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Abstract

In a recent paper we have introduced the class of realised kernel estimators of the increments
of quadratic variation in the presence of noise. We showed that this estimator is consistent and
derived its limit distribution under various assumptions on the kernel weights. In this paper
we extend our analysis, looking at the class of subsampled realised kernels and we derive the
limit theory for this class of estimators. We find that subsampling is highly advantageous for
estimators based on discontinuous kernels, such as the truncated kernel. For kinked kernels, such
as the Bartlett kernel, we show that subsampling is impotent, in the sense that subsampling has
no effect on the asymptotic distribution. Perhaps surprisingly, for the efficient smooth kernels,
such as the Parzen kernel, we show that subsampling is harmful as it increases the asymptotic
variance. We also study the performance of subsampled realised kernels in simulations and in
empirical work.
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1 Introduction

High frequency financial data allows us to try to measure the ex-post variation of asset prices by

estimating the increments to quadratic variation (e.g. Andersen, Bollerslev, Diebold, and Labys

(2001) and Barndorff-Nielsen and Shephard (2002)). Common estimators, such as the realised

variance, can be sensitive to market frictions when applied to returns recorded over shorter time

intervals such as 1 minute, or even more ambitiously, 1 second (e.g. Zhou (1996), Fang (1996) and

Andersen, Bollerslev, Diebold, and Labys (2000)). In response two non-parametric generalisations

have been proposed in the literature: subsampling and realised kernels by Zhang, Mykland, and

Aı̈t-Sahalia (2005b) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006), respectively. In

this paper we partially unify these approaches by studying the properties of subsampled realised

kernels.

Our interest will be on inference for the ex-post variation of log-prices over some arbitrary fixed

time period, such as a day, using estimators of the realised kernel type. We represent this period as

the single interval [0, t]. For a continuous time log-price process X and time gap δ > 0, the flat-top

realised kernels of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) take on the following

form

K̃(Xδ) = γ0(Xδ) +

H∑

h=1

k

(
h − 1

H

){
γh(Xδ) + γ−h(Xδ)

}
.

Here the non-stochastic k(x) for x ∈ [0, 1] is a weight function and the h-th realised autocovariance

is

γh(Xδ) =

nδ∑

j=1

xjxj−h, xj = Xδj − Xδ(j−1),

with h = −H, ...,−1, 0, 1, ...,H and nδ = ⌊t/δ⌋. We will think of δ as being small and so xj

represents the j-th high frequency return, while γ0(Xδ) is the realised variance of X. Here K̃(Xδ)−
γ0(Xδ) is the realised kernel correction to realised variance for market frictions. Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2006) gave a relatively exhaustive treatment of K̃(Xδ) when X

is a Brownian semimartingale plus noise, where the noise evolves in observation time. The non-

flat-top kernel replaces the kernel weight k
(

h−1
H

)
with k

(
h
H

)
, whose properties are also studied by

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006).

Realised kernels are based on returns that are computed on a time mesh which is started at

time t = 0. Starting at t = 0 is an ad hoc choice and there may be efficiency gains possible by

jittering the initial value many times and averaging the resulting collection of different realised

kernel estimators. This point is made forcefully in the context of calculating realised variances by

Zhang, Mykland, and Aı̈t-Sahalia (2005b). The jittering of the initial value is illustrated in Figure

1.
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Figure 1: Two sets of returns. The top series x1

j are the conventional ones. The bottom series are
the offset returns xs

j , s = 2, . . . , S. These are used to compute alternative realized autocovariances
and subsampled realized kernels.

For the analysis of subsampled realised kernels it is helpful to distinguish between three types of

kernels functions, k(x), with k(0) = 1 and k(1) = 0. We label the three types of kernel functions as

smooth, kinked, and discontinuous kernels. Representative members of these three classes of weight

functions are the Parzen, the Bartlett, and the truncated kernel, respectively. Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2006) have shown that the class of smooth weights, which satisfy

k′(0) = k′(1) = 0, lead to realised kernels that converges at the efficient rate, n1/4. Whereas the

kinked kernels, which do not satisfy k′(0) = k′(1) = 0, lead to realised kernels that convergence

at the slower rate, n1/6. The discontinuous kernels lead to inconsistent estimators as we show in

Section 6.

In this paper we show that subsampling is very useful for the class of discontinuous kernels,

because subsampling makes these estimators consistent and converge in distribution at rate n1/6.

In his pioneering paper, Zhou (1996) used a simple truncated kernel and gave a brief discussion of

the subsampled version of his realised kernel. His estimator belongs to the class of discontinuous

kernels. We will see that his estimator can be made consistent by allowing S → ∞ as n → ∞, a

result which is implicit in his paper, but one he did not explicitly draw out. For the class of kinked

kernels, we show that subsampling is impotent, in the sense that the asymptotic distribution is

the same whether subsampling is used or not. Finally, we show that subsampling is harmful when

applied to smooth kernels. In fact, if the number of subsamples, S, increases with the sample size,

n, the best rate of convergence is reduced to less than the efficient one, n1/4.

Still, subsampling does provide a simple way to make use of all available data while making

valid inference using realistic assumptions about the noise in tick-by-tick data. We discuss this
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aspect in Section 7 and make recommendations on how to implement subsampled realised kernels

in empirical work.

Our analysis is based on equally spaced data. By applying the time-change argument of

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006), it follows that our results also applies

to irregularly spaced data. For instance, the case where δ corresponds to the time between every

fifth transaction.

This paper has the following structure. We present the basic framework in Section 2 along with

some known results. In Section 3 we derive the limit theory for subsampled realised autocovari-

ances. We present our main results in Section 4. Here we derive the limit theory for subsampled

realised kernels and show that subsampling cannot improve realised kernels within a very broad

class of estimators. Section 5 presents some intuition for our theoretical results. In Section 6 we

characterize some poorly designed kernels and show that subsampling improves upon such esti-

mators. In Section 7, we given some specific recommendations on empirical implementation of

subsampled realised kernels and how to conduct valid inference in this context. We present results

from a small simulation study in Section 8 and an empirical application in Section 9. We conclude

in Section 10 and present all proofs in an appendix.

2 Notation, definitions and background

2.1 Semimartingales and quadratic variation

The fundamental theory of asset prices says that the log-price at time t, Yt, must, in a frictionless

arbitrage free market, obey a semimartingale process (written Y ∈ SM) on some filtered probability

space
(
Ω,F , (Ft)t≥T ∗ , P

)
, where T ∗ ≤ 0. Introductions to the economics and mathematics of

semimartingales are given in Back (1991) and Protter (2004). It is unusual to start the clock of a

semimartingale before time 0, but this raises no technical difficulty and eases the exposition. We

think of 0 as the start of an economic day and sometimes it is useful to use data from the previous

day. Alternatively we could define γh(Xδ) as using data from time 0 to t by changing the range

of the summation to j = H + 1 and nδ − H and then scaling the resulting estimator. All the

theoretical properties we discuss in this paper would then follow in the same way as here.

Crucial to semimartingales, and to the economics of financial risk, is the quadratic variation

(QV) process of Y ∈ SM. This can be defined as

[Y ]t = plim
N→∞

N∑

j=1

(
Ytj − Ytj−1

)2
, (1)

(e.g. Protter (2004, p. 66–77) and Jacod and Shiryaev (2003, p. 51)) for any sequence of deter-

ministic partitions 0 = t0 < t1 < ... < tN = t with supj{tj+1 − tj} → 0 for N → ∞.
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The most familiar semimartingales are of Brownian semimartingale type (Y ∈ BSM)

Yt =

∫ t

0
audu +

∫ t

0
σudWu, (2)

where a is a predictable locally bounded drift, σ is a càdlàg volatility process and W is a Brownian

motion. For reviews of the econometrics of this type of process see, for example, Ghysels, Harvey,

and Renault (1996) and Shephard (2005). If Y ∈ BSM then

[Y ]t =

∫ t

0
σ2

udu.

In some of our asymptotic theory we also assume, for simplicity of exposition, that

σt = σ0 +

∫ t

0
a#

u du +

∫ t

0
σ#

u dWu +

∫ t

0
v#
u dVu, (3)

where a#, σ# and v# are adapted càdlàg processes, with a# also being predictable and locally

bounded and V is Brownian motion independent of W . Much of what we do here can be extended

to allow for jumps in σ, following the details discussed in Barndorff-Nielsen, Graversen, Jacod, and

Shephard (2006), but we will not address that here.

2.2 Assumptions about noise

We write the effects of market frictions as U , so that we observe the process

X = Y + U, (4)

and think of Y ∈ BSM as the efficient price. Our scientific interest will be in estimating [Y ]t. In

the main part of our work we will assume that Y ⊥⊥ U where, in general, A ⊥⊥B denotes that A and

B are independent. From a market microstructure theory viewpoint this is a strong assumption as

one may expect U to be correlated with increments in Y . However, the empirical work of Hansen

and Lunde (2006) suggests this independence assumption is not too damaging statistically when

we analyse data in thickly traded stocks recorded approximately every minute. Further, Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2006) show under some models of dependence between Y

and U that realised kernels are still consistent. See also Kalnina and Linton (2006).

We make a white noise assumption about the U process (U ∈ WN ) which we assume has

E(Ut) = 0, Var(Ut) = ω2, Var(U2
t ) = λ2ω4, Ut ⊥⊥ Us (5)

for any t 6= s, where λ ∈R+. This white noise assumption is unsatisfactory from a number of

viewpoints (e.g. Phillips and Yu (2006)) but is a useful starting point if we think of the market

frictions as operating in tick time (e.g. Bandi and Russell (2005), Zhang, Mykland, and Aı̈t-Sahalia

(2005b) and Hansen and Lunde (2006)). A feature of U ∈ WN is that [U ]t = ∞. Thus U /∈ SM
and so in a frictionless market would allow arbitrage opportunities. Hence it only makes sense to

add processes of this type when there are frictions to be modelled.
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2.3 Some known results

Analogous to the realised autocovariances we define

γh(Yδ, Uδ) =

nδ∑

j=1

yjuj−h, yj = Yδj − Yδ(j−1) and uj = Uδj − Uδ(j−1).

From (4) we have that

γh(Xδ) = γh(Yδ) + γh(Yδ, Uδ) + γh(Uδ , Yδ) + γh(Uδ).

It will be useful to have the following notation γ̃(Xδ) = {γ0(Xδ), γ̃1(Xδ), ..., γ̃H(Xδ)}⊺ , where

γ̃h(Xδ) = γh(Xδ)+γ−h(Xδ), and introduce the analogous definitions of γ̃(Yδ), γ̃(Uδ), and γ̃(Yδ, Uδ).

In the non-subsampling case Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) derived

the following helpful results.

Theorem 1 We study properties as δ ↓ 0, implying nδ → ∞. Writing MN to denote a mixed

normal distribution. Suppose that Y ∈ BSM and (3) holds, then

n
1/2
δ




γ0(Yδ) −
∫ t
0 σ2

udu
γ̃1(Yδ)

...
γ̃H(Yδ)




Ls→ MN

(
0, A1 × t

∫ t

0
σ4

udu

)
, A1 =




2 0 · · · 0
0 4 · · · 0
...

...
. . .

