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Summary: We review recent asymptotic results on some robust methods for multiple regres-
sion. The regressors include stationary and non-stationary time series as well as polynomial
terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators,
in particular the Impulse Indicator Saturation, iterated 1-step Huber-skip M-estimators and
the Forward Search. These methods classify observations as outliers or not. From the as-
ymptotic results we establish a new asymptotic theory for the gauge of these methods, which
is the expected frequency of falsely detected outliers. The asymptotic theory involves normal
distribution results and Poisson distribution results. The theory is applied to a time series
data set.
Keywords: Huber-skip M-estimators, 1-step Huber-skip M-estimators, iteration, Forward
Search, Impulse Indicator Saturation, Robustified Least Squares, weighted and marked em-
pirical processes, iterated martingale inequality, gauge.

1 Introduction

The purpose of this paper is to review recent asymptotic results on some robust methods
for multiple regression and apply these to calibrate these methods. The regressors include
stationary and non-stationary time series as well as quite general deterministic terms. All the
reviewed methods classify observations as outliers according to hard, binary decision rules.
The methods include the Huber-skip M-estimator, 1-step versions such as the robustified
least squares estimator and the Impulse Indicator Saturation, iterated 1-step versions thereof,
and the Forward Search. The paper falls in two parts. In the first part we give a motivating
empirical example. This is followed by an overview of the methods and a review of recent
asymptotic tools and properties of the estimators. For all the presented methods the outlier
classification depends on a cut-off value c which is taken as given in the first part. In the
second part we provide an asymptotic theory for setting the cut-off value c indirectly from
the gauge, where the gauge is defined as the frequency of observations classified as outliers,
when in fact there are no outliers in the data generating process.
Robust methods can be used in many ways. Some methods reject observations that are

classified as outliers, while other method give a smooth weight to all observations. It is
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open to discussion which method to use, see for instance Hampel, Ronchetti, Rousseeuw and
Stahel (1986, §1.4). Here, we focus on rejection methods. We consider an empirical example,
where rejection methods are useful as diagnostic tools. The idea is that most observations are
‘good’in the sense that they conform with a regression model with symmetric, if not normal,
errors. Some observations may not conform with the model - they are the outliers. When
building a statistical model the user can apply the outlier detection methods in combination
with considerations about the substantive context to decide which observations are ‘good’
and how to treat the ‘outliers’in the analysis.
In order to use the algorithms with confidence we need to understand its properties when

all observations are ‘good’. Just as in hypothesis testing, where tests are constructed by
controlling their properties when the hypothesis is true, we consider the outlier detection
methods when, in fact, there are no outliers. The proposal is to control the cut-off values of
the robust methods in terms of their gauge. The gauge is the frequency of wrongly detected
outliers when there are none. It is distinct from, but related to, the size of a hypothesis test
and of false discovery rate in multiple testing (Benjamini and Hochberg, 1995).
The origins of the notion of a gauge are as follows. Hoover and Perez (1999) studied

the properties of a general-to-specific algorithm for variable selection through a simulation
study. They considered various measures for the performance of the algorithm, that are
related to what is now called the gauge. One of these, they referred to as the size, and this
was the number of falsely significant variables divided by the difference between the total
number of variables and the number of variables with non-zero coeffi cients. The Hoover-Perez
idea for regressor selection was the basis of the PcGets and Autometrics algorithms, see for
instance Hendry and Krolzig (2005), Doornik (2009) and Hendry and Doornik (2014). The
Autometrics algorithm also includes an impulse indicator saturation algorithm. Through
extensive simulation studies the critical values of these algorithms have been calibrated in
terms of the false detection rates for irrelevant regressors and irrelevant outliers. The term
gauge was introduced in Hendry and Santos (2010) and Castle, Doornik and Hendry (2011).

Part I

Review of recent asymptotic results
2 A motivating example

What is an outlier? How do we detect them? How should we deal with them? There is no
simple, universally valid answer to these questions —it all depends on the context. We will
therefore motivate our analysis with an example from time series econometrics.
Demand and supply is key to discussing markets in economics. To study this Graddy

(1995, 2006) collected data on prices and quantities from the Fulton Fish market in New
York. For our purpose the following will suffi ce. The data consists of daily data of the
quantity of whiting sold by one wholesaler over the period 2 Dec 1991 to 8 May 1992. Figure
1(a) shows the daily aggregated quantity Qt measured in pounds. The logarithm of the
quantity, qt = logQt is shown in panel (b). The supply of fish depends on the weather at sea
where the fish is caught. Panel (c) shows a binary variable St taking value 1 if the weather
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Figure 1: Data and properties of fitted model for Fulton Fish market data

is stormy. The present analysis is taken from Hendry and Nielsen (2007, §13.5).
A simple autoregressive model for log quantities qt gives

q̂t
(standard error)
[t-statistic]

= 7.0
(0.8)

[8.8]

+ 0.19
(0.09)

[2.03]

qt−1 − 0.36
(0.15)

[−2.39]

St, (2.1)

σ̂ = 0.72, ̂̀= −117.82, R2 = 0.090, t = 2, . . . , 111,

χ2norm[2] = 6.9 [p= 0.03], χ2skew[1] = 6.8 [p= 0.01], χ2kurt[1] = 0.04 [p= 0.84],

Far(1−2)[2, 106] = 0.9 [p= 0.40], Farch(1)[1, 106] = 1.4 [p= 0.24],

Fhet[3, 103] = 2.0 [p= 0.12], Freset[1, 106] = 1.8 [p= 0.18].

Here σ̂2 is the residual variance, ̂̀ is the log likelihood, T is the sample size. The residual
specification tests include cumulant based tests for skewness, χ2skew, kurtosis, χ

2
kurtosis and

both, χ2norm = χ2skew +χ2kurtosis, a test Far for autoregressive temporal dependence, see Godfrey
(1978), a test Farch for autoregressive conditional heteroscedasticity, see Engle (1982), a
test Fhet for autoregressive conditional heteroscedasticity, see White (1980), and a test Freset
for functional form, see Ramsey (1969). We note that the above references only consider
stationary processes, but the specification tests also apply for non-stationary autoregressions,
see Kilian and Demiroglu (2000) and Engler and Nielsen (2009) for χ2skew, χ

2
kurtosis and Nielsen

(2006) for Far. The computations were done using OxMetrics, see Doornik and Hendry (2013).
Figure 1(b, d) shows the fitted values and the standardized residuals.
The specification tests indicate that the residuals are skew. Indeed the time series plot

of the residuals in Figure 1(d) shows a number of large negative residuals. The three largest
residuals have an interesting institutional interpretation. The observations 18 and 34 are
Boxing Day and Martin Luther King Day, which are public holidays, while observation 95 is
Wednesday before Easter. Thus, from a substantive viewpoint it seems preferable to include
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dummy variables for each of these days, which gives

q̂t = 7.9
(0.7)

[10.8]

+ 0.09
(0.08)

[1.04]

qt−1 − 0.36
(0.14)

[−2.68]

St − 1.94
(0.66)

[−3.00]

D18
t − 1.82

(0.66)

[−2.75]

D34
t − 2.38

(0.66)

[−3.64]

D95
t , (2.2)

σ̂ = 0.64, ̂̀= −104.42, R2 = 0.287, t = 2, . . . , 111.

Specification tests, which are not reported, indicate a marked improvement in the specifi-
cation. Comparing the regressions (2.1) and (2.2) it is seen that the lagged quantities were
marginally significant in the first, misspecified regression, but not significant in the second,
better specified, regression. It is of course no surprise that outliers matter for statistical
inference - and that institutions matter for markets.
The above modelling strategy blends usage of specification tests, graphical tools and

substantive arguments. It points at robustifying a regression by removing outliers and then
refitting the regression. We note that outliers are defined as those observations that do not
conform with the statistical model. In the following we will consider some algorithms for
outlier detection that are inspired by this example. These algorithms are solely based on
statistical information and we can then discuss their properties by mathematical means. In
practice, outcomes should of course be assessed within the substantive context. We return
to this example in §11.

3 Model

Throughout, we consider data (yi, xi), i = 1, . . . , n where yi is univariate and xi has dimension
dimx. The regressors are possibly trending in a deterministic or stochastic fashion. We
assume that (yi, xi), i = 1, . . . , n satisfy the multiple regression equation

yi = β′xi + εi, i = 1, . . . , n. (3.1)

The innovations, εi, are independent of the filtration Fi−1, which is the sigma-field generated
by x1, . . . , xi and ε1, . . . , εi−1. Moreover, εi are identically distributed with mean zero and
variance σ2, so that εi/σ has known symmetric density f and distribution function F(c) =
P(εi ≤ σc). In practice, the distribution F will often be standard normal.
We will think of the outliers as pairs of observations (yi, xi) that do not conform with

the model (3.1). In other words, a pair of observations (yi, xi) gives us an outlier if the
scaled innovation εi/σ does not conform with reference density f. This has slightly different
consequences for cross-sectional data and for time series data. For cross-sectional data
the pairs of observations (y1, x1), . . . , (yn, xn) are unrelated. Thus, if the innovation εi is
classified as an outlier, then the pair of observations (yi, xi) is dropped. We can interpret
this as an innovation not conforming with the model, or that yi or xi or both are not correct.
This is different for time-series data, where the regressors will include lagged dependent
variables. For instance, for a first order autoregression xi = yi−1. We distinguish between
innovative outliers and additive outlier. Classifying the innovation εi as an outlier, has the
consequence that we discard the evaluation of the dynamics from yi−1 to yi without discarding
the observations yi−1 and yi. Indeed, yi−1 appears as the dependent variable at time i−1 and
the yi as the regressor at time i+1, respectively. Thus, finding a single outlier in a time series
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context, implies that the observations are considered correct, but possibly not generated by
the model. An additive outlier arises if an observation yi is wrongly measured. For a first
order autoregression this is captured by two innovative outliers εi and εi+1. Discarding these,
the observation yi will not appear.
We consider algorithms using absolute residuals and calculation of least squares estima-

tors from selected observations. Both these choices implicitly assume a symmetric density:
If non-outlying innovations were asymmetric then the symmetrically truncated innovations
would in general be asymmetric and the least squares estimator for location would be biased.
With symmetry the absolute value errors |εi|/σ have density g(c) = 2f(c) and distribution

function G(c) = P(|ε1| ≤ σc) = 2F(c)− 1. We define ψ = G(c) so that c is the ψ quantile

c = G−1(ψ) = F−1{(1 + ψ)/2}, ψ ∈ [0, 1[,

while the probability of exceeding the cut-off value c is

γ = 1− ψ = 1− G(c).

Define also the truncated moments

τ =

∫ c

−c
u2f(u)du, κ =

∫ c

−c
u4f(u)du, κ =

∫ ∞
−∞

u4f(u)du, (3.2)

and the conditional variance of ε1/σ given {|ε1| ≤ σc} as

ς2 = τ/ψ =

∫ c

−c
u2f(u)du/P(|ε1/σ| ≤ c), (3.3)

which will serve as a bias correction for the variance estimators based on the truncated
sample. Define also the quantity

ζ = 2c(c2 − ς2)f(c). (3.4)

In this paper we focus on the normal reference distribution. The truncated moments
then simplify as follows

τ = ψ − 2cf(c), κ = 3ψ − 2c(c2 + 3)f(c), κ = 3. (3.5)

4 Some outlier detection algorithms

Least squares estimators are known to be fragile with respect to outliers. A number of
robust methods have been developed over the years. We study a variety of estimators with
the common property that outlying observations are skipped.

