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Summary: The Forward Search is an iterative algorithm concerned with detection of outliers
and other unsuspected structures in data. This approach has been suggested, analysed and
applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic
analysis of the Forward Search is made. The argument involves theory for a new class of weighted
and marked empirical processes, quantile process theory, and a fixed point argument to describe
the iterative element of the procedure.

Keywords: Fixed point result, Forward Search, quantile process, weighted and marked empirical
process.

1 Introduction

The Forward Search is concerned with detecting outliers and other unsuspected structures in
data. This approach has been suggested, analysed and applied for regression models in the
monograph Atkinson and Riani (2000), see also Atkinson, Riani and Cerioli (2010a) for a recent
overview, while R and matlab code is freely available from www.riani.it. Riani, Atkinson and
Cerioli (2009) discuss the application of the Forward Search to multivariate location-scale models.
So far formal asymptotic analysis has not been undertaken and inferential procedures are relying
on a calibrated distribution approximation, see Riani and Atkinson (2007). In the following we
will provide an asymptotic analysis of the Forward Search. The analysis is conducted under
the hypothesis that all observations follow a regression model, allowing for stationary as well as
stochastically and deterministically trending regressors. The results can therefore be used for
computing the confidence bands needed in the Forward Search.
The Forward Search involves an iteration combined with a comprehensive graphical represen-

tation of the iteration results. The iteration starts from a robust regression estimator in order to
select a small set of m0 observations without outliers. Examples of robust regression estimators
are the least median squares estimator or the least trimmed squares estimator of Rousseeuw
(1984). These estimators are known to have good breakdown properties, see Rousseeuw and
Leroy (1987, §3.4), and an asymptotic theory for the least trimmed squares regression estimator
is provided by Víšek (2006a,b,c). In the iteration step the regression estimator is based on a set
of m observations. Using this estimator the residuals are computed for all observations and the
set with the m+ 1 smallest absolute residuals is then found. The largest of these m+ 1 residuals
is the forward residual. The fully iterated estimator is the full sample least squares regression
estimator. We derive the asymptotic distribution of the resulting sequence of forward residuals.
A single step of the algorithm has been discussed for the location-scale case by Johansen

and Nielsen (2010). The aim of this paper is to discuss the full iterative procedure. Broadly
speaking, this requires three asymptotic tools. First, a theory for weighted and marked empirical
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processes to describe the least squares statistics. Secondly, quantile processes to describe the
forward residuals. Thirdly, a fixed point result to describe the iteration involved.
In the empirical process theory the weights represent functions of the regressors and the

marks are functions of the regression error. The results generalise those of Johansen and Nielsen
(2009) who did not allow variation in the quantiles and those of Koul and Ossiander (1994) who
did not allow marks. The proof combines a chaining argument with an exponential inequality
for martingales by Bercu and Touati (2008).
The quantile process theory draws on the exposition of Csörgő (1983). It is found that in

the case of a known variance the forward residuals satisfy a Bahadur representation, so that,
asymptotically, the forward residuals have the same distribution as the order statistics of the
regression innovations. When the variance is estimated an additional term appears in the as-
ymptotic distribution.
The last ingredient is a fixed point result to describe the iterative result. Each step of

the iteration is an L-estimator defined from a Huber-skip objective function which assigns 0-1
weights to the observations. That is, sample quantiles are used to classify observations and
least squares regression is performed for the observations not classified as outliers. Starting
with Bickel (1975) there are a number of asymptotic 1-step results for L- and M-estimators.
These are predominantly concerned with objective functions that have continuous derivatives,
thereby excluding the Huber-skip function. One-step Huber-skip estimators have been studied
by Rupert and Carroll (1980) and Johansen and Nielsen (2009, 2010). There appears to be less
work on iteration of 1-step estimators. The case of smooth weights was considered by Dollinger
and Staudte (1991), but the case of 0-1 weights does not appear to have been studied until
recently. Cavaliere and Georgiev (2011) analysed a sequence of Huber-skip estimators for a first
order autoregression with infinite variance errors, while Johansen and Nielsen (2011) analysed
sequences of one-step Huber-skip M-estimators with a fixed critical value. Here, we generalise
the fixed point result of the latter paper.
Outline of the paper: The model and the Forward Search algorithm are described in §2. The

main asymptotic results are given in §3. The marked and weighted empirical process results are
given in §4 with proofs following in §5, 6, 7. The proofs of the main results follow in §8.

2 Model and Forward Search algorithm

The regression model and the Forward Search algorithm are outlined at first. In order to motivate
the subsequent asymptotic results, the Bahadur representation for quantile process is reviewed.
The currently used calibrated distribution approximation to the Forward Search is then discussed.

2.1 Model

Suppose data (yi, xi), i = 1, . . . , n are available, satisfying the regression equation

yi = x′iβ + εi. (2.1)

The errors are assumed independent and identically distributed with scale σ so that εi/σ has
known density f and distribution function F(c) = P(εi ≤ σc).
In practice, the distribution F will often be standard normal or at least symmetric. When

discussing some general empirical result in §4-7 a more general distribution is allowed, otherwise
f is symmetric. In the symmetric case the distribution function of the absolute errors |εi|/σ is
G(c) = 2F(c)− 1 with density g(c) = 2f(c) and quantiles

cψ = G−1(ψ) = F−1{(1 + ψ)/2}. (2.2)
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2.2 Forward Search algorithm

The Forward Search is designed to detect outliers. It evolves around an algorithm initiated by
a robust estimator. The algorithm generates a sequence of regression estimators, which will be
the object of interest here. The (m+ 1)th step of the algorithm is given as follows.

Algorithm 2.1 Generating a sequence of estimators.
1. Given an estimator β̂

(m)
compute residuals ξ̂

(m)

i = |yi − x′iβ̂
(m)|.

2. Find the (m+ 1)-th smallest order statistics ẑ(m) = ξ̂
(m)

(m+1).

3. Find set of (m+ 1) observations with smallest residuals S(m+1) = (i : ξ̂
(m)

i ≤ ẑ(m)).
4. Compute a new least squares statistic on S(m+1)

β̂
(m+1)

= (
∑

i∈S(m+1)

xix
′
i)
−1(

∑
i∈S(m+1)

xiyi). (2.3)

The algorithm is initiated with an estimator β̂
(m0)

. We will allow initial estimators β̂
(m0)

converging at a rate slower rate than the usual n1/2-rate - for the stationary case. An example
is the Least Median Squares estimator which is n1/3-consistent in location-scale models, see
Rousseeuw (1984). Applying the algorithm repeatedly results in sequences of order statistics

ẑ(m), least squares estimators β̂
(m)

as well as residual variances

(σ̂(m))2 =
1

m

∑
i∈S(m)

(yi − x′iβ̂
(m)

)2 =
1

m
{
∑

i∈S(m)

y2
i −

∑
i∈S(m)

yix
′
i(
∑

i∈S(m)

xix
′
i)
−1(

∑
i∈S(m)

xiyi)},

for m = m0 + 1, . . . , n along with the scaled forward residuals

ẑ(m)

σ̂(m)
=
ξ̂

(m)

(m+1)

σ̂(m)
.

The plots of β̂
(m)

and ẑ(m)/σ̂(m) against m are forward plots of the estimator and of the scaled
forward residuals, respectively, see Atkinson and Riani (2000, p.12). The primary objective
of this paper is to derive the asymptotic distribution of the forward plot of scaled residuals
ẑ(m)/σ̂(m).
In the application the forward plot of for instance ẑ(m) is a process on m = m0 + 1, . . . , n. It

is useful to embed it in the space D[0, 1] of right continuous process on [0, 1] with limits from
the left, endowed with the uniform norm since all limiting processes will be continuous. Thus,
define

ẑψ =

{
ẑ(m) for m = int(nψ) and m0/n ≤ ψ ≤ 1,
0 otherwise.

(2.4)

Embed in a similar way β̂
(m)
, σ̂(m) as β̂ψ, σ̂ψ.

We will show consistency of the bias corrected variance estimator

σ̂2
ψ,cor = σ̂2

ψ/ς
2
ψ, (2.5)

with a bias correction factor introduced in Johansen and Nielsen (2010), that is

ς2
ψ =

τψ
ψ
, where τψ = 2

∫ cψ

0

ε2f(ε)dε. (2.6)

When f = ϕ is normal then τψ = ψ − 2cψϕ(cψ).
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2.3 Some known results from the theory of quantile processes

Johansen and Nielsen (2010, Theorems 5.1—5.3) analysed a single step of the Forward Search
applied in a location-scale setting. The results show that the one-step version of the scaled
residuals ẑ(m)/σ̂(m) has an asymptotic representation involving an empirical process and a term
arising from estimation error for the variance. The subsequent analysis shows how this result
generalises to a fully iterated Forward Search. An interesting feature of these results is that in
the case where the variance σ is known, these results reduce to a Bahadur representation linking
a quantile process and empirical process. It is useful to recall this theory.
Introduce the empirical distribution function of the absolute errors, |εi|/σ, that is

Ĝn(c) =
1

n

n∑
i=1

1(|εi|≤σc). (2.7)

The first result gives the asymptotic distribution of the empirical process

Gn(cψ) = n1/2{Ĝn(cψ)− ψ}

Theorem 2.1 Billingsley (1968, Theorem 16.15). Let B be a Brownian bridge so that B(ψ) is

N{0, ψ(1− ψ)}-distributed. Then, it holds Gn
D→ B on D[0, 1].

The empirical quantiles of the absolute errors, |εi|/σ, are defined as

ĉψ = Ĝ−1
n (ψ) = inf{c : Ĝn(c) ≥ ψ}. (2.8)

Empirical quantiles and empirical distribution functions are linked as follows.

Theorem 2.2 Csörg̋o (1983, Corollaries 6.2.1, 6.2.2). Suppose that f is symmetric, differen-
tiable, positive for F−1(0) < c < F−1(1), satisfying γ = supc>0 F(c){1− F(c)}|f ′(c)|/{f(c)}2 <∞,
and decreasing for large c. Then, for all ζ > 0, it holds
(a) sup0≤ψ≤1 |2f(cψ)n1/2(ĉψ − cψ) + n1/2{Ĝn(cψ)− ψ}| = oP(nζ−1/4);
(b) sup0≤ψ≤1 |2f(cψ)n1/2(ĉψ − cψ)− n1/2{G(ĉψ)− ψ}| = oP(nζ−1/2);

(c) sup0≤ψ≤1 |n1/2{G(ĉψ)− ψ}+ n1/2{Ĝn(cψ)− ψ}| = oP(nζ−1/4).

The result in Theorem 2.2(a) shows that the empirical quantile ĉψ satisfies, for 0 < ψ < 1,

n1/2(ĉψ − cψ) =
1

2f(cψ)
n1/2{ψ − Ĝn(cψ)}+ oP(1).

This is known as the Bahadur (1966) representation. The results in parts (b, c) combine to that
of (a) and were studied by Kiefer (1967). More detail can be found in Csörgő (1983) who also
gives almost sure, logarithmic rates.
Some weighted versions of the above results are also needed.

Theorem 2.3 (Shorack 1979, Csörg̋o, 1983, Theorem 5.1.1). Let the function qψ be symmetric
about ψ = 1/2 (it suffi ces if qψ is bounded below by such a function), such that on 0 ≤ ψ ≤ 1/2
then qψ is increasing and continuous, and satisfies qψ = {ψ log log(1/ψ)}1/2gψ for a function gψ
so limψ→0 gψ = ∞. Then, a probability space exists on which one can define a Brownian bridge
Bn for each n, so that
(a) sup0≤ψ≤1 |{Gn(cψ)− Bn(ψ)}/qψ| = oP(1);
(b) sup1/(n+1)≤ψ≤n/(n+1) |{f(cψ)n1/2(ĉψ − cψ) − Bn(ψ)}/qψ| = oP(1) provided the assumptions of
Theorem 2.2 hold.
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In Theorem 2.3 a possible choice of qw is {ψ(1− ψ)}α for α < 1/2, which will be used in the
proof of the main Theorem. Finally, a continuity property of the Brownian bridge is needed.

Theorem 2.4 (Revuz and Yor, 1998, Theorem I.2.2) A Brownian motion W is locally Hölder
continuous of order α for all α < 1/2. That is

sup
0≤ψ<ψ†≤1

|W(ψ†)−W(ψ)|
(ψ† − ψ)α

a.s.
< ∞.

Thus, for a Brownian bridge B then limψ→0 B(ψ)/ψα = 0 a.s.

2.4 A calibrated distribution approximation

Riani and Atkinson (2007) presented a distribution approximation to the deletion residuals r̂(m)

based on ordered t-variates. Through simulation they show that this gives a rather good approx-
imation in finite samples. However, we will show that this approximation is not capturing the
asymptotic distribution.
The distribution approximation is derived by a heuristic argument, which is potentially cor-

rect up to an approximation. It approximates the distribution of r̂(m) by the distribution of v̂(m),
which is the (m + 1)th quantile of a sample of n scaled, absolute tm−dimx variables. To get a
handle on the asymptotic distribution of v̂(m) consider first the (m+ 1)-smallest order statistic,
ŵ(m) say, from n draws of absolute standard normal variables. This satisfies

2ϕ(cm/n)n1/2(ŵ(m) − cm/n)
D→ N{0, ψ(1− ψ)},

for m ∼ ψn and cψ = G−1(ψ) due to Theorems 2.1, 2.2(a). The absolute standard normal vari-
ables have distribution function 2Φ(y)−1. For the t-order statistic v̂(m) it is useful to Edgeworth
expand P(tm−dimx ≤ y) = 2{Φ(y) + O(n−1)} − 1, which indicates that the same asymptotic dis-
tribution arises as in the normal case. A more formal argument will keep track of the remainder
terms. The starting point could be the expression for P(v̂(m) ≤ y) in terms of the distribution of
an F variate as given in Guenther (1977, equation 3). This can be expanded using the approxi-
mation to the log F distribution by Aroian (1941, Section 15). These considerations lead to the
following result.

Theorem 2.5 Let v1, . . . , vn be independent absolute tm−dimx distributed. Consider the m + 1
smallest order statistic v̂(m). Suppose dimx is fixed while m ∼ ψn for some 0 < ψ < 1. Let ϕ be
the standard normal density. Then as n→∞ it holds

2ϕ(cm/n)n1/2(v̂(m) − cm/n)
D→ N{0, ψ(1− ψ)}.

We see that v̂(m)/ςm/n is consistent for cm/n/ςm/n.We will later see that the forward residual
scaled by a known variance ẑ(m)/σ has the same asymptotic distribution, whereas the forward
residual scaled by an estimated variance ẑ(m)/σ̂(m) is consistent for cm/n/ςm/n but with a different
asymptotic variance. The t-approximation is therefore not useful in large samples.

3 The main results

The main results for the Forward Search are given. These are expressed in terms of a class of
weighted and marked empirical distribution functions at first, then the assumptions are listed,
the results are given, and some simulation results reported.
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3.1 Absolute empirical process representation

Normalisations are needed for estimators and regressors. Depending on the stochastic properties
of the regressor xi choose a normalisation matrix N and define

b̂ = N−1(β̂ − β), xin = N ′xi,

so that
∑n

i=1 xinx
′
in converges, n

−1/2
∑n

i=1 |xin| is bounded, and x′i(β̂−β) = x′inb. If, for example,
(yi, xi) is stationary then N = n−1/2Idimx so that b = n1/2(β̂ − β) and xin = n−1/2xi. If xi is a
random walk then N = n−1.
Introduce matrix-valued weights gin of the form 1, n1/2Nxi or nNxix′iN, so that n

−1
∑n

i=1 |gin|
is bounded. In the stationary case gin will be 1, xi or xix′i. When xi is a random walk gin is 1,
n−1/2xi or n−1xix

′
i.