...
0 0 · · · 4


 . (6)

Here Ls denotes convergence in law stably. If, in addition, U ∈ WN and Y ⊥⊥ U then γ̃(Yδ, Uδ)
Ls→

MN
(
0, 2ω2[Y ]B

)
, where B is a (H + 1) × (H + 1) symmetric matrix with block structure

B =

(
B11 B12

B21 B22

)
, B22 =




2 • • •
−1 2 • •
. . .

. . .
. . . •

· · · 0 −1 2


 , B11 =

(
1 •
−1 2

)
, B21 =




0 −1
0 0
...

...
0 0


 ,

B12 = B⊺

21. Here B22 is a (H − 1) × (H − 1) symmetric matrix.

Finally, when U ∈ WN and writing nδ = ⌊t/δ⌋, for nδ ≥ H

E {γ̃(Uδ)} = 2ω2nδ (1,−1, 0, 0, ..., 0)⊺ , and Cov {γ̃(Uδ)} = 4ω4
(
nδC + D̃

)
.

Here the (H + 1) × (H + 1) symmetric matrices C and D̃ have block structure

C =

(
C11 C12

C21 C22

)
, D̃ =

(
D̃11 D̃12

D̃21 D̃22

)
,

where the (H − 1) × (H − 1) and (H − 1) × 2 dimensional matrices are

C22 =




6 • • • •
−4 6 • • •
1 −4 6 • •
0 1 −4 6 •
...

. . .
. . .

. . .
. . .




, C21 =




1 −4
0 1
0 0
...

...
0 0




,
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D̃22 =




−7 • • • • •
6 −10 • • • •
−2 8 −13 • • •
0 −2.5 10 −16 • •
...

...
. . .

. . .
. . .

...

0 0 · · · −H
2 2H −3H − 1




, D̃21 =




−1 4
0 −3

2
0 0
...

...
0 0




,

where C12 = C⊺

21 and D̃12 = D̃⊺

21. The 2 × 2 matrices C11 and D̃11 are

C11 =

(
1 + λ2 −2 − λ2

−2 − λ2 5 + λ2

)
, D̃11 =

(
−λ2/2 λ2/2 + 1

λ2/2 + 1 −λ2/2 − 7/2

)
.

3 Subsampled realised autocovariances

The subsampled realised autocovariances are defined by

γs
h(Xδ) =

nδ∑

j=1

xs
jx

s
j−h, xs

j = Xδ(j+(s−1)/S) − Xδ(j+(s−1)/S−1),

for s = 1, . . . , S, where xs
j are intraday returns over intervals of length δ, see Figure 1 for an

illustration. For each of the S subsamples the realised kernel is given by,

K̃s(Xδ) = γs
0(Xδ) +

H∑

h=1

k

(
h − 1

H

){
γs

h(Xδ) + γs
−h(Xδ)

}
,

and we define the subsampled realised kernel as

K̃(Xδ;S) =
1

S

S∑

s=1

K̃s(Xδ) = γ0(Xδ;S) +

H∑

h=1

k
(

h−1
H

) {
γh(Xδ ;S) + γ−h(Xδ ;S)

}
.

Here

γh(Xδ;S) =
1

S

S∑

s=1

γs
h(Xδ).

Notice that the subsampled realised kernel computes returns over intervals of length δ but uses

prices measured every δ/S periods. Hence this statistic works the database of high frequency

returns more intensively than each of the realised kernels, K̃s(Xδ). While the sample size used

to construct each of the realised kernels is nδ, the effective sample size used by the subsampled

realised kernel, K̃(Xδ;S), is n = S × nδ.

3.1 General theory

The extension of the terms involving noise to the subsampling case is straightforward under

U ∈ WN , as the market microstructure terms, Ut, are uncorrelated (actually independent) cross

subsamples. This implies

γ̃(Yδ, Uδ;S)
Ls→ MN

(
0,

2ω2

S
[Y ]B

)
, (7)
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E {γ̃(Uδ;S)} = 2ω2nδ (1,−1, 0, 0, ..., 0)⊺ , (8)

Cov {γ̃(Uδ;S)} =
4ω4

S

(
nδC + D̃

)
. (9)

The contributions from the D̃ matrix are known as end-effects because they are tied to the S first

and the S last observations. For most estimators, this term does not show up in the asymptotic

variance because it is of lower order than the other terms, such as those associated with the C

matrix. The only exception is when the estimator is based on a smooth kernel and a fixed S.

However, the end effects are also negligible in this case, because it follows from Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2006) that their contribution to the asymptotic variance is of order

O (ω) , which is known to be small in practice. For this reason, we will ignore these end effects, as

it simplifies the exposition of our analyses.

We need to extend (6) to the subsampling case. This is given in the following Theorem.

Theorem 2 Suppose that Y ∈ BSM and (3) holds, then as δ ↓ 0

n
1/2
δ




γ0(Yδ;S) −
∫ t
0 σ2

udu,
γ̃1(Yδ;S)

...
γ̃H(Yδ;S)




Ls→ MN

(
0, AS × t

∫ t

0
σ4

udu

)
,

where

AS =
2

3




2 + S−2 • 0 · · ·
1 − S−2 4 + 2S−2 • . . .

0 1 − S−2 4 + 2S−2 . . .
...

. . .
. . .

. . .




→ 2

3




2 1 0 · · ·
1 4 1

. . .

0 1 4
. . .

...
. . .

. . .
. . .




= A∞,

and as δ ↓ 0 and S → ∞

n
1/2
δ




γ0(Yδ;S) −
∫ t
0 σ2

udu,
γ̃1(Yδ;S)

...
γ̃H(Yδ;S)




Ls→ MN

(
0, A∞ × t

∫ t

0
σ4

udu

)
.

3.2 Comments

Key to the asymptotic distribution of the γ̃h(Yδ) is the AS matrix. Important special cases of this

result are A1 (defined in Theorem 1) and

A2 =




3/2 • • · · ·
1/2 3 • . . .

0 1/2 3
. . .

...
. . .

. . .
. . .




, A3 =
2

3




2(1 + 1
9) • • · · ·

(1 − 1
9) 4(1 + 1

18) • . . .

0 (1 − 1
9) 4(1 + 1

18)
. . .

...
. . .

. . .
. . .




.
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The limiting result is a good approximation even for very small S. Subsampling does improve the

accuracy of the realised autocovariances, however the improvements are very modest indeed and

the potential gains are almost exhausted for very small values of S.

These matrices include a number of important special cases which have influenced the recent

econometric analysis of realised volatility. The asymptotic distribution

n
1/2
δ (γ0(Yδ) − [Y ]t)

Ls→ MN

(
0, 2t

∫ t

0
σ4

udu

)
(10)

appears in the work of Jacod (1994), Jacod and Protter (1998) and Barndorff-Nielsen and Shephard

(2002). The extension of (10) to the subsampled case

n
1/2
δ (γ0(Yδ;S) − [Y ]t)

Ls→ MN

(
0,

4

3

(
1 + 2S−2

)
t

∫ t

0
σ4

udu

)
, (11)

is in Zhang, Mykland, and Aı̈t-Sahalia (2005b). Note that 2
3

(
2 + S−2

)
falls from 2 to 4/3 as S

rises from 1 to infinity, so

n
1/2
δ (γ0(Yδ;S) − [Y ]t)

Ls→ MN

(
0,

4

3
t

∫ t

0
σ4

udu

)
, as S, nδ → ∞. (12)

So in the absence of noise, the subsampled realised variance, γ0(Yδ;S), produces a slightly more

precise estimator than the realised variance, γ0(Yδ), by exploiting more of the data. Goncalves and

Meddahi (2004) and Zhang, Mykland, and Aı̈t-Sahalia (2005a) have studied Edgeworth expansions

of these types of results, while the former also derived a bootstrapped version to improve the finite

sample performance of the feasible version of the theory.

4 Subsampled realised kernel

In this section, we study subsampled realised kernels based on smooth and kinked kernel functions.

Specifically, we require that k(s) is continuous and twice differentiable on [0, 1] and that k(0) = 1

and k(1) = 0. Naturally, the derivatives at the end points are defined by

k′(0) = lim
x↓0

k(x) − k(0)

x
and k′(1) = lim

x↑1
k(1) − k(x)

1 − x
.

In the framework without subsampling, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006)

showed that

k′(0) = 0 and k′(1) = 0, (13)

is a necessary condition for a realised kernel to have the best rate of convergence, and this property

is also key for subsampled realised kernels. So we shall refer to kernels that satisfy (13) as smooth,

and we use kinked to refer to the kernels that violate (13).
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In some of our proofs it is convenient to extend the support of the kernel functions beyond the

unit interval, using the conventions: k(x) = 0 for x > 1 and k(−x) = k(x).

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) showed that kernel functions of the

type just described, can be used to produce consistent estimators with mixed Gaussian asymptotic

distributions. These results do not require any subsampling. It is therefore interesting to analyze

whether there are any gain from subsampling realised kernels or not. Perhaps surprisingly we find

that subsampling is harmful or, at best, impotent, for realised kernels that are based on smooth or

kinked kernel functions.

Below we formulate limit results for subsampled realised kernels using the notation

k0,0
• =

∫ 1

0
k(x)2dx, k1,1

• =

∫ 1

0
k′(x)2dx, k2,2

• =

∫ 1

0
k′′(x)2dx,

and it is convenient to introduce the notation

ξ =
ω2

√
t
∫ t
0 σ4

udu
and ρ =

∫ t
0 σ2

udu√
t
∫ t
0 σ4

udu
,

to simplify the expressions for the asymptotic variance.

Theorem 3 For large H and n the asymptotic distributions of

K̃(Yδ;S) −
∫ t

0
σ2

udu, K̃(Yδ, Uδ ;S) + K̃(Uδ , Yδ;S), and K̃(Uδ ;S),

are mixed Gaussian with mean zero and asymptotic variances given by

4
H

nδ
k0,0
• t

∫ t

0
σ4

udu, (14)

8ω2

∫ t

0
σ2

uduk1,1
• H−1

/
S (15)

4ω4nδ

[{
k′(0)2 + k′(1)2

}
H−2 + k2,2

• H−3
]/

S. (16)

respectively. Furthermore, K̃(Xδ ;S) −
∫ t
0 σ2

udu is mixed Gaussian with a zero mean and variance

4k0,0
• t

∫ t

0
σ4

udu





H

nδ
+

2ξρk1,1
• H−1 + ξ2nδ

[{
k′(0)2 + k′(1)2

}
H−2 + k2,2

• H−3
]

S



 . (17)

A very interesting observation is that subsampling has no impact on the first term, (14). The

implication is that the asymptotic distribution of the realised kernel, K̃(Yδ), is identical to that of

the subsampled realised kernel K̃(Yδ;S). So despite the fact that subsampling lowers the variance

of the individual realised autocovariances, γ̃h(Yδ), the variance of the realised kernel is unaffected.

The reason is that subsampling introduces positive correlation between γ̃h(Yδ;S) and γ̃h+1(Yδ;S)
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that exactly offsets the reduction in the variance of the realised autocovariances. This follows from

the fact that

[AS ]i,i + [AS ]i,i−1 + [AS ]i−1,i =
2

3

{
4 + 2S−2 + 2(1 − S−2)

}
= 4, i > 1,

does not depend on S.

Subsampling does have an effect on the terms that are due to noise, (15) and (16), where the

contribution to the asymptotic variance is reduced by a factor of S. So it is (15) and (16) that will

characterize the gains from increasing the sample size by a factor of S.

