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Abstract: Age-period-cohort models for Lexis diagrams are considered. The identifi-
cation problem is addressed by reparametrizing the models in terms of freely varying
parameters. The reparametrisation covers all three Lexis diagrams. A new plot of the
unidentified time effects is suggested and interpreted. Deviance analysis covering a wide
range of sub-models is presented. The methods are applied to Belgian lung cancer data.
Keywords: Age-period-cohort model, Canonical parametrization, Generalized Linear
Models, Identification, Lexis diagrams

1 Introduction

Age-period-cohort models are extensively used in actuarial sciences, demography, epi-
demiology and social sciences. The model predictor combines time effects for age, period
and cohort, but these time effects cannot be fully recovered from the predictor. The
proposal of this paper is to focus on the parts of the time effects that actually can
be recovered. This is done by reparametrising the predictor in terms of freely varying
parameters along the lines of Kuang, Nielsen and Nielsen (2008a). The paper makes
three contributions. First, a new reparametrisation is suggested that unifies analysis for
the three Lexis diagrams of age-period data arrays, age-cohort data arrays and cohort-
period data arrays. Secondly, a new suggestion is given for a graphical representation
of the unidentified time effects. Thirdly, the parametrisation allows for the formulation
of 14 sub-models of the age-period-cohort model including two-factor models such as
the age-cohort model and the age-drift model and one-factor models such as an age-
model. In applications, a deviance table gives a quick overview of the likelihood of these
sub-models.

The linear age-period-cohort model has predictor of the form

µik = αi + βj + γk + δ, (1.1)

where i, j, k are indices for age, period and cohort, which are linked so that j = i+k−1.
The classical identification problem of the model is that the levels and linear slopes of the
individual age, αi, period, βj and cohort time effects, γk, are not identifiable. Broadly
speaking, there are two types of solutions: either to work with restricted versions of
time effects αi, βj, γk on the right hand side of the equation (1.1), or to find a more
parsimoneous parametrisation of the predictor µik on the left hand side of the equation
(1.1) in terms of freely varying parameters. The first approach of working with the
time effects requires an ad hoc identification of the time effects that is motivated by
mathematical convenience and the substantive context. A number of methods exist,
including the dynamic Bayesian method of Berzuini and Clayton (1994), the proposal of
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Osmond and Gardner (1982), and the intrinsic estimator of Yang, Fu and Land (2004).
With this approach it is often challenging to track how initial identification choices
influence the inferences drawn from the analysis, see Holford (1985, 2006), Clayton and
Schifflers (1987b), O’Brien (2011), Luo (2013), Nielsen and Nielsen (2014). The second
approach is to reparametrise the age-period-cohort model in terms of freely varying
parameters, see Kuang, Nielsen and Nielsen (2008a). This leads to a statistical model
that is a regular exponential family and statistical analysis that conforms with standard
statistical theory. From this viewpoint the formulation (1.1) is therefore a motivation
or a symbolic description of the model in the tradition of Wilkinson and Rogers (1973).

Age-period-cohort data are collected in a variety of ways. Indeed, Keiding (1990)
distinquishes between three principal types of Lexis diagrams: age-period rectangular
arrays, age-cohort rectangular arrays, and period-cohort rectangular arrays. The first
contribution is a unified parametrisation of (1.1), that is valid for all three Lexis di-
agrams. The solution addresses the difficulty that age-period-cohort analysis includes
three time scales both in the parametrisation and in the structure of the data array.
The idea is to embed the Lexis diagrams in a age-cohort coordinated system. This gen-
eralizes the solution for rectangular age-cohort arrays by Kuang, Nielsen and Nielsen
(2008a).

The second contribution is a new graphical representation of the unidentified age,
period and cohort time effects. The time effects are only identified up to an arbitrary
linear trend. A graphical representation should emphasize the identifiable variation
while suppressing the impact of the linear trend on the visual impression. The proposal
is to choose the linear trends so that the time effects start and end in zero. This plot
highlights the non-linear part of the time effects over and above the arbitrary linear
effect. Interpretations of particular patterns are discussed.