Define the weighted and marked absolute empirical distribution functions

Ĝg,pn (b, c) =
1

n

n∑
i=1

ginε
p
i 1(|εi−x′inb|≤σc), (3.1)

for b ∈ Rdimx and c ≥ 0 and with weights gin and marks ε
p
i . Four combinations of weights

and marks are of interest in the analysis of the Forward Search. The deletion residuals involve
gin = 1, p = 0. The least squares estimator involves gin = n1/2N ′xi, p = 1 and gin = nN ′xix

′
iN,

p = 0. The variance estimator involves the mentioned terms as well as gin = 1, p = 2. When
p = 0 the marks are ε0

i = 1 so that Ĝg,0n is a weighted absolute empirical distribution function
similar to those studied by Koul and Ossiander (1994). When also b = 0 then Ĝ1,0

n equals the
empirical distribution function Ĝn of (2.7).
The Forward Search Algorithm 2.1 can now be cast as follows. Step (m + 1) results in an

order statistic
ẑ(m) = σ inf{c : Ĝ1,0

n (b̂(m), c) ≥ m+ 1

n
}, (3.2)

where gin = 1, p = 0, so that

m+ 1

n
= Ĝ1,0

n (b̂(m),
ẑ(m)

σ
) =

1

n

n∑
i=1

1(|εi−x′inb̂(m)|≤ẑ(m)) =
1

n

∑
i∈S(m+1)

1. (3.3)

The least squares estimator has estimation error

b̂(m+1) = N−1(β̂
(m) − β) = {Ĝxx,0n (b̂(m),

ẑ(m)

σ
)}−1Ĝx,1n (b̂(m),

ẑ(m)

σ
), (3.4)

while the bias corrected least squares variance estimator satisfies

n1/2{(σ̂(m+1)
cor )2 − σ2} =

n1/2

τm/n
[Ĝ1,2
n (b̂(m),

ẑ(m)

σ
)− {b̂(m+1)}′Ĝxx,0n (b̂(m),

ẑ(m)

σ
){b̂(m+1)}]. (3.5)

3.2 Assumptions

In the following a series of suffi cient assumptions are listed for the asymptotic theory of the
Forward Search. When using the Forward Search the density f is assumed known. In practice
the normal distribution is used, although a distribution with heavier tails could also be used. To
accommodate that intended use, the listed Assumptions are somewhat stronger than they need
to be for the sake of parsimony. As a part of the proof, a class of weighted and marked empirical
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processes are analysed in §4 and at that point somewhat weaker assumptions are introduced, see
Assumption 4.1.
Assumption 3.1(i) is satisfied for the normal distribution. For other distributions the regular-

ity conditions involve a trade-off between four features: η, which indicates the rate of the initial
estimator, κ, which indicates the order of magnitude of maximum of the normalised regressors,
and dimx, the dimension of the regressor. From these quantities a number r is defined, which
controls the number of moments and the smoothness required for the density f. The number r is
increasing in κ and dimx and decreasing in η. The number of required moments is larger than
8 in order to control the estimation error for the variance.

Assumption 3.1 Let Fi be an increasing sequence of σ fields so εi−1 and xi are Fi−1-measurable
and εi is independent of Fi−1 with symmetric, continuous, differentiable density f which is positive
for F−1(0) < c < F−1(1). For some 0 ≤ κ < η ≤ 1/4 choose an r ≥ 2 so 2r−1 ≥ 1 + (1/4 + κ−
η)(1 + dim x). Let q0 = 1 + 2r+1. Suppose
(i) density satisfies

(a) tail monotonicity: cqf(c), |cq−1f ′(c)| are decreasing for large c and some q ∈ R so q > q0;
(b) quantile process condition: γ = supc>0 F(c){1− F(c)}|f ′(c)|/{f(c)}2 <∞;
(c) unimodality: f ′(c) ≤ 0 for c > 0 and limc→0 f

′′(c) < 0;
(d) logarithmic derivative: ∆(c) = [c{log f(c)}′]′ < 0 for c > 0;
(e) strong quantile process condition: {1− F(c)}/{cf(c)} = O(1) for c→∞;

(ii) regressors xi are Fi−1-measurable and satisfy

(a) Σn = N ′
∑n

i=1 xix
′
iN

D→ Σ
a.s.
> 0;

(b) max1≤i≤n |n1/2−κN ′xi| = OP(1) for some κ < η;
(c) n−1E

∑n
i=1 |n1/2N ′xi|q0 = O(1);

(iii) initial estimator: N−1(β̂
(m0) − β) = OP(n1/4−η) for some η > 0.

Assumption 3.1 is satisfied in a range of situations. First some general comments. Condition
(ia) is more severe than normally seen in empirical process theory due to the marks εpi . Condition
(ib) was used in Theorem 2.2. Conditions (ic, id) are needed for controlling the iterative aspect
of the Forward Search. Condition (id) to ∆(c) is also used in Rousseuw (1982) when discussing
change-of-variance curves for M-estimators and assumes log concave densities. It is also the cross
derivative of the log likelihood for location-scale families. Condition (ie) to Mill’s ratio is milder
than the condition employed for kernel density estimation by Csörgő (1983, p. 139). Condition
(iia) is standard in regression analysis. Condition (iib) is discussed below.

Example 3.1 Assumption 3.1(i) to the reference distribution f.
(a) Standard normal distribution, so f = ϕ. Condition (i) is satisfied: (ia) holds since
cqϕ(c) = −cq−1ϕ′(c) is decreasing for large c for any q. (ib) holds with γ = 1, noting ϕ′(c) =
−cϕ(c) and the Mill’s ratio result {(4 + c2)1/2 − c}/2 < {1 − Φ(c)}/ϕ(c) < 1/c, see Sampford
(1953). (id) holds with ∆(c) = −2c. (ie) holds since {1− Φ(c)}/{cϕ(c)} < 1/c2 → 0 as c→∞.
(b) t-distribution with d > 2r+1 degrees of freedom and density f(c) = Cd(1 + c2/d)−(d+1)/2 and
Cd = Γ{(d + 1)/2}/{(dπ)1/2Γ(d/2)}. It holds f ′(c) = −γf(c)/h(c) with γ = 1 + d−1, defining
h(c) = c/(1 + c2/d) so that h(c) ∼ d/c for large c. Condition (i) is satisfied: (ia) holds since
cqf(c) ∼ Ccq−d−1 is declining for q chosen so d + 1 > q > q0, and cq−1|f ′(c)| and cqf(q) are
declining. (ib) holds with the stated γ since 1− c−2d/(d+ 2) < h(c){1−F(c)}/f(c) < 1, see Soms
(1976, equation 3.2). (ic) is well-known to hold. (id) holds with ∆(c) = −2γ{h(c)}2/c < 0. (ie)
holds since {1− F(c)}/{cf(c)} < 1/{ch(c)} → 1/d as c→∞.
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Example 3.2 Assumption 3.1(ii) to the regressors xi.
(a) Stationary regressors. Let N = n−1/2Idimx and gin = xi. To ensure (iic) it is necessary
that E|xi|q0 <∞. By Boole’s inequality and the triangle inequality then n1/2−κ max1≤i≤n |N ′xi| =
OP(n1−κq0) so (iib) holds for all η > κ = q−1

0 .
(b) Deterministic regressors such as xi = (1, i)′. Let N = diag(n−1/2, n−3/2). Then n1/2N ′xi =
(1, i/n)′. Thus condition (ii) follows with κ = 0.
(c) Random walk regressors such as xi =

∑i−1
s=1 εs. Let N = n−1. Then n−1xint(nψ) converges to

a Brownian motion by Donsker’s invariance principle, see Billingsley (1968). Condition (iia, iib)
follows from the continuous mapping theorem with κ = 0. As xi is defined in terms of εi which
has moments of order q0, so has xi and (iic) follows.

3.3 The results

The main results are described in terms of two processes. The first process is

Gn(cψ) = n1/2{Ĝ1,0
n (0, cψ)− ψ} = n1/2{Ĝn(cψ)− ψ}, (3.6)

which behaves asymptotically as a Brownian bridge as discussed in Theorems 2.1, 2.2. The
second process is asymptotically Gaussian and given by

Hn(cψ) = n1/2{σ−2Ĝ1,2
n (0, cψ)− τψ} = n1/2{σ−2 1

n

n∑
i=1

ε2
i 1(|εi|≤σcψ) − τψ}. (3.7)

The two first results are a Bahadur representation for the forward scaled residuals σ−1ẑψ with
known variance along with a representation for the bias corrected variance estimator.

Theorem 3.1 Suppose Assumption 3.1 holds. Let ψ0 > 0. Then

sup
ψ0≤ψ≤n/(n+1)

|2f(cψ)n1/2(σ−1ẑψ − cψ) +Gn(cψ)| P→ 0.

Theorem 3.2 Suppose Assumption 3.1 holds. Let ψ0 > 0. Then

sup
ψ0≤ψ≤n/(n+1)

|n1/2(
σ̂2
ψ,cor

σ2
− 1)− 1

τψ
{Hn(cψ)− c2

ψGn(cψ)}| = oP(1).

Remark 3.1 In Theorems 3.1, 3.2 the supremum is taken over a smaller interval for ψ than
the unit interval. A left end point larger than 0 is needed to ensure consistency. The results
potentially hold with a right end point equal to 1. Proving this would, however, add significantly
to the length of the proof without practical benefit since the last forward residual is based on the
set S(n−1) with n− 1 selected points.

Remark 3.2 The least squares estimator for the variance is σ̂2
1 = σ̂2

1,cor, noting that τ 1 = 1.

Least squares theory shows that n1/2(σ̂2
1,cor/σ

2 − 1) = n−1
∑n

i=1(ε2
i /σ

2 − 1) + oP(1). To see that
Theorem 3.2 matches this result note that the leading term of the least squares approximation is
limψ→1Hn(cψ). It is therefore necessary that limψ→1 c

2
ψGn(cψ) = oP(1). Since εi has more than

8 moments then c2
ψ = o{(1− ψ)−1/4}, see also item 5 of the proof of Lemma 8.11. Combine this

with Theorems 2.3(a), 2.4 to see that limψ→1 c
2
ψGn(cψ) = oP(1).

Combining Theorem 3.1 and 3.2 gives an asymptotic representation of the forward residuals
scaled by the estimated variance.
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Theorem 3.3 Suppose Assumption 3.1 holds. Let cψ = G−1(ψ) and ψ0 > 0. Then the bias
corrected scaled forward residuals has the expansion

sup
ψ0≤ψ≤n/(n+1)

|2f(cψ)n1/2(
ẑψ

σ̂ψ,cor
− cψ) + (1−

c3
ψf(cψ)

τψ
)Gn(cψ) +

cψf(cψ)

τψ
Hn(cψ)| = oP(1).

The scaled forward residuals ẑψ/σ̂ψ have a similar expansion. To see this, divide by ςψ and note
that σ̂ψ,corςψ = σ̂ψ for ψ0 ≤ ψ ≤ n/(n+ 1).

The above results generalise those of Johansen and Nielsen (2010, Theorems 5.1, 5.3) which
hold for a single forward step for location-scale models. It is interesting to note that the results
do not depend on the type of regressors for the model. In particular, the results do not depend
on whether the regressors include an intercept or not, which sets the results aside from empirical
processes of residuals, see for instance Engler and Nielsen (2009).
To apply Theorem 3.3 in a point-wise fashion the asymptotic covariance matrices of Gn(cψ)

and Hn(cψ) have to be found. In parallel to the integral τψ from (2.6) introduce

τψ = 2

∫ cψ

0

x2f(x)dx, κψ = 2

∫ cψ

0

x4f(x)dx.

The asymptotic covariance of Gn(cψ) and Hn(cψ) is then(
ωψ,GG ωψ,GH
ωψ,GH ωψ,HH

)
= Var

{
Gn(cψ)
Hn(cψ)

}
= Var

{
1(|εi|≤σcψ) − ψ

(ε2
i /σ

2)1(|εi|≤σcψ) − τψ

}
=

{
ψ(1− ψ) τψ(1− ψ)
τψ(1− ψ) κψ − τ 2

ψ

}
.

The following pointwise results arise for ψ0 ≤ ψ ≤ ψ1, for some ψ0 > 0 and ψ1 < 1,

n1/2(
ẑψ

σ̂ψ,cor
− cψ)

D→ N(0, ωψ), n1/2(
ẑψ
σ̂ψ
− cψ
ςψ

)
D→ N(0,

ωψ
ς2
ψ

), (3.8)

where ςψ = τψ/ψ and

4τ 2
ψωψ = { τψ

ϕ(cψ)
− c3

ψ}2ωψ,GG + 2{ τψ
ϕ(cψ)

− c3
ψ}cψωψ,GH + c2

ψωψ,HH.

Using l’Hôpital’s rule it is seen that c0/ς0 =
√

3.

Example 3.3 Some particular reference distributions.
(a) Standard normal distribution. If f = ϕ then cψ = Φ−1{(1 + ψ)/2} and

τψ = 2

∫ cψ

0

x2ϕ(x)dx = 2{Φ(x)− xϕ(x)}|cψ0 = ψ − 2cψϕ(cψ),

κψ = 2

∫ cψ

0

x4ϕ(x)dx = 2{3Φ(x)− (x3 + 3x)ϕ(x)}
∣∣cψ
0

= 3ψ − 2(c3
ψ + 3cψ)ϕ(cψ).

(b) t-distribution with d degrees of freedom. Then cψ = F−1
d {(1 + ψ)/2}. Let

Hd−2(cψ) =
d− 1

d− 2
[2Fd−2{cψ(

d− 2

d
)1/2} − 1],

Hd−4(cψ) =
(d− 1)(d− 3)

(d− 2)(d− 4)
[2Fd−4{cψ(

d− 4

d
)1/2} − 1].

Then it holds

τψ = d{Hd−2(cψ)− ψ}, κψ = d2{Hd−4(cψ)− 2Hd−2(cψ) + ψ}.

9
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Figure 1: Illustration of the asymptotic results (3.8) for n = 100.

3Figure 1 illustrates the asymptotic results (3.8) when f is standard normal or t5 and n =
100. For the standard normal case of Example 3.3(a) the asymptotic results of the forward
residuals ẑψ/σ̂ψ based on the biased estimator σ̂ψ are shown with blue. The bold, solid line is
the asymptotic mean cψ/ςψ, noting that c0/ς0 =

√
3. The bold, dashed lines are the 5% and 95%

quantiles {cψ±2(ωψ/n)1/2}/ςψ, which contain 90% of the scaled forward residuals with n = 128,
chosen for comparability with the data example in Riani and Atkinson (2007, Figure 1). In a
similar way the bold, black lines show the results for bias-corrected forward residuals ẑψ/σ̂ψ,cor.
The biased, blue and unbiased, black quantiles are equivalent. The blue 5% and 95% quantiles
fan out for small ψ due to the biased estimate of the variance σ̂(m). For large ψ the quantiles
diverge for both the biased and the unbiased variance estimates. The dash-dot green lines show
the 5% and 95% quantiles of the forward residuals with known scale ẑψ/σ. These bounds are
the same as those arising from the asymptotic version of the t-approximation as discussed in
Theorem 2.5. Note that the variance of ẑψ/σ is wider than that of ẑψ/σ̂ψ,cor. This phenomenon
is also seen for empirical processes of estimated residuals, see Engler and Nielsen (2009, equation
2.10). For the t case of Example 3.3(b) the degrees of freedom are chosen to be 5 and the result
are shown with thin, red lines. With 5 degrees of freedom Assumption 3.1 is not met. For higher
degrees of freedom the results will be in between the t5 and the normal results.