The most obvious generalisation of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) is

to think of the case where S is fixed and we allow H to increase with nδ. When (13) holds, we can

follow Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) and set H = c(ξnδ)
1/2. Then we

obtain the result that

n
1/4
δ

{
K̃(Xδ;S) −

∫ t

0
σ2

udu

}
Ls→ MN

{
0, 4ω

(
t

∫ t

0
σ4

udu

)3/4
(

ck0,0
• +

2c−1ρk1,1
• + c−3k2,2

•
S

)}
,

which Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) saw was the best rate possible for

this problem. Whether or not (13) holds, when we set H = c(ξnδ)
2/3 we have

n
1/6
δ

{
K̃(Xδ;S) −

∫ t

0
σ2

udu

}
Ls→ MN

[
0, 4ω4/3

(
t

∫ t

0
σ4

udu

)2/3{
ck0,0

• +
k′(0)2 + k′(1)2

c2S

}]
.

Here S plays a relatively simple role, reducing the impact of noise — by in effect reducing the noise

variance from ω2 to ω2/
√

S. If (13) does hold then we get the very simple result that

n
1/6
δ

{
K̃(Xδ;S) −

∫ t

0
σ2

udu

}
Ls→ MN

{
0, 4ck0,0

• ω4/3

(
t

∫ t

0
σ4

udu

)2/3
}

.

The latter result is interesting, for it has no asymptotic gains at all from subsampling.

Until now, we have stated asymptotic results using nδ, even though the subsampled statistics

are based on a larger sample size – one that is about S times larger. Next we make the transition

to the effective sample size.

4.1 Effective Sample Size

For the purpose of discussing the effects of subsampling it is useful to make the comparison in terms

of the effective sample size, n = nδS. This makes it explicit that a larger S reduces the sample size,

nδ, that is available for each to the realised kernels. Then we ask if it is better to increase nδ or

S for a given n — i.e. should we split time into lengthy returns and lots of subsampling, or use

shorter returns and less subsampling.

In terms of the effective sample size, (17) becomes

11



4t

∫ t

0
σ4

udu

[
HS

n
k0,0
• +

2ξρk1,1
•

HS
+ nξ2

{
k′(0)2 + k′(1)2

(HS)2
+ S

k2,2
•

(HS)3

}]
. (18)

Here HS appears in the variance expression in a way that is almost identical to H when there is

no subsampling (S = 1). The only difference is the impact on the last term. This term vanishes

when k′(0) = k′(1) = 0 does not hold, because the second last term is then O
(
n/(SH)2

)
whereas

the last term is only O
(
H−1

)
O
(
n/(SH)2

)
. This feature of the asymptotic variance holds the key

to the different results we derive for smooth and kinked kernels.

4.2 Kinked Kernels: When k
′(0) = k

′(1) = 0 does not hold

When (13) does not hold the asymptotic variance is given by

4t

∫ t

0
σ4

udu

{
HS

n
k0,0
• +

2ξρk1,1
•

HS
+ nξ2 k′(0)2 + k′(1)2

(HS)2

}
.

While this expression depends on the product HS, it is invariant to the particular values of H and

S, though we do need H → ∞ to justify the terms, k0,0
• , k1,1

• , etc. We have the following result.

Theorem 4 (i) If SH = c(ξn)2/3 we have

n1/6

(
K̃(Xδ;S) −

∫ t

0
σ2

udu

)
Ls→ MN

(
0, 4ω4/3

(
t

∫ t

0
σ4

udu

)2/3{
ck0,0

• +
k′(0)2 + k′(1)2

c2

})
, (19)

as n → ∞, so long as H increase with n. (ii) The asymptotic variance is minimised by

c =

{
2
k′(0)2 + k′(1)2

k0,0
•

}1/3

, and 6ck0,0
• ω4/3

(
t

∫ t

0
σ4

udu

)2/3

is the lower bound for the asymptotic variance.

An interesting observation is that the asymptotic distribution (19) is not influenced by S, not

even the rate of growth in S. All that matters is that H grows and that HS grows at the right

rate. The implication is that there are no gains from subsampling when k′(0)2 + k′(1)2 6= 0. So we

might as well set S = 1 and use the realised kernel that does not require any subsampling.

The second part of Theorem 4 shows that

ck0,0
• = 6

[
2
(
k0,0
•
)2 {

k′(0)2 + k′(1)2
}]1/3

controls the asymptotic efficiency of estimators in this class.

Example 1 The Bartlett kernel, k(x) = 1 − x, has k0,0
• = 1/3 and k′(0)2 + k′(1)2 = 2, so that

6ck0,0
• = 2 ·121/3 ≃ 4.58, whereas the quadratic kernel, k(x) = 1−2x+x2, is more efficient, because

it has k0,0
• = 1/5 and k′(0)2 + k′(1)2 = 4, so that 6ck0,0

• = 12 · 5−2/3 ≃ 4.10.
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4.3 Smooth Kernels: When k
′(0) = k

′(1) = 0 holds

In this Section we consider smooth kernel functions. Some examples of smooth kernel functions are

given in Table 1, where kth1(x) = sin2
{

π
2 (1 − x)

}
= [1 − cos {π(1 − x)}] /2 = {1 + cos (πx)} /2 is

the Tukey-Hanning kernel.

Table 1: Some smooth kernel functions.

Cubic kernel kC(x) = 1 − 3x2 + 2x3

Parzen kernel
kP (x) =

{
1 − 6x2 + 6x3 0 ≤ x ≤ 1/2

2(1 − x)3 1/2 ≤ x ≤ 1

THp kTHp(x) = sin2{π/2 (1 − x)p}

We know from Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) that the rate of con-

vergence of realised kernels improves when k′(0) = k′(1) = 0. This smoothness condition will also

improve the rate of convergence for subsampled realised kernels. For smooth kernel functions, the

asymptotic variance is given by

4t

∫ t

0
σ4

udu

{
HS

n
k0,0
• +

2ξρk1,1
•

HS
+ ξ2nS

k2,2
•

(HS)3

}
. (20)

Because the last term is multiplied with S it is evident that the asymptotic distribution will depend

on whether S is constant or increases with n. This is made precise in the following Theorem.

Theorem 5 (i.a) When S is fixed we set HS = c(ξn)1/2 and have

n1/4

{
K̃(Xδ) −

∫ t

0
σ2

udu

}
Ls→ MN

[
0, 4ω

(
t

∫ t

0
σ4

udu

)3/4{
ck0,0

• +
2ρ

c
k1,1
• +

S

c3
k2,2
•

}]
. (21)

(i.b) When S = anα for some 0 < α < 2/3, we set HS = c(ξn)1/2nα/4 and have

n
1−α/2

4

(
K̃(Xδ ;S) −

∫ t

0
σ2

udu

)
Ls→ MN

[
0, 4ω

(
t

∫ t

0
σ4

udu

)3/4 {
ck0,0

• +
a

c3
k2,2
•
}]

.

(ii) Whether S is constant or not, the asymptotic variance is minimized by

HS = (ξn)1/2

√√√√ρk1,1
•

k0,0
•

{
1 +

√
1 + 3S

k0,0
• k2,2

•

(ρk1,1
• )2

}
,

and the lower bound is

n−1/2ω

(
t

∫ t

0
σ4

udu

)3/4

g(S), (22)
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where

g(S) =
16

3

√
ρk1,1

• k0,0
•





1
v

u

u

t1+

s

1+3S
k
0,0
•

k
2,2
•

(ρk
1,1
•

)2

+

√√√√1 +

√
1 + 3S

k0,0
• k2,2

•

(ρk1,1
• )2





. (23)

Remark. In (i.b) we impose α < 2/3. The reason is that H ∝ n1/2+α/4−α = n(1− 3
2
α)/2 and we

need (1 − 3
2α)/2 > 0 to ensure that H grows with n.

The relative efficiency in this class of estimators is given from g(S), and we have the following

important result for subsampling of smooth kernels

Corollary 1 The asymptotic variance of K̃(Xδ;S) is strictly increasing in S.

The implication is that subsampling is always harmful for smooth kernels. Furthermore, (i.b)

shows that there is an efficiency loss from allowing S to grow with n. See Table 2 for the values of

g(S) for some selected kernel functions.

Another implication of Theorem 5 concerns the best way to sample high frequency returns.

This result is formulated in the next corollary and will require some explanation.

Corollary 2 The asymptotic variance, (22), as a function of ρ, is minimized for ρ = 1.

The parameter ρ =
∫ t
0 σ2

udu/
√

t
∫ t
0 σ4du may appear to be fixed, which would make the Corol-

lary rather uninteresting. However, ρ is not fixed because the integrated quarticity,
∫ t
0 σ4du, de-

pends on the sampling scheme. Rather than equidistant sampling in calendar time we can generate

the sampling times by,

tj = t × τ
(

j
n

)
, j = 0, 1, . . . , n.

Here τ is simply a time changing mapping (for the unit interval), i.e. τ(0) = 0, τ(1) = 1, and

τ is monotonically increasing, so that 0 = t0 ≤ t1 ≤ · · · ≤ tn = t. A change of time does not

affect
∫ t
0σ2

udu but does influence the integrated quarticity
∫ t
0σ4

udu, see e.g. Mykland and Zhang

(2006). A particularly interesting sampling scheme is that known as business time sampling, see e.g.

Oomen (2005, 2006). Under this sampling scheme intraday returns are sampled in a way that makes

them homogeneous, i.e.
∫ ti
ti−1

σ2
udu = n−1

∫ t
0 σ2

udu. The integrated quarticity is minimized under

this sampling scheme as was shown by Hansen and Lunde (2006, p. 135), where the minimum

has t
∫ t
0 σ4du =

(∫ t
0 σ2

udu
)2

, implying ρ = 1. It follows that the τ for business time sampling,

τbts say, must solve
∫ t×τ(s)
0 σ2

udu = s ×
∫ t
0 σ2

udu. So by the implicit function theorem we have

τ ′
bts(s) ∝ 1/ σ2(s̃), where s̃ = t × τbts(s). Thus, under this scheme the returns are sampled more

frequently when the volatility is high and less frequent when the volatility is low. In general we

have ρ ≤ 1 and Corollary 2 shows that business time sampling (ρ = 1) is the ideal sample scheme

14



(for a given sample size, n). Sampling in business time is infeasible because τbts depends on

the unknown volatility path. In practice, tick time sampling, where sampling occurs every fixed

number of transactions, seems to be a better proxy for business time sampling than is calendar

time sampling. In this situation, Corollary 2 states that it is better to sample returns in tick time.

Given S and ρ it is easy to compute the optimal H, as H = cS(ξn)1/2 for this class of kernels,

where

cS = S−1

√√√√ρk1,1
•

k0,0
•

{
1 +

√
1 + 3S

k0,0
• k2,2

•

(ρk1,1
• )2

}
. (24)

Table 2: Key quantities for some smooth-continuous kernels.

k0,0
• k1,1

• k2,2
•

√
k0,0
• k1,1

•
k0,0
•

k2,2
•

(k1,1
•

)2
c1 g(S)

S = 1 S = 2 S = 3 S = 10
Cubic 0.371 1.20 12.0 0.67 3.09 3.68 9.03 9.81 10.39 12.72
Parzen 0.269 1.50 24.0 0.64 2.87 4.77 8.53 9.25 9.78 11.94
TH1 0.375 1.23 12.2 0.68 3.00 3.70 9.18 9.96 10.55 12.89
TH2 0.218 1.71 41.8 0.61 3.11 5.75 8.27 8.99 9.51 11.65
TH5 0.097 3.50 489.0 0.58 3.85 8.07 8.07 8.82 10.19 11.57
TH10 0.050 6.57 3610.6 0.57 4.19 24.79 8.04 8.80 10.19 11.59
TH16 0.032 10.26 14374.0 0.57 4.33 39.16 8.02 8.80 10.20 11.60

Key quantities for some smooth kernels. Key is g(S) that measures the relative efficiency in this
class of estimators. Here computed for the case with constant volatility (ρ = 1) such that these
numbers are comparable with the maximum likelihood estimator that has g = 8.00. No subsampling
(S = 1) produces the best estimator and kernels with a relative large k0,0

• k2,2
• /(k1,1

• )2 tend to be more
sensitive to subsampling.