4.1 M-estimators

Huber (1964) introduced M-estimators as a class of maximum likelihood type estimators for
location. The M-estimator for the regression model (3.1) is defined as the minimizer of

Rn(β) = n−1
∑n

i=1ρ(yi − x′iβ). (4.1)
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Figure 2: Huber-skip objective function for Fulton fish data.

for some absolutely continuous and non-negative criterion function ρ. In particular, the
least squares estimator arises when ρ(u) = u2 while the median or least absolute deviation
estimator arises for ρ(u) = |u|. We will pursue the idea of hard rejection of outliers through
the non-convex Huber-skip criterion function ρ(u) = u21(|u|≤σc) + c21(|u|>σc) for some cut-off
c > 0 and known scale σ.
The objective function of the Huber-skip M-estimator is non-convex. Figure 2 illustrates

the objective function for the Fish data.5 The specification is as in equation (2.1). All
parameters apart from that on qt−1 are held fixed at the values in (2.1). Panel (a) shows
that when the cut-off c is large the Huber-skip is quadratic in the central part. Panel (b)
shows that when the cut-off c is smaller the objective function is non-differentiable in a finite
number of points. Subsequently, we consider estimators that are easier to compute and apply
for unknown scale, while hopefully preserving some useful robustness properties.
The asymptotic theory of M-estimators has been studied in some detail for the situation

without outliers. Huber (1964) proposed a theory for location models and convex criterion
functions ρ. Jurečková and Sen (1996, p. 215f) analyzed the regression problem with convex
criterion functions. Non-convex criterion functions were considered for location models in
Jurečková and Sen (1996, p. 197f), see also Jurečková, Sen, and Picek (2012). Chen and Wu
(1988) showed strong consistency of M-estimators for general criterion functions with i.i.d.or
deterministic regressors, while time series regression is analyzed in Johansen and Nielsen
(2014b). We review the latter theory in §7.1.

4.2 Huber-skip estimators

We consider some estimators that involve skipping data points, but are not necessarily M-
estimators. The objective functions have binary stochastic weights vi for each observation.

5Graphics were done using R 3.1.1, see R Development Core Team (2014).
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These weights are defined in various ways below. In all cases the objective function is

Rn(β) = n−1
∑n

i=1{(yi − x′iβ)2vi + c2(1− vi)}. (4.2)

The weights vi may depend on β. The first example is the Huber-skip M-estimator which
depends on a cut-off point c, where

vi = 1(|yi−x′iβ|≤cσ). (4.3)

Another example is the Least Trimmed Squares estimator of Rousseeuw (1984) which de-
pends on an integer k ≤ n, where

vi = 1(|yi−x′iβ|≤ξ(k)), (4.4)

for ξ(k) chosen as the k-th smallest order statistic of absolute residuals ξi = |yi − x′iβ| for
i = 1, . . . , n. Given an integer k ≤ n we can find ψ and c so k/n = ψ = G−1(c), and ψ, c, k
are different ways of calibrating the methods. In either case, once the regression estimator
β̂ has been determined the scale can be estimated by

σ̂2 = ς−2(
∑n

i=1vi)
−1{
∑n

i=1vi(yi − x′iβ̂)2}, (4.5)

where ς2 = τ/ψ is the consistency correction factor defined in (3.3).
For the Least Trimmed Squares estimator it holds that

∑n
i=1(1− vi) = n− k. Thus, the

last term in the objective function (4.2) does not depend on β, so that it is equivalent to
optimize

Rn,LTS(β) = n−1
n∑
i=1

vi(yi − x′iβ)2. (4.6)

The Least Trimmed Squares weight (4.4) is scale invariant in contrast to the Huber-skip
M-estimator. It is known to have breakdown point of γ = 1− ψ = 1− k/n for ψ < 1/2, see
Rousseeuw and Leroy (1987, §3.4). An asymptotic theory is provided by Víšek (2006a,b,c).
The estimator is computed through a binomial search algorithm which is uncomputable in
most practical situations, see Maronna, Martin and Yohai (2006, §5.7) for a discussion. A
number of iterative approximations have been suggested such as the Fast LTS algorithm by
Rousseeuw and van Driessen (1998). This leaves additional questions with respect to the
properties of the approximating algorithms.
If the weights vi do not depend on β, the objective function has a least squares solution

β̂ = (
∑n

i=1vixix
′
i)
−1(
∑n

i=1vixiyi). (4.7)

From this the variance estimator (4.5) can be computed. Examples include 1-step Huber-skip
M-estimators based on initial estimators β̃, σ̃2, where

vi = 1(|yi−x′iβ̃|≤cσ̃)
, (4.8)

and 1-step Huber-skip L-estimators based on an initial estimator β̃ and a cut-off k < n,
which defines the k-th smallest order statistic ξ̃(k) of absolute residuals ξi = |yi−x′iβ̃|, where

vi = 1(|yi−x′iβ̃|≤ξ̃(k))
. (4.9)
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These estimators are computationally attractive, but require a good starting point. They
can also be iterated. As before, we see that the 1-step L-estimator does not require an initial
scale estimator in contrast to the 1-step M-estimator.
Robustified least squares arises if the initial estimators β̃, σ̃2 are the full-sample least

squares estimators. This relates to the estimation procedure for the Fulton Fish Market
data in §2. This approach can be fragile, especially when there are more than a few outliers,
see Welsh and Ronchetti (2002) for a discussion.
The 1-step estimators relate to the 1-step M-estimators of Bickel (1975), although he was

primarily concerned with smooths weights vi. His idea was to apply preliminary estimators
β̂(0), (σ̂(0))2 and then define the 1-step estimator β̂(1) by linearising the first order condition.
He also suggested iteration, but no results were given.
Ruppert and Carroll (1980) studied a related 1-step L-estimator for which fixed propor-

tions of negative and positive residuals are skipped. Following their suggestion we refer to
the estimator with weights (4.9) as a 1-step Huber-skip L-estimator, because the objective
function is defined by weights involving an order statistics. We note that there is a mismatch
in the nomenclature of L and M-estimators. Jaeckel (1971) defined L-estimators for location
problems in terms of the estimator, whereas Huber (1964) defined M-estimators in terms of
the objective function. Thus, the Least Trimmed Squares estimator is not classified as an
L-estimator, although its objective function is a quadratic combination of order statistics.

4.3 Some statistical algorithms

We give three statistical algorithms involving iteration of 1-step Huber-skip estimators.
These are the iterated 1-step Huber-skip M-estimator, the Impulse Indicator Saturation,
and the Forward Search.
The 1-step Huber-skip estimators are amenable to iteration. Here we consider iterated

Huber-skip M-estimators.

Algorithm 4.1 Iterated 1-step Huber-skip M-estimator. Choose a cut-off c > 0.
1. Choose initial estimators β̂(0), (σ̂(0))2 and let m = 0.

2. Define indicator variables v(m)i as in (4.8), replacing β̃, σ̃2 by β̂(m), (σ̂(m))2.
3. Compute least squares estimators β̂(m+1), (σ̂(m+1))2 as in (4.7), (4.5) replacing vi by v

(m)
i .

4. Let m = m+ 1 and repeat 2 and 3.

The Iteration Algorithm 4.1 does not have a stopping rule. This leaves the questions
whether the algorithm convergences with increasing m and n and in which sense it approxi-
mates the Huber-skip estimator.
The Impulse Indicator Saturation algorithm has its roots in the empirical work of Hendry

(1999) and Hendry, Johansen and Santos (2008). It is a 1-step M-estimator, where the
initial estimator is formed by exploiting in a simple way the assumption, that a subset of
observations is free of outliers. The idea is to divide the sample into two sub-samples. Then
run a regression on each sub-sample and use this to find outliers in the other sub-sample.

Algorithm 4.2 Impulse Indicator Saturation. Choose a cut-off c > 0.
1.1. Split indices in sets Ij, for j = 1, 2, of nj observations.
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1.2. Calculate the least squares estimators for (β, σ2) based upon sample Ij as

β̂j = (
∑

i∈Ijxix
′
i)
−1(
∑

i∈Ijxiyi), σ̂2j =
1

nj

∑
i∈Ij(yi − x

′
iβ̂j)

2.

1.3. Define indicator variables for each observation

v̂
(−1)
i = 1(i∈I1)1(|yi−x′iβ̂2|≤cσ̂2)

+ 1(i∈I2)1(|yi−x′iβ̂1|≤cσ̂1)
, (4.10)

1.4. Compute least squares estimators β̂(0), (σ̂(0))2 using (4.7), (4.5), replacing vi by v̂
(−1)
i

and let m = 0.
2. Define indicator variables v(m)i = 1(|yi−x′iβ̂(m)|≤cσ̂(m))

as in (4.8).

3. Compute least squares estimators β̂(m+1), (σ̂(m+1))2 as in (4.7), (4.5), replacing vi by v
(m)
i .

4. Let m = m+ 1 and repeat 2 and 3.

Due to its split half approach to the initial estimation, the Impulse Indicator Satura-
tion may be more robust than robustified least squares. The Impulse Indicator Saturation
estimator will work best when the outliers are known to be in a particular subset of the
observations. For instance, consider the split half case where index sets I1, I2 are chosen as
the first half and the second half of the observations, respectively. Then the algorithm has a
good ability to detect for instance a level shift half way through the second sample, while it
is poor at detecting outliers scattered throughout both samples, because both sample halves
are contaminated. If the location of the contamination is unknown, one will have to iterate
over the choice of the initial sets I1, I2. This is what the more widely used Autometrics
algorithm does, see Doornik (2009) and Doornik and Hendry (2014).
The Forward Search algorithm is an iterated 1-step Huber-skip L-estimator suggested

for the multivariate location model by Hadi (1992) and for multiple regression by Hadi and
Simonoff (1993) and developed further by Atkinson and Riani (2000), see also Atkinson,
Riani and Cerioli (2010). The algorithm starts with a robust estimate of the regression
parameters. This is used to construct the set of observations with the smallest m0 absolute
residuals. We then run a regression on thosem0 observations and compute absolute residuals
of all n observations. The observations with m0 + 1 smallest residuals are then selected, and
a new regression is performed on these m0 + 1 observations. This is then iterated. Since
the estimator based on the m0 + 1 observation is computed in terms of the order statistic
based on the estimator for the m0 observation, it is a 1-step Huber-skip L-estimator. When
iterating the order of the order statistics is gradually expanding.

Algorithm 4.3 Forward Search.
1. Choose an integer m0 < n and an initial estimators β̂(m0), and let m = m0.
2.1. Compute absolute residuals ξ̂(m)i = |yi − x′iβ̂(m)| for i = 1, . . . , n.

2.2. Find the (m+ 1)th smallest order statistic ẑ(m) = ξ̂
(m)
(m+1).

2.3. Define indicator variables v(m)i = 1
(|yi−x′iβ̂(m)|≤ξ̂

(m)
(m+1)

)
as in (4.9).

3. Compute least squares estimators β̂(m+1), (σ̂(m+1))2 as in (4.7), (4.5) replacing vi by v
(m)
i .

4. If m < n let m = m+ 1 and repeat 2 and 3.
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The Forward Search Algorithm 4.3 has a finite number of steps. It terminates when
m = n − 1 and β̂(n), (σ̂(n))2 are the full sample least squares estimators. Applying the
algorithm form = m0, . . . , n−1, results in sequences of least squares estimators β̂(m), (σ̂(m))2

and order statistics ẑ(m) = ξ̂
(m)
(m+1).

The idea of the Forward Search is to monitor the plot of scaled forward residuals ẑ(m)/σ̂(m).
For each m we can find the asymptotic distribution of ẑ(m)/σ̂(m) and add a curve of point-
wise p-quantiles as a function of m for some p. The first m for which ẑ(m)/σ̂(m) exceeds the
quantile curve is the estimate m̂ of the number of non-outliers. Asymptotic theory for the
forward residuals ẑ(m)/σ̂(m) is reviewed in §8.3. A theory for the estimator m̂ is given in §10.
A variant of the Forward Search advocated by Atkinson and Riani (2000) is to use the

minimum deletion residuals d̂(m) = mini 6∈S(m) ξ̂
(m)
i instead of the forward residuals ẑ(m).