3.4 Simulation evidence

The quality of the asymptotic distribution approximation to ẑψ/σ̂ψ has been investigated through
simulation. The asymptotic result in Theorem 3.3 does not depend on the choice of regressors
xi and parameters β, σ2. The simulations of Riani and Atkinson (2007, Figures 3, 12) suggest
that this is largely the case in finite samples. We therefore report a simulation study based on
a very simple data generating process without exploring finite sample variation with xi, β.
Quantiles of the asymptotic approximation and the t-distribution approximation were com-

puted analytically. The finite sample probability of not exceeding these values were computed

3Simulations were done using Ox 6.3, see Doornik (2007). Graphics were done using R 2.13, see R Development
Core Team (2011).
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Figure 2: The finite sample performance of the asymptotic approximation and the t-
approximation to the distribution of ẑψ/σ̂ψ is evaluated. The four plots consider different target
p-values: 5%, 50%, 95%, 99%. In each plot the horizontal line gives the target p-value. The
asymptotic approximation is evaluated by the thin, black, solid and dotted lines for n = 100
and n = 1000, respectively. In a similar way, the t-approximation is evaluated by the thick, red,
solid and dotted lines. In all cases the Forward Search is initialised at m0 = 0.4n using the full
sample average.

by simulation. In the simulation the model was yi = β + εi, so the regressor is xi = 1 with
sample sizes of either n = 100 or n = 1000. The data generating process had β = 0 and εi
independent standard normal. Two choices of initial estimators were considered: the average
of all observations and the average of the first n2/3 observations. Neither is robust, but since
no outlier is present, both are consistent at rates of n1/2 and n1/3, respectively. The size of the
initial set of observations was either 4% or 40% of n. The number of repetitions was 104. Figures
2, 3 consider various combinations of these setups.
Figure 2 has four panels considering the performance of the 5%, 50%, 95%, and 99% quantile

approximations, respectively. In each panel the asymptotic approximation and the t-distribution
approximation are evaluated for n = 100 and n = 1000 with m0 = 40 and using the full
sample average as initial estimator. The consistency of the asymptotic approximation and the
inconsistency of the t-distribution approximation with increasing n is seen. In current practice
the Forward Search is terminated at the first exit from the pointwise 95% or 99% bands. The
evaluation in panels (c), (d) shows that for n = 100 the actual p-values vary in the intervals
80—95% and 91—99%. For n = 1000 this improves to 88—95% and 96—99%. While this is not
perfect it is comparable with the performance of other statistical procedures and it suggests that
a second order expansion may give rather accurate results.
Figure 3 considers the performance of the 95% quantile approximation when the initial esti-

mator and the size of the initial set of observations vary. Panel (a) has m0 given by 4% and 40%
of n = 100. It is seen that initially the performance of the distribution approximation deteriorates
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Figure 3: The effect on the distribution of ẑψ/σ̂ψ from varying the size of initial set of observa-

tions, m0, and the choice of initial estimator, β̂
(m0)

, is evaluated for a target p-value of 95%. Plots
(a), (b) have varying m0 while using the full sample average as initial estimator for n = 100 and
n = 1000, respectively. The asymptotic approximation is evaluated by the thin, black, solid and
dotted lines for m0 = 0.4n and m0 = 0.04n, respectively. In a similar way, the t-approximation
is evaluated by the thick, red, solid and dotted lines. Plots (c), (d) have n = 100 and varying
initial estimator for m0 = 0.4n and m0 = 0.04n, respectively. The asymptotic approximation

is evaluated by the thin, black, solid and dotted lines for β̂
(m0)

chosen as the average of all n
observations and the first n2/3 observations, respectively, noting that 1002/3 = 22. In a similar
way, the t-approximation is evaluated by the thick, red, solid and dotted lines.

with decreasing m0, but for large m the quality of the approximation is not varying much with
m0. Panel (b) has the same evaluation for n = 1000. Panel (c) considers the two choices of initial
estimators which are n1/2 and n1/3-consistent, respectively, for m0 given by 40% of n = 100.
There is not much variation with the estimator. Panel (d) has the same evaluation for m0 given
by 4% of n = 100.

4 A class of auxiliary weighted and marked empirical processes

It is useful to consider an auxiliary class of weighted and marked empirical distribution functions
for errors εi as opposed to absolute errors |εi|. The analysis of this class generalises that of Koul
and Ossiander (1994) in two respects. First, the standardised estimation error b is permitted to
diverge at a rate of n1/4−η rather than being bounded. Secondly, non-bounded marks of the type
εpi are allowed. These results are therefore of independent interest. This class of weighted and
marked empirical distribution functions is defined for b ∈ Rdimx and c ∈ R by

F̂g,pn (b, c) =
1

n

n∑
i=1

ginε
p
i 1(εi≤σc+x′inb), (4.1)
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with (εi−1, . . . , ε1, xi, . . . , x1)-measurable weights gin and marks ε
p
i .

4.1 Assumptions

We will keep track of the assumptions in a more explicit way than done above. In the analysis
of the one-sided empirical processes the density f is not necessarily symmetric.

Assumption 4.1 Let Fi be an increasing sequence of σ fields so εi−1, xi, gin are Fi−1-measurable
and εi is independent of Fi−1 with continuous, differentiable density f which is positive for
F−1(0) < c < F−1(1). Let p, r, η, κ, ν be given so p, r ∈ N0, 0 ≤ κ < η ≤ 1/4 and ν ≤ 1.
Suppose
(i) density satisfies:

(a) moments:
∫∞
−∞ |ε|

2rp/νf(ε)dε <∞;
(b) boundedness: supc∈R{(1 + |c|2rp−1)f(c) + (1 + |c|2rp)|f ′(c)|} <∞;
(c) smoothness: a CH ∈ N exist so that for all c > 0

supε≥c(1 + ε2
rp)f(ε)

inf0≤ε≤c(1 + ε2rp)f(ε)
≤ CH,

supε≤−c(1 + |ε|2rp)f(ε)
inf−c≤ε≤0(1 + |ε|2rp)f(ε) ≤ CH.

(ii) regressors xi satisfy max1≤i≤n |n1/2−κN ′xi| = OP(1);
(iii) weights gin are matrix valued and satisfy

(a) n−1E
∑n

i=1 |gin|2
r
(1 + |n1/2N ′xi|) = O(1);

(b) n−1
∑n

i=1 |gin|(1 + |n1/2N ′xi|2) = OP(1).

Remark 4.1 Some discussion of Assumption 4.1 is given
(a) The case of no marks p = 0. This is the situation discussed in Koul and Ossiander (1994).
The primary role of r is to control the tail behaviour of the density. When p = 0 then 2rp = 0
for all r ∈ N0, so r can be chosen as r = 0 and the assumption simplifies considerably.
(b) The tail condition in Assumption 4.1(ia) is used for some ν < 1 for the tightness result
in Theorem 4.4. Otherwise ν = 1 suffi ces.
(c) The smoothness of density in Assumption 4.1(ic) is satisfied if hr(c) = (1 + ε2

rp)f(ε)
is monotone for |c| > d1 for some d1 ≥ 0. Indeed, choose d2 ≥ d1 so that supc≥d2

hr(c) =
inf0≤c≤d2 hr(c) = hr(d2). Then choose CH larger than sup0≤c≤d2

hr(c)/ inf0≤c≤d2 hr(c). A similar
argument applies for c < 0. Note, that the smoothness condition implies that the density has
connected support.
(d) Suffi cient condition for Assumption 4.1(i). If f is symmetric and differentiable with
cqf(c), cq−1|f ′(c)| both decreasing for large c for some q > 1 + 2rp, then Assumption 4.1(i) holds.
Indeed, (ia) holds, since when cqf(c) is decreasing, then c2rp/νf(c) is integrable for some ν < 1.
Further, (ib) holds, since, first, the continuity and decreasingness of cqf(c) and hence of f(c)
implies (1 + |c|1+2rp)f(c) is bounded, and, secondly, since f ′(c) < 0 so that |cq−1f ′(c)| decreases
then (1 + |c|2rp)|f ′(c)| is bounded. Finally, (ic) holds due to the remark (c) above.

4.2 The empirical process results

The weighted and marked empirical distribution function F̂g,pn (b, c) defined in (4.1) is analysed
through martingale arguments. Thus, introduce the sum of conditional expectations

F
g,p

n (b, c) =
1

n

n∑
i=1

ginEi−1{εpi 1(εi≤σc+x′inb)}, (4.2)
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and the weighted and marked empirical process

Fg,pn (b, c) = n1/2{F̂g,pn (b, c)− Fg,pn (b, c)}. (4.3)

Three results follows. These are proved in the subsequent sections 5, 6, 7. The first result shows
that the dependence of Fg,pn on the estimation error b is negligible.

Theorem 4.1 Let cψ = F−1(ψ). Suppose Assumption 4.1(i, ii, iiia) holds with ν = 1, some η > 0
and an r so 2r−1 ≥ 1 + (1/4 + κ− η)(1 + dimx). Then, for any B > 0 and n→∞, it holds that

sup
0≤ψ≤1

sup
|b|≤n1/4−ηB

|Fg,pn (b, cψ)− Fg,pn (0, cψ)| = oP(1).

For the standard empirical process with weights gin = 1 and marks εpi = 1 the order of the
remainder term can be improved as follows. In terms of the Assumption 4.1 note that when
p = 0 then the r will be irrelevant except for the condition on the regressors in part (iiia).

Theorem 4.2 Let cψ = F−1(ψ). Suppose Assumption 4.1(i, ii, iiia) holds with ν = 1, p = 0,
r = 2 and some η > 0. Then, for any B > 0, any ω < η − κ ≤ 1/4 and n→∞, it holds that

sup
0≤ψ≤1

sup
|b|,|d|≤n1/4−ηB

|F1,0
n (b, cψ + nκ−1/2d)− F1,0

n (0, cψ)| = oP(n−ω).

The next results presents a linearization of F
g,p

n (b, c).

Theorem 4.3 Let cψ = F−1(ψ). Suppose Assumption 4.1(ib, iiib) holds with r = 0 and some
η > 0. Then, for all B > 0 and n→∞, it holds that

sup
0≤ψ≤1

sup
|b|≤n1/4−ηB

|n1/2{Fg,pn (b, cψ)− Fg,pn (0, cψ)} − σp−1cpψf(cψ)n−1
n∑
i=1

ginn
1/2x′inb| = OP(n−2η).

Finally, the weighted and marked empirical process Fg,pn (0, cψ) in (4.3) is tight. It holds by
construction that Fg,pn (0, 0) = 0. Following Billingsley (1968, Theorem 15.5) tightness in the space
D[0, 1] endowed with the uniform metric, then follows from the next result.

Theorem 4.4 Let cψ = F−1(ψ). Suppose Assumption 4.1(ia, iiia) holds with r = 2 and some
ν < 1. Then, for all ε > 0, it holds

lim
φ↓0

lim sup
n→∞

P{ sup
0≤ψ≤ψ†≤1:ψ†−ψ≤φ

|Fg,pn (0, cψ†)− Fg,pn (0, cψ)| > ε} → 0.

The proofs of these results are given in Section 7, but first we establish some martingale
results and discuss a metric on R which is applied in the chaining argument needed in the
proofs. Finally, the proofs of the main results, Theorems 3.1, 3.2, 3.3, are given in Section 8.
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5 Martingale results

Chaining arguments will be used to handle tightness properties of the empirical processes. This
reduces the problem to a problem of finding the tail probability for the maximum of a certain
family of martingales. Initially a general bound to the tail probability is constructed using the
martingale inequality by Bercu and Touati (2008). Subsequently, two special cases are analysed
where the number of elements in the martingale family is increasing and where it is fixed.

Lemma 5.1 For ` so 1 ≤ ` ≤ L let z`,i be Fi-adapted so Ez2r

`,i < ∞ for some r ∈ N. Let
Dr = max1≤`≤L

∑n
i=1 Ei−1z

2r

`,i for 1 ≤ r ≤ r. Then, for all κ0, κ1, . . . , κr > 0, it holds

P{max
1≤`≤L

|
n∑
i=1

(z`,i − Ei−1z`,i)| > κ0} ≤ L
EDr

κr
+

r∑
r=1

EDr

κr
+ 2L

r−1∑
r=0

exp(− κ2
r

14κr+1

).

Proof of Lemma 5.1. 1. Notation. For 0 ≤ r ≤ r define A`,r =
∑n

i=1(z2r

`,i − Ei−1z
2r

`,i) and

Pr(κr) = P( max
1≤`≤L

A`,r > κr), Qr(κr) = P( max
1≤`≤L

|A`,r| > κr),

where Q0(κ0) is the probability of interest, while Pr(κr) ≤ Qr(κr).
2. The terms Qr(κr) for 0 ≤ r < r. Argue that for any κr, κr+1 > 0 then

Qr(κr) ≤ 2L exp(− κ2
r

14κr+1

) + Pr+1(κr+1) +
EDr+1

κr+1

. (5.1)

The idea is now to apply the following inequality, for sets A,B,

P(A) = P(A ∩ B) + P(A ∩ Bc) ≤ P(A ∩ B) + P(Bc).

In the first term, A relates to the tails of a martingale and B to the central part of the distribution
of the quadratic variation. Thus the first term can be controlled by a martingale inequality. In
the second term, Bc relates to the tail of the quadratic variation. The sum of the predictable
and the total quadratic variation of A`,r is B`,r =

∑n
i=1B`,r,i where B`,r,i = (z2r

`,i − Ei−1z
2r

`,i)
2 +

Ei−1(z2r

`,i − Ei−1z
2r

`,i)
2. It holds

Qr(κr) ≤ P{( max
1≤`≤L

|A`,r| > κr) ∩ ( max
1≤`≤L

B`,r < 7κr+1)}+ P( max
1≤`≤L

B`,r ≥ 7κr+1). (5.2)

Consider the first term in (5.2), S1,r say. By Boole’s inequality this satisfies

S1,r ≤
L∑̀
=1

P{(|A`,r| > κr) ∩ ( max
1≤`≤L

B`,r < 7κr+1)}.

Noting that (max1≤`≤LB`,r ≤ 7κr+1) ⊂ (B`,r ≤ 7κr+1) gives the further bound

S1,r ≤
L∑̀
=1

P{(|A`,r| > κr) ∩ (B`,r < 7κr+1)}.

Since A`,r is a martingale the exponential inequality of Bercu and Touati (2008) shows

P{(|A`,r| > κr) ∩ (B`,r < 7κr+1)} ≤ 2 exp{−κ2
r/(14κr+1)}.

Taken L times, this gives the first term in (5.1).
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Consider the second term in (5.2), S2,r say. Ignore the indices on B`,r,i, z
2r

`,i and apply the
inequality (z − Ez)2 ≤ 2(z2 + E2z) along with E2z ≤ Ez2 and E(z − Ez)2 ≤ Ez2 to get that
B = (z − Ez)2 + E(z − Ez)2 ≤ 2z2 + 3Ez2 = 2(z2 − Ez2) + 5Ez2. Thus,

S2,r ≤ P{max
1≤`≤L

n∑
i=1

(z2r+1

`,i − Ei−1z
2r+1

`,i ) ≥ κr+1}+ P( max
1≤`≤L

n∑
i=1

Ei−1z
2r+1

`,i ≥ κr+1).

Use the notation from above and then the Markov inequality to get

S2,r ≤ Pr+1(κr+1) + P(Dr+1 ≥ κr+1) ≤ Pr+1(κr+1) +
1

κr+1

EDr+1,

which are the last terms of (5.1).
3. The term Pr(κr). Apply the inequality |z| − Ei−1|z| ≤ |z| and then Boole’s and Markov’s

inequalities to get

Pr(κr) ≤ P( max
1≤`≤L

n∑
i=1

z2r̄

`,i > κr) ≤ L max
1≤`≤L

P(
n∑
i=1

z2r̄

`,i > κr) ≤
L

κr
max

1≤`≤L
E

n∑
i=1

z2r̄

`,i.

Apply iterated expectations and interchange maximum and expectation to get

Pr(κr) ≤
L

κr
max

1≤`≤L
E

n∑
i=1

Ei−1z
2r̄

`,i ≤
L

κr
E max

1≤`≤L

n∑
i=1

Ei−1z
2r̄

`,i =
L

κr
EDr̄.

4. Combine expressions. Since Pr+1(κr+1) ≤ Qr+1(κr+1) then write (5.1) as

Qr(κr) ≤ 2L exp(− κ2
r

14κr+1

) +Qr+1(κr+1) +
EDr+1

κr+1

for r = 0, . . . , r̄ − 2,

Qr(κr) ≤ 2L exp(− κ2
r

14κr+1

) + Pr+1(κr+1) +
EDr+1

κr+1

for r = r̄ − 1.

Then sum from r = 0 to r̄ − 1 and insert the bound Pr(κr) ≤ κ−1
r LEDr̄.

Lemma 5.2 For ` so 1 ≤ ` ≤ L let z`,i be Fi-adapted so Ez2r

`,i < ∞ for some r ∈ N. Let
Dr = max1≤`≤L

∑n
i=1 Ei−1z

2r

`,i for 1 ≤ r ≤ r. Suppose, for some ς, λ ≥ 0 and υ > 0 so ς < 2υ

and ς + λ < υ2r, that (i) L = O(nλ); (ii) EDr = O(nς) for r ≤ r. Then, for all κ > 0, it holds
as n→∞ that

lim
n→∞

P{max
1≤`≤L

|
n∑
i=1

(z`,i − Ei−1z`,i)| > κnυ} = 0.

Proof of Lemma 5.2. Apply Lemma 5.1 with κq = (κnυ)2q(28λ log n)1−2q for any κ > 0 so
that κ0 = κnυ and κ2

q/κq+1 = 28λ log n and exploit conditions (i, ii) to see that the probability
of interest satisfies

Pn=O{nλn
ς(log n)2r−1

nυ2r
+

r∑
r=1

nς(log n)2r−1

nυ2r
+ 2nλrn−2λ} = o(1),

as desired since ς + λ < υ2r and ς < 2υ ≤ υ2r for r ≥ 1.