In Table 2 we present key quantities for some smooth kernels. Perhaps the most interesting

quantitiy is g(S) of (23), as it enable us to compare the relative efficiency across estimators. In

Table 2 we have computed g(S) for the case where ρ = 1. So g(S) can be compared to 8.00 which

is the corresponding constant for the maximum likelihood estimator in the parametric version of

the problem. We see that most kernels are only slightly less efficient than the maximum likelihood

estimator, TH16 almost reaching this lower bound. Comparing g(S) for different degrees of sub-

sampling, reminds us that S = 1 (no subsampling) yields the most efficient estimator. The larger

the value of k0,0
• k2,2

• /(k1,1
• )2 the more sensitive is the kernel to subsampling.

In Figure 2 we have plotted some smooth kernel functions, k(x/c1) using their respective optimal

value for c1, see Table 2. We see that the TH1 kernel is almost identical to the cubic kernel. The

TH16 kernel is somewhat flatter, putting less weight on realised autocovariance of lower order and

higher weight on realised autocovariance of higher order. The Parzen kernel is typically between

TH1 and TH16.
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Figure 2: Plots of some selected smooth kernels, k(x/c1), using their repective optimal value of
c when S = 1.

While the smooth kernels improve the rate of convergence over the kinked kernels, the im-

provements may be modest in finite samples. The reason is the following. When the noise is

small the optimal H is small, and H may actually be quite similar for kinked and smooth kernels.

For instance with ξ = 0.01 and n = 780, which corresponds to sampling twice per minute on a

typical trading day, the Bartlett kernel has cBartlett(ξn)2/3 = 9.00 whereas the cubic kernel has

cCubic(ξn)1/2 = 10.78. So in this case the two types of estimators are rather similar and despite

the fact that HBartlett grows at the faster rate n2/3, the cubic kernels includes more lags in this

situation. Consistent with this observation, Bandi and Russell (2006) find that the finite sample

properties of kinked and smooth kernels are quite similar, although they do report some gains from

the smooth kernels.

5 Intuition: Subsampled realised kernels are realised kernels

A closer inspection of subsampled realised kernels reveals that these can approximately be repre-

sented by a realised kernel. Lemma A.1 in the appendix shows that

γh(Xδ ;S) ≃
S−1∑

s=−S+1

kB

(
s
S

)
γSh+s(Xδ/S), where kB(x) = 1 − |x| ,

where the approximation is due to minor end-effects. See the proof of Lemma A.1 for details. The

implication is that

K̃(Xδ ;S) ≃
S−1∑

s=−S+1

kB

(
s
S

)
γs(Xδ/S) +

H∑

h=1

k
(

h−1
H

) S∑

s=−S

kB

(
s
S

) {
γSh+s(Xδ/S) + γ−Sh−s(Xδ/S)

}
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=
HS∑

h=0

kS

(
h−1
HS

)
γ̃Sh+s(Xδ/S).

So a subsampled realised kernel is a realised kernel simply operating on a higher frequency (setting

aside minor end-effects). The implied kernel weights, kS( h
HS ), h = 1, . . . , SH, are simply convex

combinations of neighboring weights of the original kernel,

kS

(
hs
HS

)
= S−s

S k
(

h
S

)
+ s

Sk
(

h+1
S

)
, h = 0, . . . ,H, s = 1, . . . , S. (25)

This provides intuition for the theoretical results we have established for subsampled realised ker-

nels.
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Figure 3: The effects of subsampling some kernels. The left panels display the original kernel func-
tions and the right panels display their implied kernel functions that are induced by subsampling.
For the truncated (discontinuous) kernel the two are very different. So subsampling makes an
important difference in this case. For the (kinked) Bartlett kernel the two are virtually identical,
which suggests that subsampling has no effect on this kernel. Finally, for the smooth kernel in the
lower panels subsampling has only a small effect by making the kernel function piecewise linear.

In Figure 3 we trace out the implied kernel weights for three subsampled realised kernels.
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The left panels display the original kernel functions and right panels display the implied kernel

functions. The first kernel is the truncated kernel (H = 1), where we see that subsampling leads

to a substantially different implied kernel function. For the kinked Bartlett kernel we see that

subsampling leads to the same kernel function. For the smooth TH2 kernel function, we see that

the original and implied kernel functions are fairly similar, however subsampling does impose some

piecewise linearity which is the reason that subsampling of smooth kernels increases the asymptotic

variance.

The connection between subsampled realised kernels and realised kernels is perhaps not too

surprising, because Bartlett (1950) motivated his kernel with the subsampling idea, see also An-

derson (1971, p. 512) and Priestley (1981, pp. 439–440), where the latter have a discussion of end

effects. Similar relations are found between estimators of the long-run variance, for instance Politis,

Romano, and Wolf (1999) noted that the subsample-estimator of Carlstein (1986) is identical to

the moving block bootstrap estimator and the Jackknife estimator in this context. An interesting

observation from our analysis is that subsampled kinked kernels are essentially unaffected, whereas

subsampling changes the shape of smooth kernels in an unfortunate way.

6 The case with discontinuous kernel functions

In this section we consider the kernel functions we have labelled as discontinuous kernels. Such

kernels lead to estimators with poor asymptotic properties. We shall see that subsampling can

substantially improve such estimators, making them consistent with mixed Gaussian distributions.

So for such kernels, subsampling is a saviour.

Lemma 1 Let K̃w(Xδ) =
∑H

h=0 whγ̃h(Xδ), where H = o(n) (possibly constant). Then

w0 = 1 + o(1) and w0 − w1 = o(n−1),

are necessary conditions for E
(
K̃w(Xδ) −

∫ t
0σ2

udu
)
→ 0; and

H∑

h=0

(wh+1 − 2wh + wh−1)
2 = o(n−1), (26)

is a necessary condition for Var
(
K̃w(Xδ) −

∫ t
0σ2

udu
)
→ 0, where we set wH+1 = 0 and w−1 = w0.

The lemma shows that realised kernels using a fixed H cannot converge to
∫ t
0σ2

udu in mean

squares, because such estimators will not satisfy (26).

Now consider the case where we construct wh from a kernel function and let H → ∞, as we did

in the previous section. In this situation it is clear that any discontinuous kernel will violate (26),
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because

n

H∑

h=0

(wh+1 − 2wh + wh−1)
2 ≃ n × J2,

where

J2 =
∑

xj∈Dk

{
lim
x↑xj

k(x) − lim
x↓xj

k(x)

}2

.

Here Dk is the set of discontinuity points for k(x).

Next, we consider the truncated kernel which does not satisfies (26). We will see that subsam-

pling this kernel produces an estimator that is consistent and mixed Gaussian. This is true whether

H is finite or is allowed to grow with the sample size.

6.1 Zhou (1996) estimator

First we will look at estimators which are thought of as having H fixed and allowing the degree

of subsampling to increase. This is outside the spirit of the realised kernels of Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2006) which need H to get large with nδ for consistency, however

it is close to the important early work of Zhou (1996) and is strongly intellectually connected to

the influential work on two scale estimators by Zhang, Mykland, and Aı̈t-Sahalia (2005b).

The Zhou (1996) estimator can be written as

γ0(Xδ ;S) + γ̃1(Xδ ;S)

which is the subsampled realised kernel based on the truncated kernel function using H = 1. Zhou

(1996) noticed that the variance of his estimator was of order O( S
nδ

) + O( 1
S ) + O(nδ

S2 ), but did not

realize that by allowing S to increase with nδ his estimator is consistent. In fact, in a subsequent

paper Zhou stated that his subsampled realised kernels was inconsistent, see Zhou (1998, p. 114).

The following Theorem gives its asymptotic distribution.

Theorem 6 Suppose S = c3n2
δ, then as nδ → ∞

n
1/2
δ

{
γ0(Xδ ;S) + γ̃1(Xδ ;S) −

∫ t

0
σ2

udu

}
Ls→ MN

(
0,

16

3

∫ t

0
σ4

udu + 8ω4/c3

)
.

This asymptotics is not particularly attractive for its seeming n
1/2
δ rate of convergence hides

the fact that it assumes massive databases in order to allow S to increase rapidly with nδ. A more

interesting way of thinking about this estimator is in terms of the effective sample size

n = S × nδ.

Again we ask if it is better to increase nδ or S for a given n. This leads to the following result.
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Lemma 2 If S = c(ξn)2/3 then the Zhou estimator has

n1/6

(
γ0(Xδ ;S) + γ̃1(Xδ ;S) −

∫ t

0
σ2

udu

)
Ls→ MN

(
0, ω4/3

(
t

∫ t

0
σ4

udu

)2/3 (
16
3 c + 8

c2

)
)

.

The minimum asymptotic variance is

8
3
√

3︸︷︷︸
≃11.54

ω4/3

(∫ t

0
σ4

udu

)2/3

, with c =
3
√

3.

The relationship S = c(ξn)2/3, which implies that S ∝ n2
δ , gives the impression that this esti-

mator will require massive subsampling to work, however if the noise is small this is not necessarily

the case.

An interesting feature of the Zhou estimator is that its asymptotic variance is of the form

obtained by the kinked non-subsampled realised kernels, i.e. ones which do not satisfy the k′(0) =

k′(1) = 0 condition.

Example 2 Suppose n corresponds to using prices every 1 second for a whole trading day on the

NYSE, so n = 23, 400. If ω2 = 0.001 and t
∫ t
0 σ4

udu = 1, which is roughly right in empirical work

from 2004 for thickly traded stocks, then for the Zhou estimator the optimal degree of subsampling

is S ≃ 25 so that nδ ≃ 920. Thus the procedure is suggesting subsampled 25 second returns. Hence

the degree of subsampling is rather modest. In 2000, ω2 = 0.01 and
∫ t
0 σ4

udu = 1 would be more

reasonable, in which case S = 118 and nδ = 198, which corresponds to returns measured every

roughly 2 minutes.

6.2 2-lag flat-top Bartlett estimator

A natural extension of Zhou (1996) is to allow H to be larger than one but fixed. The theory of

realised kernels suggested this may well produce more efficient estimators, which we now show is

true.

Lemma 3 Let w0 = w1 = 1 and w2 = 1/2. With S = c(ξn)2/3 we have

n1/6

{
γ0(Xδ ;S) + γ̃1(Xδ ;S) +

1

2
γ̃2(Xδ;S) −

∫ t

0
σ2

udu

}
Ls→ MN

(
0, ω4/3

(
t

∫ t

0
σ4

udu

)2/3(
20

3
c +

2

c2

))
,

and the minimum variance is

10 3
√

3/5︸ ︷︷ ︸
≃8.43

ω4/3

(∫ t

0
σ4

udu

)2/3

, with c = 3
√

3/5.