The third contribution is a deviance table for the age-period-cohort model and its
sub-models. The age-period-cohort model has three time effects, two linear trends and
a constant level. Interesting sub-models arise by dropping one or two of the three time
effects, by dropping two time effects and a linear trend, by dropping all three time
effects, and by dropping all factors but the constant. A deviance table gives a quick
overview of which factors are relevant, and which are not.

Throughout the analysis is illustrated using the Belgian lung cancer data of Clayton
and Schifflers (1987a). It has a modest dimension and an interesting age-period-cohort
structure that illustrates the ideas well. It is dose-response data organised in an age-
period array with 11 age groups and 4 period groups. The data are modelled using a
Poisson regression. The analysis is done using the R package apc, see Nielsen (2014).

The paper is organized as follows. Typical data arrays are discussed in §2. A
dose-response Poisson model, the identifications problem and the reparametrization are
presented in §3. The plot of the unidentified time effects follows in §4, while the deviance
table is presented in §5. Variations of the distributional assumptions are discussed in
§6. §7 concludes. Technical details are collected in an Appendix.
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1955-1959 1960-1964 1965-1969 1970-1974
25-29 0.19 (3) 0.13 (2) 0.50 (7) 0.19 (3)
30-34 0.66 (11) 0.98 (16) 0.72 (11) 0.71 (10)
35-39 0.78 (11) 1.32 (22) 1.47 (24) 1.64 (25)
40-44 2.67 (36) 3.16 (44) 2.53 (42) 3.38 (53)
45-49 4.84 (77) 5.60 (74) 4.93 (68) 6.05 (99)
50-54 6.60 (106) 8.50 (131) 7.65 (99) 10.59 (142)
55-59 10.36 (157) 12.00 (184) 12.68 (189) 14.34 (180)
60-64 14.76 (193) 16.37 (232) 18.00 (262) 17.60 (249)
65-69 20.53 (219) 22.60 (267) 24.90 (323) 24.33 (325)
70-74 26.24 (223) 27.70 (250) 30.47 (308) 36.94 (412)
75-79 33.47 (198) 33.61 (214) 36.77 (253) 43.69 (338)

Table 1: Belgian lung cancer data. Rates with number of responses in paranthesis. Age
groups in rows, Period groups in columns.

2 Data structure

Mortality tables typically have one of 3 standard formats. These are age-period arrays,
age-cohort arrays and period-cohort arrays. In 1875 Lexis referred to these as the 3
principle sets of death, see Keiding (1990). Another common format are the reserving
triangles from general insurance, which are triangular age-cohort arrays, see England
and Verrall (2002). These data arrays are special cases of generalized trapezoid arrays.

2.1 Generalized trapezoid arrays

Lexis diagrams are unified in an age-cohort coordinate system. This is to exploit the
symmetry that age i and cohort k add up to the period j, in that i + k = j + 1. The
Lexis diagrams then become special cases of the generalized trapezoid data array with
index set

I = {i, k : 1 ≤ i ≤ I, 1 ≤ k ≤ K,L+ 1 ≤ j ≤ L+ J}, (2.1)

where I, J and K are the numbers of age, period and cohort indices, while L+ 1 is the
lower period index, see Kuang, Nielsen and Nielsen (2008a).

A rectangular age-cohort array arises when L = 0 and J = I +K − 1. A triangular
age-cohort array arises when L = 0 and I = J = K. A rectangular age-period array
arises when L = I − 1 and K = I + J − 1. This is visualized through a data example.

2.2 Illustration: Belgian lung cancer data

Table 1 shows the Belgian lung cancer mortality data arranged as an age-period array.
It is taken from Clayton and Schifflers (1987a). It presents mortality rates Yik/Zik and
responses Yik, the actual number of deaths, organised by 5-year age and period groups.