16



Lemma 5.3 For ` so 1 ≤ ` ≤ L let z`,i be Fi-adapted so Ez4
`,i <∞. Suppose

Emax1≤`≤L
∑n

i=1 Ei−1z
2q

`,i ≤ Cn for q = 1, 2 and some C > 0. Then it holds, for all θ > 0,

P{max
1≤`≤L

|
n∑
i=1

(z`,i − Et−1z`,i)| > κn1/2} ≤ (L+ 1)θ3C

κn
+
θC

κ
+ 4L exp(−κθ

14
).

Proof of Lemma 5.3. Apply Lemma 5.1 with κq = κn2q−1
θ1−2q for any κ, θ > 0 so that

κ0 = κn1/2 and κ2
q/κq+1 = κθ to get the bound

P ≤ (L+ 1)θ3

κn2
E max

1≤`≤L

n∑
i=1

Ei−1z
4
`,i +

θ

κn
E max

1≤`≤L

n∑
i=1

Ei−1z
2
`,i + 4L exp(−κθ

14
).

Exploit the moment conditions to get the desired result.

6 A metric on R and some inequalities

A metric is set up that will be used for the chaining argument. Then a number of inequalities
are shown, mostly related to this metric.
Introduce the function

Ji,p(x, y) = (εi/σ)p{1(εi≤σy) − 1(εi≤σx)}, (6.1)

where p ∈ N0 and εi/σ has density f. We will be interested in powers of Ji,p(x, y) of order 2r

where r ∈ N was chosen in Assumption 4.1(i). Note that 2rp is even for p ∈ N0 and r ∈ N so
that ε2rp

i is non-negative. Thus, define the increasing function

Hr(x) =

∫ x

−∞
(1 + ε2rp)f(ε)dε,

with derivative H′r(x) = (1 + x2rp)f(x), along with the constant

Hr = Hr(∞) =

∫ ∞
−∞

(1 + ε2rp)f(ε)dε.

It follows that, for x ≤ y and 0 ≤ s ≤ r then

0 ≤ |E{Ji,p(x, y)}2s| ≤ E{|Ji,p(x, y)|2s} < Hr(y)− Hr(x). (6.2)

noting that, for q ≥ p ≥ 0 and ε ∈ R, then |εp| < 1 + |ε|q.
For the chaining, partition the range of Hr(c) into K intervals of equal size. That is, partition

the support into K intervals defined by the endpoints

−∞ = c0 < c1 < · · · < cK−1 < cK =∞, (6.3)

and for 1 ≤ k ≤ K,

E[{Ji,p(ck−1, ck)}2r ] = Hr(ck)− Hr(ck−1) =
Hr

K
.

Let c−k = c0 for k ∈ N.
The number of intervals K will be chosen so large that c−, c+ exists which are (weakly)

separated from zero by grid points in the sence that ck−−1 ≤ c− ≤ ck− ≤ 0 and 0 ≤ ck+−1 ≤ c+ ≤
ck+ and so that

H′r(c−) = H′r(c+) = Hr/(CHK
1/2). (6.4)

This can be done for suffi ciently large K since f is continuous and since the function H′r(c) is
integrable by Assumption 4.1(ia).
The first inequality concerns the Hr-distance of certain pertubations of the ]ck−1, ck] intervals.
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Lemma 6.1 Suppose Assumption 4.1(i) holds with ν = 1 only. Then a constant C > 0 exists
so that for all K satisfying (6.4) then

sup
1≤k≤K

sup
|d|≤K−1/2

{Hr(ck + d)− Hr(ck−1 + d)} ≤ CHr/K.

Proof of Lemma 6.1. 1. Definitions. Consider positive ck only with a similar argument
for negative ck. Let H = Hr(ck + d)− Hr(ck−1 + d). Let H′r(c) = (1 + c2rp)f(c) and

H′r(c) = inf
0≤d≤c

H′r(d), H
′
r(c) = sup

d≥c
H′r(d),

which are decreasing in c. Assumption 4.1(ic) then implies

C−1
H H

′
r(c) ≤ H′r(c) ≤ H′r(c) ≤ H

′
r(c) ≤ CHH

′
r(c). (6.5)

Since H′′r(c) = 2rpc2rp−1f(c) + (1 + c2rp)f ′(c) then Assumption 4.1(ib) gives

sup
c∈R
|H′′r(c)| <∞. (6.6)

2. Apply the mean-value theorem to get, for some c∗` so c`−1 ≤ c∗` ≤ c`, that

Hr/K = Hr(c`)− Hr(c`−1) = (c` − c`−1)H′r(c
∗
`). (6.7)

Two inequalities for H′r(c) arise from (6.5) and condition (6.4). These are

H′r(c) ≤ H
′
r(c) ≤ H

′
r(c+) ≤ CHH

′
r(c+) = Hr/K

1/2 for c ≥ c+, (6.8)

H′r(c) ≥ H′r(c) ≥ H′r(c+) ≥ H′r(c+)/CH ≥ H′r(c+)/CH = Hr/(C
2
HK

1/2) for 0 ≤ c ≤ c+. (6.9)

In parallel to (6.9) which is derived for positive c it holds for negative c that

H′r(c) ≥ Hr/(C
2
HK

1/2) for 0 ≥ c ≥ c−. (6.10)

3. Small arguments c− ≤ c∗k ≤ c+. Combine (6.7), (6.9) and (6.10) to get

ck − ck−1 = Hr/{KH′r(c∗k)} ≤ C2
H/K

1/2. (6.11)

Two second order Taylor expansions give

Hr(ck + d)− Hr(ck) = dH′r(ck) + (d2/2)H′′r(c
∗∗
k ),

Hr(ck−1 + d)− Hr(ck−1) = dH′r(ck−1) + (d2/2)H′′r(c
∗∗
k−1),

where c∗∗k , c
∗∗
k−1 satisfymax(|c∗k−ck|, |c∗k−1−ck−1|) ≤ |d| ≤ K−1/2. The difference is, when recalling

the definition of H in item 1,

H− {Hr(ck)− Hr(ck−1)} = d{H′r(ck)− H′r(ck−1)}+ (d2/2){H′′r(c∗∗k )− H′′r(c∗∗k−1)}.

It holds Hr(ck)−Hr(ck−1) = Hr/K. The mean-value theorem gives that for a c̃k so ck−1 ≤ c̃k ≤ ck
then H′r(ck)− H′r(ck−1) = (ck − ck−1)H′′r(c̃k). Insert this and rearrange to get

0 ≤ H =
Hr

K
+ d(ck − ck−1)H′′r(c̃k) +

d2

2
{H′′r(c∗∗k )− H′′r(c∗∗k−1)}.
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Using the bound to ck − ck−1 ≤ C2
H/K

1/2 from (6.11) and the bound |d| ≤ K−1/2 it follows that
0 ≤ H ≤ C/K where C = Hr + (C2

H + 1) supc∈R |H′′r(c)| does not depend on K.
4. Large arguments c∗k ≥ c+ so k ≥ k+ + 2. Expansion (6.7) and inequality (6.8) imply

ck − ck−1 = Hr/{KH′r(c∗k)} ≥ K−1/2 ≥ |d|.

The same holds for ck+1 − ck and ck−1 − ck−2. Therefore

ck + d ≤ ck + |d| ≤ ck + ck+1 − ck = ck+1,

ck−1 + d ≥ ck−1 − |d| ≥ ck−1 − (ck−1 − ck−2) = ck−2.

It then holds that 0 ≤ H ≤ Hr(ck+1)−Hr(ck−2) = C/K, where C = 3Hr does not depend on K.
5. Intermediate arguments c∗k ≥ c+ and k+ ≤ k ≤ k+ + 1. In this case ck+−1 ≤ c+ ≤ c∗k ≤

ck ≤ ck++1. Consider the length of the interval ]ck+−1, c+]. The mean-value theorem shows

Hr/K = Hr(ck+)− Hr(ck+−1) ≥ Hr(c+)− Hr(ck+−1) = (c+ − ck+−1)H′r(c
∗
k+

),

for 0 ≤ ck+−1 ≤ c∗k+
≤ c+. Insert the inequality (6.9) and rearrange to get

c+ − ck+−1 ≤ C2
HK

−1/2. (6.12)

Now, rewrite 0 ≤ H = H1 −H2 where

H1 = Hr(ck + d)− Hr(c+), H2 = Hr(ck−1 + d)− Hr(c+).

For the term H1 note that following the argument in item 5 then ck − ck−1 and ck+1 − ck are
greater than |d|, so that ck+−1 ≤ ck−1 ≤ ck + d ≤ ck+1 ≤ ck++2. Since ck+−1 ≤ c+ ≤ ck+ it holds
|H1| ≤ Hr(ck++2)− Hr(ck+−1) ≤ 3Hr/K.
For the term H2 use the mean value theorem to get H2 = δk,dH

′
r(c+) + (δ2

k,d/2)H′′r(c
∗∗), where

δk,d = ck−1+d−c+ while c∗∗ satisfies |c∗∗−c+| ≤ |δk,d|. For the linear term note that (6.12) and the
bound |d| ≤ K−1/2 imply |δk,d| ≤ (C2

H + 1)K−1/2, whereas (6.4) shows H′r(c+) = Hr/(CHK
1/2).

For the quadratic term note that δ2
k,d ≤ (C2

H + 1)2K−1, while H′′r(c
∗∗) is bounded by (6.6).

Therefore |H2| ≤ K−1{(C2
H + 1)Hr/CH + (C2

H + 1)2 supc∈R |H′′r(c)|/2}.
Combine to get H ≤ |H1|+ |H2| ≤ C/K for some constant C not depending on K.

The next lemma shows how small fluctuations in the arguments of the function Ji,p can be
controlled in terms of Ji,p functions defined on the grid points. The proof uses Lemma 6.1.

Lemma 6.2 Suppose Assumption 4.1(i) holds with ν = 1 only. For any c let ck be a right grid
point for k < K that is ck−1 < c ≤ ck and let ck is a left grid point for c > cK−1 so k = K − 1.
Then an integer kJ > 0 exists so that for all K satisfying (6.4) and all c, d, dm ∈ R so |d| ≤ K−1/2

and |d− dm| ≤ K−1 then integers k†, k‡ exists so

|Ji,p(c, c+ d)− Ji,p(ck, ck + dm)| ≤ |Ji,p(ck−kJ , ck)|+ |Ji,p(ck†−kJ , ck†)|+ |Ji,p(ck‡−kJ , ck‡)|.

Proof of Lemma 6.2. 1. Decomposition. Only the case k < K is proved. The proof for
k = K is similar. Let σ = 1 for notational simplicity. Write

J = Ji,p(c, c+ d)− Ji,p(ck, ck + dm) = εpi (I1 + I2 + I3),

in terms of indicator functions I1 = 1(c<εi≤ck), I2 = 1(εi≤ck+d)−1(εi≤ck+dm) and I3 = 1(c+d<εi≤ck+d).
It follows that |J | ≤ |εpi |(I1 + |I2|+ I3).
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2. Bound for I1. Since ck−1 < c ≤ ck then 0 ≤ I1 = 1(c<εi≤ck) ≤ 1(ck−1<εi≤ck).
3. Bound for I2. Write d = dm + (d− dm) where |d− dm| ≤ K−1. Let c† = ck + dm. Then it

holds |I2| ≤ 1(c†−K−1<εi≤c†+K−1). Using first this inequality and then the mean value theorem it
holds

E2 = E(|εpiI2|) ≤ Hr(c† +K−1)− Hr(c† −K−1) ≤ 2H−1
r sup

c∈R
H′r(c)Hr/K.

Therefore, a k† exists so |I2| ≤ 1(c
k†−kJ

<εi≤ck† ) where kJ ≤ 2H−1
r supc∈R H

′
r(c) + 2.

4. Bound for I3. Since ck−1 < c ≤ ck then I3 ≤ 1(ck−1+d<εi≤ck+d). Using first this inequality
and then Lemma 6.1 noting that |d| ≤ K−1/2 it holds

E3 = E(|εpi |I3) ≤ Hr(ck + d)− Hr(ck−1 + d) ≤ CHr/K.

Therefore, a k‡ exists so |I3| ≤ 1(c
k‡−kJ

<εi≤ck‡ ) where kJ ≤ C + 1.

The next inequality gives a tightness type result for the function Hr.

Lemma 6.3 Let cψ = F−1(ψ). For all densities satisfying Assumption 4.1(ia) for some ν < 1,
then a Cν > 0 exists so that for all 0 ≤ φ ≤ 1 it holds

max
0≤ψ≤1−φ

{Hr(cψ+φ)− Hr(cψ)} ≤ Cνφ
1−ν .

Proof of Lemma 6.3. Let ψ0 = F(0). Note that 2rp is even for r ∈ N, p ∈ N0.
1. Let ψ ≥ ψ0. Then Hr(cψ+φ)− Hr(cψ) is increasing in ψ since

d

dψ
{Hr(cψ+φ)− Hr(cψ)} =

H′r(cψ+φ)

f(cψ+φ)
− H

′
r(cψ)

f(cψ)
= cp2

r

ψ+φ − c
p2r

ψ > 0.

Thus, maxψ0≤ψ≤1−φ{Hr(cψ+φ)− Hr(cψ)} ≤ Hr(∞)− Hr(c1−φ). This bound satisfies

Hr(∞)− Hr(c1−φ) =

∫ ∞
c1−φ

(1 + εp2
r

)f(ε)dε = φ+

∫ ∞
c1−φ

εp2
r

f(ε)dε.

Assumption 4.1(ia) shows Eεp2
r/ν ≤ C for some C > 0 so 1− F(ε) ≤ Cε−p2

r/ν by the Chebychev
inequality. Hence, εp2

r ≤ Cν{1− F(ε)}−ν , so that

Hr(∞)− Hr(c1−φ) ≤ φ+ Cν

∫ ∞
c1−φ

{1− F(ε)}−νf(ε)dε

Substituting ψ = F(ε) so dψ = f(ε)dε gives

Hr(∞)− Hr(c1−φ) ≤ φ+ Cν

∫ 1

1−φ
(1− x)−νdx = φ+

Cν

1− ν φ
1−ν .

2. Let ψ ≤ ψ0 − φ. Apply a similar argument as in item 1, to show that Hr(cψ+φ) − Hr(cψ)
is decreasing because cψ < cψ+φ ≤ 0. Thus, Hr(cφ)− Hr(−∞) satisfies the same bound.
3. Let ψ0 − φ ≤ ψ ≤ ψ0. Then

H = max
ψ0−φ≤ψ≤ψ0

{Hr(cψ+φ)− Hr(cψ)} ≤ Hr(cψ0+φ)− Hr(cψ0−φ).

Using the mean value theorem then, for some ψ∗ so ψ0 − φ ≤ ψ∗ ≤ ψ0 + φ,

H ≤Hr{F−1(ψ0 + φ)} − Hr{F−1(ψ0 − φ)} = Hr{F−1(ψ∗)}2φ ≤ 2Hrφ.

4. Combine results. Note that φ ≤ φ1−ν . Let Cν = max{2Hr, 1 + Cν/(1− ν)}.
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7 Proofs of auxillary Theorems 4.1—4.4

Proof of Theorem 4.1. Without loss of generality let σ = 1. Let R̃(b, cψ) = Fg,pn (b, cψ) −
Fg,pn (0, cψ) and Rn = sup0≤ψ≤1 sup|b|≤n1/4−ηB |Fg,pn (b, cψ)− Fg,pn (0, cψ)|.
1.Partition the support. For δ, n > 0 partition axis as laid out in (6.3) withK = int(Hrn

1/2/δ)
using Assumption 4.1(ia) with ν = 1 only.
2. Assign cψ to the partitioned support. Consider 1/2 ≤ ψ ≤ 1 only, noting that a similar

argument can be made for 0 ≤ ψ ≤ 1/2. Thus, for each cψ there exists ck−1, ck so ck−1 < cψ ≤ ck.
3. Construct b-balls. For a ζ > κ cover the set |b| ≤ n1/4−ηB with M = O{n(1/4−η+ζ) dimx}

balls of radius n−ζ with centers bm. Thus, for any b there exists a bm so |b− bm| < n−ζ .
4. Apply chaining. For k < K so cψ ≤ cK−1 then relate cψ to the nearest right grid point so

R̃(b, cψ) = R̃(bm, ck)+{R̃(b, cψ)−R̃(bm, ck)}, whereas for k = K so cψ > cK−1 related c to nearest
left grid point so R̃(b, cψ) = R̃(bm, cK−1) + {R̃(b, cψ)− R̃(bm, cK−1)}. Therefore Rn ≤

∑3
j=1Rn,j,

where

Rn,1 = max
1≤k<K

max
1≤m≤M

|R̃(bm, ck)|,

Rn,2 = max
1≤k<K

max
1≤m≤M

sup
ck−1<cψ≤ck

sup
|b−bm|<n−ζ

|R̃(b, cψ)− R̃(bm, ck)|

+ max
1≤m≤M

sup
cK−1<cψ

sup
|b−bm|<n−ζ

|R̃(b, cψ)− R̃(bm, cK−1)|.