The constant in the asymptotic variance is here reduced from about 11.54 to 8.43. So this

estimator is quite a bit more efficient than the Zhou estimator.
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In the previous Theorem we added w2 = 1/2 times γ̃2(Xδ) to Zhou’s estimator, which led to a

reduction of the asymptotic variance. Now we proceed by adding additional realised autocovariances

to Zhou’s estimator, using the Bartlett weights, wh = k(h−1
H ), h = 2, . . . ,H. An interesting question

is what happens as we increase H further? For moderately large H we have that

n1/6

{
K̃(Xδ) −

∫ t

0
σ2

udu

}

has an asymptotic variance of approximately

4

3
{2 + (H + 1)} c

∫ t

0
σ4

udu +
8ω4

c2H2
.

This suggests

c3 =
12ω4

H3
∫ t
0 σ4

udu
+ o(1),

so the asymptotic variance (using 4
3121/3 + 8/122/3 = 2 3

√
12) is

2
3
√

12︸ ︷︷ ︸
≃4.58

ω4/3

(∫ t

0
σ4

udu

)2/3

+ o(1).

So we achieve an additional reduction of the asymptotic variance. Not surprisingly, this is the

asymptotic variance of the Bartlett realised kernel applied to a sample of size n when H ∝ n2/3,

see Example 1. Here, by allowing H to grow we approach the situation with kinked kernels so we

observe the eventual impotence of subsampling – a property we have shown holds for all kinked

kernels. Hence as H gets large the optimal degree of subsampling rapidly falls and the best thing

to do is simply to run a Bartlett realised kernel on the data without subsampling, i.e. take nδ = n.

Figure 4 shows the implied kernel functions that are generated by subsampling Zhou’s estimator

(H = 1) and the two estimators that have been enhanced by adding Bartlett weights. The relative

asymptotic efficiency for these estimators are simply given by k0,0
• of the implied kernel. From

Figure 4 it is evident that k0,0
• (H = 1) > k0,0

• (H = 2) > k0,0
• (H = ∞) which explains that the

asymptotic variance of this estimator is decreasing in H.

6.3 Relationship to two scale estimator

The main idea in the two scale estimator of Zhang, Mykland, and Aı̈t-Sahalia (2005b) was to use

γ0(Xδ;S) and bias correct it using the estimator

ω̂2 =
γ0(Xδ/S)

2n

which exploits very high frequency returns over time intervals of length δ/S. Their results are

reproved here, exploiting our previous results to make the proofs very short.
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Figure 4: The implied kernels that arise from subsampling some simple kernels. H = 1 corresponds
to the subsampled version of Zhou’s estimator; H = 2 is that for Zhou’s estimator after adding
1/2γ̃2(Xδ); and H = ∞ (here approximated by H = 18) illustrates the implied kernel for Zhou’s
estimator that is enhanced by an increasing number of Bartlett-weighted realised autocovariances.

We set

S = c3ξ2n2
δ , or equivalently S = c(ξn)2/3,

which imposes the optimal rate for S in this context.

Theorem 7 With S = c(ξn)2/3 we have

n1/6

{
γ0(Xδ ;S) − nδ2ω

2 −
∫ t

0
σ2

udu

}
Ls→ MN

{
0, ω4/3

(
t

∫ t

0
σ4

udu

)2/3(
4

3
c + 4

1 + λ2

c2

)}
. (27)

This asymptotic result is infeasible in the sense that γ0(Xδ;S) − nδ2ω
2 is not an estimator of

∫ t
0 σ2

udu, because it involves the unknown parameter, ω2. Shortly we will analyse the feasible esti-

mator, where ω̂2 = γ0(Xδ/S)/2n is substituted for ω2. The following result address the asymptotic

consequences of this substitution.

Theorem 8 With S = c(ξn)2/3 we have

n1/6

{
1
S

∑Snδ
j=1

(
Ujδ/S − U(j−S)δ/S

)2 − nδ2ω
2

1
S

∑Snδ
j=1

(
Ujδ/S − U(j−1)δ/S

)2 − nδ2ω
2

}
Ls→ N

{
0,

4ω4

c2ξ4/3

(
1 + λ2 λ2

λ2 1 + λ2

)}
.

The structure of the asymptotic covariance matrix can now be exploited to eliminate the nui-

sance parameter, λ2. The implication is

n1/6





1

S

Snδ∑

j=1

(
Ujδ/S − U(j−S)δ/S

)2 − 1

S

Snδ∑

j=1

(
Ujδ/S − U(j−1)δ/S

)2




Ls→ N

(
0,

8ω4

c2ξ4/3

)
,

allowing γ0(Uδ;S)−nδ2ω
2 to be replaced by γ0(Uδ;S)−nδ2ω̂

2, yielding a feasible estimator which

remarkably also reduces the variance compared to the infeasible estimator. This is stated next.

22



Theorem 9 With S = c(ξn)2/3 we have

n1/6

{
γ0(Xδ;S) − 2nδω̂

2 −
∫ t

0
σ2

udu

}
Ls→ MN

{
0, ω4/3

(
t

∫ t

0
σ4

udu

)2/3(
4

3
c +

8

c2

)}
.

The minimum asymptotic variance is

2
3
√

12︸ ︷︷ ︸
≃4.58

ω4/3

(
t

∫ t

0
σ4

udu

)2/3

, with c =
3
√

12.

Thus the two scale estimator is significantly more efficient than the Zhou estimator and is as

efficient as the Bartlett realised kernel with H lags where H = c(ξn)2/3. Interesting this is solely

due to replacing ω2 by ω̂2 — for if we used (27) it would deliver a less efficient estimator than the

Zhou estimator in the case of Gaussian noise where λ2 = 2. In effect ω̂2 plays the role of a control

variable, reducing the variance of the estimator.

Example 3 (continued from Example 2). If ω2 = 0.001 and t
∫ t
0 σ4

udu = 1, then S ≃ 40 and

nδ ≃ 580. Hence the degree of subsampling is larger than that used by Zhou.

The two scale estimator by Zhang, Mykland, and Aı̈t-Sahalia (2005b) combines a subsampled

realised variance with γ0(Xδ) for some delta. So it follows from our results in Section 5 that this

estimator (apart from end effects) is a realised kernel – in this case the implied kernel is a Bartlett

kernel. The two scales estimator converges at rate n1/6, whereas the related multiscale estimator by

Zhang (2006) converges at the efficient rate n1/4. The latter combines multiple subsampled realised

variances, each using a different S. So the multiscale estimator can also be expressed as a realised

kernel. In this case the implied kernel is a linear combination of Bartlett kernels using different lag

lengths. Interestingly, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) have shown that

the multiscale estimator is asymptotically equivalent to the realised kernel based on the cubic kernel

function, see Table 1. Not surprisingly, it can be shown that the implied kernel for the multiscale

estimator is the cubic kernel.

7 Some Empirical Recommendations

So far we have worked under the assumption that the noise is of the independent type defined in

(5). This assumption seems reasonable for equity returns when prices are sampled at moderate high

frequencies. For instance, for the liquid stocks in the Dow Jones Industrial Average this assumption

seems reasonable when applied to 1 minute returns, see Hansen and Lunde (2006). In this context,

our theoretical results have shown that the best approach to estimation is to use a smooth realised

kernel without any subsampling. This, conveniently, permits one to use the feasible methods for

inference developed in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006). A shortcoming of

23



this approach is that this estimator does not make use of all available observations. For example,

transactions on the most liquid stocks now take place every few seconds, but for U ∈ WN to be

reasonable we can only sample every, say, 15th observation.

In this Section we discuss how to construct subsampled realised estimators that make use of

all available data. We also discuss how valid inference can be made about such estimators under

realistic assumptions about the noise in tick-by-tick data.

The main idea is to use a subsampled realised kernel, where S is chosen to be sufficiently large

so that (5) is reasonable for a sample that only consists of every Sth observation. The asymptotic

variance can be estimated from the coarsely sampled data, using the methods by Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2006), and this leads to valid inference that is robust to both time-

dependent and endogenous noise in the tick-by-tick data.

Specifically we recommend the following procedure.

1. Choose S sufficiently large for (5) to be a plausible assumption for a sample that only consists

of every Sth observation. One can check for violation of (5) by applying the diagnostics used

in Hansen and Lunde (2006).

2. Construct S distinct subsamples, by jittering the initial starting point and sampling every

Sth observation. So each subsample has approximately nδ = n/S observations.

3. For each of the S subsamples, obtain estimates of ω2 and IQ = t
∫ t
0 σ4

udu, and an initial

estimate of IV =
∫ t
0 σ2

udu. See Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) for

ways to do this. Average each of these estimators to construct the subsampled estimators,

ω̂2 = S−1
∑S

s=1 ω̂2
s and ÎVinitial = S−1

∑S
s=1 ÎVinitial,s and ÎQ = S−1

∑S
s=1 ÎQs.

4. Obtain an estimate, Ĥ, for the optimal H, by plugging the subsampled estimates into the

expression for the optimal H. Use this Ĥ to compute the S realised kernels, K̃s(Xskip-S),

using a smooth kernel and the weights w0 = w1 = 1 and wh = k
(

h−1
Ĥ

)
, for h = 2, . . . , Ĥ.

Form their average to obtain the actual estimator, ÎVfinal = K̃(Xskip-S ;S).

5. Finally, compute the conservative estimate for avar
{

K̃(Xskip-S;S)
}

using the finite sample

expressions

V̂ar
{

K̃(Xskip-S ;S)
}

= ÎQ
(
w′Aw

)
× 1

nδ
+ 8ω̂2ÎVfinal

(
w′Bw

)
+ 4ω̂4

(
w′Cw

)
× nδ, (28)

where w = (w0, w1, . . . , wĤ). Here one can use that

w′Aw = 2 + 4
H∑

h=1

(wh)2 ≃ 4Hk0,0
• ,
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w′Bw = 1 + 2
H∑

h=2

wh(wh − wh−1) ≃ H−1k1,1
• ,

w′Cw = 4 +

H∑

h=2

wh(6wh − 8wh−1 + 2wh−2) ≃ H−3k2,2
• .

The variance estimate in (28) is the sum of the finite sample versions of (14-16) with S = 1.

So this expression completely ignores subsampling, and the expression is really an estimator of

Var(K̃s(Xskip-S)). The reason is that subsampling does not reduce the noise-variance by a factor

of S, unless the noise is uncorrelated across subsamples. This is unrealistic when the subsamples

exploit all the tick-by-tick data. However, we still have

avar
{

K̃(Xskip-S ;S)
}
≤ avar(K̃s(Xskip-S)),

even if Ut ⊥⊥ Us is violated for some s 6= t. So (28) is simply a robust estimator that is expected

to yield a conservative estimate of the variance. It is interesting to have some notion of how

conservative this estimator is.

Recall our result in Theorem 3 that avar
{
K̃(Yskip-S ;S)

}
= avar(K̃s(Yskip-S)), see (14). So

subsampling cannot reduce the contribution to the asymptotic variance from this term, while the

contributions from the two other terms (15) and (16), potentially can be driven all the way to zero.

Consider the realised TH2 kernel. When ρ = 1 its asymptotic variance is proportional to

c1 + 2
k1,1
•

k0,0
•

c−1
1 +

k2,2
•

k0,0
•

c−3
1 = 5.75 +

1.71

0.218

2

5.75
+

41.8

0.218
(5.75)−3 ≃ 9.50.