5 Overview of the results for the location case

We give an overview of the asymptotic theory for the M-type Huber-skip estimators for the
location problem, where x′iβ reduces to a location parameter µ. The theory evolves around
two asymptotic results. The first is an asymptotic distribution for the M-estimator. The
second is an asymptotic expansion for 1-step M-estimators. The iterated 1-step M-estimators
are found to converge to the M-estimator.
Huber (1964) proposed an asymptotic theory for M-estimators with convex objective

function in location models. His proof did not extend to the Huber-skip M-estimator based
on the weights (4.3). Instead he assumed consistency and conjectured that the asymptotic
distribution would be, for symmetric f,

n1/2(µ̂− µ) =
1

ψ − 2cf(c)
n−1/2

∑n
i=1εi1(|εi|≤σc) + oP(1)

D→ N[0,
τσ2

{ψ − 2cf(c)}2 ]. (5.1)

This result is generalized to time series regression in Theorem 7.1.
In the situation with normal errors τ = ψ − 2cf(c), see (3.5), the asymptotic variance in

(5.1) reduces to σ2/τ. The effi ciency relative to the sample average, which is the least squares
estimator, is therefore τ. The bottom curve plotted in Figure 3 shows the effi ciency as a
function of ψ. The least trimmed squares estimator has the same asymptotic distribution.
Next, consider the 1-step Huber-skip M-estimator based on weights (4.8). It has asymp-

totic expansion linking the updated estimator µ̂(1) with the initial estimator µ̂(0) through

n1/2(µ̂(1) − µ) =
1

ψ
n−1/2

∑n
i=1εi1(|εi|≤σc) +

2cf(c)

ψ
n1/2(µ̂(0) − µ) + oP(1), (5.2)

see Theorem 7.2 for regression.
Robustified least squares arises, if we choose the initial estimator µ̂(0) as the least squares

estimator. In that case we get the expansion

n1/2(µ̂(1) − µ) =
1

ψ
n−1/2

∑n
i=1εi1(|εi|≤σc) +

2cf(c)

ψ
n−1/2

∑n
i=1εi + oP(1). (5.3)

We can use the Central Limit Theorem to show asymptotic normality of the estimator.
The asymptotic variance follows in Theorem 7.3. The effi ciency relative to least squares
estimation is shown as the top curve in Figure 3.



11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cutoff value c

ef
fi

ci
en

cy

robustified least squares
 =Impulse Indicator Saturation, m=0
Impulse Indicator Saturation, m=1
Huberskip Mestimator

Figure 3: The effi ciency of robustified least squares, the Impulse Indicator Saturation, and
the Huber-skip M-estimator relative to full sample least squares when the reference distrib-
ution is normal.

Starting with other estimators give different asymptotic variances. An example is the
Impulse Indicator Saturation Algorithm 4.2. Theorem 7.4 shows that the initial split-half
estimator µ̂(0) has the same asymptotic distribution as the robustified least squares estimator.
The updated 1-step estimator µ̂(1) is slightly less effi cient, as shown by the middle curve in
Figure 3, but hopefully more robust.
The 1-step M-estimator can be iterated along the lines of Algorithm 4.1. This iteration

has a fixed point µ̂∗ solving the equation

n1/2(µ̂∗ − µ) =
1

ψ
n−1/2

∑n
i=1εi1(|εi|≤σc) +

2cf(c)

ψ
n1/2(µ̂∗ − µ) + oP(1), (5.4)

see Theorem 7.6. Thus, any influence of the initial estimator is lost through iteration. Solving
this equation gives

n1/2(µ̂∗ − µ) =
1

ψ − 2cf(c)

∑n
i=1εi1(|εi|≤σc) + oP(1), (5.5)

with the same leading term as the Huber-skip M-estimator in (5.1).

6 Preliminary asymptotic results

We present the main ingredient for the asymptotic theory.

6.1 Assumptions on regressors and density

The innovations εi and regressors xi must satisfy moment assumptions. The innovations εi
have symmetric density with derivative satisfying boundedness and tail conditions. Related
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conditions on the density are often seen in the literatures on empirical processes and quantile
processes. These conditions are satisfied for the normal distribution and t-distributions,
see Johansen and Nielsen (2014a) for a discussion. For the iterated estimator we need an
assumption of unimodality. The minimal assumptions vary for the different estimators,
as explored in Johansen and Nielsen (2009, 2013, 2014a, 2014b) for 1-step Huber-skip M-
estimators, for iterated 1-step Huber-skip M-estimators, for the Forward Search and for
general M-estimators, respectively.
For this presentation we simply assume a normal reference distribution, which, of course,

is most used in practice. With normality we avoid a somewhat tedious discussion of existence
of moments of a certain order. The regressors can be temporally dependent and possibly
deterministically or stochastically trending.

Assumption 6.1 Let Fi be the filtration generated by x1, . . . , xi+1 and ε1, . . . , εi. Assume
(i) innovations εi/σ are independent of Fi−1 and standard normal;
(ii) regressors xi satisfy, for some non-stochastic normalisation matrix N → 0 and random
matrices V,Σ, µ, the following joint convergence results hold

(a) Vn = N ′
∑n

i=1 xiεi
D→ V ;

(b) Σn = N ′
∑n

i=1 xix
′
iN

D→ Σ
a.s.
> 0;

(c) n−1/2N ′
∑n

i=1 xi
D→ µ;

(d) maxi≤n |n1/2N ′xi| = oP(nφ) for all φ > 0;
(e) n−1E

∑n
i=1 |n1/2N ′xi|q = O(1) for some q > 9.

The Assumption 6.1(ii) for the regressors are satisfied in a range of situations, see Jo-
hansen and Nielsen (2009). For instance, xi could be vector autoregressive with stationary
roots or roots at one. It also holds for quite general regressors including polynomial regres-
sors. The normalisation is N = n−1/2Idimx for stationary regressors and N = n−1Idimx for
random walk regressors.
We note that Assumption 6.1 implies Assumption 3.1(i, ii) of Johansen and Nielsen

(2014a) by choosing η = 1/4, q0 = q > 9 and a κ = φ for a small φ > 0 so that 0 < κ is
bounded by the minimum of η, 1/(1 + dimx) and (q − 9)/(q − 1).

6.2 Weighted and marked empirical processes

The asymptotic analysis of Huber-skip estimators is concerned with a class of weighted and
marked empirical processes. The 1-step estimators for β and σ2 have estimation errors that
can be expressed in terms of statistics of the form∑n

i=1vi,
∑n

i=1vixiεi,
∑n

i=1vixix
′
i,

∑n
i=1viε

2
i , (6.1)

where vi are indicator functions for small residuals. Such sums of indicator functions are the
basis for empirical process. The Fi−1-predictable factors xi and xix′i are called weights in
line with Koul (2002). The unbounded, Fi-adapted factors εi and ε2i are said to be marks.
For M-type estimators, the indicator functions have the form

vM,i = 1{|εi−x′i(β̃−β)|≤σc+(σ̃−σ)c}
= 1{|εi−x′iNb̃|≤σc+n−1/2ãc}

, (6.2)
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which allows for estimation uncertainty b̃ = N−1(β̃−β) and ã = n1/2(σ̃−σ) in the regression
coeffi cient β and in the scale σ. For L-type estimators the indicators are

vL,i = 1{|εi−x′i(β̃−β)|≤ξ̃(k)}
= 1{|εi−x′iNb̃|≤σ(c+n−1/2d̃)}

, (6.3)

which allows for estimation uncertainty b̃ = N−1(β̃ − β) and d̃ = n1/2(ξ̃/σ − c) in the
regression coeffi cient β and in the quantile ξ.
We will need an asymptotic linearization of the statistics (6.1) with respect to the esti-

mation uncertainty. For this purpose we start by considering weights

vb,c,di = 1{|εi−x′iNb|≤σ(c+n−1/2d)}, (6.4)

where the estimation uncertainty is replaced by bounded, deterministic terms b, d. Subse-
quently, we apply the result to M-type and L-type estimators, by replacing b by b̃ and d by
ãc/σ and d̃, respectively.
The following asymptotic expansion is a version of Lemma D.5 of Johansen and Nielsen

(2014a) formulated under the present simplified Assumption 6.1.

Theorem 6.1 (Johansen and Nielsen, 2014a, Lemma D.5) Suppose Assumption 6.1 holds.
Consider the product moments (6.1) with weights vb,c,di given by (6.4) and expansions

n−1/2
∑n

i=1v
b,c,d
i = n−1/2

∑n
i=11(|εi|≤σc) + 2f(c)d+Rv(b, c, d),

n−1/2
∑n

i=1v
b,c,d
i ε2i = n−1/2

∑n
i=1ε

2
i 1(|εi|≤σc) + 2σ2c2f(c)d+Rvεε(b, c, d),

N ′
∑n

i=1v
b,c,d
i xiεi = N ′

∑n
i=1xiεi1(|εi|≤σc) + 2cf(c)N ′

∑n
i=1xix

′
iNb+Rvxε(b, c, d),

N ′
∑n

i=1v
b,c,d
i xix

′
iN = ψN ′

∑n
i=1xix

′
iN +Rvxx(b, c, d).

Let
R(b, c, d) = |Rv(b, c, d)|+ |Rvεε(b, c, d)|+ |Rvxε(b, c, d)|+ |Rvxx(b, c, d)|

Then it holds for all (large) B > 0, all (small) η > 0 and n→∞ that

sup
|b|,|d|≤n1/4−ηB

sup
0<c<∞

R(b, c, d) = oP(1). (6.5)

In particular, for bounded c, then

sup
|a|,|b|≤n1/4−ηB

sup
0<c≤B

R(b, c, ac/σ) = oP(1). (6.6)

Theorem 6.1 is proved by a chaining argument. The idea is to cover the domain of b, d
with a finite number of balls. The supremum over the large compact set can then be replaced
by considering the maximum value over the centers of the balls and the maximum of the
variation within balls. By subtracting the compensators of the product moments we turn
them into martingales. The argument will therefore be a consideration of the tail behaviour
of the maximum of a family of martingales using the iterated martingale inequality presented
in §6.3 and Taylor expansions of the compensators.
Related results of Theorem 6.1 are considered in the literature. Koul and Ossiander

(1994) considered weighted empirical processes without marks and with η > 1/4. Johansen
and Nielsen (2009) considered the situation (6.6) for fixed c and with η > 1/4.
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6.3 An iterated martingale inequality

We present an iterated martingale inequality, which can be used to assess the tail behaviour
of the maximum of a family of martingales. It builds on an exponential martingale inequality
by Bercu and Touati (2008).

Theorem 6.2 (Bercu and Touati, 2008, Theorem 2.1) For i = 1, . . . , n let (mi,Fi) be a
locally square integrable martingale difference. Then, for all x, y > 0,

P[|
∑n

i=1mi| ≥ x,
∑n

i=1{m2
i + E(m2

i |Fi−1)} ≤ y] ≤ 2 exp(−x
2

2y
).

In order to bound a family of martingales it is useful to iterate this martingale inequality
to get the following iterated martingale inequality.

Theorem 6.3 (Johansen and Nielsen, 2014a, Theorem 5.2.) For ` = 1, . . . , L let z`,i be
Fi-adapted so Ez2

r

`,i <∞ for some r ∈ N. Let Dr = max1≤`≤L
∑n

i=1E(z2
r

`,i|Fi−1) for 1 ≤ r ≤ r.
Then, for all κ0, κ1, . . . , κr > 0, it holds

P[ max
1≤`≤L

|
∑n

i=1{z`,i − E(z`,i|Fi−1)}| > κ0] ≤ L
EDr

κr
+
∑r

r=1

EDr

κr
+ 2L

∑r−1
r=0 exp(− κ2r

14κr+1
).

