much difference between the

Brownian and Lévy based models.
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The Table indicates that for large M the Brownian LNOU model fits much better in terms of

the quasi-likelihood criteria than the OU based models, although the Lévy version of the model

is only slightly superior. The fact that introducing Lévy effects reduces the difference between

the two sets of models is interesting.

QML estimators
M ξlog ω2

log κ4 λ log LQ

288 .553 .882 .000456 -1271.1
-.844 .409 .187 .115 -1219.4

144 .405 .784 .000565 -1433.3
-.870 .385 .257 .0748 -1397.2

72 .278 .631 .00117 -1582.6
-.932 .428 .292 .0884 -1545.3

24 .0253 .510 .00223 -1940.9
-.981 .412 .444 .0599 -1914.3

6 -1.16 .911 1.14 -2370.0
-.901 .326 .490 .0383 -2290.2

2 -1.14 .902 1.23 -3148.7
-.848 .269 .791 .0346 -3114.2

1 -.552 .224 .0145 -3582.1
-.810 .254 .768 .0263 -3578.9

Table 8: Quasi-likelihood estimation of LNOU SV process using realised variances based on
different values of M , the number of intra-day observations. Code: realised quasi track.ox

7.4 Long memory models

Table 9 gives the RV estimates of the gamma-long memory process using the Brownian and Lévy

based models. The Table includes the results when we add in short memory OU components to

the variance process.

The results are much less stable with respect to M than we saw in Table 7 on the Lévy based

model whose spot variance was constructed by a superposition of OU processes. The Lévy based

models still tend to have higher long-memory parameter H than the Brownian versions, while

the addition of the OU components tend to mean that H drifts higher. Throughout the long-

memory component has a high weight, the only exception being the Lévy based model using

daily data where the long memory component is close to being irrelevant.
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QML estimators
ξ ω2 κ4 α λ H w log LQ

288 .512 2.75 .000122 .171 -1197.2
.515 2.75 .000456 .0278 .235 (.980,.0199) -1192.3
.524 .667 .0438 (1.15,.0296) .402 (.883,.00460,.111) -1191.5
.495 .525 .0801 .00564 .113 -1195.3
.523 .605 .0110 .0483 .0291 .386 (.891,.108) -1191.5

144 .505 4.13 .000112 .200 -1389.7
.502 4.14 .000589 .0294 .298 (.983,.0165) -1379.6
.476 .287 .183 .0706 .0919 -1383.3
.505 .258 .149 .262 .0290 .470 (.708,.291) -1379.3

72 .489 3.92 .000119 .194 -1532.9
.479 3.93 .000476 .0297 .272 (.984,.0153) -1526.4
.461 .513 .157 .00515 .109 -1529.8
.485 .621 .0652 .0475 (.0306,.0293) .400 (.884,.115,small) -1525.9

2 .679 .225 .174 .0563 -3117.7
.722 .176 .180 (.0493,.0410) .0146 (.661,.123,.214) -3116.3
.480 .0834 .797 14.4 .470 -3114.7

1 .640 .109 9.44 .227 -3580.5
.490 .145 .548 .581 .128 -3580.7
.505 .0739 .768 2.09 .0308 .357 (.0244,.975) -3579.0

Table 9: Estimates of a pure gamma long memory variance model using squared daily returns
from a variety of exchange rates. Also given are the estimates with added OU components.
Code: quasi track.ox

8 Filtered estimators of the time-change

8.1 Theory and application

Durbin’s method also automatically delivers the sequence of best linear unbiased estimator of

κ2τi given y2
1, . . . , y

2
i−1, written as

κ2τ̂i|i−1 = PL

(
κ2τi|y2

1, . . . , y
2
i−1

)
and the associated mean square error fi for i = 1, 2, . . . , n in O(n2). Likewise, for the more

specialised case of the Kalman filter, all these quantities are also produced in O(n). Figure 6(a)

shows, for the German DM series (selected as it had quite a difference between the BM and

Lévy based models), a plot of |yi| and
√

κ2τ̂i|i−1 for the BM based time-deformation process

with Markovian variance process, as well as the associated Lévy based version. These are plotted

for only a short section of the time series at the start of the sample period. The one-step ahead

predictions are seen to respond to large absolute returns. The BM and Lévy based models give

roughly similar results, with the BM based model slightly higher throughout the sample. Figure

6(b) shows
√

κ2τ̂i|i−1 for the Lévy based model, depicting the result for the entire sample. The
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one-step ahead volatility forecasts vary considerably throughout the sample ranging in value

from around 0.55 to 1.4.
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Figure 6: One-step ahead forecast of the volatility using the Kalman filter. Based on the BM
time-deformed model and the Lévy based time-deformed model. Code: quasi.ox.