Subsampling this estimator with S = 10, say, will reduce this term to a number no less than

5.75 +
1

10

1.71

0.218

2

5.75
+

1

10

41.8

0.218
(5.75)−3 ≃ 6.12.

Hence the variance reduction will be less than 36%, and even with S → ∞ the reduction will be less

than 40%. In practice, the reduction is likely to be much smaller, because the noise in the different

subsamples is dependent. So even though (28) is a conservative estimator – it is not perversely

conservative.

8 Simulation study

In this section we analyse the finite sample properties of K̃(Xδ;S), using both a smooth TH2 kernel

and a kinked Bartlett kernel. We are particularly interested in the MSE of K̃(Xδ ;S), as a function

of δ and S, and to see whether the simulation based results differs from our theoretical results in

any significant way.
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8.1 Simulated model

We consider the following SV model,

dYt = µdt + σtdWt, σt = exp (β0 + β1τ t) , dτ t = ατ tdt + dBt, corr(dWt,dBt) = ρ,

where ρ is a leverage parameter. This model is frequently used for simulation is this context, see

e.g. Huang and Tauchen (2005), Goncalves and Meddahi (2004), and Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2006).

In our simulated model, we set µ = 0.03, β1 = 0.125, α = −0.025 and ρ = −0.3. Further, we set

β0 = β2
1/(2α) in order to standardize E

(
σ2

t

)
= 1. With this configuration the variance of

∫ t
0 σ2

udu is

comparable to the empirical results found in Hansen and Lunde (2005). For the variance of market

microstructure noise we set ω2 = 0.1.

8.2 Design

The process is generated using an Euler scheme based on N = 23, 400 intervals, where each interval

is thought to correspond to one second so that the entire interval corresponds to 6.5 hours, which

is the length of a typical trading day.1 The volatility process is restarted at its mean value σ0 = 1

every day by setting τ0 = 5/2. This keeps the noise-to-signal ratio, ξ = ω2/
√∫ 1

0 σ4
udu, comparable

across simulations. In our Monte Carlo designs we let the effective sample size, n, be either 1, 560,

4, 680, or 23, 400, which correspond to sampling every 15, 5, or 1 seconds, respectively. So a sample

with 4, 680 observations, say, is obtained by including every fifth observation of the N = 23, 401

simulated data points over the [0, t] interval.

8.3 Implementation of realised kernels and subsampled realised kernels

From the simulated data, X0, . . . ,Xn, we define the “skip-S returns” ∆SXj = Xj − Xj−S. The

subsampled realised autocovariances are computed by,

γ̂s
h =

nδ∑

j=1

∆SXjS+s−1∆SX(j−h)S+s−1, s = 1, . . . , S, h = −H, . . . , 0, . . . ,H,

where nδ = n/S. The subsampled realised kernel is defined by

̂K̃(X;S) =
1

S

S∑

s=1

̂̃Ks(X), where ˜̂Ks
H(X) = γ̂s

0 +

H∑

h=1

k(h−1
H )

(
γ̂s

h + γ̂s
−h

)
.

So for S = 1 we simply have

˜̂KH(X) = γ̂0 +
H∑

h=1

k(h−1
H )

(
γ̂h + γ̂−h

)
, where γ̂h =

n∑

j=1

xjxj−h.

1In practice we generate intraday returns for 33, 400 intervals, and treat the first and and last 5, 000 returns as
out-of-period returns (x−1, x−2, . . . and xN+1, xN+2, . . .).
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We use our expression for the optimal choice for H. So when S = 1 we use H∗
TH2,1 = 5.75(ξn)1/2

for the smooth TH2 kernel and H∗
Bartlett,1 = 3

√
12(ξn)2 for the kinked Bartlett kernel. The “noise-

to-signal” parameter, ξ = ω2/
√∫ 1

0 σ4
udu need not be estimated in our simulations, because ω2 is

known and the integrated quarticity,
∫ 1
0 σ4

udu ≃ N
∑N

j=1 σ4
j/N , can be computed from the simulated

data. The parameter ρ =
∫ 1
0 σ2

udu/
√∫ 1

0 σ4
udu can be computed from the simulated volatility path.

When S ≥ 2 the optimal H for the Bartlett kernel is simply given by H∗
Bartlett,S = S−1 3

√
12(ξn)2,

and the TH2 kernel has H∗
TH2,S = c

1/2
S (ξn), where

cS = S−1

√
7.84ρ

(
1 +

√
1 + 9.33S

)
,

as defined in (24).

8.4 Simulation Results

Figure 5 shows the Monte Carlo results with the number of subsamples, S, increasing along the

horizontal axis and the MSE on the vertical axis. The lines represent different sample sizes.

Consider first the results based on the Bartlett kernel. Our theoretical results in Theorem 4

dictate that these lines should be horizontal. This result is confirmed, especially for the large sample

size n = 23, 400. Still, a small increase in the MSE as S increases is observed for the smaller sample

sizes. The reason is that the lag length of the implied kernel, Himplied, can only attain values that

are divisible by S. While the Bartlett kernel without subsampling has H∗
Bartlett,1 =

⌈
3
√

12(ξn)2
⌉

,

the implied Bartlett kernel has Himplied = S ×
⌈
S−1 3

√
12(ξn)2

⌉
. So as S increases the implied

kernels’ Himplied is more likely to deviate from H∗
Bartlett,1, which causes an increase in the mean

squared error. The smaller is the sample size, n, the smaller is the optimal value for H. So it is

not surprising that the impact on MSE is seen earlier when n is small. In this design, the optimal

lag length, H∗
Bartlett,1, is about 67, 140, and 403, for n = 1, 560, n = 4, 680, and n = 23, 400,

respectively. Though the is some variation in the optimal H across simulations because it through

ξ, depends on the simulated volatility path. The lower panels present the results for the smooth

TH2 kernel. Here, our theoretical results in Theorem 5 state that the MSE is increasing in S, and

this phenomenon is evident for all sample sizes. For each of the sample sizes, n = 1, 560, n = 4, 680,

and n = 23, 400, the optimal H∗
TH2,1, is typically 72, 125, and 279, respectively. The results when

ω2 = 0.01 and ω2 = 0.001 (not reported) are similar. Here the optimal H is smaller and this

causes subsampling to have a larger impact on the MSE. Naturally, the implied kernels must have

Himplied ≥ S, so that Himplied = S whenever S ≥ H∗. This constraint is relevant for our simulations

with small levels of noise because subsampling takes Himplied further away from its optimal value,

as S increases beyond the optimal H.
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Figure 5: Mean squares errors (MSEs) for subsampled realised kernels using three different sample
sizes. The upper panel presents the results for the Bartlett kernel and the lower panels presents the
results for the TH2 kernel. For the (kinked) Bartlett kernel we see that the MSE is fairly insensitive
to S, whereas the (smooth) TH2 kernel has MSEs that are slightly increasing in S. These findings
are fully consistent with the theoretical results in Theorems 4 and 5.
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9 Empirical study of General Electric trades

In this section we revisit the empirical application in Barndorff-Nielsen, Hansen, Lunde, and Shep-

hard (2006). Our objective is to compare subsampled realised kernels with standard realised kernels

and other estimators. The estimation problem is here to estimate the daily increments of [Y ] for

the logarithm price of General Electric (GE) shares, using high frequency transaction data carried

out on the New York Stock Exchange in 2000 and in 2004. The reason that we analyse data from

both periods is that the variance of the noise was around 10 times higher in 2000 than in 2004.

A more detailed analysis on 29 other major stocks is provided in a Web Appendix to this paper

available from www.hha.dk/∼alunde/bnhls/bnhls.htm. This appendix also describes the exact

implementation of our estimators. Precise details on the cleaning we carried out on the raw data

before it was analysed are described in the web appendix to Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2006).

Table 3 shows Summary statistics for seven estimators. The first estimator is the realised TH2

kernel using approximate 1 minute returns. The approximate 1 minute returns are obtained by

skipping a fixed number of transactions, such that the average time between observations is one

minute. In 2000 we had to skip every 9.7 observations on average to construct the approximate

1 minute returns, and in 2004 we had to skip every 13.7 observations on average. The second

estimator is the subsampled realised TH2 kernel. So in 2000 we have S ≃ 9.7 and in 2004 we have

S ≃ 13.7. The third estimator is the realised TH2 kernel that is based on tick-by-tick data (i.e.

all available trades) and an H that is S times larger than that used by the first estimator. This

estimator should be quite similar to the subsampled realised kernel, according to our results in

Section 5.

The following three estimators are subsampled realised variances. These are based on returns

that are sampled in calendar time, where each intraday return spans 20 minutes, 5 minutes, or 1

minute, as indicated in the subscript of these estimators. To exhaust data sampled every second, the

number of subsamples are S = 1200, S = 300, and S = 60, respectively. For instance, the estimator

[X5 minutes; 300] is the average of 300 realised variances, where each of the realised variances are

based on 5 minute intraday returns, simply changing the initial place that prices are recorded by

one second. The last estimator, TSRV (K,J), by Aı̈t-Sahalia, Mykland, and Zhang (2005), is the

two-scale estimator that is designed to be robust to deviations from i.i.d. noise. Here we use their

area adjusted estimator, which involves a bias correction.
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Table 3: Summary statistics for subsampled [Y ] estimators, GE.

Mean Std. (HAC) H ρ([̂Y ], K̃) acf(1) acf(2) acf(5) acf(10)

Sample period: 2000

Modified Tukey-Hanning kernel (H̃ = cn1/2)

K̃th2
w (Xap. 1 min) 4.747 3.216 (6.133) 6.558 1.000 0.43 0.25 0.03 0.15

Subsampled Modified Tukey-Hanning kernel (H = cn1/2)

K̃th2
w (Xap. 1 min; S) 4.709 3.220 (6.170) 6.558 0.997 0.43 0.25 0.03 0.16

Modified Tukey-Hanning kernel (H = S · H̃)

K̃th2
w (X1 tick) 4.702 2.946 (5.793) 62.44 0.986 0.46 0.27 0.05 0.13

Simple RV subsampled

[X20 minutes; 1200] 4.417 3.650 (6.046) 0.894 0.26 0.17 -0.01 0.17
[X5 minutes; 300] 4.908 3.018 (5.611) 0.984 0.44 0.23 0.01 0.14
[X1 minutes; 60] 5.545 2.376 (5.167) 0.787 0.55 0.36 0.10 0.18

AMZ (2006)

TSRV (K, J) 3.511 2.846 (5.265) 0.941 0.36 0.21 0.01 0.23
TSRV (K, J) - aa 4.514 3.657 (6.766) 0.941 0.36 0.21 0.01 0.23

Sample period: 2004

Modified Tukey-Hanning kernel (H̃ = cn1/2)

K̃th2
w (Xap. 1 min) 0.962 0.568 (1.195) 5.723 1.000 0.34 0.32 0.28 0.08

Subsampled Modified Tukey-Hanning kernel (H = cn1/2)

K̃th2
w (Xap. 1 min; S) 0.954 0.561 (1.202) 5.723 0.995 0.37 0.32 0.28 0.09

Modified Tukey-Hanning kernel (H = S · H̃)