Thus, it suffi ces to show that P(Rn,j > γ) vanishes for j = 1, 2.
5. The term Rn,1. Use Lemma 5.2 to see that Rn,1 = oP(1). To see this let υ = 1/2

and let gin have coordinates g∗in. Then write R̃(bm, ck) as n−1/2
∑n

i=1(z`i − Ei−1z`i) with z`i =
g∗inJi,p(ck, ck + σ−1x′inbm), see definition in (6.1), and where ` represents the indices k,m. The
conditions of Lemma 5.2 need to be demonstrated.
The parameter λ. The set of indices ` has size L = O(nλ) where λ = 1/2+(1/4−η+ζ) dimx

since K = O(n1/2) and M = O{n(1/4−η+ζ) dim b}.
The parameter ς. Since |1(εi≤ck+x′inbm) − 1(εi≤ck)| ≤ 1(ck−|xin||bm|<εi≤ck+|xin||bm|) then, for 1 ≤

q ≤ r,
Ei−1(Ji,p)

2q ≤ Hr(ck + |xin||bm|)− Hr(ck − |xin||bm|) ≤ 2|xin||bm| sup
v∈R

H′r(v),

when using the mean-value theorem. Since |bm| ≤ n1/4−ηB while supv∈R H
′
r(v) <∞ by Assump-

tion 4.1(ib) then

Dq = max
1≤`≤L

n∑
i=1

Ei−1(z`i)
2q ≤ C1(n−1

n∑
i=1

|g∗in|2
q |n1/2xin|)n3/4−η. (7.1)

Thus, EDq = O(nς) where ς = 3/4− η by Assumption 4.1(iiia).
Condition (i) is that ς < 2υ. This holds since 0 < η so that ς = 3/4− η < 1 = 2υ.
Condition (ii) is that ς + λ < 2υ. If ζ > κ is chosen suffi ciently small then

ς + λ = 1 + (1/4 + κ− η)(1 + dim x) + (ζ − κ) dimx− κ < υ2r = 2r−1,

provided r is chosen so 2r−1 ≥ 1 + (1/4 + κ− η)(1 + dim x).
6. Decompose Rn,2. It will be argued that Rn,2 ≤ 3(R̃n,2 + 2Rn,2) + oP(1), where

R̃n,2 = max
1≤k≤K

n−1/2
n∑
i=1

|gin|{|Ji,p(ck−kJ , ck)| − Ei−1|Ji,p(ck−kJ , ck)|}, (7.2)

Rn,2 = max
1≤k≤K

n−1/2
n∑
i=1

|gin|Ei−1|Ji,p(ck−kJ , ck)|. (7.3)
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To see this, let ck denote nearest right grid point for cψ ≤ cK−1 while ck = cK−1 for cψ > cK−1.
Note first that R̃p

F(b, cψ)− R̃p
F(bm, ck) involves the functions

Ji = Ji,p(cψ, cψ + x′inb)− Ji,p(ck, ck + x′inbm).

Assumption 4.1(ii) gives that max1≤i≤n |xin| = OP(nκ−1/2). Thus, for all ε > 0 an Cx > 0
exists so that the set (max1≤i≤n |xin| ≤ nκ−1/2Cx) has probability of at least 1 − ε. On that
set and with d = x′inb and d = x′inb then |d| = O(n−1/4+κ−η) = o(K−1/2) for η − κ > 0 and
|d− dm| = O(n−1/2+κ−ζ) = o(K−1) for ζ − κ > 0. Thus, for suffi ciently large n then |d| < K−1/2

and |d− dm| < K−1. Lemma 6.2 using Assumption 4.1(i) then shows that a kJ exists so that for
all c, d, dm there exist k†, k‡ so

|Ji| ≤ |Ji,p(ck−kJ , ck)|+ |Ji,p(ck†−kJ , ck†)|+ |Ji,p(ck‡−kJ , ck‡)|, (7.4)

As a consequence it holds, as desired, Rn,2 ≤ 3(R̃n,2 + 2Rn,2) + oP(1).

7. The term R̃n,2 is oP(1) by Lemma 5.2. To see this note that R̃n,2 is the maximum of a
family of martingale of the required form with ` = k so L = K and z`i = |gin||Ji,p(ck−kJ , ck)| and
it suffi ces to set r̄ = 2.
Condition (i) holds with λ = 1/2 since K = int(Hrn

1/2/δ).
Condition (ii) holds with ς = 1/2 since Ei−1(Ji,p)

2r̄ ≤ Hr(ck)− Hr(ck−kJ ) = kJHr/K so that∑n
i=1 Ei−1(Ji,p)

2r̄ = O(n1−1/2), uniformly in `, i.
It holds that λ+ ς = 1 which is less than 2r̄ = 4.
8. Bounding R̄n,2. Note Ei−1|Ji,p(ck−kJ , ck)| ≤ 2kJδn

−1/2 uniformly in i, k by the same ar-
gument as in item 7. It follows that R̄n,2 ≤ 2kJδn

−1
∑n

i=1 |gin|. Here n−1
∑n

i=1 |gin| =OP(1) by
Markov’s inequality and Assumption 4.1(iiia), so that R̄n,2 = OP(δ). Thus, choosing δ suffi ciently
small then R̄n,2 is small in probability.

Proof of Theorem 4.2. It suffi ces to show, for all ω < η − κ where η − κ ≤ 1/4, that

S1 = sup
0≤ψ≤1

sup
|b|≤n1/4−ηB

sup
d∈R
|F1,0
n (b, cψ + nκ−1/2d)− F1,0

n (0, cψ + nκ−1/2d)| = oP(n−ω),

S2 = sup
0≤ψ≤1

sup
|d|≤n1/4−ηB

|F1,0
n (0, cψ + nκ−1/2d)− F1,0

n (0, cψ)| = oP(n−ω).

For each term the proof of Theorem 4.1 is used with minor modifications. Since p = 0 then
2rp = 0 for all r, which simplifies the assumptions.
A. The term S1. The steps of the proof of Theorem 4.1 are modified as follows.
1. Choose K = int(Hrn

1/2+ω/δ) where ω < η − κ ≤ 1/4.
2. For each cψ + nκ−1/2d there exists ck−1, ck depending on n so ck−1 < cψ + nκ−1/2d ≤ ck.
3. Choose ζ ≥ η which implies ζ > κ since κ < η. The b-set is now |b| ≤ n1/4+κ−ηB so that

the number of b-balls is M = O{n(1/4+κ−η+ζ) dimx}.
4. Note that in the chaining argument cψ is replaced by cψ + nκ−1/2d. This only affects Rn,2.
5. The term Rn,1. Use Lemma 5.2 to see that Rn,1 = oP(n−ω), now using υ = 1/2 − ω >

1/2 + κ − η. Define z`i as before. Since p = 0, gin = 0 then |Ji,p(x, y)|2r = |Ji,p(x, y)| and
|z2r

`i | = |z`i| for any r ∈ N0. The inequality (7.1) for Dq holds as before, uniformly in q ∈ N so
ς = 3/4− η, but λ = 1/2 + ω + (1/4 + κ− η + ζ) dimx. Condition (i) holds since η ≤ 1/4 and
κ ≥ 0 so ς = 3/4− η ≤ 1 +κ− 2η < 2υ. Condition (ii) holds since ς +λ <∞ while υ > 0. Thus,
for any ζ and suffi ciently large r̄ then ς + λ < υ2r̄.
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6. Lemma 6.2 is an analytic result holding in finite samples. So the argument is not affect
the dependence of ck on n through cψ +nκ−1/2d. In particular, (7.4) holds as stated and therefore
the decomposition of Rn,2 holds, noting that K is now chosen differently.
7. Apply Lemma 5.2 with r̄ = 2, but with λ, ς chosen differently. Condition (i) holds with

λ = 1/2 + ω holds since K = int(Hrn
1/2+ω/δ). Condition (ii) holds with ς = 1/2 − ω since

Ei−1(Ji,p)
4 = Ei−1(Ji,p) ≤ Hr(ck)− Hr(ck−kJ ) = kJHr/K so that

∑n
i=1 Ei−1(Ji,p)

4 = O(n1−1/2−ω),
uniformly in `, i. It holds that λ+ ς = 1 which is less than 22(1/2− ω) for all ω < 1/4. Lemma
5.2 then shows R̃n,2 = oP(n−ω) for all ω < 1/4.
8. Note Ei−1|Ji,p(ck−kJ , ck)| ≤ 2kJδn

−ω−1/2 uniformly in i, k by the same argument as in item
7. It follows that R̄n,2 ≤ (n−1

∑n
i=1 |gin|2

r
)n−ω =OP(n−ω).

B. The term S2. Rewrite

S2 = sup
0≤ψ≤1

sup
|d|≤n1/4−ηB

|F1,0
n (0, cψ + nκ−1/2d)− F1,0

n (0, cψ)|.

Choosing the regressor as x∗in = nκ−1/2, then F1,0
n (0, cψ + nκ−1/2d) = F1,0

n (d, cψ). Apply the
argument of part A.

Proof of Theorem 4.3. The expression of interest is

R(b, cψ) = n1/2{Fg,pn (b, cψ)− Fg,pn (0, cψ)} − σp−1cpψf(cψ)n−1
n∑
i=1

ginn
1/2x′inb.

Recalling the definition of F
g,p

n from (4.2) this satisfies R(b, cψ) = n−1/2
∑n

i=1 ginSi(b, cψ) where

Si(b, cψ) = Ei−1[εpi {1(εi≤σcψ+b′xin) − 1(εi≤σcψ)}]− σp−1x′inbc
p
ψf(cψ).

A bound is needed for Si(b, cψ). Let hin = σ−1x′inb and g(c) = cpf(c). Write Si(b, cψ) as an
integral and Taylor expand to second order to get

Si(b, cψ) =

∫ cψ+hin

cψ

g(c)dc− hing(cψ) =
1

2
h2
ing
′(c∗),

for an intermediate point so |c∗ − cψ| ≤ |hin|. Exploit the bound |b| ≤ n1/4−ηB to get

|Si(b, cψ)| ≤ 1

2
σ−2|b|2|xin|2 sup

c∈R
|g′(c∗)| = |xin|2 sup

c∈R
|g′(c)|O(n1/2−2η).

Thus, by the triangular inequality then

|R(b, cψ)| ≤ n−1/2
n∑
i=1

|gin||Si(b, cψ)| ≤ O(n−2η)n−1
n∑
i=1

|gin||n1/2xin|2 sup
c∈R
|g′(c)|.

Due to Assumption 4.1(ib, iiib), this expression is of order OP(n−2η) uniformly in ψ, b.

Proof of Theorem 4.4. 1. Coeffi cients σ, ε, φ, r. Without loss of generality let σ = 1 and
0 < φ < 1 and ε < 1. Since ψ† − ψ ≤ φ then Lemma 6.3 with Assumption 4.1(ia) shows that
0 < ν < 1 and C1 > 0 exist so Hr(cψ†) − Hr(cψ) ≤ C1φ

1−ν . Now, take 0 < ε and n as well as
0 < φ(1−ν)/4 ≤ ε2 as given. Throughout, constants Cj > 0 for j = 1, 2. . . . will be found not
depending on φ, n, ε. Let r = 2.
2. Fine grid. Given ε, φ, n let m satisfy 2−m ≤ n−1/2εφ(1−ν)/4 ≤ 21−m.
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3. Coarse grid. Let m satisfy 2−m−1Hr < C1φ
1−ν ≤ 2−mHr. For large n then m > m.

4. Partition support. For each of m = m, . . . ,m partition axis as laid out in (6.3) with
Km = 2m points. For each m, points ckm,m and ck†,m exist so cm = ckm−1,m < cψ ≤ ckm,m = cm
and c†m = ck†m−1,m < cψ† ≤ ck†m,m = c†m. It holds that cm−1 = ckm−1,m−1 equals either cm = ckm,m
or ckm+1,m so that cm−1 ≥ cm and H(cm−1)−H(cm) is either zero or 2−mHr. There is at most one
m-grid point in the interval cψ, cψ† .
5. Decompose Ji,p(cψ, cψ†), see definition in (6.1). Split the cψ, cψ† interval into three intervals

where the partitioning points are cm and c
†
m which are the fine grid points to the right of cψ and

to the left of cψ† , respectively. Note, that if cψ, cψ† are in the same m-interval then cm > c†m and
if they are in neighbouring m-interval then cm = c†m. Thus,

Ji,p(cψ, cψ†) = Ji,p(cψ, cm) + Ji,p(c
†
m, cψ†)− 1(cm>c

†
m)Ji,p(cm, cm) + 1(cm<c

†
m)Ji,p(cm, c

†
m).

Consider the fourth term. An iterative argument can be made. Since cm < c†m then the coarser
(m− 1)-grid satisfies cm ≤ cm−1 ≤ c†m−1 ≤ c†m, so that

Ji,p(cm, c
†
m) = Ji,p(cm, cm−1) + Ji,p(cm−1, c

†
m−1) + Ji,p(c

†
m−1, c

†
m).

If cm−1 = c†m−1 then Ji,p(cm−1, c
†
m−1) = 0 and the iteration stops noting that for m < m− 1 then

m-grid points cross over so cm ≥ cm−1 = c†m−1 ≥ c†m. If cm−1 < c†m−1 then the argument can be
made again for Ji,p(cm−1, c

†
m−1). In the m-th step the iteration continues if cm < c†m, so that if

there are no other m-grid points between cm, c
†
m the contribution from the (m− 1)-step is zero.

Since there is at most one m-point in the interval cψ, cψ† , then the m-step will either give a zero
contribution or the grid points will have crossed over at an earlier stage. Therefore the fourth
term satisfies

1(cm<c
†
m)Ji,p(cm, c

†
m) =

m∑
m=m+1

1(cm<c
†
m){Ji,p(cm, cm−1) + Ji,p(c

†
m−1, c

†
m)}.

6. Decompose S = n1/2{F̃(0, 0, cψ†)− F̃(0, 0, cψ)}. Due to the decomposition of Ji,p(cψ, cψ†) in
item 5 then |S| ≤ |Z1|+ |Z2|+ |Z3|+ |Z4|+ |Z5|, where

Z1 =
1√
n

n∑
i=1

gin[Ji,p(cψ, cm)− Ei−1{Ji,p(cψ, cm)}],

Z2 =
1√
n

n∑
i=1

gin[Ji,p(c
†
m, cψ†)− Ei−1{Ji,p(c†m, cψ†)}],

Z3 = 1(cm>c
†
m)

1√
n

n∑
i=1

gin[Ji,p(cm, cm)− Ei−1{Ji,p(cm, cm)}],

Z4 =
m∑

m=m+1

1(cm<c
†
m)

1√
n

n∑
i=1

gin[Ji,p(cm, cm−1)− Ei−1{Ji,p(cm, cm−1)}],

Z5 =
m∑

m=m+1

1(cm<c
†
m)

1√
n

n∑
i=1

gin[Ji,p(c
†
m−1, c

†
m)− Ei−1{Ji,p(c†m−1, c

†
m)}].

7. The term Z1. Since |Ji,p(cψ, cm)| ≤ |Ji,p(cm, cm)| it holds

|Z1| ≤
1√
n

n∑
i=1

|gin|[|Ji,p(cm, cm)|+ Ei−1{|Ji,p(cm, cm)|}].
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Since Ei−1{|Ji,p(cm, cm)|} ≤ Hr(cm) − Hr(cm) = 2−mHr then Assumption 4.1(ia, iii) shows, for
some C2 > 0, that

E
n∑
i=1

|gin|Ei−1{|Ji,p(cm, cm)|} ≤ nC22−mHr. (7.5)

Noting that 2−m ≤ n−1/2εφ(1−ν)/4 and using the Markov inequality then

P(|Z1| > ε) ≤ 2

ε
√
n
E

n∑
i=1

|gin|Ei−1{|Ji,p(cm, cm)|} ≤ 2C2Hrφ
(1−ν)/4.