When we employ superposition based models for the spot variance then we can write

τ(t) =
J∑

j=1

τ j(t),

where the components τ j(t) are uncorrelated. Then

κ2τ̂i|i−1 =
J∑

j=1

PL

(
κ2τ

j
i |y2

1, . . . , y
2
i−1

)
,

where PL

(
κ2τ

j
i |y2

1, . . . , y
2
i−1

)
can be computed using the Kalman filter. This decomposition of

the forecast is potentially interesting for the time series plots of PL

(
κ2τ

j
i |y2

1, . . . , y
2
i−1

)
would

be expected to be very different over superscript j. Figure 7 shows these terms for the German

DM series. Importantly we see the first component has much less memory than the second,

while its size is typically much larger. Importantly the picture shows that the estimates of the

components can go negative, even though τ̂i|i−1 is always strictly positive.

The responsiveness of the estimators of the variance process to news can be measured in a
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Figure 7: One-step ahead forecast of the components of variance using the Kalman filter. Based
on the BM time-deformed Lévy based time-deformed model. Code: quasi.ox.

number of ways. One possibility is to plot

PL

(
κ2τi+1|y2

1, . . . , y
2
i

)
− PL

(
κ2τi|y2

1, . . . , y
2
i−1

)
,

against yi. We favour a plot of

newsi = PL

(
κ2τi|y2

1, . . . , y
2
i

)
− PL

(
κ2τi|y2

1, . . . , y
2
i−1

)
against yi. The difference between the two measures of news seem, in the experiments we have

carried out, to be very minor indeed. The picture of newsi against yi shows how the estimator

of the variance at time i is changed as we record yi, implying a sensible measure of the impact

of news on volatility estimation. Engle and Ng (1993) and Engle (2002) have developed rather

different ideas in this regard.

Figure 8 shows a graph for newsi against yi. It demonstrates that the estimated variance

changes in a roughly quadratic manner with yi. The curve is not entirely regular, with variation

around the overall trend. The reason for this is that the Kalman filter implies that

newsi = Ki

{
y2

i − PL

(
κ2τi|y2

1, . . . , y
2
i−1

)}
,

where Ki is the so-called Kalman gain (which quickly converges to a steady state for moderately
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Figure 8: Graph of newsi against yi for the BM time-deformation model for the German DM
series. Code: quasi.ox.

large i). Hence the movement recorded in newsi is not affine in y2
i , rather it is proportional to

the linear innovation y2
i − PL

(
κ2τi|y2

1, . . . , y
2
i−1

)
.

This discussion suggests we could be interested in plotting newsi against y2
i −PL

(
κ2τi|y2

1, . . . , y
2
i−1

)
,

the innovation. Of course, this would just be linear, reflecting the steady state Kalman gain.

8.2 Limitations of linear filters

These best linear estimators have many advantages: they are simple and fast to compute, they

are optimal in the linear sense and have associated measures of uncertainty, etc. However, they

only provide a partial solution to the filtering problem. In principle a more complete filtering

solution would yield the density of τi|y1, . . . , yi−1 or τi|y1, . . . , yi or, indeed, τi|y1, . . . , yn.

However, the linear approach does not even provide any of the moments of these densities.

Indeed, in general, there is nothing stopping the estimators from becoming negative. The lack

of a full posterior density makes it impossible to construct valid confidence intervals of τi or

use the estimator to imply meaningfully properties of derived quantities such as the vital actual

volatility
√

κ2τi. In order to do this we can use particle filters, but this is beyond the scope

of this paper. We refer the reader to the literature on this topic, see for example, Gordon,

Salmond, and Smith (1993), Pitt and Shephard (1999a) and Doucet, de Freitas, and Gordon
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(2001). Work on using particle filters for time-changed processes include Kim, Shephard, and

Chib (1998), Pitt and Shephard (1999a), Pitt and Shephard (1999b), Pitt and Shephard (2001),

Barndorff-Nielsen and Shephard (2001) and Johannes, Polson, and Stroud (2002).