Table 2. presents that data as a trapezoid in an an age-cohort coordinate system. It
is seen that there are I = 11 age groups, J = 4 period groups, and K = I + J − 1 = 14
cohort groups. The first observations appear in the 11th period diagonal, so the lower
period index is given by L+ 1 where L = max(I, J)− 1 = 10.
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1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945
25 0.2 0.1 0.5 0.2
30 0.7 1.0 0.7 0.7
35 0.8 1.3 1.5 1.6
40 2.7 3.2 2.5 3.4
45 4.8 5.6 4.9 6.1
50 6.6 8.5 7.7 10.6
55 10.4 12.0 12.7 14.3
60 14.8 16.4 18.0 17.6
65 20.5 22.6 24.9 24.3
70 26.2 27.7 30.6 36.9
75 33.5 33.6 36.8 43.7

Table 2: Belgian lung cancer data. Rates shown in an age-cohort coordinate system.

Three entries in Table 2 are shown in italic. The age 50 entry for the 1905 cohort
is the central point for the first diagonal. This, along with the points to the right and
below is subsequently used for the reparametrization of the age-period-cohort model.

3 Model & identificaton

Age-period-cohort models are often modelled using generalized linear models. An ex-
ample is the dose-response Poisson model, which is presented here, while other models
are discussed in §6. The data consists of responses, such as counts of deaths, Yik and
doses or exposures Zik, where age i and cohort k vary in a generalized trapezoid I. The
responses are assumed independent Poisson distributed conditional on the doses. The
expectation is

E(Yik|Zik) = exp(µik)Zik = exp(µik + logZik), (3.1)

with predictor µik satisfying (1.1) and offset logZik. The log likelihood is

`(ξ;Y |Z) =
∑
i,k∈I

Yik(µik + logZik)−
∑
i,k∈I

Zik exp(µik). (3.2)

Replacing the predictor µik with the time effects on the right hand side of (1.1) leads to
an unidentified likelihood where the design matrix has reduced rank.

The identification problem can be addressed in two ways. The first approach is to
work with restricted versions of the time effects. While this gives an appearance of pre-
serving a connection to the time effects it leads to challenges in terms of interpretation,
inference, graphical representation and forecasting, see Nielsen and Nielsen (2014) for
a detailed discussion. The second approach is to reparametrise the model in terms of
freely varying parameters. This is done in the following.

3.1 Representation of the trend model

We start by considering the trend model, which is the simplest model where the identi-
fication problem occurs. The trend model arises when the age, period, and cohort time
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effects are all linear trends, so that, with j = i+ k − 1,

αi = αc + α`(i− 1), βj = βc + β`(j − 1), γk = γc + γ`(k − 1). (3.3)

The linear predictor of the age-period-cohort model in (1.1) then reduces to

µik = αc + α`(i− 1) + βc + β`(j − 1) + γc + γ`(k − 1) + δ. (3.4)

The predictor µik is therefore parametrised in terms of three slope parameters α`, β`, γ`,
and four level parameters αc, βc, γc, δ. The graph of the predictor µik in (3.4) is a linear
plane. A parsimoneous parametrisation of the linear plane requires just three pieces
of information. From those three pieces of information it is not possible to identify all
the seven time effect parameters α`, β`, γ`, αc, βc, γc, δ. The consequence is that the
equations (1.1) and (3.4) for the predictor in terms of the time effects are motivations for
the analysis in the tradition of symbolic description of factorial models of Wilkinson and
Rogers (1973). Since the aim of the age-period-cohort model is to perform time series
analysis of its components it is useful to work with an explicitly identified parametrisa-
tion. We will therefore represent the predictor in terms of identified parameters.

The plane can be represented by any three points in the generalized trapezoid index
set I that are not linearly related. Equally, the plane can be represented by an point
in I combined with slopes in two directions. The choice is completely up to the user.
From an identification view point it is important to note whatever choice is made the
three pieces of information are functions of the predictor on the left hand side of (3.4)
so they are fully identifiable.

In the age-period-cohort model it is useful to identify the plane in terms of a single
reference point along with two slopes. This is useful for instance in a Poisson model
where conditioning on an overall level gives a multinomial model, see §6.1. The reference
point is chosen symmetrically in age and cohort, so that it is the middle point on the
first period diagonal with an odd number of observations. That is

ν0 = µUU with U = integer(
L+ 3

2
). (3.5)

The linear slopes are measured as 1-step increments in the age and cohort directions

νa = µU+1,U − µUU , νc = µU,U+1 − µUU . (3.6)

This way, the linear surface (3.4) has representation

µik = ν0 + (i− U)νa + (k − U)νc. (3.7)

For the Belgian lung cancer data, the lower period index is L+ 1 = 11 so that U is
the integer part of 13/2 so U = 6. The points µUU , µU+1,U , µU,U+1 are illustrated with
italic font in Table 2 for the Belgian lung cancer data.