K̃th2
w (X1 tick) 0.947 0.522 (1.130) 78.27 0.990 0.37 0.31 0.30 0.08

Simple RV subsampled

[X20 minutes; 1200] 0.885 0.516 (1.036) 0.933 0.27 0.27 0.27 0.08
[X5 minutes; 300] 0.943 0.503 (1.088) 0.984 0.37 0.32 0.30 0.08
[X1 minutes; 60] 0.942 0.376 (0.921) 0.899 0.46 0.43 0.38 0.12

AMZ (2006)

TSRV (K, J) 0.736 0.436 (0.929) 0.944 0.33 0.35 0.28 0.11
TSRV (K, J) - aa 0.946 0.560 (1.194) 0.944 0.33 0.35 0.28 0.11

Summary statistics for three types of kernel based estimators: First the realised Modified Tukey-Hanning
kernel using approximate 1 minute returns. Then the corresponding subsampled kernel. Next, the kernel
computed using the inefficient rate and based on all available trades, after which a version with H = H̃ · S
follows. Next, subsampled versions of simple RV statistics based on 20, 5 and 1 minute returns are given.
For instance, the subsampled [X5 minutes; 300] calculates RV over 5 minutes, averaged over 300 times, just
changing the initial place prices are recorded. The AMZ (2006) are two-scale estimators designed to be robust
to deviations from i.i.d. noise. The second estimator which scales TSRV (K, J) overcome its finite sample
bias.
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From Table 3 we see that the estimators are very tightly correlated. The two realised kernels

and the subsampled realised kernel are almost perfectly correlated, and all reported statistics are

quite similar for these estimators. The two scale estimator is also quite similar to the realised

kernels. Interestingly, amongst the subsampled realised variances, it is that based on 5 minute

returns that is most similar to the realised kernels. This suggest that 20 minute returns leads to

too much sampling error, whereas 1 minute returns are being influenced by the bias due to market

microstructure noise.
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Figure 6: Three estimators for the daily increments to [Y ] for General Electrics in November
2000 and 2004. Triangles are the estimates of the realised kernel using roughly 1 minute returns.
Diamonds are the estimates produced by the subsampled realised kernel. Circles are the estimates
of the realised kernel that uses tick-by-tick returns and an H that is S times larger than that used
by the first realised kernel. The intervals are the 95% confidence intervals for K̃TH2(Xap. 1min ).

Time series for some of these estimators are drawn in Figure 6, where we plot daily point

estimates for November 2000 and November 2004. We also include the confidence intervals for

K̃TH2(Xap. 1 min) using the method of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006).

The three estimators are virtually almost identical. While the subsampled realised kernel may

be slightly more precise than the moderately sampled realised kernel, K̃TH2(Xap. 1 min), Figure 6

does not suggest there is a big difference between these two. The realised kernel that is based on
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tick-by-tick data is slightly different from the other estimators, but always inside the confidence

interval for K̃TH2(Xap. 1 min).

10 Conclusions

In this paper we have studied the properties of subsampled realised kernels. Subsampling is a very

natural addition to realised kernels, for it can be viewed as averaging over realised kernels with

slightly different starts of the day. We have provided a first asymptotic study of the properties of

subsampling for these statistics, allowing the degree of subsampling or the number of lags to go

to infinity or being fixed. Included in our analysis is the asymptotic distribution of the estimator

proposed by Zhou (1996).

Subsampling leads to surprisingly little gains in our analysis. In fact, we found that subsampling

is harmful for the best class of realised kernel estimators. The main advantage of subsampling is

that it can overcome the inefficiency that results from a poor choice of kernel weights in the first

place. For example, when the truncated kernel is used to design estimators, the resulting estimator

has poor asymptotic properties. whereas the subsampled estimator is consistent and converges at

rate n1/6.

In the realistic situation where the noise is endogenous and time dependent, subsampled realised

kernels do provide a simple way to make use of all the available data. We have discussed how to

make valid inference about such estimators.

We also provide a slightly different and rather simple way of thinking of the two scale estimator

proposed by Zhang, Mykland, and Aı̈t-Sahalia (2005b).
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Appendix: Proofs

Lemma A.1 We have

γh(Xδ;S) =

S∑

s=−S

(1 − |s|
S

)γSh+s(X δ
S
) +

Rx
S

S
.

The remainder Rx
S/S is a relatively small term, due to end effects. The term is defined explicitly

in the proof, and the expression shows that Rx
S can be made zero by tweaking the first S − 1 and

last S − 1 intraday returns.

Proof. Define the intraday returns xj = X δ
S

j − X δ
S

j− δ
S
, and write

Xδ(j+ s−1
S

) − Xδ(j−1+ s−1
S

) = X δ
S

(jS+s−1) − X δ
S

(jS−S+s−1) = xjS+s−1 + · · · + xjS−S+s.

So xj , j = . . . , 1, . . . , Snδ, . . . are intraday returns over short intervals, each having length δ/S.

Consider first the usual realised autocovariance:

γ1
h(Xδ) =

nδ∑

j=1

(
Xδj − Xδ(j−1)

) (
Xδ(j−h) − Xδ(j−h−1)

)

=

nδ∑

j=1

(xjS−S+1 + · · · + xjS) (xjS−S+1−hS + · · · + xjS−hS)

=
n∑

j=1

xjxj−Sh

+

n∑

j=1
j mod S 6=0

xjxj−Sh+1 +

n∑

j=1
j mod S /∈{0,S−1}

xjxj−Sh+2 + · · · +
n∑

j=1
j mod S=1

xjxj−Sh+S−1

+

n∑

j=1
j mod S 6=1

xjxj−Sh−1 +

n∑

j=1
j mod S /∈{1,2}

xjxj−Sh−2 + · · · +
n∑

j=1
j mod S=0

xjxj−Sh−S+1.

Similarly for s > 1 we have

γs
h(Xδ) =

nδ∑

j=1

(
Xδj+ s−1

S
− Xδ(j−1)+ s−1

S

)(
Xδ(j−h)+ s−1

S
− Xδ(j−h−1)+ s−1

S

)
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=

nδ∑

j=1

(xjS−S+1+s−1 + · · · + xjS+s−1) (xjS−S+1+s−1−hS + · · · + xjS+s−1−hS)

=

n+s−1∑

j=s

xjxj−Sh

+

n+s−1∑

j=s
j mod S 6=s−1

xjxj−Sh+1 +

n+s−1∑

j=s
j mod S /∈{s−1,s−2}

xjxj−Sh+2 + · · · +
n+s−1∑

j=s
j mod S=s

xjxj−Sh+S−1

+

n+s−1∑

j=s
j mod S 6=s

xjxj−Sh−1 +

n+s−1∑

j=s
j mod S /∈{s,1}

xjxj−Sh−2 + · · · +
n+s−1∑

j=s
j mod S=s−1

xjxj−Sh−S+1.

By adding up the terms we have

γh(Xδ ;S) = S−1
S∑

s=1

γs
h(Xδ) =

S−1∑

s=−S+1

(1 − s

S
)γSh+s(X δ

S
) +

Rx
S

S
,

where

Rx
S = −

S∑

S=2




s−1∑

j=1

xjxj−Sh +

s−2∑

j=1

xjxj−Sh+1 + · · · +
1∑

j=1

xjxj−Sh+S−2

+

s−1∑

j=1

xjxj−Sh−1 +

s−1∑

j=2

xjxj−Sh−2 + · · · +
s−1∑

j=s−1

xjxj−Sh−S+1




+

S∑

S=2




n+s−1∑

j=n+1

xjxj−Sh +

n+s−2∑

j=n+1

xjxj−Sh+1 + · · · +
n+1∑

j=n+1

xjxj−Sh+S−2

+

n+s−1∑

j=n+1

xjxj−Sh−1 +

n+s−1∑

j=n+2

xjxj−Sh−2 + · · · +
n+s−1∑

j=n+s−1

xjxj−Sh−h+1


 .

The term, Rx
S , is due to end effects and involves much fewer cross products, xixj , than does∑S

s=1 γs
h(Xδ). So that Rx

S/S is typically negligible. In fact, Rx
S can be made zero by assuming

x1 = · · · = xS−1 = xn+1 = · · · = xn+S−1 = 0.

�

Proof of Theorem 2. By Lemma A.1 we have

γ̃h(Yδ;S) ≃
S∑

s=−S

(1 − |s|
S

)γ̃Sh+s(Y δ
S
),

and the asymptotic properties of γh(Y δ
S
), h = −SH, . . . , SH, using the small time gaps, δ/S, follows

straightforwardly from Theorem 1, (6).

Write

V0,S =
1

S

(
1 + 2

S∑

s=1

(
1 − s

S

)2
)

=
2

3

(
1 + S−2

2

)
→ 2

3
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V1,S =
1

S

(
0 +

S∑

s=1

s
S

(
1 − s

S

)
)

=
1

6

(
1 − S−2

)
→ 1

6
.

then for h ≥ 1 we have

Var {γ̃h(Yδ;S)} = Var

{
S∑

s=−S

S−|s|
S γ̃Sh+s(YδS

)

}
=

S∑

s=−S

(
1 − |s|

S

)2
× 1

n
4t

∫ t

0
σ4

udu

= 4V0,S × 1

nδ
t

∫ t

0
σ4

udu,

and similarly for h = 0 we find V ar {γ̃0(Yδ;S)} = 2V0,S × 1
nδ

t
∫ t
0σ

4
udu.

For h ≥ 0 we find

Cov
{
γ̃h(Yδ;S), γ̃h+1(Yδ;S)

}
= Cov

{
S∑

s=−S

S−|s|
S γ̃Sh+s(YδS

),
S∑

s=−S

S−|s|
S γ̃Sh+S+s(YδS

)

}

= Var

{
S∑

s=1

S−s
S

s
S γ̃Sh+s(YδS

)

}
=

S∑

s=1

S−s
S

s
S × 1

n
4t

∫ t

0
σ4

udu

= 4V1,S × 1

nδ
t

∫ t

0
σ4

udu.

Covariances between γ̃h(Yδ;S) and γ̃i(Yδ;S) are zero for |h− i| ≥ 2, as they do not “share” any of

the realised autocovariances γ̃Sh+s(YδS
).

�

Proof of Theorem 3. The limit results for the subsampled realised kernels involving Uδ follow

directly from Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) and (7)-(9). So we only need

to show the result for the subsampled realised kernel on Yδ.

We have

S (V0,S + 2V1,S) = 1 + 2
S∑

s=1

(
1 − s

S

)2
+ 2

S∑

s=1

s
S

(
1 − s

S

)
1 +

S(S − 1)

S
= S,

so that V0,S + 2V1,S = 1. Given the structure of

AS =




2V0,S • 0 · · ·
4V1,S 4V0,S • . . .

0 4V1,S 4V1,S
. . .

...
. . .

. . .
. . .




,

we have

H−1
H∑

i,j=0

k( i
H )k( j

H )[AS ]i,j

= 4V0,SH−1
H∑

h=0

k( h
H )2 + 8V1,SH−1

H∑

h=1

k( h
H )k(h−1

H ) + O(H−1)

= 4(V0,S + 2V1,S)H−1
H∑

h=0

k( h
H )2 − 8V1,SH−2

H∑

h=1

k( h
H )

k(
h
H )−k(

h−1
H )

1/H + O(H−1)
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= 4

∫ 1

0
k(u)2dx + O(H−1),

which proves the result.