9 Conclusion

In this paper we have generalised the usual SV model to a time-changed Lévy process. The

effect of allowing for the possibility of jumps is that the probability limit of RV, the increments

to quadratic variation, is no longer the increments to the time-change. In fact, outside the

Brownian motion, even if we observe the exact path of the price process we cannot recover the

time-change.

Even though the RV is an inconsistent estimator of the time-change, it is an almost unbiased

one. We characterise the variability of the difference between RV and the time-change. This

allows us to use the time series of realised variances to estimate the parameters of models of

time-change. Further, the time series can be used to produce forecasts of future time-changes

of the Lévy processes.
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Carr, P. and L. Wu (2003). Time-changed Lévy processes and option pricing. Journal of

Financial Economics. Forthcoming.

Chernov, M., A. R. Gallant, E. Ghysels, and G. Tauchen (2002). Alternative models of stock

price dynamics. Journal of Econometrics. Forthcoming.

Clark, P. K. (1973). A subordinated stochastic process model with fixed variance for specu-

lative prices. Econometrica 41, 135–156.

Comte, F. and E. Renault (1998). Long memory in continuous-time stochastic volatility mod-

els. Mathematical Finance 8, 291–323.

Dacorogna, M. M., R. Gencay, U. A. Müller, R. B. Olsen, and O. V. Pictet (2001). An

Introduction to High-Frequency Finance. San Diego: Academic Press.

Doornik, J. A. (2001). Ox: Object Oriented Matrix Programming, 3.0. London: Timberlake

Consultants Press.

Doornik, J. A. and M. Ooms (2003). Computational aspects of maximum likelihood estimation

of autoregressive fractionally integrated moving average models. Computational Statistics

and Data Analysis 42, 333–348.

Doucet, A., N. de Freitas, and N. Gordon (2001). Sequential Monte Carlo Methods in Practice.

New York: Springer-Verlag.

Duffie, D. (1996). Dynamic Asset Pricing Theory (2 ed.). New Jersey: Princeton University

Press.

Durbin, J. and S. J. Koopman (2001). Time Series Analysis by State Space Methods. Oxford:

Oxford University Press.

Durham, G. and A. R. Gallant (2002). Numerical techniques for maximum likelihood esti-

mation of continuous-time diffusion processes (with discussion). Journal of Business and

Economic Statistics 20, 297–338.

Engle, R. F. (2002). New frontiers for ARCH models. Journal of Applied Econometrics 17,

425–446.

44



Engle, R. F. and G. G. J. Lee (1999). A permanent and transitory component model of

stock return volatility. In R. F. Engle and H. White (Eds.), Cointegration, Causality, and

Forecasting. A Festschrift in Honour of Clive W.J. Granger, Chapter 20, pp. 475–497.

Oxford: Oxford University Press.

Engle, R. F. and V. Ng (1993). Measuring and testing the impact of news on volatility. Journal

of Finance 48, 1749–1778.

Gallant, A. R., C. Hsu, and G. Tauchen (1999). Using daily range data to calibrate volatility

diffusions and extract the forward integrated variance.

Gallant, A. R. and G. Tauchen (1996). Which moments to match. Econometric Theory 12,

657–81.

Geman, H., D. B. Madan, and M. Yor (2002). Stochastic volatility, jumps and hidden time

changes. Finance and Stochastics 6, 63–90.

Geman, H., D. B. Madan, and M. Yor (2003). Time changes for Levy processes. Mathematical

Finance. Forthcoming.

Ghysels, E., A. C. Harvey, and E. Renault (1996). Stochastic volatility. In C. R. Rao and G. S.

Maddala (Eds.), Statistical Methods in Finance, pp. 119–191. Amsterdam: North-Holland.

Ghysels, E. and J. Jasiak (1994). Stochastic volatility and time deformation: an application

of trading volume and leverage effects. Unpublished paper: Department of Economics,
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