3.2 Decomposing the time effects

The above analysis implies that the time effects appearing on the right hand side of (1.1)
are not fully identifiable from the predictor on the left hand side of (1.1). The variation in
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Figure 1: Illustration of log-odds-ratio interpretation of ∆2α60, ∆2β1970 and ∆2γ1915. The
vertical/horizontal axes are for age/cohort. Period is on the diagonals. Filled/unfilled
symbols indicate that log mortality is taken with positive/negative sign.

the time effects is, however, identified up to a linear trend. Indeed the second differences
of the time effects are identifiable as remarked by Osmond and Gardner (1982), Clayton
and Schifflers (1987b). To explore this the age effects is decomposed into linear and
non-linear terms following the argument of Kuang, Nielsen and Nielsen (2008a).

Introduce first differences ∆αi = αi − αi−1 and second differences ∆2αi = ∆αi −
∆αi−1. The second differences are identifiable from the predictors since

∆2αi = µik − µi−1,k+1 − µi−1,k + µi−2,k+1.

Thus, the age second differences have interpretation as growth rates of the time effects
as well as log odds ratios of the mortality. Figure 1 illustrates the interpretation of
∆2α60, ∆2β1970 and ∆2γ1915 with the Belgian lung cancer data in mind.

In turn, the level of the age effect decomposes in terms of a linear trend and a double
sum of double differences. With a view to cover generalized trapezoid data indices I
the linear trend is anchored at i = U,U + 1, so that

αi = αc + α`(i− U) + 1(i<U)

U+1∑
t=i+2

U+1∑
s=t

∆2αs + 1(i>U+1)

i∑
t=U+2

t∑
s=U+2

∆2αs. (3.8)

The level αc = αU and linear slope α` = ∆αU+1 are not identifiable from the predictor.

3.3 Representation of the age-period-cohort model

The representation for the trend model in §3.1 and the decomposition of the time effects
in §3.2 are now combined into a representation for the age-period-cohort model. From
that expression a design matrix can be constructed.

The analysis of the trend model and the time effects suggests that the age-period-
cohort model can be parametrised parsimoneously by the parameter

ξ = (ν0, νa, νc,∆
2α3, . . . ,∆

2αI ,∆
2βL+2, . . . ,∆

2βL+J ,∆
2γ3, . . . ,∆

2γK)′, (3.9)

of dimension p = I + J + K − 3. Indeed, Theorem 2 of Kuang, Nielsen and Nielsen
(2008a) shows that the parameter ξ uniquely identifies the age-period-cohort model for
any generalized trapezoid index set, see also Theorem 3.1 below.
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A representation for the predictor arises by combining the linear trend representation
(3.7) and the age decomposition (3.8) with similar decompositions for period and cohort.
This results in the representation

µik = ν0 + (i− U)νa + (k − U)νc + Ai +Bi+k−1 + Ck, (3.10)

where the linear trend parameters ν0, νa, νc are defined in (3.5), (3.6). The terms Ai,
Bj, Ck are double sums of differences cumulated forward if i and k are larger than U
backward otherwise so that

Ai = 1(i<U)

U+1∑
t=i+2

U+1∑
s=t

∆2αs + 1(i>U+1)

i∑
t=U+2

t∑
s=U+2

∆2αs (3.11)

Bj = 1(L odd & j=2U−2)∆
2β2U + 1(j>2U)

j∑
t=2U+1

t∑
s=2U+1

∆2βs (3.12)

Ck = 1(k<U)

U+1∑
t=k+2

U+1∑
s=t

∆2γs + 1(k>U+1)

k∑
t=U+2

t∑
s=U+2

∆2γs. (3.13)

The properties of the representation are summarized in the following theorem, which is
proved in the Appendix.