8. The terms Z2 and Z3. Apply the same argument as in item 7.
9. The term Z4: finding martingale. Introduce martingales

M`,m,n =
1√
n

n∑
i=1

gin[Ji,p(c`,m, c`+1,m)− Ei−1{Ji,p(c`,m, c`+1,m)}].

Recall that for instance cm = ckm,m while cm−1 either equals ckm,m or ckm+1,m so that cm, cm−1

are at most 1 step apart in the m-grid. It then holds that

|Z4| ≤
m∑

m=m+1

|Mkm,m,n|.

The point ckm,m satisfies cm < cψ < ckm,m ≤ cm. Decompose the interval cm, cm of length 2−mHr

into 2m−m intervals of length 2−mHr with left endpoint ckm+` for 0 ≤ ` < 2m−m, say. The interval
ckm,m, ckm+1,m is one of those. This gives rise to a further bound

|Z4| ≤
m∑

m=m+1

max
km≤`<km+2m−m

|M`,m,n|.

Note that
∑m

m=m+1 2(m−m)/4 ≤
∑∞

j=1 2−j/4 = (21/4 − 1)−1 < 6. It therefore holds

P(|Z4| > ε) ≤ P
m⋃

m=m+1

{ max
km≤`<km+2m−m

|M`,m,n| >
2(m−m)/4ε

6
}

Using Boole’s inequality then

P(|Z4| > ε) ≤
m∑

m=m+1

P{ max
km≤`<km+2m−m

|M`,m,n| >
2(m−m)/4ε

6
}.

10. The term Z4: apply Lemma 5.3 with z`,i = g∗inJi,p(c`−1,m, c`,m) where g∗in is a coordi-
nated of gin and with L = 2m−m while κ = 2(m−m)/4ε/6. Noting that for q = 1, 2 then
Ei−1|Ji,p(c`−1,m, c`,m)|2q ≤ 2−mHr. Therefore the moment condition holds with C = 2−mHrC2

since

E max
1≤`≤L

n∑
i=1

Ei−1|z`,i|q ≤ E max
1≤`≤L

n∑
i=1

|gin|q2−mHr = n2−mHr(n
−1E

n∑
i=1

|gin|q) ≤ n2−mHrC2,

as in the argument leading to (7.5) under Assumption 4.1(ia, iii). The Lemma then shows that
for all θm > 0 then

P(|Z4| > ε) ≤
m∑

m=m+1

(AmBm + Cm),
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where

Am =
Cθm
κ

2−m/2, Bm = 2−m/2{1 + (L+ 1)
θ2
m

n
}, Cm = 4L exp(−κθm

14
).

Choose θm = 14κ−1{log(4m−m) + log φ−1}. If Am,Bm are exponentially decreasing in m − m
and proportional to φα for some α > 0 while Cm is bounded then P(|Z4| > ε) < Cφα for some
constant C > 0.
11. The term Am. Use that κ = C2(m−m)/4ε, the definition of θm to get

Am = C{log(4m−m) + log φ−1}2−(m−m)/2ε−22−m/2.

Use the bounds ε−2 ≤ φ−(1−ν)/4 and 2−m/2 < Cφ(1−ν)/2 to get

Am < C{(m−m) log 4 + log φ−1}2−(m−m)/2φ(1−ν)/4.

Since φ(1−ν)/8 log φ−1 is bounded and φ(1−ν)/8 < 1 then

Am < C{(m−m) + 1}2−(m−m)/2φ(1−ν)/8,

which is exponentially decreasing in m−m and proportional to φ(1−ν)/8.
12. The term Bm. Use that 2−m/2 ≤ 1 and (L + 1) ≤ 2L. Note that θ2

m = 2mκ2A2
m where

Am is bounded due to item 11. Therefore

Bm ≤ 1 + C2−m/22m−mn−12mκ2 = 1 + C2m/22m−mn−1κ2.

Use that n−1 ≤ C2−mε−2φ−(1−ν)/2 and κ2 = C2(m−m)/2ε2 to get

Bm − 1 ≤ C2m/22m−m2−mε−2φ−(1−ν)/22−(m−m)/2ε2 = C2−(m−m)2−m/2φ−(1−ν)/2 ≤ C,

since 2−(m−m) ≤ 2 and φ−(1−ν)/2 < C2m/2.
13. The term Cm. Insert expression for θm to get

Cm = C2m−m exp{− log(4m−m)− log φ−1} = C2−(m−m)φ,

which is exponentially decreasing in m−m and proportional to φ ≤ φ(1−ν)/8.
14. The terms Z5. Apply the same argument as for Z4.
15. Combine the bounds from items 7,8,10,14 to get

P(|S| > ε) ≤
5∑
j=1

P(|Zj| > ε) ≤ 3(2C1Hrφ
(1−ν)/4) + 2Cφ(1−ν)/8.

uniformly in m,m, n. For a given ε > 0 the only constraint to φ is that 0 < φ(1−ν)/4 ≤ ε2. Thus,
the probability vanishes as φ ↓ 0.

8 Proofs of main Theorems 3.1, 3.2 and 3.3

The main results for the forward search are proved. It involves four types of arguments. First,
the weighted and marked absolute empirical distribution function Ĝn is analysed using the results
from Section 4. Secondly, the corresponding quantile processes are analysed. Thirdly, a single
step of the Forward Search is analysed using these results. Fourthly, the iteration of the For-
ward Search is analysed. The analysis is performed using Assumption 3.1 requiring for instance
symmetry of the innovation density f. Only the four combinations of gin, p are now considered
as outlined in Section 3.1. When checking Assumption 4.1 it suffi ces to check the conditions for
the hybrid case where gin = nN ′xix

′
iN and p = 2.
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8.1 The absolute empirical distribution

The weighted and marked absolute empirical distribution function was introduced in (3.1) as

Ĝg,pn (b, c) =
1

n

n∑
i=1

ginε
p
i 1(|εi−x′inb|≤σc).

Throughout this section g, p can take the four combination needed for (3.2), (3.4), (3.5), these are
1, 0 and n1/2N ′xi, 1 and nN ′xix′iN, 0 and 1, 2. In the above expression b represents the regression
estimation error N−1(β̂ − β0). The process Ĝn can be expressed in terms of F̂n quite easily by

Ĝg,pn (b, c) = F̂g,pn (b, c)− lim
c+↓c

F̂g,pn (b,−c+). (8.1)

The asymptotic arguments are made on the probability scale ψ = G(cψ). When f is symmetric
then the probability scales of G and F are related in a simple linear fashion, see (2.2), so that
(8.1) translates into

Ĝg,pn {b,G−1(ψ)} = F̂g,pn {b,F−1(
1 + ψ

2
)} − lim

ψ+↓ψ
F̂g,pn {b,F−1(

1− ψ+

2
)}. (8.2)

Therefore, results for F̂n transfer to Ĝn. The corresponding conditional mean process is

G
g,p

n (b, c) =
1

n

n∑
i=1

ginEi−1{εpi 1(|εi−x′inb|≤σc)}, p = 0, 1, 2. (8.3)

Form also the empirical process

Gg,p
n (b, c) = n1/2{Ĝg,pn (b, c)− Gg,pn (b, c)}. (8.4)

For later use note that Ei−1{εpi 1(|εi|≤σc)} = 0 for odd p since f is symmetric and b = 0. Errors
in estimating the quantile are denoted d = n1/2(cbψ − cψ). Estimation errors represented by b, d
vanish uniformly as shown in the next result. Due to the two-sidedness of the absolute residuals
and symmetry of f, only one of the error terms x′inb and n

−1/2d enters the asymptotic expansion
depending on the choice of p.

Lemma 8.1 For each ψ let cψ = G−1(ψ). Suppose Assumption 3.1(ia, iib, iic) holds for some
0 ≤ κ < η ≤ 1/4. Then, for all B, ε > 0 and all ω < η − κ ≤ 1/4, it holds
(a) sup0≤ψ≤1 sup|b|,|d|≤n1/4−ηB |n1/2{Gg,pn (b, cψ + nκ−1/2d)− Gg,pn (0, cψ)}

−2σp−1cpψf(cψ)n−1/2
∑n

i=1 gin{1(p odd)x
′
inb+ 1(p even)n

κ−1/2d}| = OP{n2(κ−η)};
(b) sup0≤ψ≤1 sup|b|,|d|≤n1/4−ηB |Gg,p

n (b, cψ + nκ−1/2d)−Gg,p
n (0, cψ)| = oP(1);

(b′) sup0≤ψ≤1 sup|b|,|d|≤n1/4−ηB |G1,0
n (b, cψ + nκ−1/2d)−G1,0

n (0, cψ)| = oP(n−ω);
(c) limφ↓0 lim sup

n→∞
P{sup0≤ψ≤ψ†≤1:ψ†−ψ≤φ |Gg,p

n (0, cψ†)−Gg,p
n (0, cψ)| > ε} → 0.

Proof of Lemma 8.1. (a) Assumption 3.1(ia, iic) implies Assumption 4.1(ib, iiib) with
r = 0, p ≤ 2 and gin = 1, n1/2xin or nxinx′in, and hence the assumptions of Theorem 4.3. First,
we want to apply this result to F

g,p

n (b, cψ + nκ−1/2d). Thus, rewrite

F
g,p

n (b, cψ + nκ−1/2d) = n−1
n∑
i=1

ginEi−1ε
p
i 1{εi−x′inb≤σ(cψ+nκ−1/2d)} = n−1

n∑
i=1

ginEi−1ε
p
i 1(εi−x′inb≤σcψ),
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for b = (b′, nκd)′ and xin = (x′in, n
−1/2σ)′, where |b| ≤ 2n1/4+κ−ηB while xin satisfies Assumption

4.1(iiib) because |xin|2 = |xin|2 + n−1σ2. Therefore we find, using that G
g,p

n can be expressed in
terms of F

g,p

n as in (8.1), that n1/2{Gg,pn (b, cψ + nκ−1/2d)− Gg,pn (0, cψ)} has correction term

σp−1cpψf(cψ)n−1
n∑
i=1

ginn
1/2(x′inb+nκ−1/2σd)− σp−1(−cψ)pf(−cψ)n−1

n∑
i=1

ginn
1/2(x′inb−nκ−1/2σd)

= σp−1cpψf(cψ)n−1/2
n∑
i=1

gin[{1− (−1)p}x′inb+ {1 + (−1)p}nκ−1/2σd],

due to the symmetry of f. This reduces as desired.
(b) Let c†ψ = cψ + nκ−1/2d. Rewrite G =Gg,p

n (b, c†ψ)−Gg,p
n (0, cψ) as G = G1 + G2 where

G1 = Gg,p
n (b, c†ψ)−Gg,p

n (0, c†ψ), G2 = Gg,p
n (0, c†ψ)−Gg,p

n (0, cψ).

The term G1 is oP(1) uniformly in |b| ≤ n1/4−ηB, 0 ≤ ψ ≤ 1. To see this, expand Gg,p
n in

a similar fashion to (8.1). Apply Theorem 4.1, noting that Assumption 3.1(ia, iib, iic) implies
Assumption 4.1(i, ii, iiia) with p ≤ 2, gin = 1, n1/2xin or nxinx′in and the chosen r.
The term G2. Apply Theorem 4.4 noting that Assumption 3.1(ia, iic) implies Assumption

4.1(ia, iiia) with r = 2 and some ν < 1.
(b′) Similar to (b), but using Theorem 4.2.
(c) Assumption 3.1(ia, iic) implies Assumption 4.1(ia, iiia) using the Cauchy-Schwarz in-

equality. Expand Gg,p
n and apply Theorem 4.4.

8.2 A first analysis of the order statistics

The Forward Search evolves around order statistics ẑ(m) defined in (3.2). A process version gives
quantiles

ĉbψ = inf{c : Ĝ1,0
n (b, c) ≥ ψ}. (8.5)

Setting b = 0 gives ĉ0
ψ = Ĝ−1

n (ψ) as defined in (2.8) and studied in Theorem 2.2. The first result
gives an algebraic bound to the distance between ĉbψ and ĉ

0
ψ. Probabilistic bounds follow.

Lemma 8.2 It holds, for all b, ψ, that σ|ĉbψ − ĉ0
ψ| < 2|b|max1≤i≤n |xin|.

Proof of Lemma 8.2. 1. A property of Ĝn. The quantile σĉ0
ψ is the left-continuous inverse

of the right-continuous function Ĝ1,0
n (0, c) = Ĝn(c) in (2.8). Thus,

Ĝn(y) ≤ Ĝn(ĉ0
ψ) ≤ Ĝn(z) ⇒ y ≤ ĉ0

ψ ≤ z. (8.6)

2. A lower bound. Let xmax = max1≤i≤n |xin|. It holds that

Si = [−σĉbψ + x′inb, σĉ
b
ψ + x′inb] ⊂ [−σĉbψ − xmax|b|, σĉbψ + xmax|b|] = S,

so that for all 0 ≤ ψ ≤ 1 then, with z = ĉbψ + σ−1xmax|b| it holds

Ĝ1,0
n (b, ĉbψ) ≤ 1

n

n∑
i=1

1(|εi|≤σz) = Ĝ1,0
n (0, z) = Ĝn(z).

Since, Ĝ1,0
n (b, ĉbψ) = n−1int(ψn) for all b, ψ then

0 = Ĝ1,0
n (b, ĉbψ)− Ĝ1,0

n (0, ĉ0
ψ) ≤ Ĝn(z)− Ĝn(ĉ0

ψ),
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which implies that σz = σĉbψ + xmax|b| ≥ σĉ0
ψ by inequality (8.6).

3. An upper bound for ψ < 1. It holds, for y = ĉbψ − σ−12xmax|b| that

Si = [−σĉbψ + x′inb, σĉ
b
ψ + x′inb] ⊃ [−σy, σy] = S,

noting that the smaller set is empty if y < 0. It will therefore hold that

Ĝ1,0
n (b, ĉbψ) ≥ 1

n

n∑
i=1

1(|εi|≤σy) = Ĝn(y).

Actually, this inequality must be strict. Indeed, at least one i† exists so that σĉbψ = |εi† − x′i†nb|.
For this (these) i† it holds that εi† ∈ Si but εi† 6∈ S. Thus, it holds Ĝ1,0

n (b, ĉbψ) > Ĝn(y). Proceed
as before to see that

0 = Ĝ1,0
n (b, ĉbψ)− Ĝ1,0

n (0, ĉ0
ψ) > Ĝn(y)− Ĝn(ĉ0

ψ), (8.7)

which implies that y = ĉbψ − σ−12xmax|b| < ĉ0
ψ by inequality (8.6).

The next result introduces a convergence rate for ĉbψ − ĉ0
ψ.

Lemma 8.3 Suppose Assumptions 3.1(ia, iib, iic) holds. Then, for all ω < η − κ,

sup
0≤ψ≤1

sup
|b|≤n1/4−ηB

n1/2|f(ĉ0
ψ)(ĉbψ − ĉ0

ψ)| = oP(n−ω).

Proof of Lemma 8.3. By definition Ĝ1,0
n (b, ĉbψ) = Ĝ1,0

n (0, ĉ0
ψ) = n−1int(nψ). Combine the

inequality of Lemma 8.2 with Assumption 3.1 (iib) showing max1≤i≤n |xin| = OP(nκ−1/2) to get
that ĉbψ − ĉ0

ψ = OP(n−1/4+κ−η) for |b| ≤ n1/4−ηB. Thus, for any ε > 0 a C > 0 exists so that the
set Cn = {|n1/2−κ(ĉbψ − ĉ0

ψ)| ≤ n1/4−ηC} has probability P(Cn) > 1− ε. On this set it holds, with
d = n1/2−κ(ĉbψ − ĉ0

ψ), that

0 = Ĝ1,0
n (b, ĉ0

ψ + nκ−1/2d)− Ĝ1,0
n (0, ĉ0

ψ).