�

Proof of Theorem 4. (i) The mixed Gaussian result follows from Theorem 3. (ii) The best value

for c is found by solving the first order condition

k0,0
• − 2c−3

{
k′(0)2 + k′(1)2

}
= 0,

and substituting this c into (19) yields ω4/3
(
t
∫ t
0σ

4
udu

)2/3
times

4c

{
k0,0
• +

k′(0)2 + k′(1)2

c3

}
= 4c

(
k0,0
• +

1

2
k0,0
•

)
= 4ck0,0

• (1 + 1/2) = 6ck0,0
• .

Finally

ck0,0
• =

{
2
k′(0)2 + k′(1)2

k0,0
•

}1/3

k0,0
• =

{
2
(
k0,0
•
)2 (

k′(0)2 + k′(1)2
)}1/3

,

completes the proof.

�

Proof of Theorem 5. (i.a) The mixed Gaussian result is straight forward using Theorem 3.

(i.b) Substituting HS = ξ1/2cn1/2+α/4 and S = anα into (20) yields 4ω
(
t
∫ t
0σ4

udu
)3/4

times

cn1/2+α/4

n
k0,0
• +

2ρk1,1
•

cn1/2+α/4
+ nnα k2,2

•
(cn1/2+α/4)3

= ck0,0
• n−1/2+α/4 + c−3k2,2

• n−1/2+α/4,

because the second term, c−12ρk1,1
• n−1/2−α/4, is of lower order that the first and the third term

when α > 0.

(ii) Minimizing (20) with respect to x = HS has the first order condition,

n−1k0,0
• − 2ξρk1,1

• (HS)−2 − 3ξ2nSk2,2
• (HS)−4 = 0.

The unique positive solution is given by HS = cS(ξn)1/2, where

cS =

√
ρk1,1

•

k0,0
•

(
1 +

√
1 + 3S k0,0

•
k2,2
•

(ρk1,1
•

)2

)
=

√
ρk1,1

•

k0,0
•

+

√
(ρk1,1

•
)2+3Sk0,0

•
k2,2
•

(k0,0
•

)2
.

Now define

x =
k0,0
•

ρk1,1
•

y =
ρk1,1

•

Sk2,2
•

, and z =
√

1 + 3x/y

Then

cS =

√
1 +

√
1 + 3x/y

x
=

√
1 + z

x
,

and x/y = (z2 − 1)/3 = (1 + z)(z − 1)/3. So the minimum asymptotic variance is given by

4ω

(
t

∫ t

0
σ4

udu

)3/4

k0,0
•

(
cS +

2

cSx
+

1

c3
Sxy

)
,

which is proportional to

cS +
2

cSx
+

1

c3
Sxy

=
√

1+z
x + 2

√
1

x(1+z) +
√

x

(1+z)
√

1+zc3y
= 1√

x

{√
1 + z + 2√

1+z
+ x/y

(1+z)
√

1+z

}
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= 1√
x

{√
1 + z + 2√

1+z
+ (1+z)(z−1)/3

(1+z)
√

1+z

}
= 1√

x

{
(1+z)+2+(z−1)/3√

1+z

}
= 1√

x
4
3

2+z√
1+z

= 1√
x

4
3

(
1√
1+z

+
√

1 + z
)

.

Now substitute z =

√
1 + 3S k0,0

•
k2,2
•

(ρk1,1
•

)2
and 1√

x
=

√
ρk1,1

•

k0,0
•

and (22) follows.

�

Lemma A.2 Let g(S) be as defined in Theorem 5. Then g′(S) > 0 for all S > 0.

Proof. Consider the function

f(x) = 1√
1+

√
1+ax

+

√
1 +

√
1 + ax, for a > 0.

The first derivative f ′(x) = a
4

(
1 +

√
ax + 1

)−3/2
, is positive for all x > 0.

�

Proof of Corollary 1. From Lemma A.2 it follows that g′(S) > 0 for all S > 0, if we set x = S and

a = 3k0,0
• k2,2

• /(ρk1,1
• )2. So any increment in S will increase the asymptotic variance.

�

Proof of Corollary 2. By substitution for the first ρ in g(S) we find that (22) is proportional to

ω

(
t

∫ t

0
σ4

udu

)1/2(∫ t

0
σ2

udu

)1/2





1
v

u

u

t1+

s

1+3S
k
0,0
•

k
2,2
•

(ρk
1,1
•

)2

+

√√√√1 +

√
1 + 3S

k0,0
• k2,2

•

(ρk1,1
• )2





.

From Hansen and Lunde (2006, p. 135) it follows that business time sampling minimizes t
∫ t
0σ4

udu

and by Lemma A.2 we have that also the second term is minimized for the largest possible value

of ρ, (set x = 1/ρ2). Since ρ ≤ 1 the solution is ρ = 1.

�

Proof of Lemma 1. For simplicity, let U0 = Un = 0. We have

γ̃h(U) =

n∑

j=1

(Uj − Uj−1) (Uj−h − Uj−h−1 + Uj+h − Uj+h−1)

=

n∑

j=0

Uj (Uj−h − Uj−h−1 + Uj+h − Uj+h−1) −
n∑

j=0

Uj (Uj−h+1 − Uj−h + Uj+h+1 − Uj+h)

=
n∑

j=0

UjUj−h − UjUj−h−1 + UjUj+h − UjUj+h−1 − UjUj−h+1 + UjUj−h

− UjUj+h+1 + UjUj+h

=

n∑

j=1

−Uj(Uj−h−1 + Uj+h+1) + 2Uj (Uj−h + Uj+h) − Uj(Uj+h−1 + Uj−h+1)

= −Vh+1,n + 2Vh,n − Vh−1,n

where Vh =
∑n

j=1 Uj (Uj−h + Uj+h) . So the realised kernel on the pure noise process, U, is

K̃w(Uδ) = w0(V0,n − V1,n) +
H∑

h=1

wh(−Vh−1,n + 2Vh,n − Vh+1,n)
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=
H∑

h=0

(−wh+1 + 2wh − wh−1)Vh,n,

using the conventions w−1 = w0 and wH+1 = wH .

We have Var(Vh) = (4n− 2h)ω4, and because Vh is entirely made up of UjUj−h terms it follows

that Cov(Vh, Vk) = 0, for h 6= k. So

Var
{

K̃w(U)
}

=
H∑

h=0

(wh+1 − 2wh + wh−1)
2 (4nω4 − 2ω4h)

≥ 4ω4(n − H/2)

H∑

h=0

(wh+1 − 2wh + wh−1)
2 .

Since H = o(n) the result follows. The expressions are more involved without the simplify-

ing assumption U0 = Un = 0. Here the conclusion is the same because the variance is also

≃ 4ω4n
∑H

h=0 (wh+1 − 2wh + wh−1)
2 in this case. �

Proof of Theorem 6. The asymptotic distribution of

γ0(Xδ ;S) + γ̃1(Xδ ;S) −
∫ t

0
σ2

udu

is mixed Gaussian with variance of approximately, for moderate nδ and S,

n−1
δ

16

3
t

∫ t

0
σ4

udu +
8ω4nδ

S
. (A.1)

The first term appears from (12), the second from Theorem 2 of Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2006). �

Proof of Lemma 2. With S = c(ξn)2/3 we have n−1
δ = S/n = cξ2/3n−1/3 and nδ

S = n/S2 =

c−2ξ−4/3n1/3, so that (A.1) in the proof of Theorem 6 becomes n1/3 times

16

3
cξ2/3t

∫ t

0
σ4

udu + 8ω4c−2ξ−4/3 = ω4/3

(
t

∫ t

0
σ4

udu

)2/3(
16

3
c + 8c−2

)
.

So n1/6
{
γ0(Xδ;S) + γ̃1(Xδ;S) −

∫ t
0σ2

udu
}

converges to a mixed Gaussian distribution with this

variance. We can now minimise this asymptotic variance by selecting

c3 = 3.

At this value the asymptotic variance is

ω4/3

(
t

∫ t

0
σ4

udu

)2/3 {
16

3
(3)1/3 + 8 (3)−2/3

}
≃ 11.53ω4/3

(
t

∫ t

0
σ4

udu

)2/3

.

�

Proof of Lemma 3. From Theorems 2 and 3 we obtain the following upper-left 3 × 3 submatrices

of A∞ and C,

[A∞,3×3] =
2

3




2 • •
1 4 •
0 1 4


 , [C3×3] =




λ2 + 1 • •
−λ2 − 2 λ2 + 5 •

1 −4 6


 .

40



With w = (1, 1, 1
2)⊺ we have w⊺[A∞,3×3]w = 20

3 and w⊺[C3×3]w = 1
2 . The result now follows, as the

asymptotic variance is

n1/3

(
S
n t

∫ 1

0
σ4

udu × 20

3
+ 4ω4 n

S2
× 1

2

)
= cξ2/3t

∫ 1

0
σ4

udu
20

3
+ 2ω4c−2ξ−4/3

= ω4/3

(
t

∫ 1

0
σ4

udu

)2/3(
20

3
c + 2c−2

)
.

�

Proof of Theorem 7. We have that γ0(Xδ ;S) − 2nδω
2 −

∫ t
0 σ2

udu equals

γ0(Yδ;S) −
t∫
0

σ2
udu

︸ ︷︷ ︸
n−1

δ
4
3
t
∫ t

0
σ4

udu

+ 2γ0(Uδ, Yδ;S)︸ ︷︷ ︸
S−18ω2

∫ t

0
σ2

udu

+ γ0(Uδ;S) − 2nδω
2

︸ ︷︷ ︸
4ω4 nδ

S
(1+λ2)

,

which has mean zero and a variance that is the sum of the three terms given below the brackets.

The three terms are given from (12), (7), and (9) respectively. For large S = c(ξn)2/3 (implying

large nδ = n/S = c−1ξ−2/3n1/3) we have

n1/6

{
γ0(Xδ ;S) − 2nδω

2 −
∫ t

0
σ2

udu

}
Ls→ MN

{
0, 4ω4/3

(
t

∫ t

0
σ4

udu

)2/3 ( c

3
+ 1+λ2

c2

)}
.

�

Proof of Theorem 8. By the approximations

1

S

n∑

j=1

(
Ujδ/S − U(j−S)δ/S

)2 ≃ 2

S




n∑

j=1

U2
jδ/S +

n∑

j=1

Ujδ/SU(j−S)δ/S




and

1

S

n∑

j=1

(
Ujδ/S − U(j−1)δ/S

)2 ≃ 2

S




n∑

j=1

U2
jδ/S +

n∑

j=1

Ujδ/SU(j−1)δ/S


 ,

and using

2

S
=

2n1/2

cξ2/3n2/3
× n−1/2 = n−1/6

√
4

c2ξ4/3
× n−1/2

we see that

n−1/6

(
n−1/2

∑n
j=1

(
Ujδ/S − U(j−S)δ/S

)2 − 2nδω
2

n−1/2
∑n

j=1

(
Ujδ/S − U(j−1)δ/S

)2 − 2nδω
2

)
L→ N

{
0,

4ω4

c2ξ4/3

(
1 + λ2 λ2

λ2 1 + λ2

)}
.

�

Proof of Theorem 9. Follows from Theorem 7 and Theorem 8, and

n−1/2γ0(Xδ/S) = n−1/2γ0(Uδ/S) + op(1) and ω4/ξ4/3 = ω4/3

(
t

∫ t

0
σ4

udu

)2/3

.

�
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