Theorem 3.1. Let the predictor µik satisfy (1.1) for i, k ∈ I. Consider the parameter
ξ of (3.9). Then
(i) µ is a function of the time effects αi, βj, γk through ξ as given by (3.10);
(ii) the parametrisation of µ by ξ is exactly identified in that ξ† 6= ξ‡ ⇒ µ(ξ†) 6= µ(ξ‡).

Theorem 3.1 generalizes the result for age-cohort arrays in Kuang, Nielsen and
Nielsen (2008a). For age-period arrays the representation is equivalent, yet different
in appearance, to that of Mart́ınez Miranda, Nielsen and Nielsen (2014). That rep-
resentation is formulated for an age-period coordinate system and therefore lacks the
symmetry coming with an age-cohort coordinate system.

An important implication of Theorem 3.1 is that it allows us to draw on the theory of
exponential families. The Poisson model is an exponential family with a predictor that is
linear in ξ due to (3.10). Theorem 3.1 shows that the parameter ξ is freely varying. The
exponential family is then regular with ξ as canonical parameter, see Barndorff-Nielsen
(1978, p. 116).

The result could also be written in terms of group-theoretic arguments. The idea
is to note that the equation (1.1) is a mapping from the time effects αi, βj, γk to the
predictor µik. The mapping is invariant to a change of levels and slopes in that

µik = (αi + a+ id) + (βj + b− jd) + (γk + c+ kd) + (δ − a− b− c− d), (3.14)

for arbitrary constants a, b, c, d. We can think of this as a group acting on the time
effects. Theorem 3.1 then shows that ξ is a maximal invariant. Further details are given
in Kuang, Nielsen and Nielsen (2008a) and Nielsen and Nielsen (2014).
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3.4 Design matrix

The representation (3.10) shows that the predictors satisfy a linear relation µik = X ′ikξ,
for some vector Xik. Stacking the row vectors X ′ik gives a design matrix. By swapping
the summation order of the double sums in (3.11)-(3.13) the design matrix is seen to
have row vectors

X ′ik = (1, i− U, j − U,X ′ik,a, X ′ik,p, X ′ik,c) (3.15)

where Xik,a, Xik,p, Xik,c are vectors of dimension I − 2, J − 2 and K − 2 given by

X ′ik,a = {. . . , 1(i<U)(s− i− 1) + 1(i>U+1)(i− s+ 1), . . . } for s = 3, . . . , I, (3.16)

X ′ik,p = {. . . , 1(L odd & j=L) + 1(j>2U)(j − s+ 1), . . . } for s = 3, . . . , J, (3.17)

X ′ik,c = {. . . , 1(k<U)(s− k − 1) + 1(k>U+1)(k − s+ 1), . . . } for s = 3, . . . , K. (3.18)

3.5 Likelihood

The log likelihood (3.2) for the Poisson model can now be written in a computationally
convenient way. Inserting that the predictor satisfies µik = X ′ikξ gives

`(ξ;Y |Z) =
∑
i,k∈I

Yik(X
′
ikξ + logZik)−

∑
i,k∈I

Zik exp(X ′ikξ), (3.19)

where ξ is a freely varying vector of dimension p = I +J +K− 3. This is the likelihood
of a Poisson regression with a log link, design matrix given by (3.15) and offset logZik.

The statistic T =
∑

i,k∈I YikX
′
ik is minimal sufficient. Exponential family theory

shows that the likelihood equation T = EξT has a unique solution when the sufficient
statistic T is interior to its convex support, see Barndorff-Nielsen (1978). A sufficient
condition is that all elements of the sufficient statistic T are positive. Kuang, Nielsen
and Nielsen (2009) give a formal analysis of the condition for an age-cohort model.

The likelihood can analysed by any software for generalized linear models. The R
package apc has the design matrix pre-coded.