Theorem 6.3 contains parameters κ0, κ1, . . . , κr, which can be chosen in various ways. We
give two examples taken from Theorems 5.3, 5.4 of Johansen and Nielsen (2014a)
The first example is to show that the remainder terms in Theorem 6.1 are uniformly

small. In the proof we consider a family of size L = O(nλ) where λ > 0 depends on the
dimension of the regressor and seek to prove that the maximum of the family of martingales
is of order oP(n1/2). Choosing κq = (κn1/2)2

q
(28λ log n)1−2

q
, so that κ2q/κq+1 = 28λ log n and

κ0 = κn1/2, a result of that type follows.
The second example is to show that the empirical processes (6.1) are tight. In this case

the family is of fixed size L, and now the probability that the maximum of the family of
martingales is larger than κn1/2 has to be bounded by a small number. Choosing κq =
κn2

q−1
θ1−2

q
so κ2q/κq+1 = κθ and κ0 = κn1/2 a result of that type follows.

7 Asymptotic results for Huber-skip M-estimators

We consider recent results on the Huber-skip M-estimator as well as for 1-step Huber-skip
M-estimators and iterations thereof.

7.1 Huber-skip M-estimators

The Huber-skip M-estimator is the solution to the optimization problem (4.2) with weights
(4.3). Since this problem is non-convex we need an additional assumption that bounds
the frequency of small regressors. That bound involves a function that is an approximate
inverse of the function λn(α) appearing in the analysis of S-estimators by Davies (1990), see
also Chen and Wu (1988). The bound can be satisfied for stationary and non-stationary
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regressors. The condition is used to prove that the objective function is uniformly bounded
below for large values of the parameter, a property that implies existence and tightness of
the estimator. For full descriptions of the bound to the regressors and extensions to a wider
class of M-estimators, see Johansen and Nielsen (2014b).

Theorem 7.1 (Johansen and Nielsen, 2014b, Theorems 1,2,3) Consider the Huber-skip M-
estimator defined from (4.2), (4.3). Suppose Assumption 6.1 holds and that the frequency of
small regressors is bounded as outlined above. Then any minimizer of the objective function
(4.2) has a measurable version and satisfies

N−1(β̂ − β) =
1

ψ − 2cf(c)
Σ−1n N ′

∑n
i=1xiεi1(|εi|≤σc) + oP(1).

If, in addition the regressors are stationary then

n1/2(β̂ − β)
D→ N{0,Σ−1σ2/τ}.

Theorem 7.1 proves the conjecture (5.1) of Huber (1964) for time series regression. The
regularity conditions on the regressors are much weaker than those normally considered in
for instance Chen and Wu (1988), Liese and Vajda (1994), Maronna, Martin, and Yohai
(2006), Huber and Ronchetti (2009), and Jurečková, Sen, and Picek (2012). Theorem 7.1
extends to non-normal, but symmetric densities and even to non-symmetric densities and
objective function, by introducing a bias correction.
Theorem 7.1 is proved in three steps. First, it is shown that β̂ is tight, that isN−1(β̂−β) =

OP(n1/2), through a geometric argument that requires the assumption to the frequency of
small regressors. Secondly, it is shown that β̂ is consistent, in the sense that N−1(β̂ − β) =
OP(n1/2−τ ) for any τ < 1/4, using the iterated martingale inequality of Theorem 6.3. Finally,
the presented expansion of Theorem 7.1 is proved, again using Theorem 6.3.

7.2 1-step Huber-skip M-estimators

The asymptotic theory of the 1-step Huber-skip M-estimator for regression is given in Jo-
hansen and Nielsen (2009). The main result is a stochastic expansion of the updated esti-
mation error in terms of a kernel and the original estimation error. It follows from a direct
application of Theorem 6.1.

Theorem 7.2 (Johansen and Nielsen, 2009, Corollary 1.2) Consider the 1-step Huber-skip
M-estimators β̂(1), σ̂(1) defined by (4.7), (4.5) with weights (4.8). Suppose Assumption 6.1
holds and that N−1(β̂(0) − β) and n1/2(σ̂(0) − σ) are OP(1). Then

N−1(β̂(1) − β) =
1

ψ
Σ−1n N ′

∑n
i=1xiεi1(|εi|≤σc) +

2cf(c)

ψ
N−1(β̂(0) − β) + oP(1). (7.1)

n1/2(σ̂(1) − σ) =
1

2τσ
n−1/2

∑n
i=1(ε

2
i − σ2

τ

ψ
)1(|εi|≤σc) +

ζ

2τ
n1/2(σ̂(0) − σ) + oP(1) (7.2)
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Theorem 7.2 generalises the statement (5.2) for the location problem. Theorem 7.2 shows
that the updated regression estimator β̂(1) only depends on the initial regression estimator
β̂(0) and not on the initial scale estimator σ̂(0). This is a consequence of the symmetry imposed
on the problem. Johansen and Nielsen (2009) also analyze situations where the reference
distribution f is non-symmetric and the cut-off is made in a matching non-symmetric way.
In that situation both expansions involve the initial estimation uncertainty for β and σ2.
We can immediately use Theorem 7.2 for an m-fold iteration of (7.1), (7.2). Results for

infinite iterations follow in §7.5.

7.3 Robustified Least Squares

Robustified least squares arises when the initial estimators are the full-sample least squares
estimator. We can analyze this 1-step Huber-skip M-estimator using Theorem 7.2. The
product moment properties in Assumption 6.1 imply that the initial estimators satisfy

N−1(β̃ − β) = OP(1), n1/2(σ̃2 − σ2) = n−1/2
∑n

i=1(ε
2
i − σ2) + OP(n−1/2). (7.3)

Thus, the conditions of Theorem 7.2 are satisfied so that the robustified least squares esti-
mators can be expanded as in (7.1), (7.2). The asymptotic distribution of estimator for β
will depend on the properties of the regressors. For simplicity the regressors are assumed
stationary in the following result.

Theorem 7.3 (Johansen and Nielsen, 2009, Corollary 1.4) Consider the 1-step Huber-skip
M-estimator defined with the weights (4.8) and where the initial estimators β̃, σ̃2 are the
full-sample least squares estimators. Suppose Assumption 6.1 holds and that the regressors
are stationary. Then

n1/2
(

β̂ − β
σ̂2 − σ2

)
D→ N

{
0,

(
σ2ηβΣ−1 0

0 2σ4ησ

)}
,

where, using the coeffi cients (τ,κ, ζ) from (3.2) and (3.4), the effi ciency factors ηβ, ησ are

ψ2ηβ = τ{1 + 4cf(c)}+ {2cf(c)}2, 2τ 2ησ = (κ − τ 2/ψ)(1 + ζ) +
ζ2

4
(κ− 1). (7.4)

The result generalises the statement (5.3) for the location problem. The effi ciency factor
ηβ is plotted as the top curve in Figure 3. A plot of the effi ciency for the variance, ησ can be
found in Johansen and Nielsen (2009, Figure 1.1). Situations with non-stationary regressors
are also discussed in that paper.

7.4 Impulse Indicator Saturation

Impulse Indicator Saturation is a second example of a 1-step Huber-skip M-estimator. This
requires the choice of sub-samble Ij, each with nj observations. If the product moment
properties of Assumption 6.1 hold for each sub-sample and nj/n → λj > 0 then the initial
estimators satisfy

N−1(β̂j − β) = OP(1), n
1/2
j (σ̂2 − σ2) = n

−1/2
j

∑
i∈Ij(ε

2
i − σ2) + OP(n−1/2). (7.5)
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The asymptotic distribution theory will depend on the choice of sub-samples and regressors.
For simplicity we only report the split-half case with subsets I1 = (i ≤ n/2) and I2 = (i >
n/2) and stationary regressors.

Theorem 7.4 (Johansen and Nielsen, 2009, Theorems 1.5, 1.7) Consider the split-half Im-
pulse Indicator Saturation estimator of Algorithm 4.2. Suppose Assumption 6.1 holds with
stationary regressors. Recall the effi ciency factors ηβ, ησ from (7.4). Then the initial esti-
mators satisfy

n1/2
{

β̂(0) − β
(σ̂(0))2 − σ2

}
D→ N

{
0,

(
σ2ηβΣ−1 0

0 2σ4ησ

)}
,

Moreover, the updated Impulse Indicator Saturation estimator satisfies

n1/2(β̂(1) − β)
D→ N(0, σ2ηiisβ Σ−1),

where
ψ4ηiisβ = {ψ + 2cf(c)}τ [ψ + 2cf(c) + 2{2cf(c)}2] +

1

2
{2cf(c)}4.

The effi ciency factors ηβ and ηiisβ for the split-half case are plotted as the top and the
middle curve, respectively, in Figure 3. Johansen and Nielsen (2009) also discuss situations
with general index sets I1, I2 and where the regressors are non-stationary.

7.5 Iterated 1-step Huber-skip M-estimators

The asymptotic theory of the iterated 1-step Huber-skip M-estimator for regression is given
in Johansen and Nielsen (2013). This includes iteration of the robustified least squares
estimator and of the Impulse Indicator Saturation estimator with general index sets and
general regressors. In each step the asymptotic theory is governed by Theorem 7.2. But
what does it take to control the iteration and establish a fixed point result?
We start by showing that the sequence of normalised estimators β̂(m), σ̂(m) is tight.

Theorem 7.5 (Johansen and Nielsen, 2013, Theorem 3.3) Consider the iterated 1-step
Huber-skip M-estimator in Algorithm 4.1. Suppose Assumption 6.1 holds and that N−1(β̂(0)−
β) and n1/2(σ̂(0) − σ) are OP(1). Then

sup
0≤m<∞

|N−1(β̂(m) − β)|+ |n1/2(σ̂(m) − σ)| = OP(1).

Theorem 7.5 is proved by showing that the expansions (7.1), (7.2) are contractions.
Necessary conditions are that 2cf(c)/ψ < 1 and ζ/(2τ) < 1. This holds for normal or t-
distributed innovations, see Johansen and Nielsen (2013, Theorem 3.6).
In turn, Theorem 7.5 leads to a fixed point result for infinitely iterated estimators.

Theorem 7.6 (Johansen and Nielsen, 2013, Theorem 3.3) Consider the iterated 1-step
Huber-skip M-estimator in Algorithm 4.1. Suppose Assumption 6.1 holds and that N−1(β̂(0)−
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β) and n1/2(σ̂(0) − σ) are OP(1). Then, for all ε, η > 0 a pair m0, n0 > 0 exists so for all
m > m0 and n > n0 it holds

P{|N−1(β̂(m) − β̂∗)|+ n1/2|σ̂(m) − σ̂∗| > η} < ε,

where

N−1(β̂∗ − β) =
1

ψ − 2cf(c)
Σ−1n N ′

∑n
i=1xiεi1(|εi|≤σc), (7.6)

n1/2{(σ̂∗)2 − σ2} =
2

2τ − ζ n
−1/2∑n

i=1(ε
2
i − σ2τ/ψ)1(|εi|≤σc). (7.7)

Recently Cavaliere and Georgiev (2013) made a similar analysis of a sequence of Huber-
skip M-estimators for the parameter of a first order autoregression with infinite variance
errors and an autoregressive coeffi cient of unity.
Iterated 1-step Huber-skip M-estimators can be viewed as iteratively reweighted least

squares with binary weights. Dollinger and Staudte (1981) gave conditions for convergence
of iteratively reweighted least squares for smooth weights. Their argument was cast in
terms of influence functions. While Theorem 7.6 is similar in spirit, the employed tightness
argument is different because of the binary weights.
An issue of interest in the literature is, whether a slow initial convergence rate can be

improved upon through iteration. This would open up for using robust estimators converging
for instance at an n1/3 rate as initial estimator. An example would be the Least Median
Squares estimator of Rousseeuw (1984). Such a result would complement the result of He
and Portnoy (1992), who find that the convergence rate cannot be improved in a single step
of the iteration, as well as Theorem 8.3 below showing that the Forward Search can improve
the rate of a slowly converging initial estimator.

8 Asymptotic results for Huber-skip L-type estimators

The difference between the Huber-skip estimators of the M-type and the L-type is that the
former have a fixed cut-off, whereas the latter have a cut-off determined from the order
statististics of the absolute residuals. The asymptotic results appear to be the same, but
the argument to get there is a bit more convoluted for the L-type estimators because of the
quantiles involved. We give an overview of the results for Least Trimmed Squares estimators,
1-step Huber-skip L-estimators as well as the Forward Search.