Lemma 8.1(a) using Assumption 3.1(ia, iic) shows that

n1/2{G1,0

n (b, cψ + nκ−1/2d)− G1,0

n (0, cψ)} − 2σ−1f(cψ)nκd = OP(n2κ−2η) = oP(n−ω),

uniformly in 0 ≤ ψ ≤ 1 and |b|, |d| ≤ n1/4+κ−ηB, for all ω < η − κ < 2(η − κ). Lemma 8.1(b′)
using Assumption 3.1(ia, iib, iic) shows that, uniformly in 0 ≤ ψ ≤ 1 and |b|, |d| ≤ n1/4−ηB,

G1,0
n (b, cψ + nκ−1/2d)−G1,0

n (0, cψ) = oP(n−ω),

for all ω < η − κ. Using the definition G1,0
n = n1/2(Ĝ1,0

n − G
1,0

n ) then

0 = n1/2{Ĝ1,0
n (b, ĉ0

ψ + nκ−1/2d)− Ĝ1,0
n (0, ĉ0

ψ)} = 2σ−1f(ĉ0
ψ)nκd+ oP(n−ω).

Insertingd = n1/2−κ(ĉbψ − ĉ0
ψ) we get the desired result.

The next result provides a modification of Csörgő (1983, equation 2.8).

Lemma 8.4 Let cψ = G−1(ψ). Suppose f is symmetric and decreasing for large c and that
Assumption 3.1(ib) holds. Then, for all ψ∗ so |ψ∗ − ψ| ≤ |G(ĉ0

ψ)− ψ|, it holds
(a) sup0≤ψ≤cn |1− f(cψ)/f(cψ∗)| = oP(1), for any sequence cn → 0 so ncn →∞;
(b) sup0≤ψ≤n/(n+1) |1− f(cψ)/f(cψ∗)| = OP(1).
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Proof of Lemma 8.4. (a) By (2.2) then G−1(ψ) = F−1(y) for y = (1 + ψ)/2 varying
in 1/2 ≤ y ≤ 1 − (2n + 2)−1. Let γ = supc∈R F(c){1 − F(c)}|f ′(c)|/{f(c)}2 which is finite by
Assumption 3.1(ib). It is first argued that for all ε > 0 and 0 < c < 1 and all n then

P{ sup
1/2+c≤y≤1−c

| f{F
−1(y)}

f{F−1(y∗)} − 1| > ε} ≤ 4{1 + int(γ)}{exp(−nch1) + exp(−nch2)}, (8.8)

where, with h(λ) = λ+log(1/λ)−1 then h1 = h[(1+ε){1+int(γ)}/2] and h2 = h[1/(1+ε){1+int(γ)}/2].
This is nearly the statement of Theorem 1.5.1 of Csörgő (1983), which, however, has the denom-
inator f(θy,n) instead of f{F̂−1

n (y∗)} where θy,n is a particular intermediate point between F̂−1
n (y)

and F−1(y) rather than any intermediate point. Csörgő states that the proof of this Theorem
is similar to that of his Theorem 1.4.3. Equation (1.4.18.2) of that proof uses a bound only
depending on F̂−1

n (y) and F−1(y) and not on the particular intermediate point θy,n. This proves
(8.8).
The inequality (8.8) implies that for any sequence cn → 0 so ncn →∞ then

P{ sup
1/2+cn≤y≤1−cn

| f{F
−1(y)}

f{F̂−1
n (y∗)}

− 1| > ε} → 0.

The reason is that h(λ) > 0 for all λ > 0 so λ 6= 1. Consider the tails.
Left hand tail. Use that cn vanishes, that G(ĉ0

ψ)−ψ = OP(n−1/2) by Theorem 2.1, and that f is
uniformly continuous in a neighbourhood of zero because f is bounded, positive and continuous.

(b) Right hand tail. It suffi ces to argue that

lim
ε→∞

lim sup
n→∞

P{ sup
1−cn≤y≤1−(2n+2)−1

| f{F
−1(y)}

f{F̂−1
n (y∗)}

− 1| > ε} = 0. (8.9)

Apply the inequality (8.8) with c = (2n+ 2)−1 so that nc ∼ 1/2. Then use that h1, h2 →∞ for
ε→∞ since h(λ)→∞ for λ→∞.

The next result relates ĉ0
ψ to cψ.

Lemma 8.5 Suppose Assumptions 3.1(ia, ib) holds with q = 1 only. Then

sup
0≤ψ≤1

|(ĉ0
ψ)kf(ĉ0

ψ)− (cψ)kf(cψ)| = oP(1) for k = 0, 1.

Proof of Lemma 8.5. 1. Consider ψ so 0 ≤ ψ ≤ 1 − 1/zn for any sequence 0 < zn <
o(n1/2). Rewrite the process of interest as

(ĉ0
ψ)kf(ĉ0

ψ)− (cψ)kf(cψ) = {(ĉ0
ψ)k − (cψ)k}f(cψ) + (ĉ0

ψ)kf(ĉ0
ψ){1− f(cψ)

f(ĉ0
ψ)
}. (8.10)

The first term is zero for k = 0 and OP(n−1/2) for k = 1 due to Lemmas 2.1, 2.2(a) using
Assumption 3.1(ib). For the second term, note that (ĉ0

ψ)kf(ĉ0
ψ) is bounded uniformly in 0 ≤ ψ ≤ 1

due to Assumption 3.1(ia) with q = 1, while 1 − f(cψ)/f(ĉ0
ψ) vanishes by Lemma 8.4(a) using

Assumption 3.1(ib).
2. Consider ψ so ψn ≤ ψ ≤ 1 for any sequence ψn → 1. Assumption 3.1(ia) and the

continuity of f implies that (cψ)kf(cψ) is continuous and convergent for ψ → 1. Rewrite

ĉ0
ψn

= G−1{G(ĉ0
ψn

)} = G−1[ψn + {G(ĉ0
ψn

)− ψn}] ≥ G−1(ψn − gn),

where gn = sup0≤ψ≤1{G(ĉ0
ψ) − ψ} = OP(n−1/2) due to Lemmas 2.1, 2.2(c) using Assumption

3.1(ib). By the continuity of G−1 then ĉ0
ψn
→ G−1(1) in probability and therefore (ĉ0

ψ)kf(ĉ0
ψ) −

(cψ)kf(cψ) vanishes in probability.
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8.3 A one-step result for the least squares estimator

A one-step result for the least squares estimator now follows. Equation (3.4) represents the one-

step least squares estimator β̂
(m+1)

in terms of Ĝg,pn . That expression has the random quantities
b̂(m) and σ−1ẑ(m) as arguments. Replacing these by a deterministic quantity b and the residual
ĉbψ defined in (8.5) gives the following asymptotic uniform linearization result for the one-step

least squares estimator if we insert the initial estimator b = b̂(m).

Lemma 8.6 Let cψ = G−1(ψ) and
ρψ = 2cψf(cψ)/ψ. (8.11)

Suppose Assumption 3.1(ia− ib, ii) hold for some 0 ≤ κ < η ≤ 1/4. Then, for all ψ0 > 0 it holds
(a) sup0≤ψ≤1 sup|b|≤n1/4−ηB |n1/2Ĝx,1n (b, ĉbψ)−Gx,1

n (0, cψ)− 2cψf(cψ)Σnb| = oP(1);

(b) sup0≤ψ≤1 sup|b|≤n1/4−ηB |Ĝxx,0n (b, ĉbψ)− Σnψ| = OP(nκ−η−1/4);

(c) supψ0≤ψ≤1 sup|b|≤n1/4−ηB |{Ĝxx,0n (b, ĉbψ)}−1n1/2Ĝx,1n (b, ĉbψ)− (ψΣn)−1Gx,1
n (0, cψ)− ρψb| = oP(1).

Proof of Lemma 8.6. (a) The inequality of Lemma 8.2 implies that ĉbψ−ĉ0
ψ = OP(nκ−η−1/4)

uniformly in 0 ≤ ψ ≤ 1 and |b| ≤ n1/4−ηB since max1≤i≤n |xin| = OP(nκ−1/2) by Assumption 3.1
(iib). Start by expanding Ĝx,1n . By definition

n1/2Ĝx,1n (b, cψ + nκ−1/2d) = Gx,1
n (b, cψ + nκ−1/2d) + n1/2G

x,1

n (b, cψ + nκ−1/2d).

Lemma 8.1(a, b), using Assumption 3.1(ia, iib, iic) along with the definitions gin = n1/2xin and
Σn =

∑n
i=1 xinx

′
in gives, uniformly in |b|, |d| ≤ n1/4−ηB and 0 ≤ ψ ≤ 1,

n1/2Ĝx,1n (b, cψ + nκ−1/2d) = Gx,1
n (0, cψ) + n1/2G

x,1

n (0, cψ) + 2cψf(cψ)Σnb+ oP(1).

Note that G
x,1

n (0, cψ) = 0 due to the symmetry of f. Replace cψ by ĉ0
ψ and d by n

1/2−κ(ĉbψ − ĉ0
ψ),

which is OP(n1/4−η). Thus it holds

n1/2Ĝx,1n (b, ĉbψ) = Gx,1
n (0, ĉ0

ψ) + 2ĉ0
ψf(ĉ

0
ψ)Σnb+ oP(1), (8.12)

uniformly in |b| ≤ n1/4−ηB and 0 ≤ ψ ≤ 1. The two terms are analysed in turn.
First term. Theorem 2.1 shows aψ = n1/2{G(ĉ0

ψ)− ψ} is tight. Expand

ĉ0
ψ = G−1{G(ĉ0

ψ)} = cG(ĉ0ψ) = cψ+n−1/2aψ
. (8.13)

Lemma 8.1(c) using Assumption 3.1(ia, iib, iic) shows Gx,1
n (0, ĉ0

ψ) = Gx,1
n (0, cψ) + oP(1).

Second term. Use that ĉ0
ψf(ĉ

0
ψ) = cψf(cψ) + oP(1) uniformly in ψ by Lemma 8.5 using As-

sumptions 3.1(ia, ib).
(b) An expansion as in (8.12) gives

Ĝxx,0n (b, ĉbψ) = n−1/2Gxx,0
n (0, ĉ0

ψ) + G
xx,0

n (0, ĉ0
ψ) + 2σ−1f(ĉ0

ψ)Σn(ĉbψ − ĉ0
ψ) + oP(n−1/2),

uniformly in b, ψ. The three terms are analysed in turn.
First term. This is n−1/2Gxx,0

n (0, ĉ0
ψ) = n−1/2Gxx,0

n (0, cψ) + oP(n−1/2) by an argument as for
the first term of (8.12).
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Second term. Use the definition of Σn and Theorem 2.1, 2.2(c) using Assumption 3.1(ib)
showing G(ĉ0

ψ) = ψ + OP(n−1/2) uniformly in ψ along with the tightness of Σn by Assumption
3.1(iia) to see that

G
xx,0

n (0, ĉ0
ψ) =

1

n

n∑
i=1

nxinx
′
inEi−11(|εi|≤σĉ0ψ) =

n∑
i=1

xinx
′
inG(ĉ0

ψ) = Σnψ + OP(n−1/2).

Third term. This is OP(nκ−η−1/4) since f(ĉ0
ψ) = f(cψ) + oP(1) uniformly in 0 ≤ ψ ≤ 1

by Lemma 8.5 using Assumptions 3.1(ia, ib), while ĉbψ − ĉ0
ψ = O(nκ−η−1/4) and Σn is tight by

Assumption 3.1(iia).
(c) Combine (a), (b). The denominator from (b) satisfies

Ĝxx,0n (b, ĉbψ) = ψΣn{1 + oP(1)},

for ψ ≥ ψ0 > 0 and since Σn → Σ in distribution where Σ > 0 a.s. by Assumption 3.1(iia).
Combine with the expression for the numerator in (a).

8.4 The forward plot of least squares estimators

The Forward Plot of least squares estimators is now considered. The one-step result in Lemma
8.6 implies that the Forward Search iteration can be viewed as a fixed point problem. Indeed, the
one-step result in Lemma 8.6 implies an autoregressive relation between the one-step updated
estimation error b̂(m+1) and the previous estimation error b̂(m). It holds that

b̂(m+1) = ρψ b̂
(m) + (ψΣn)−1Gx,1

n (0, cψ) + eψ(b̂(m)), (8.14)

for ψ = m/n+o(1), an “autoregressive coeffi cient”ρψ defined in (8.11) and a vanishing remainder
term eψ. This autoregressive representation generalises Theorem 5.2 of Johansen and Nielsen
(2010) which was concerned with a location-scale model, a fixed ψ ∼ m/n, and convergent
initial estimators, b̂(m) = O(1).
It is first established that ρψ has nice properties for unimodal densities f.

Lemma 8.7 Suppose Assumption 3.1(ic) holds. Then 0 < ρψ < 1 for 0 < ψ < 1 while
limψ→0 ρψ = 1 and limψ→1 ρψ = 0.

Proof of Lemma 8.7. For c > 0 then f(x)1(|x|≤c) ≥ f(c)1(|x|≤c) because f is symmetric and
non-increasing by Assumption 3.1(ic). Integration gives

ψ = 2

∫ cψ

0

f(x)dx ≥ 2cψf(cψ) = ρψψ,

where equality holds for f(x) = f(c) for |x| ≤ c, by continuity of f. This is, however, ruled out
by assuming limc→0 f

′′(c) < 0. It holds limc→0(2c)−12
∫ c

0
f(x)dx = f(0) while ρψψ/(2cψ) = f(cψ)

so limψ→0 ρψ = 1. Similarly, 2
∫∞

0
f(x)dx = 1 and limψ→1 cf(c)→ 0 so limψ→1 ρψ = 0.

Lemma 8.8 Suppose Assumption 3.1(id) holds. Then ρψ is strictly decreasing.
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Proof of Lemma 8.8. Let τ k = 2
∫ c

0
xkf(x)dx for k ∈ N0. It holds limc→0 τ k = 0 and

τ k > 0 for c > 0. The derivatives with respect to c are

τ ′k = 2ckf, τ ′′k = τ ′k−1(k + c
∂

∂c
log f).

Consider the ratio Rk = τ ′k+1/τ k, noting that R0 = ξψ1 /ψ. l’Hôpital’s rule gives

lim
c→0

Rk = lim
c→0

τ ′′k+1

τ ′k
= k + 1.

Moreover, Rk has derivative

R′k =
τ ′′k+1τ k − τ ′k+1τ

′
k

τ 2
k

=
τ ′k
τ 2
k

Mk.

where Mk = {k + 1 + c(log f)′}τ k − τ ′k+1. It has to be argued that R
′
k < 0 for c > 0. Since

τ ′k, τ k > 0 then R′k < 0 if and only if Mk < 0. Now, limc→0Mk = 0 so a suffi cient condition is
that M ′

k < 0. But
M ′

k = τ k{(log f)′ + c(log f)′′} = τ k{c(log f)′}′

which is negative if and only if ∆(c) = {c(log f)′}′ < 0.

The next result investigates the forward estimator β̂
(m+1)

. There are two results: first, the
forward search preserves the order of the initial estimator, and, secondly, by infinite iteration a
slowly converging initial estimator can be improved to consistency at a standard rate. The proof
of this result is related to that of Johansen and Nielsen (2011, Theorem 3.3).

Lemma 8.9 Suppose Assumption 3.1(ia − id, ii, iii) holds. Then, for all ψ1 > ψ0 > 0 so
m0/n = ψ0 + o(1), it holds
(a) supψ0≤ψ≤1 |N−1(β̂ψ − β)| = OP(n1/4−η);

(b) supψ1≤ψ≤1 |N−1(β̂ψ − β)| = OP(1).