3.6 Illustration: Belgian lung cancer data

Fitting the model to the Belgian lung cancer data gives a deviance of 20.2 with p = 0.32
when compared to a χ2

18-distribution. Here, the deviance is the log likelihood ratio
statistic between an age-period-cohort model with µik = X ′ikξ and p = I + J + K − 3
parameters and a saturated model with unrestricted µik and therefore IJ parameters,
where I = 11, J = 4, K = I + J − 1. To complement this Figure 2 shows probability
transforms of the observations given the fitted age-period-cohort model. This confirms
that the deviance with its many degrees of freedom does not hide outliers.

Figure 3 (a)-(c) shows the estimated second difference parameters ∆2αi, ∆2βj, ∆2γk.
The estimates are plotted with pointwise confidence bands, for which the derivation is
discussed below in §5.5. The second differences are volatile, in particular for youngest age
and cohort groups which have fewer responses. Most estimates are close to zero judged
by their pointwise confidences bands. The pointwise confidence bands are, however, not

8



30 40 50 60 70

1
9

5
5

1
9

6
0

1
9

6
5

1
9

7
0

Probability transform map of fit

age

p
e

ri
o

d
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Figure 3: Estimates for age-period-cohort model fitted to Belgian lung cancer data.
Shown with pointwise standard deviations centered at zero and multiplied by 1 (dashed)
or 2 (dotted). Panels (a)-(c) show canonical parameters. Panels (d)-(i) show ad hoc
identified time effects.
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Figure 4: Estimates for age-period-cohort model fitted to Belgian lung cancer data,
excluding the first two age groups. Shown with pointwise standard deviations centered
at zero and multiplied by 1 (dashed) or 2 (dash-dotted). Panels (a)-(c) show canonical
parameters. Panels (d)-(i) show ad hoc identified time effects.

fully informative about joint hypotheses, such as the hypothesis of absence of age effect
so that ∆2αi = 0 for all i. Formal test for such joint hypotheses follow in §5.6.

The estimates for the level and slopes are

ν̂0 = µ̂50,1905 = 1.96
(0.06)

, ν̂a = 0.50
(0.08)

, ν̂c = 0.12
(0.07)

, (3.20)

with standard devations reported below coefficients. The slope in the cohort direction is
only marginally significant. However, it is probably advisable to sort out the age, period
and cohort effects over and above the linear plane before imposing such a hypothesis.

While the estimated double differences have a volatile appearance their population
versions are invariant to the choice of data array. To illustrate this, the model was
estimated from a reduced data set not using the information in the first two age groups.
This also removes the last two cohort groups, but leaves the number of period groups
unaltered. Results are plotted in Figure 4. Up to sampling error, the double differences
are the same in the panels (a,b,c) of Figures 3 and 4.
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The estimates for the level and slopes based on the reduced data set are

ν̂0 = µ̂55,1900 = 2.41
(0.06)

, ν̂a = 0.41
(0.07)

, ν̂c = 0.05
(0.06)

. (3.21)

The estimates in (3.21) has an anchoring point different from the full sample estimates
in (3.20). Corrected for that the estimates are roughly in line. Indeed the new levels
estimate of 2.41 is close to a corrected version of the old 1.96 + 0.50− 0.12 = 2.34.

4 An ad hoc identified plot of time effects

Given the original model formulation in (1.1) it is of interest to represent the time effects
for age, period and cohort somehow. Plotting the time effects will inevitably involve
an ad hoc identification of the linear trends. However, the visual impression of such ad
hoc identified time effects will be different, possibly because the human mind tends to
focus on deviations from a horizontal line. Table II of Clayton and Schifflers (1987b)
illustrates this point, whereas a more formal discussion is given in Nielsen and Nielsen
(2014). It is therefore necessary to be clear about the purpose of such plots and the
consequences of the ad hoc identication. It is worth noting that the estimation outline
in the previous section is done without any need for ad hoc identification. The ad hoc
identification is only needed for illustration.

In the following a particular plot is suggested and some interpretations are given.
This is then illustrated using the Belgian lung cancer data.

4.1 The plot

The double differences give a very volatile impression of the deviation from the pure
trend model of §3.1. It is very hard to see if there are tendencies in the time effects over
and above the arbitrary linear trend. With that in mind the linear trend could be chosen
so as to tie the ad hoc identified time effects down to start and end in zero - just as a
Brownian bridge ties down a Brownian motion. Visually, this will emphasize variation
over and above arbitrary linear trends. For the age effect this is done as follows.