8.1 Least Trimmed Squares

The Least Trimmed Squares estimator has the same asymptotic expansion as the Huber-skip
M-estimator. Víšek (2006a,b,c) proved this for the case of fixed regressors.

Theorem 8.1 (Víšek, 2006c, Theorem 1) Consider the Least Trimmed Squares estimator
β̂LTS defined as minimizer of (4.6). Suppose Assumption 6.1 holds. Suppose the regressors
are fixed and that their empirical distribution can be suitably approximated by a continuous
distribution function, see Víšek (2006c) for details. Then

N−1(β̂LTS − β) =
1

ψ − 2cf(c)
Σ−1n N ′

∑n
i=1xiεi1(|εi|≤σc) + oP(1).
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8.2 1-step Huber-skip L-estimators

The 1-step Huber-skip L-estimator has the following expansion.

Theorem 8.2 Consider the 1-step Huber-skip L-estimators β̂(1), σ̂(1) defined by (4.7), (4.5)
with weights (4.9). Suppose Assumption 6.1 holds and that N−1(β̂(0) − β) is OP(1). Then

N−1(β̂(1) − β) =
1

ψ
Σ−1n N

∑n
i=1xiεi1(|εi|≤σc) +

2cf(c)

ψ
N−1(β̂(0) − β) + oP(1). (8.1)

n1/2(σ̂(1) − σ) =
1

2τσ
n−1/2

∑n
i=1(ε

2
i − σ2

τ

ψ
)1(|εi|≤σc) +

ζ

2τ
n1/2(

ξ̂(k)
c
− σ) + oP(1) (8.2)

=
1

2τσ
n−1/2

∑n
i=1(ε

2
i − σ2

τ

ψ
)1(|εi|≤σc) +

σζ

4cτ
n−1/2

∑n
i=1{1(|εi|≤σc) − ψ}+ oP(1)

(8.3)

Proof. Equations (8.1), (8.2) follow from Theorem 6.1. Equation (8.3) with its expansion
of the quantile ξ̂(k) follows from Johansen and Nielsen (2014a, Lemma D.11).

Ruppert and Carroll (1980) state a similar result for a related 1-step L-estimator, but
omit the details of the proof. It is interested to note that the expansions of the one-step
regression estimator of L-type in (8.1) is the same as for the M-type in (7.1). In contrast, the
variance estimators have different expansions. In particular, the L-estimator does not use
the initial variance estimator and, consequently, the expansion does not involve uncertainty
from the initial estimation.

8.3 Forward Search

The Forward Search is an iterated 1-step Huber-skip L-estimator, where the cut-off changes
slightly in each step. We highlight asymptotic expansions for the forward regression estima-
tors β̂(m) and for the scaled forward residuals ẑ(m)/σ̂(m). The results are formulated in terms
of embeddings of the time series β̂(m), σ̂(m), ẑ(m) for m = m0 + 1, . . . , n into the space D[0, 1]
of right continuous functions with limits from the left, for instance,

β̂ψ =

{
β̂(m) for m = integer(nψ) and ψ0 = m0/n ≤ ψ ≤ 1,
0 otherwise.

Theorem 8.3 (Johansen and Nielsen, 2014a, Theorems 3.1, 3.2, 3.5) Consider the Forward
Search estimator in Algorithm 4.3. Suppose Assumption 6.1 holds and that N−1(β̂(m0) − β)
is OP(n1/4−η) for some η > 0. Let ψ1 > ψ0. Then, it holds

sup
ψ1≤ψ≤1

|N−1(β̂ψ − β)− 1

ψ − 2cψf(cψ)
Σ−1n N ′

∑n
i=1xiεi1(|εi/σ|≤cψ)| = oP(1),

sup
ψ0≤ψ≤n/(n+1)

|τn1/2(
σ̂2ψ
σ2
− 1)− n−1/2

∑n
i=1{(

εi
σ

)2 − τ

ψ
}1(|εi/σ|≤cψ)

+(c2ψ −
τ

ψ
)n−1/2

∑n
i=1(1(|εi/σ|≤cψ) − ψ)| = oP(1),

sup
ψ0≤ψ≤n/(n+1)

|2f(cψ)n1/2(ẑψ/σ − cψ) + n−1/2
∑n

i=1{1(|εi/σ|≤cψ) − ψ}| = oP(1).
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The asymptotic variances and covariances are given in Theorem A.1.

The proof uses the theory of weighted and marked empirical processes outlined in §6.2
combined with the theory of quantile processes discussed in Csörgő (1983). A single step of
the algorithm was previously analyzed in Johansen and Nielsen (2010).
Comparing Theorem 8.3 with Theorems, 7.6, 8.1, we recognise the asymptotic result for

the estimator for β. The effi ciency relative to the least squares estimator is shown as the bot-
tom curve in Figure 3. The asymptotic expansion for the variance estimator σ̂2ψ is, however,
different from the expression for the iterated 1-step Huber-skip M-estimator in Theorem
7.6, reflecting the different handling of the scale. The Bahadur (1966) representation link-
ing the empirical distribution of the scaled innovations εi/σ with their order statistics, ĉψ
say, implies that 2f(cψ)n1/2(ẑψ/σ − ĉψ) vanishes. Moreover, the minimum deletion residual
d̂(m) = mini 6∈S(m) ξ̂

(m)
i has the same asymptotic expansion as ẑ(m) = ξ̂

(m)
(m+1) after a burn-in

period. See Johansen and Nielsen (2014a, Theorem 3.4) for details.
The idea of the Forward Search is to monitor the plot of the sequence of scaled forward

residuals. Combining the expansions for σ̂ψ and ẑψ in Theorem 8.3 gives the next result.

Theorem 8.4 (Johansen and Nielsen 2014a, Theorem 3.3). Consider the Forward Search-
estimator in Algorithm 4.3. Suppose Assumption 6.1 holds and that N−1(β̂(m0) − β) is
OP(n1/4−η) for some η > 0. Let ψ1 > ψ0. Then

sup
ψ0≤ψ≤n/(n+1)

|2f(cψ)n1/2(
ẑψ
σ̂ψ
− cψ) + Zn(cψ)| = oP(1),

where the process Zn(c) given by

{1− cψf(cψ)

τ
(c2ψ −

τ

ψ
)}n−1/2

∑n
i=1{1(|εi/σ|≤c) − ψ}+

cψf(cψ)

τ
n−1/2

∑n
i=1{(

εi
σ

)2 − τ

ψ
}1(|εi/σ|≤c)

(8.4)
converges to a Gaussian process Z. The covariance of Z is given in Theorem A.1.

Part II

Gauge as a measure of false detection
We now present some new results for the outlier detection algorithms. Outlier detection
algorithms will detect outliers with a positive probability when in fact there are no outliers. xxx
We analyze this in terms of the gauge, which is the expected frequency of falsely detected
outliers when, in fact, the data generating process has no outliers. The idea of a gauge
originates in the work of Hoover and Perez (1999) and is formally introduced in Hendry and
Santos (2010), see also Castle, Doornik and Hendry (2011).
The gauge concept is related to, but also distinct from the concept of a size of a statistical

test, which is the probability of falsely rejecting a true hypothesis. For a statistical test we
choose the critical value indirectly from the size we are willing to tolerate. In the same way,
for an outlier detection algorithm, we can choose the cut-off for outliers indirectly from the
gauge we are willing to tolerate.
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The detection algorithms assign binary weigths v̂i to each observation, so that v̂i = 0 for
outliers and v̂i = 1 otherwise. We define the empirical or sample gauge as the frequency of
falsely detected outliers

γ̂ =
1

n

∑n
i=1(1− v̂i). (8.5)

In turn, the population gauge is the expected frequency of falsely detected outliers, when in
fact the model has no contamination, that is

Eγ̂ = E
1

n

∑n
i=1(1− v̂i).

To see how the gauge of an outlier detection algorithm relates to the size of a statistical
test, consider an outlier detection algorithm which classify observations as outliers if the
absolute residuals |yi − x′iβ̂|/σ̂ is large for some estimator (β̂, σ̂). That algorithm has gauge

γ̂ =
1

n

∑n
i=1(1− v̂i) =

1

n

∑n
i=11(|yi−x′iβ̂|>σ̂c)

. (8.6)

Suppose the parameters β, σ where known so that we could choose β̂, σ̂ as β, σ. Then the
population gauge reduces to the size of a test that a single observation is an outlier, that is

E
1

n

∑n
i=11(|yi−x′iβ|>σc) = E

1

n

∑n
i=11(|εi|>σc) = P(|ε1| > σc) = γ.

In general, the population gauge will, however, be different from the size of such a test
because of the estimation error. In §9, §10 we analyze the gauge implicit in the definition of
a variety of estimators of type M and L, respectively. Proofs follow in the appendix.

9 The gauge of Huber-skip M-estimators

Initially a consistency result is given for the gauge of Huber-skip M-estimators and a distrib-
ution theory follows. A normal theory arises when the proportion of falsely detected outliers
is controlled by fixing the cut-off c as n increases whereas a Poisson exceedence theory arises
when nγ is held fixed as n increases.

9.1 Asymptotic analysis of the gauge

We give an asymptotic expansion of the sample gauge of the type (8.6).

Theorem 9.1 Consider a sample gauge γ̂ of the form (8.6). Suppose Assumption 6.1 holds
and that N−1(β̂ − β), n1/2(σ̂2 − σ2) are OP(1). Then, for fixed c,

n1/2(γ̂ − γ) = n−1/2
∑n

i=1{1(|εi|>σc) − γ}+ 2cf(c)n1/2(
σ̂

σ
− 1) + oP(1). (9.1)

It follows that Eγ̂ → γ.
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Note that convergence in mean is equivalent to convergence in probability since the gauge
takes values in the interval [0, 1], see Billingsley (1968, Theorem 5.4).
Theorem 9.1 applies to various Huber-skip M-estimators. For the Huber-skip M-estimator

the estimators β̂, σ̂2 are the Huber-skip estimator and corresponding variance estimator. For
1-step Huber-skip M-estimator the estimators β̂, σ̂2 are the initial estimators. For Impulse
Indicator Saturation or 1-step Huber-skip M-estimator iterated m times the estimators β̂, σ̂2

are the estimators from step m− 1.

9.2 Normal approximations to gauge

We control the proportion of falsely discovered outliers by fixing the cut-off c. In that case an
asymptotically normal distribution theory follows from the expansion in Theorem 9.1. The
asymptotic variance is analyzed case by case since the expansion in Theorem 9.1 depends
on the variance estimator σ̂2.
Huber-skip M-estimator: Theorem 7.1 shows thatN−1(β̂−β) is tight. This is the simplest

case to analyse since the variance is assumed known so that σ̂2 = σ2. Therefore only the first
binomial term in Theorem 9.1 matters.

Theorem 9.2 Consider the Huber-skip M-estimator β̂ defined from (4.2), (4.3) with known
σ, fixed c and sample gauge γ̂ = n−1

∑n
i=11(|yi−x′iβ̂|>σc)

. Suppose Assumption 6.1 holds. Then

n1/2(γ̂ − γ)
D→ N{0, γ(1− γ)}.

The robustified least squares estimator: This is the 1-step Huber-skip M-estimator β̂
defined in (4.7), (4.8), where the initial estimators β̃, σ̃2 are the full-sample least squares
estimators. The binomial term in Theorem 9.1 is now combined with a term from the initial
variance estimator σ̃2.

Theorem 9.3 Consider the robustified least squares estimator β̂ defined from (4.7), (4.8),
and the initial estimators β̃ and σ̃2 are the full sample least squares estimators, fixed c and
sample gauge is γ̃ = n−1

∑n
i=11(|yi−x′iβ̃|>σ̃c)

. Suppose Assumption 6.1 holds. Then

n1/2(γ̃ − γ)
D→ N[0, γ(1− γ) + 2cf(c)(τ − ψ) + {cf(c)}2(κ− 1)].