Proof of Lemma 8.9. Due to the embedding (2.4) it suffi ces to evaluate N−1(β̂ψ − β) at
the grid points ψ = m/n. Introduce notation Kn

ψ = Σ−1
n Gx,1

n (0, cψ).
(a) Solve the autoregressive equation (8.14) recursively to get

b̂(m+1) =
m∑

k=m0

(
m−1∏̀

=k

ρ`/n){n
k
Kn
k/n + ek/n(b̂(k))}+ (

m∏
k=m0

ρk/n)b̂(m0).

with the convention that an empty product equals unity. Lemmas 8.7, 8.8 using Assumption
3.1(ic, id) show that the coeffi cient ρψ is strictly decreasing and less than unity. For m ≥ ψ0n
then ρm/n ≤ ρm0/n = ρ0 for some ρ0 < 1 giving the bound

|b̂(m+1)| ≤ (
m∑

k=m0

ρm−k0 ){ sup
ψ0≤ψ≤1

|ψ−1Kn
ψ|+ max

m0≤k<m
|ek/n(b̂(k))|}+ ρm−m0+1

0 |b̂(m0)|. (8.15)

For ψ ≥ ψ0 > 0 then ψ−1Kn
ψ is tight by Lemma 8.1(c) using Assumption 3.1(ia, iib, iic). The

bound
∑m

k=m0
ρm−k0 ≤

∑∞
k=0 ρ

k
0 = C is finite, while b̂(m0) = O(n1/4−η) by Assumption 3.1(iii).
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Moreover, supψ0≤ψ≤1 sup|b|≤3n1/4−ηB |eψ(b)| = oP(1) for any B > 0 by Lemma 8.6 using Assump-
tion 3.1(ia, ib, ii). Thus, for all ε, ζ > 0 constants B, n0 > 0 exist so that for n ≥ n0, the set

An = (C|b̂(m0)| ≤ n1/4−ηB) ∩ (C sup
0≤ψ≤1

|Kn
ψ| ≤ B) ∩ (C sup

ψ0≤ψ≤1
sup

|b|≤3n1/4−ηB

|eψ(b)| ≤ ζ/2)

has probability larger than 1− ε. An induction over m is now used to prove that

max
m0≤k≤m

|b̂(k)| ≤ 3n1/4−ηB for m = m0, . . . , n,

on the set An, which implies the desired result. As induction start, for m + 1 = m0, then
|b̂(m0)| ≤ n1/4−ηB on the set An. Suppose the result holds for some m. This implies that

C sup
ψ0≤ψ≤1

max
m0≤k<m

|eψ(b̂(k))|} ≤ ζ/2 (8.16)

on the set An. Thus, the bound (8.15) becomes |b̂(m)| ≤ 2n1/4−ηB + ζ/2 ≤ 3n1/4−ηB. Thus, the
result holds for m+ 1.

(b) Consider (8.15). Here
∑n

k=0 ρ
k
0 is finite, supψ0≤ψ≤1 |ψ−1Kn

ψ| = OP(1) due to tightness

and sup0≤ψ≤1 max
m0≤k<n

|eψ(b̂(k))|} = oP(1) due to (8.16). Let m ≥ ψ1n and m0 = ψ0n + O(1) for

some ψ1 > ψ0 > 0. Since ρm−m0
0 declines exponentially then ρm−m0

0 < n−1/4 for large n so that
maxm≥m1 ρ

m−m0
0 |b̂(m0)| = oP(1).

8.5 Proof of Theorem 3.1

Lemmas 2.2, 8.2 are now combined to show that the forward residuals scaled with a known
variance, σ−1ẑψ, have the same Bahadur representation as the quantile process for the innovations
σ−1εi. This is the main Theorem 3.1 stated with slightly weaker conditions.

Lemma 8.10 Suppose Assumption 3.1(ia− id, ii, iii) holds. Let ψ0 > 0. Then

sup
ψ0≤ψ≤n/(n+1)

|2f(cψ)n1/2(σ−1ẑψ − cψ) +G1,0
n (cψ)| = oP(1).

Proof of Lemma 8.10. Due to the embedding (2.4) it suffi ces to evaluate the forward
residuals at the grid points ψ = m/n. It is first argued that the forward plot of the estimators is
bounded in the sense that for all ε > 0 a B > 0 exists so that the set Cn = (supψ0≤ψ≤1 |N−1(β̂ψ−
β)| ≤ n1/4−ηB) has P(Cn) ≥ 1 − ε. This follows from Lemma 8.9 using Assumption 3.1(ia −
id, ii, iii). Now, on Cn it holds that σ−1ẑψ = ĉbψ, see (3.2), for some |b| ≤ n1/4−ηB. Thus it suffi ces
to show that

sup
ψ0≤ψ≤n/(n+1)

sup
|b|≤n1/4−ηB

|Cbψ| = oP(1) for Cbψ = 2f(cψ)n1/2(ĉbψ − cψ) +G1,0
n (cψ).

Now, write (ĉbψ − cψ) = (ĉ0
ψ − cψ) + (ĉbψ − ĉ0

ψ), so that

Cbψ = {2f(cψ)n1/2(ĉ0
ψ − cψ) +G1,0

n (cψ)}+ 2
f(cψ)

f(ĉ0
ψ)
n1/2f(ĉ0

ψ)(ĉbψ − ĉ0
ψ).

The first term is oP(nζ−1/4) for all ζ > 0 uniformly in 0 ≤ ψ ≤ 1 by Theorem 2.2(a) using
Assumption 3.1(ib). In the second term the ratio f(cψ)/f(ĉ0

ψ) is OP(1) uniformly in 0 ≤ ψ ≤
n/(n+ 1) by Lemma 8.4 using Assumption 3.1(ia, ib), while n1/2f(ĉ0

ψ)(ĉbψ− ĉ0
ψ) =oP(1) uniformly

in 0 ≤ ψ ≤ 1 by Lemma 8.3 using Assumption 3.1(ia, iib, iic)
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8.6 Proofs of Theorems 3.2 and 3.3

The above theory for σ−1ẑψ involves the population variance σ2. The next results gives an
asymptotic expansion for σ̂2

ψ,cor, recalling, from (2.5) that

σ̂2
ψ,cor − σ2 =

1

τψ
[Ĝ1,2
n (b̂, ĉb̂ψ)− {Ĝx,1n (b̂, ĉb̂ψ)}′{Ĝxx,0n (b̂, ĉb̂ψ)}−1{Ĝx,1n (b̂, ĉb̂ψ)}].

Compare also the definitions in (3.6), (3.7) with (8.4) to see

Gn(cψ) = G1,0
n (0, cψ), Hn(cψ) = σ−2G1,2

n (0, cψ).

The main Theorem 3.2 then follows immediately from the next result.

Lemma 8.11 Suppose Assumption 3.1(ia, ib, ie, ii) holds. Then

sup
ψ0≤ψ≤n/(n+1)

sup
|b|≤n1/4−ηB

|n1/2(σ̂2
ψ,cor − σ2)− σ2τ−1

ψ {Hn(cψ)− c2
ψGn(cψ)}| = oP(1).

Proof of Lemma 8.11. 1. Regression correction term. Lemma 8.6(a, b) using Assumption
3.1(ia, ib, ii) shows that

n1/2Ĝx,1n (b, ĉbψ) = G1,0
n (0, cψ) + 2cψf(cψ)Σnb+ oP(1),

Ĝxx,0n (b, ĉbψ) = Σnψ + oP(1),

uniformly in |b| ≤ n1/4−ηB, ψ0 ≤ ψ ≤ 1. Evaluate the terms of the expansion for n1/2Ĝx,1n (b, ĉbψ).
The first term is G1,0

n (0, cψ) = OP(1) since G1,0
n is tight by Lemma 8.1(c) using Assumption

3.1(ia, iib, iic). The second term is OP(n1/4−η) since b is of that order. Therefore Ĝx,1n (b, ĉbψ) =

OP(n−1/4−η). Note that Σn → Σ in distribution where Σ > 0 a.s. by Assumption 3.1(iia). It
follows that

{Ĝx,1n (b̂, ĉb̂ψ)}′{Ĝxx,0n (b̂, ĉb̂ψ)}−1{Ĝx,1n (b̂, ĉb̂ψ)} = OP(n−1/2−2η).

This vanishes, even when scaled by n1/2.
2. The leading term. It remains to argue that

n1/2{Ĝ1,2
n (b, ĉbψ)− τψσ2} − σ2{σ−2G1,2

n (0, cψ)− c2
ψG1,0

n (cψ)} = oP(1),

uniformly in |b| ≤ n1/4−ηB, ψ0 ≤ ψ ≤ n/(n + 1). Lemma 8.2 shows that σ|ĉbψ − ĉ0
ψ| <

2|b|max1≤i≤n |xin| for all b, ψ. Since |b| ≤ n1/4−ηB while max1≤i≤n |xin| = OP(nκ−1/2) by As-
sumption 3.1 (iib) then ĉbψ− ĉ0

ψ = OP(nκ−η−1/4) uniformly in 0 ≤ ψ ≤ 1 and |b| ≤ n1/4−ηB. Thus,

we start by expanding n1/2Ĝ1,2
n (b, ĉ0

ψ + nκ−1/2d). By definition

n1/2Ĝ1,2
n (b, cψ + nκ−1/2d) = G1,2

n (b, cψ + nκ−1/2d) + n1/2G
1,2

n (b, cψ + nκ−1/2d).

Apply Lemma 8.1(a, b) using Assumption 3.1(ia, iib, iic) to get

n1/2Ĝ1,2
n (b, cψ + nκ−1/2d) = G1,2

n (0, cψ) + n1/2G
1,2

n (0, cψ) + 2σ(cψ)2f(cψ)nκd+ oP(1),

uniformly in |b|, |d| ≤ n1/4−ηB, 0 ≤ ψ ≤ 1. By definition it holds

n1/2Ĝ1,2
n (b, cψ + nκ−1/2d) = n1/2Ĝ1,2

n (0, cψ) + 2σ(cψ)2f(cψ)nκd+ oP(1).
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We can replace cψ by ĉ0
ψ. Moreover, since ĉbψ − ĉ0

ψ = OP(nκ−η−1/4) we can replace nκd by
n1/2(ĉbψ − ĉ0

ψ) on a set with large probability. When also subtracting n1/2τψσ
2 on both sides and

adding and subtracting n1/2τG(ĉ0ψ)σ
2 on the right hand side we get

n1/2{Ĝ1,2
n (b, ĉbψ)− τψσ2} = n1/2{Ĝ1,2

n (0, ĉ0
ψ)− τG(ĉ0ψ)σ

2}

+ 2σ(ĉ0
ψ)2f(ĉ0

ψ)n1/2(ĉbψ − ĉ0
ψ) + σ2n1/2{τG(ĉ0ψ) − τψ}+ oP(1), (8.17)

uniformly in |b| ≤ n1/4−ηB, 0 ≤ ψ ≤ 1. The three terms are analysed in turn.
3. First term of (8.17). Since G

1,2

n (0, c) = σ2τG(c) the first term equals G1,2
n (0, ĉ0

ψ). Theorem
2.1 shows that ĉ0

ψ = cψ+n−1/2φ where φ = n1/2{G(ĉ0
ψ) − ψ} is tight. The tightness of G1,2

n

established in Lemma 8.1(c) using Assumption 3.1(ia, iib, iic) then implies that the first term
equals G1,2

n (0, cψ) + oP(1) uniformly in 0 ≤ ψ ≤ 1.
4. The order of ĉ0

ψ is oP(n1/8). The reason is that ĉ0
ψ ≤ maxi≤n |εi|, that E|εi|q < ∞ for

some q > 8 by Assumption 3.1(ia), and that Boole’s and Markov’s inequalities imply that
P(maxi |εi| > Cnυ) ≤

∑n
i=1 P(|εi| > Cn1/8) ≤ n(Cn1/8)−qE|εi|q vanishes.

5. The order of c2
ψ is o{(1 − ψ)−1/4}. The reason is that E|εi|q < ∞ for some q > 8 by

Assumption 3.1(ia) and that 1−F(cψ) = P(|εi| > σψψ) is bounded by c−qψ E(|εi/σ|q) by the Markov
inequality. Thus, c2

ψ = O{(1−ψ)−2/q}. In particular, for ψ ≤ 1−n−1 then c2
ψ = O(n2/q) = o(n1/4).

6. Second term of (8.17). It holds that f(ĉ0
ψ)n1/2(ĉbψ − ĉ0

ψ) = oP(n−ω) for all ω < η − κ

uniformly in 0 ≤ ψ ≤ 1, b ≤ n1/4−ηB by Lemma 8.3 using Assumption 3.1(ia, iib, iic). By item
4 then (ĉ0

ψ)2 = oP(n2υ) for all υ > ν(η − κ)/2 for some ν < 1. Thus, the second term vanishes.
7. Third term of (8.17). Argue that this equals −σ2c2

ψG1,0
n (cψ) + oP(1). Recall the definition

τψ = 2
∫ cψ

0
ε2f(ε)dε and expand

S3 = n1/2(τψ+n−1/2φ − τψ)− c2
ψφ = n1/2

∫ c
ψ+n−1/2φ

cψ

(ε2 − c2
ψ)2f(ε)dε.

If S3 can be proved to vanish when φ = n1/2{G(ĉ0
ψ) − ψ} then the desired expression follows,

noting that φ = −G1,0
n (cψ) + oP(1) by Theorem 2.2(c). Thus, consider S3. Changing variable

y = G(ε), dy = 2f(ε)dε, and Taylor expanding gives

S3 = n1/2

∫ ψ+n−1/2φ

ψ

(c2
y − c2

ψ)dy = φ(c2
ψ∗ − c2

ψ),

for some ψ∗ so |ψ∗ − ψ| ≤ φ. Rewrite this, for some υ > 0,

S3 = {ψ(1− ψ)}−2υ{ψ(1− ψ)

f(cψ)
}(cψ∗ + cψ)[

φ

{ψ(1− ψ)}1/2−υ ][
f(cψ)n1/2(cψ∗ − cψ)

{ψ(1− ψ)}1/2−υ ]n−1/2.

Insert φ = n1/2{G(ĉ0
ψ)−ψ}. Consider the five components of S3 individually. The first component

is O(n2υ) for ψ0 ≤ ψ ≤ n/(n+ 1). The second component is O(n1/8) for ψ0 ≤ ψ ≤ 1− n−1. The
reason is that ψ(1 − ψ)/f(cψ) = O(cψ) = O(n1/8) by Assumption 3.1(ie) and item 5. The third
component is oP(n1/4) due to items 4,5. The fourth component equals n1/2{G(ĉ0

ψ)− ψ}/{ψ(1−
ψ)}1/2−υ, which is oP(1) uniformly in 1/(n + 1) ≤ ψ ≤ n/(n + 1), see Theorem 2.3(a). The
fifth component is seen to be oP(1) by first bounding |cψ∗ − cψ| ≤ |cψ+n−1/2φ − cψ| = |cψ̂ − cψ|
where ψ̂ = G(ĉ0

ψ) and then combining the result for the fourth component with the result that
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{f(cψ)n1/2(cψ̂ − cψ)− φ}/{ψ(1− ψ)}1/2−υ is oP(1) uniformly in 1/(n + 1) ≤ ψ ≤ n/(n + 1), see
Theorem 2.3(b) using Assumption 3.1(ib). The sixth component is n−1/2. Overall it holds that
S3 is of order oP(n2υ+1/8+1/4+0+0−1/2) = oP(n2υ−1/8 ) = oP(1) uniformly in ψ0 < ψ < 1 − n−1

since υ can be chosen suffi ciently small.

Proof of Theorem 3.3. Note, first the identity

ẑψ
σ̂ψ,cor

− cψ =
ẑψ/σ − cψ
σ̂ψ,cor/σ

− cψ
σ̂2
ψ,cor − σ2

σ̂ψ,cor(σ̂ψ,cor + σ)
.

Multiply this by 2f(cψ)n1/2. Use that n1/2(σ̂2
ψ,cor/σ

2 − 1) and n1/2(ẑψ/σ − cψ) have the leading
terms τ−1

ψ {Hn(cψ)− c2
ψGn(cψ)} and Gn(cψ), respectively, due to Theorems 3.1, 3.2. In particular

σ̂ψ,cor is consistent for σ.

9 Discussion

Theorem 3.3 presented an asymptotic theory for the scaled forward residuals ẑ(m)/σ̂(m) =

ξ̂
(m)

(m+1)/σ̂
(m). In the earliest work on the Forward Search, such as Atkinson and Riani (2000),

the focus was not so much on scaled forward residuals as on the minimum deletion residuals

r̂(m) = min
i 6∈S(m)

ξ̂
(m)

i

σ̂(m)
√

1 + hi
,

with a leverage factor hi = x′i(
∑

j∈S(m) xjx
′
j)
−1xi, but with sets S(m) constructed exactly as here.

In later work on the Forward Search the forward residuals ξ̂
(m)

(m+1) as opposed to mini 6∈S(m) ξ̂
(m)

i

have gained in prominence. Indeed, the t-approximation discussed in Section 2.4 is of this form.
Figure 1 of Atkinson, Riani and Cerioli (2010b) indicates than in small samples (n = 200) the
50% and 99% pointwise bands of r̂(m) and ẑ(m)/σ̂(m) are nearly indistinguishable. Here we have
given a distribution theory for ẑ(m)/σ̂(m) in terms of empirical distribution functions. In contrast,
r̂(m) will involve conditional empirical distribution functions which are harder to analyse; for a
further discussion see Johansen and Nielsen (2010, Comment 2.3).
The presented results discuss the forward residuals when no outliers are present. Leading on

from that, it would be of interest to analyse situations with outliers to describe how well the
Forward Search captures those. In future work we will consider this issue.
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