Expand the age effect αi as in (3.8), but with an anchoring point U = 1. Insert the
estimated double differences and choose the level and slopes so that the series starts and
ends in zero. This gives the detrended age effect

α̂detrendi = ac + a`(i− 1) + 1(i>2)

i∑
t=3

t∑
s=3

∆̂2αs, i = 1, . . . , I, (4.1)

which satisfies α̂detrend1 = α̂detrendI = 0 when ac = 0 and a` = (I − 1)−1
∑I

t=3

∑t
s=3 ∆̂2αs.

The detrended age effect has I − 2 non-zero values in line with the dimension of the
age double differences. It does, however, not share the invariance to the choice of data
array, see §4.3 for further discussion.

11



4.2 Interpretation

In some situations the time effect has a concave appearance. This will be particularly
visible in the detrended plot. Examples include the age effects in the Belgian lung cancer
data discussed in §4.3, the lung cancer study for Californian women by Holford (2006)
and the mesothelioma study by Mart́ınez Miranda, Nielsen and Nielsen (2014). Holford
also finds a cyclical shape for the period effect. Stylized interpretations of these shapes
are explored in the following.

A quadratic concave shape arises when the double differences are equal, ∆2αi = a.
In that case the detrended age effect satisfies, as shown in Appendix A.2,

αdetrendi =
1

2
(i− 1)(i− I)a, i = 1, . . . , I. (4.2)

This quadratic curve will be concave when the double differences are negative. If a = 0
the age effect is log linear. When a < 0 the age effect is sub log linear and the increase in
mortality is levelling off with age. This applies to the cancer studies mentioned above.

An S shape, which is concave at first and then convex, can arise when the double
differences are linear, ∆2αi = a+b(i−2). The age effects is then cubic and its detrended
version satisfies, see Appendix A.2 for details,

αdetrendi =
1

2
(i− 1)(i− I){a+

b

3
(i+ I − 2)}, i = 1, . . . , I. (4.3)

The S shape occurs when the term in curly brackets is zero for some i so 1 < i < I.
This happens if (I − 1) < −3a/b < 2(I − 1). In particular, if a = −1 and −3a/b is in
the middle of the indicated interval then, approximately, ∆2αi increases from −1 to +1
while αdetrendi is concave for i ≤ I/2 and then convex. The interpretation is that the age
effect is a first sub log linear and then super log linear, so that the increase in the age
effect falls less and less and then start increasing. If instead a = −1 and b is chosen so
that ∆2αi increases, approximately, from −1 to 0 then −3a/b is outside the indicated
interval and αdetrendi is concave, although not quadratic.

4.3 Illustration: Belgian lung cancer data

Figure 3 (g)-(i) show the estimated time effects that are ad hoc identified by the de-
trending method. These plots start and end in zero in order to focus on variation over
and above the arbitrary linear trends. In §5.6 the period and cohort effect are found
not to be significant.

The plot (g) of the detrended age effect shows a concave appearance. The age double
differences in (a) are very volatily, but have a tendency to increase linearly from negative
towards zero, roughly in line with the cubic interpretation offered above. This will be
tested formally in §5.6.

The plot (h) of the detrended period effect shows an S-shape over the just 4 observed
periods. The period double differences in (b) rise linearly from approximately −0.06 to
+0.06. So the levelling off of the increase in the period effect becomes less and less.

The plot (i) of the detrended cohort effect also shows an S-shape, or, rather, an
approximate linear shape until 1940 and then a sharp drop.
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Figure 3 (d)-(f) indicate the linear plane that arises with the identification choice
made for time effects. The slopes of the plane in the age and the cohort directions
are indicated in panels (d), (f), while panel (e) shows the corresponding level. The
normalisation of the implied linear plane is chosen to match the non-linear effects in
panels (g)-(i). Thus, the mortality rate for people of age 25 born in 1945 and observed
in 1970 is found by combining the relevant values from the panels (d)-(i). The linear
plane increases in cohort and even more in age. Consequently, it is also increasing in
period. In terms of magnitudes, the linear growth in particular in the age direction
seems to dominated the non-linear effects seen in panels (g)-(i).