The variance in Theorem 9.3 is larger than the binomial variance for a normal reference
distribution and any choice of γ. This is seen through differentiation with respect to c.
The split-half Impulse Indicator Saturation estimator: The estimator is defined in Algo-

rithm 4.2. Initially, the outliers are defined using the indicator v̂(−1)i based on the split-sample
estimators β̂1, σ̂21 and β̂2, σ̂

2
2, see (4.10). The outliers are reassessed using the updated esti-

mators β̂(0), σ̂(0). Thus, the algorithm gives rise to two sample gauges

γ̂(−1) = n−1
∑

i∈I11(|yi−x′iβ̂2|>σ̂2c)
+ n−1

∑
i∈I21(|yi−x′iβ̂1|>σ̂1c)

, (9.2)

γ̂(0) = n−1
∑n

i=11(|yi−x′iβ̂(0)|>σ̂(0)c)
. (9.3)

For simplicity we only report the result for the initial gauge γ̂(−1). The updated gauge γ̂(0)

has a different asymptotic variance.
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γ 0.05 0.01 0.005 0.0025 0.001
c 1.960 2.576 2.807 3.023 3.291
sdv for Huber-skip M 0.218 0.0995 0.0705 0.0499 0.0316
sdv for RLS 0.146 0.0844 0.0634 0.0467 0.0305
sdv for iterated 1-step Huber-skip M 0.314 0.117 0.0783 0.0534 0.0327

Table 1: Asymptotic standard devations of the empirical gauge.

Theorem 9.4 Consider the Impulse Indicator Saturation. Suppose Assumption 6.1 holds
for each set I1, I2. Then, for fixed c, the initial sample gauge γ̂(−1) has the same asymptotic
distribution as the sample gauge for robustified least squares reported in Theorem 9.3.

The iterated 1-step Huber-skip M-estimator: The estimator is defined in Algorithm 4.1.
Special cases are the iterated robustified least squares estimator and the Impulse Indicator
Saturation. If the algorithm is stopped after m+ 1 steps the sample gauge is

γ̂(m) = n−1
∑n

i=11(|yi−x′iβ̂(m)|>σ̂(m)c)
for m = 0, 1, 2, . . .

Because the estimation errors N−1(β̂(m) − β), n1/2(σ̂(m) − σ) are tight by Theorem 7.5, the
sequence of sample gauges will also be tight. Theorem 9.1 then generalises as follows.

Theorem 9.5 Consider the iterated 1-step Huber-skip estimator. Suppose Assumption 6.1
holds and that the initial estimators satisfy that N−1(β̂(0)− β) and n1/2(σ̂(0)− σ) are OP(1).
Then, for fixed c, the sequence of sample gauges γ̂(m) satisfies

sup0≤m<∞ |Eγ̂(m) − γ| → 0, n→∞.

A fixed point result can also be derived for the gauge.

Theorem 9.6 Consider the iterated 1-step Huber-skip estimator β∗, σ∗, see (7.6) and (7.7)
and the v∗i , γ

∗ defined from these. Suppose Assumption 6.1 holds and that the initial estima-
tors satisfy that N−1(β̂(0) − β) and n1/2(σ̂(0) − σ) are OP(1). Then, for all ε, η > 0 a pair
n0,m0 > 0 exists so that for all n,m so n ≥ n0 and m ≥ m0 it holds, for fixed c,

P(n1/2|γ̂(m) − γ̂∗| > η) < ε.

where, for (τ,κ, ζ) from (3.2) and (3.4),

n1/2(γ̂∗ − γ) = n−1/2
∑n

i=1{1(|εi|>σc) − γ} −
2cf(c)

2τ − ζ n
−1/2∑n

i=1(
ε2i
σ2
− τ

ψ
)1(|εi|≤σc) + oP(1).

Moreover, the two sums are asymptotically independent and it holds that

n1/2(γ̂∗ − γ)
D→ N[0, γ(1− γ) + { 2cf(c)

2τ − ζ }
2(κ − τ

ψ
)].
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Table 1 shows the asymptotic variances for the Huber-skip M-estimator, the Robustified
Least Squares and for the fully iterated 1-step Huber-skip estimators . The latter include
iterated Robustified Least Squares and iterated Impulse Indicator Saturation. The results
are taken from Theorems 9.2, 9.3, 9.6, respectively. For gauges of 1% or lower the standard
deviations are very similar. If the gauge is chosen as γ = 0.05 and n = 100, then the sample
gauges γ̂ will be asymptotically normal with mean γ = 0.05 and a standard deviation of
about 0.2/n1/2 = 0.02. This suggests that it is not unusual to find up to 8-9 outliers when in
fact there are none. Lowering the gauge to γ = 0.01 or γ = 0.0025, the standard deviation
is about 0.1/n1/2 = 0.01 and 0.05/n1/2 = 0.005, respectively, when n = 100. Thus, it is not
unusual to find up to 2-3 and up to 1 outliers, respectively, when in fact there are none. This
suggests that the gauge should be chosen rather small in line with the discussion in Hendry
and Doornik (2014, §7.6).

9.3 Poisson approximation to gauge

If we set the cut-off so as to accept the same fixed number λ of falsely discovered outliers
regardless of the sample size, then a Poisson exceedence theory arises.
The idea is to choose the cut-off cn so that, for some λ > 0,

P(|εi| > σcn) = λ/n. (9.4)

The cut-off cn appears both in the definition of the gauge and in the definition of the
estimators, so some care is needed. We build the argument around the 1-step M-estimator.
Let β̂n and σ̂n be sequences of estimators that may depend on cn, hence the subscript n in
the notation for the estimators. Given these estimators, the sample gauge is

γ̂n = n−1
∑n

i=11(|yi−x′iβ̂n|>σ̂ncn)
. (9.5)

In the first result we assume that estimation errors N−1(β̂n − β) and n1/2(σ̂n − σ) are
tight. Thus, the result immediately applies to robustified least squares, where the initial
estimators β̂n and σ̂n are the full sample least squares estimators, which do not depend on
the cut-off cn. But, in general we need to check this tightness condition.

Theorem 9.7 Consider the 1-step Huber-skip M-estimator, where nP (|ε1| ≥ σcn) = λ.
Suppose Assumption 6.1 holds, and that N−1(β̂n−β) and n1/2(σ̂2n−σ2) are OP(1). Then the
sample gauge γ̂n in (9.5) satisfies

nγ̂n
D→ Poisson(λ).

We next discuss this result for particular initial estimators.
Robustified least squares estimator: The initial estimators β̃ and σ̃2 are the full sample

least squares estimators. These do not depend on cn so Theorem 9.7 trivially applies.

Theorem 9.8 Consider the robustified least squares estimator β̂ defined from (4.7), (4.8),
where the initial estimators β̃ and σ̃2 are the full sample least squares estimators, while
cn is defined from (9.4). Suppose Assumption 6.1 holds. Then the sample gauge γ̃n =
n−1
∑n

i=11(|yi−x′iβ̃|>σ̃cn)
satisfies

nγ̃n
D→ Poisson(λ).
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x
λ cn=100 cn=200 0 1 2 3 4 5
5 1.960 2.241 0.01 0.04 0.12 0.27 0.44 0.62
1 2.576 2.807 0.37 0.74 0.92 0.98 1.00
0.5 2.807 3.023 0.61 0.91 0.98 1.00
0.25 3.023 3.227 0.78 0.97 1.00
0.1 3.291 3.481 0.90 1.00

Table 2: Poisson approximations to the probability of finding at most x outliers for a given
λ. The implied cut-off cn = Φ−1{1− λ/(2n)} is shown for n = 100 and n = 200.

Impulse Indicator Saturation: Let β̂j and σ̂2j be the split sample least squares estimators.
These do not depend on cn so Theorem 9.7 trivially applies for the split sample gauge based
on

v̂
(−1)
i,n = 1(i∈I1)1(|yi−x′iβ̂2|>σ̂2cn)

+ 1(i∈I2)1(|yi−x′iβ̂1|>σ̂1cn)
.

The updated estimators β̂(0)n and (σ̂
(0)
n )2 do, however, depend on the cut-off. Thus, an

additional argument is needed, when considering the gauge based on the combined initial
estimator as in

v̂
(0)
i,n = 1

(|yi−x′iβ̂
(0)
n |>σ̂(0)n cn)

.

Theorem 9.9 Consider the Impulse Indicator Saturation Algorithm 4.2. Let cn be defined
from (9.4). Suppose Assumption 6.1 holds for each set I1, I2. Let the estimators β̂(0)n and
(σ̂
(0)
n )2 be defined from (4.7), (4.5) replacing vi by v̂

(−1)
i,n . Then N−1(β̂(0)n −β) and n1/2(σ̂(0)n −σ)

are OP(1), and

nγ̂(m)n =
∑n

i=1(1− v̂
(m)
i,n )

D→ Poisson(λ) for m = −1, 0.

Table 1 shows the Poisson approximation to the probability of finding at most x outliers
for different values of λ. For small λ and n this approximation is possibly more accurate
than the normal approximation, although that would have to be investigated in a detailed
simulation study. The Poisson distribution is left skew so the probability of finding at most
x = λ outliers increases from 62% to 90% for λ decreasing from 5 to 0.1. In particular, for
λ = 1 and n = 100 so the cut-off is cn = 2.58 the probability of finding at most one outlier is
74% and the probability of finding at most two outliers is 92%. In other words, the chance
of finding 3 or more outliers is small when in fact there are none.

10 The gauge of Huber-skip L-type estimators

We now consider the gauge for the L-type estimators. The results and their consequences are
somewhat different from the results for M-type estimators. For the Least Trimmed Squares
estimator the gauge is trivially γ̂ = γ, because the purpose of the estimator is to keep the
trimming proportion fixed. For the Forward Search the idea is to stop the algorithm once
the forward residuals ẑ(m)/σ̂(m) become too big. We develop a stopping rule from the gauge.
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10.1 Gauge for the Forward Search

The forward plot of forward residuals consists of the scaled forward residuals ẑ(m)/σ̂(m)

for m = m0, . . . , n − 1. Along with this we plot point-wise confidence bands derived from
Theorem 8.4. Suppose we define some stopping time m̂ based on this information, so that m̂
is the number of non-outlying observations while n− m̂ is the number of the outliers. This
stopping time can then be calibrated in terms of the sample gauge (8.5), which simplifies as

γ̂ =
n− m̂
n

=
1

n

∑n−1
m=m0

(n−m)1(m̂=m).

Rewrite this by substituting n−m =
∑n−1

j=m 1 and change order of summation to get

γ̂ =
1

n

∑n−1
j=m0

1(m̂≤j). (10.1)

If the stopping time is an exit time, then the event (m̂ ≤ j) is true if ẑ(m)/σ̂(m) has exited
at the latest by m = j.
An example of a stopping time is the following. Theorem 8.4 shows that

Z̃n(cψ) = 2f(c)n1/2(
ẑψ
σ̂ψ
− cψ) = Zn(cψ) + oP(1) (10.2)

uniformly in ψ0 ≤ ψ ≤ n/(n + 1), where Zn converges to a Gaussian process Z. We now
choose the stopping time as the first time greater than or equal to m1(≥ m0), ẑ

(m)/σ̂(m)

exceeds some constant level q times its pointwise asymptotic standard deviation, that is,

m̂ = arg min
m1≤m<n

[Z̃n(cm/n) > qsdv{Z̃n(cm/n)}]. (10.3)

To analyze the stopping time (10.3) we consider the event (m̂ ≤ j). This event satisfies

(m̂ ≤ j) = [ max
m1≤m≤j

Z̃n(cm/n)

sdv{Z̃n(cm/n)}
> q].

Inserting this expression into (10.1) and then using expansion (10.2) we arrive at the following
result, with details given in the appendix.

Theorem 10.1 Consider the Forward Search. Suppose Assumption 6.1 holds. Let m0 =
int(ψ0n) and m1 = int(ψ1n) for some ψ1 ≥ ψ0 > 0. Consider the stopping time m̂ in (10.3)
for some c ≥ 0. Then

Eγ̂ = E
n− m̂
n

→ γ =

∫ 1

ψ1

P[ sup
ψ1≤ψ≤u

Z(cψ)

sdv{Z(cψ)} > q]du.

If ψ1 > ψ0, the same limit holds for the forward search when replacing ẑ(m) by the deletion
residual d̂(m) in the definition of m̂ in (10.3).
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γ vs ψ1 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.10 2.50 2.43 2.28 2.14 1.99 1.81 1.60 1.31 0.82 -
0.05 2.77 2.71 2.58 2.46 2.33 2.19 2.02 1.79 1.45 0.69
0.01 3.30 3.24 3.14 3.04 2.94 2.83 2.71 2.55 2.33 1.91
0.005 3.49 3.44 3.35 3.26 3.15 3.04 2.95 2.81 2.62 2.26
0.001 3.90 3.85 3.77 3.69 3.62 3.53 3.43 3.32 3.18 2.92

Table 3: Cut-off values q for Forward Search as a function of gauge γ and lower point ψ1 of
range for the stopping time.

The integral in Theorem 10.1 cannot be computed analytically in an obvious way. In-
stead we simulated it using Ox 7, see Doornik (2007). For a given n, draws of normal
εi can be made. From this, the process Zn in (8.4) can be computed. The maximum of
Zn(cm/n)/sdv{Z(cm/n)} over m1 ≤ m ≤ j can then be computed for any m1 ≤ j ≤ n.
Repeating this nrep times the probability appearing as the integrand can be estimated for a
given value of q and u . From this the integral γ can be computed. This expresses γ = γ(ψ1, q)
as a function of q and ψ1. Inverting this for fixed ψ1 expresses q = q(ψ1, γ) as a function of
γ and ψ1. Results are reported in the Table 3 for nrep = 105 and n = 1600.

11 Application to fish data

11.1 Impulse Indicator Saturation

The Impulse Indicator Saturation of Algorithm 4.2 is an iterative procedure. Assuming
innovations are normal cut-offs can be chosen according to a standard normal distribution.
For a finite iteration, where the number of steps is chosen apriori, this follows from Theorem
9.1. For an infinite iteration, this follows from Theorem 9.6. Thus, the cut-off is 2.58 for a
1% gauge. When applying the procedure we split the sample in the first and last half.
The estimated model for the first sample half is

q̂
(1st half)
t = 6.5

(1.1)
+ 0.26
(0.12)

qt−1 − 0.51
(0.18)

St, σ̂ = 0.66, t = 2, . . . , 56.

The preliminary second half outliers are in observations 95, 108, 68, 75, 94 with residuals
−4.66, −3.11, −2.85, −2.74, −2.66. The estimated model for the second sample half is

q̂
(2nd half)
t = 7.5

(1.2)
+ 0.13
(0.14)

qt−1 − 0.21
(0.30)

St, σ̂ = 0.77, t = 57, . . . , 111.

The preliminary first half outliers are in observations 18, 34 with residuals −3.78, −2.95.
In step m = 0 we estimate a model with dummies for the preliminary outliers and get

the full sample model

q̂
(0)
t = − 1.98

(0.60)

[−3.16]

D18
t − 1.80

(0.61)

[−2.93]

D34
t − 1.26

(0.60)

[−2.10]

D68
t − 1.34

(0.60)

[−2.23]

D75
t − 1.35

(0.60)

[−2.25]

D94
t − 2.40

(0.61)

[−3.96]

D95
t

− 1.56
(0.60)

[−2.61]

D108
t + 7.8

(0.7)
+ 0.11
(0.08)

qt−1 − 0.41
(0.13)

St, σ̂ = 0.60,
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with standardised coeffi cients reported in square brackets. The observations 18, 34, 95, 108
remain outliers. All residuals - for observations without indicators - are now smaller than
the cut-off value. Thus we conclude that the observations 18, 34, 95, 108 are outliers.
In step m = 1 we get the Impulse Indicator Saturation model

q̂
(1)
t = − 1.96

(0.63)

[−3.10]

D18
t − 1.82

(0.65)

[−2.81]

D34
t − 2.40

(0.64)

[−3.76]

D95
t − 1.55

(0.63)

[−2.44]

D108
t

+ 7.9
(0.7)

+ 0.09
(0.08)

qt−1 − 0.39
(0.14)

St, σ̂ = 0.63.

The observations 18, 34, 95 remain outliers, while all residuals are small.
In step m = 2 the estimated model is identical to the model (2.2). In that model the

observations 18, 34, 95 remain outliers, while all residuals are smaller. Thus, the algorithm
has reached a fixed point.
If the gauge is chosen as 0.5% or 0.25% so the cut-off is 2.81 or 3.02, respectively, the

algorithm will converge to a solution taking 18, 95 or 95 as outliers, respectively.

11.2 Forward Search

We need to choose the initial estimator, the fractions ψ0, ψ1 and the gauge. As initial estima-
tor we chose the fast LTS estimator by Rousseeuw and van Driessen (1998) as implemented
in the ltsReg function of the R-package robustbase. We chose to use it with breakdown
point 1 − ψ0. There is no asymptotic analysis of this estimator. It is meant to be an ap-
proximation to the Least Trimmed Squares estimator, for which we have Theorem 8.1 based
on Víček (2006c). That result requires fixed regressors. Nonetheless, we apply it to the fish
data where the two regressors are the lagged dependent variable and the binary variable St
which is an indicator for stormy weather. We choose ψ0 = ψ1 as either 0.95 or 0.8.
Figure 4 shows the forward plots of the forward residuals ξ̂(m)(m+1)/ςm/nσ̂

(m+1), where the
scaling is chosen in line with Atkinson, Riani and Cerioli (2010). Consider panel (a) where
ψ0 = ψ1 = 0.95. Choose the gauge as, for instance, γ = 0.01, in which case the we need
to consider the third exit band from the top. This is exceeded for m̂ = 107, pointing at
n − m̂ = 3 outliers. These are the three holiday observations 18, 34, 95 discussed in §2. If
the gauge is set to γ = 0.001 we find no outliers. If the gauge is set to γ = 0.05 we find
m̂ = 104, pointing at n− m̂ = 6, which is 5% of the observations.
Consider now panel (b) where ψ0 = ψ1 = 0.80.With a gauge of γ = 0.01 we find m̂ = 96,

pointing at n − m̂ = 14 outliers. These include the three holiday observations along with
11 other observations. This leaves some uncertainty about the best choice of the number
of outliers. The present analysis is based on asymptotics and could be distorted in finite
samples.

12 Conclusion and further work

The results presented concern the asymptotic properties of a variety of Huber-skip estimators
in the situation where there are no outliers, and the reference distribution is symmetric if
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Figure 4: Forward Plots of forward residuals for fish data. Here ψ0 = ψ1 is chosen either as
0.95 or 0.80. The bottom curve shows the pointwise median. The top curves show the exit
bands for gauges chosen as, from top, 0.001, 0.005, 0.01, 0.05, respectively. Panel (b) also
includes an exit band for a gauge of 0.10.

not normal. Combined with the concept of the gauge, these results are used for calibrating
the cut-off values of the estimators.
In further research we will look at situations, where there actually are outliers. Various

configurations of outliers will be of interest: single outliers, clusters of outliers, level shifts,
symmetric and non-symmetric outliers. The probability of finding particular outliers is called
potency in Hendry and Santos (2010). It will then be possible to compare the potency of
two different outlier detection algorithms, that are calibrated to have the same gauge.
The approach presented is different from the traditional approaches of robust statistics.

It would be of interest to compare the approach with the traditional idea of analyzing robust
estimators in terms of their breakdown point, see Hampel (1971), or the influence function,
see Hampel, Ronchetti, Rousseeuw and Stahel (1986) or Maronna, Martin and Yohai (2006).
First order asymptotic theory is known to be fragile in some situations. A comprehensive

simulation study of the results presented would therefore be useful, possibly building on
Atkinson and Riani (2006) and Hendry and Doornik (2014).
It would be of interest to extend this research to variable selection algorithms such as

Autometrics, see Hendry and Doornik (2014). The Impulse Indicator Saturation is a stylized
version of Autometrics. It should work well, if the researcher can identify a part of the data,
that is free from outliers. If this is not the case, one will have to iterate over the choice
of sub-samples. In Autometrics potential outliers are coded as dummy variables and the
algorithm then searches over these dummy variables along with the other regressors.
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A Proofs

For the asymptotic normality results for the gauge some covariance matrices have to be
computed. The results are collected in

Theorem A.1 Suppose Assumption 6.1 holds and that c = G(ψ). Then the processes

An(c) = n−1/2
∑n

i=1{1(|εi|>σc) − γ},

Bn(c) = n−1/2
∑n

i=1(
ε2i
σ2
− τ

ψ
)1(|εi|≤σc),

Cn(c) = n−1/2
∑n

i=1(
ε2i
σ2
− 1),

Kn(c) = N ′
∑n

i=1xiεi1(|εi/σ|≤c)

converge to continuous limits A,B,C,K on D[0, 1] endowed with the uniform metric. The
processes An,Bn,Cn have Gaussian limits with covariance matrix

Φ = V ar


An(c)
Bn(c)
Cn(c)

 =


γ(1− γ) 0 τ − ψ

0 κ − τ 2/ψ κ − τ 2/ψ
τ − ψ κ − τ 2/ψ (κ− 1)/2

 . (A.1)

If the regressors are stationary, then K is Gaussian independent of A,B,C with variance
τσ2Σ.
It follows that the asymptotic variance in Theorem 8.3 is given by

asVar

{
2f(cψ)n1/2(ẑψ/σ − cψ)
n1/2(σ̂2ψ/σ

2 − 1)

}
= Var

{
An(cψ)

Bn(cψ)/τ + (c2ψ/τ − 1/ψ)An(cψ)

}
= ω′1Φω1

for

ω′1 =

(
1 0 0

(c2ψ/τ − 1/ψ) 1/τ 0

)
.

The asymptotic variance in Theorem 8.4 is given by

asV ar(2f(cψ)n1/2(ẑψ/σ̂ψ − cψ)

= V ar(−{1− cψf(cψ)

τ
(c2ψ −

τ

ψ
)}An(cψ) +

cψf(cψ)

τ
Bn(cψ)) = ω′2Φω2

where
ω′2 =

(
−{1− cψf(cψ)

τ
(c2ψ − τ

ψ
)}, cψf(cψ)

τ
, 0

)
.

Proof of Theorem 9.1. Apply the asymptotic expansion in Theorem 6.1.

Proof of Theorem 9.2. Insert σ̂2 = σ2 in the expansion in Theorem 9.1 and apply
Theorem A.1 to the binomial term.
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Proof of Theorem 9.3. The initial estimators satisfyN−1(β̃−β) = OP(1) and n1/2(σ̃2−
σ2) = n−1/2

∑n
i=1(ε

2
i − σ2) + oP(1), see (7.3). Use Theorem 9.1 to get

n1/2(γ̂ − γ) = n−1/2
∑n

i=1{1(|εi|>σc) − γ}+ cf(c)n−1/2
∑n

i=1(ε
2
i − σ2) + oP(1), (A.2)

and apply Theorem A.1.

Proof of Theorem 9.4. The initial estimators satisfy N−1(β̂j − β) = OP(1) and
n1/2(σ̂2j − σ2) = n−1/2

∑n
i=1(ε

2
i − σ2) + oP(1), see (7.5). Insert this in the expansion in

Theorem 9.1 to get

n
−1/2
j

∑
i∈Ij{1(|yi−x′iβ̂3−j |>σ̂3−jc)−γ} = n

−1/2
j

∑
i∈Ij{1(|εi|>σc)−γ}+cf(c)n

−1/2
j

∑
i∈Ij(ε

2
i−σ2)+oP(1).

Combine the counts of outliers for the two sub-samples to get

n1/2(γ̂(−1) − γ) = n−1/2
∑2

j=1

n
1/2
j

n
1/2
j

∑
i∈Ij{1(|yi−x′iβ̂3−j |>σ̂3−jc) − γ}

= n−1/2
∑2

j=1

∑
i∈Ij{1(|εi|>σc) − γ}+ cf(c)n−1/2

∑2
j=1

∑
i∈Ij(ε

2
i − σ2) + oP(1).

This is reduces to the expansion (A.2) for the robustified least squares estimator.

Proof of Theorem 9.5. Theorem 7.5 shows that the normalised estimators are tight.
Thus, for all ε there exists an A > 0 so that the set

An =
⋂∞
m=0{|N−1(β̂(m) − β)|+ |n1/2{(σ̂(m))2 − σ2}| ≤ U} (A.3)

has probability of at least 1− ε. Theorem 6.1 then shows that on that set

γ̂(m) − γ =
1

n

∑n
i=1{1(|εi|>σc) − γ} − n−1/22cf(c)n1/2(σ̂(m)/σ − 1) + oP(n−1/2), (A.4)

where, uniformly inm, the first term and the second term are OP(n−1/2), while the remainder
term is oP(n−1/2). Therefore

sup0≤m<∞ |γ̂(m) − γ| = oP(1).

Since γ̂(m) and γ are bounded by one then E sup0≤m<∞ |γ̂(m)− γ| vanishes as n→∞. Thus,
by the triangle inequality

sup0≤m<∞ |Eγ̂(m) − γ| ≤ sup0≤m<∞ E|γ̂(m) − γ| ≤ E sup0≤m<∞ |γ̂(m) − γ| = o(1).

Proof of Theorem 9.6. On the set An defined in the proof of Theorem 9.5, see (A.3),
we consider the expansion (A.4), that is,

n1/2(γ̂(m) − γ) = n−1/2
∑n

i=1{1(|εi|>σc) − γ} − 2cf(c)n1/2(σ̂(m)/σ − 1) + oP(1),
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where the remainder is uniform in m. Theorem 7.6 shows that for large m,n we have

n1/2(σ̂(m)/σ − 1) =
1

2τ − ζ n
−1/2∑n

i=1(
ε2i
σ2
− τ

ψ
)1(|εi|≤σc) + oP(1),

where the remainder is uniform inm. Combine to get the desired expansion. The asymptotic
normality follows from Lemma A.1.

Theorem 9.7 is a special case of the following Lemma subjected to Remarks A.1 and A.2
below, because Assumption 6.1 assumes Gaussian errors.

Lemma A.2 Suppose Assumption 6.1(ii, d) holds. Let the cut-off cn be given by (9.4) and
assume that
(i) the density f is symmetric with decreasing tails and support on R so that cn →∞ with

(a) E|εi|r <∞ for some r > 4;
(b) f(cn)/[cn{1− F(cn)}] = O(1);
(c) f(cn − n−1/4A)/f(cn) = O(1) for all A > 0;

(ii) N−1(β̂ − β), n1/2(σ̂2 − σ2) are OP(1).
Then the sample gauge γ̂ in (8.6) satisfies

nγ̂
D→ Poisson(λ).

Remark A.1 Assumption (ia) implies that cn = O(n1/r) where 1/r < 1/4. Combine the
definition P(|εi| > σcn) = λ/n with the Markov inequality P(|εi| > σcn) ≤ (σcn)−rE|εi|r so
that cn ≤ σ−1(E|εi|r)1/rλ−1/rn1/r = O(n1/r).

Remark A.2 Assumption (i) of Lemma A.2 holds if f = ϕ is standard normal. For (b) use
the Mill’s ratio result {(4 + c2)1/2 − c}/2 < {1 − Φ(c)}/ϕ(c), see Sampford (1953). For (c)
note that 2 log{f(cn − n−1/4A)/f(cn)} = c2n − (cn − n−1/4A)2 = 2cnn

−1/4A− n−1/2A2 and use
Remark A.1.

Proof of Lemma A.2. 1. A bound on the sample space. Since N−1(β̂ − β) and
n1/2(σ̂2 − σ2) are OP(1) and in light of Assumption 6.1 (ii, d) then for all ε > 0 exists a
constant A0 > 1 such that the set

Bn = {|N−1(β̂ − β)|+ n1/2|σ̂ − σ|+ n1/4 max
1≤i≤n

|N ′xi| ≤ A0}

has probability larger than 1− ε. It suffi ces to prove the theorem on this set.
2. A bound on indicators. Introduce the quantity

si = σ̂cn − yi + x′iβ̂ + εi = σcn + n−1/2n1/2(σ̂ − σ)cn + x′iNN
−1(β̂ − β).

On the set Bn, using cn = o(n1/4), by Remark A.1 the quantity si satisfies, for some A1 > 0,

si ≤ σcn + n−1/2A0cn + n−1/4A20 ≤ σ(cn + n−1/4A1),

si ≥ σcn − n−1/2A0cn − n−1/4A20 ≥ σ(cn − n−1/4A1).
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It therefore holds that

1(εi/σ>cn+n−1/4A1) ≤ 1(yi−x′iβ̂>σ̂cn)
= 1(εi>si) ≤ 1(εi/σ>cn−n−1/4A1).

With a similar inequality for 1(yi−x′iβ̂<−σ̂cn)
we find

1(|εi/σ|>cn+n−1/4A1) ≤ 1(|yi−x′iβ̂|>σ̂cn)
≤ 1(|εi/σ|>cn−n−1/4A1). (A.5)

3. Expectation of indicator bounds. It will be argued that

nE1(|εi/σ|>cn+n−1/4A1) → λ, nE1(|εi/σ|>cn−n−1/4A1) → λ. (A.6)

Since nE1(|εi/σ|>cn) → λ it suffi ces to argue that

En = nE{1(|εi/σ|>cn−n−1/4A1) − 1(|εi/σ|>cn+n−1/4A1)} → 0.

A first order Taylor expansion and the identity 2{1− F(cn)} = λ/n give

En = n

∫ cn+n−1/4A1

cn−n−1/4A1
2f(x)dx = 4n−1/4A1f(c

∗) =
4λn−1/4A1f(c

∗)

2{1− F(cn)} ,

for |c∗ − cn| ≤ n−1/4A1. Rewrite as

En = 2λn−1/4A1{
f(c∗)

f(cn − n−1/4A1)
}{ f(cn − n

−1/4A1)

f(cn)
}[ f(cn)

cn{1− F(cn)} ]cn.

The first fraction is bounded by one since f has decreasing tails. Then second and the third
fractions are bounded by Assumption (ib, ic). Then use that n−1/4cn = o(1) by Remark A.1.
4. Poisson distribution. Using the bounds in item 3, it holds on the set Bn that

1

n

∑n
i=11(|εi/σ|>cn+n−1/4A1) ≤ γ̂ =

1

n

∑n
i=11(|yi−x′iβ̂|>σ̂cn)

≤ 1

n

∑n
i=11(|εi/σ|>cn−n−1/4A1).

Using (A.6) the Poisson limit theorem shows that the upper and lower bounds have Poisson
limits with mean λ.

Proof of Theorem 9.9. 1. Comparison with least squares. The estimator N−1(β̂(0)n −β)
is based on

N ′
∑n

i=1v̂
(−1)
i,n xix

′
iN = N ′

∑n
i=1xix

′
iN −N ′

∑n
i=1(1− v̂

(−1)
i,n )xix

′
iN, (A.7)

N ′
∑n

i=1v̂
(−1)
i,n xiεi = N ′

∑n
i=1xiεi −N ′

∑n
i=1(1− v̂

(−1)
i,n )xiεi, (A.8)

In each equation the first term is the full sample product moment, which converges due
to Assumption 6.1, and the estimation error of the full sample least squares is bounded in
probability. It suffi ces to show that the second terms vanish in probability. The argument
for n1/2{(σ̂(0)n )2 − σ2} is similar.
2. Tightness of the initial estimators. Because N−1(β̂j −β) and n1/2(σ̂2j −σ2) are OP(1),

then for all ε > 0 there exists a constant A0 > 1 such that the set

Bn = {
∑2

j=1|N−1(β̂j − β)|+
∑2

j=1n
1/2|σ̂j − σ|+ n1/2 max

1≤i≤n
|N ′xi| ≤ A0}
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has probability larger than 1− ε. It suffi ces to prove the theorem on this set.
3. Bounding the second terms. The second terms of (A.7) and (A.8) are bounded by

Sp =
∑n

i=1(1− v̂
(−1)
i,n )|N ′xi|2−p|εi|p for p = 0, 1.

On the set Bn we get the further bound, see (A.5) in the proof of Lemma A.2,
Sp1Bn ≤

∑n
i=1|N ′xi|2−p|εi|p1(|εi/σ|>cn−n−1/4A1).

The expectation is bounded as

E(Sp1Bn) ≤ E
∑n

i=1|N ′xi|2−p |εi|p1(|εi/σ|>cn−n−1/4A1).
Now

|εi|p1(|εi/σ|>cn−n−1/4A1) ≤ E
1/21(|εi/σ|>cn−n−1/4A1)E

1/2|εi|2p1(|εi/σ|>cn−n−1/4A1).
The first factor is of order n−1/2, because n(1−F (cn−n−1/4A1))→ λ, and the second factor
tends to zero because Eε2i <∞. We also have

E
∑n

i=1|N ′xi|2−p = n1/2(p−2)E
∑n

i=1|n1/2N ′xi|2−p ≤ Cnp/2 ≤ Cn1/2

by Assumption 6.1(ii, d). Collecting these evaluations we find Sp
P→ 0.

Proof of Theorem 10.1. Theorem 8.3 implies, that Zn converges to a Gaussian process
Z on D[ψ0, 1] endowed with the uniform metric. The variance of Z(cψ) vanishes for ψ → 1
so a truncation argument is needed to deal with the ratio Xn(cψ) = Zn(cψ)/sdv{Z(cψ)}.
Approximate the sample gauge by

γ̂v =
n− m̂
n

1(m̂≤vn) =
1

n

∑int(nv)−1
j=m1

1(m̂≤j),

for some v < 1 and using (10.1). Then the sample gauge is γ̂ = γ̂1, and

0 ≤ γ̂ − γ̂v =
n− m̂
n

1(m̂>vn) <
n− nv
n

= 1− v. (A.9)

The process Xn(cψ) converges onD[ψ1, v]. The Continuous Mapping Theorem 5.1 of Billings-
ley (1968) then shows that supψ1≤ψ≤uXn(cψ) converges as a process in u on D[ψ1, v]. In
turn, for a given q, the deterministic function P(m̂ ≤ nu) = P{supψ1≤ψ≤uXn(cψ) > q} in
ψ1 ≤ u ≤ v converges to a continuous increasing function p(u) on [ψ1, v], which is bounded
by unity. In particular it holds that

Eγ̂v =
1

n

∑int(nv)−1
j=m1

E1(m̂≤j) =
1

n

∑int(nv)−1
j=m1

P(m̂ ≤ j)→ γv =

∫ v

ψ1

p(u)du ≤ v − ψ1 ≤ 1− ψ1,

and

γv =

∫ v

ψ1

p(u)du↗ γ =

∫ 1

ψ1

p(u)du =

∫ 1

ψ1

P[ sup
ψ1≤ψ≤u

Z(cψ)

sdv{Z(cψ)} > c]du

regardless of the behaviour of the process Xn(c) for ψ close to unity.
Now return to the sample gauge γ̂, and rewrite it as

γ̂ − γ = (γv − γ) + (γ̂v − γv) + (γ̂ − γ̂v)
for some fixed v. Then

|γ̂ − γ| ≤ 1− v + |γ̂v − γv|+ 1− v.
Choose an ε > 0 and v such that 1− v ≤ ε, and then n so large that |γ̂v − γv| ≤ ε with large
probability, then |γ̂ − γ| ≤ 3ε with large probability, which completes the proof.
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