Figure 4 shows the estimates from a truncated data set where the youngest two age
groups and, consequently, the also last two cohort groups are removed. The ad hoc
identification is now different for age and cohort so that the graphs in panels (d)-(i) are
somewhat different from those in Figure 4(d)-(i). This illustrates the wellknown point
that some caution is needed when interpreting add hoc identified time trends, yet many
features are similar in the two figures.

The largest difference is seen for cohort trends in panels (i). Since the last two cohort
groups are removed in Figure 4 the sharp drop in 1945 is gone. The roughly linear shape
until 1940 now dominates. Due to the detrending that linear shape now has a horizontal
slope in Figure 4 (i). Note, that the detrending makes it easier to see from Figure 4
(i) than Figure 3 (i) that the linear shape actually wriggles quite a bit. However, that
wriggly shape is not significant as will be discussed in §5.6.

The linear components in (d)-(f) are also changed from Figure 3 to Figure 4. This
is a result of the different ad hoc identification and reconcile as in (3.20), (3.21).

Overall, the estimates are remarkably stable with respect to removing some of the
observations. This is a further indication that the Poisson model with age-period-cohort
describes the data well.

5 Inference

The age-period-cohort model has a number of interesting sub-models. Most of these
have previously been discussed by Clayton and Schifflers (1987a,b). The advantage of
the present approach is that the sub-models are directly seen to be linear restrictions
on the canonical parameter ξ in (3.9). Since the restrictions are linear the sub-models
inherit the regular exponential family property of the unrestricted model. Estimation,
computation of likelihood ratio test statistics or deviances and counting degrees of free-
dom are therefore very simple. Table 3 shows the restrictions imposes by the sub-models,
while Figure 5 gives an overview of their nesting structure. The sub-models are discussed
in some detail.

5.1 Two factor models

A prominent sub-model is the age-cohort model, denoted AC in Table 3. This hypothesis
arises by setting the period double differences to zero:

HAC : ∆2β3 = · · · = ∆2βJ = 0. (5.1)
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ν0 νa νc ∆2α ∆2β ∆2γ df
APC * * * * * * I + J +K − 3

AP * * * * * 0 I + J − 1
AC * * * * 0 * I +K − 1
PC * * * 0 * * J +K − 1
Ad * * * * 0 0 I + 1
Pd * * * 0 * 0 J + 1
Cd * * * 0 0 * K + 1
A * * 0 * 0 0 I
P * = = 0 * 0 J
C * * 0 0 0 * K
t * * * 0 0 0 3

tA * * 0 0 0 0 2
tP * = = 0 0 0 2
tC * 0 * 0 0 0 2

1 * 0 0 0 0 0 1

Table 3: Overview of sub-models of the age-period-cohort model.
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Figure 5: Diagram of the age-period-cohort model and its sub-models. The models are
nested from right to left.

Expressed in terms of time effects the age-period model is

µACik = αi + γk + δ, (5.2)

so that the period effects are restricted to be zero: β1 = · · · = βJ = 0. A formal proof
for the equivalence of the two formulations is given by Nielsen and Nielsen (2014, §5.3).
The degrees of freedom is readily seen to be J − 2 when the restriction is formulated in
terms of the canonical parameter as in (5.1).

The canonical parameter (3.9) subjected to the restriction (5.1) and the representa-
tion (3.10) continue to apply for the age-cohort model. However, the two linear trend can
now be attributed in a unique way to the age and cohort time effects. Thus, the canonical
parameter can equivalently be chosen in terms of an overall level, µUU say, age differ-
ences ∆αi = µik − µi−1,k for i = 2, . . . , I, and the cohort differences ∆γk = µik − µi,k−1
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for k = 2, . . . , K. An alternative representation in terms of these parameters is

µACik = µUU − 1(i<U)

U∑
t=i+1

∆αt + 1(i>U)

i∑
t=U+1

∆αt

− 1(k<U)

U∑
t=k+1

∆γt + 1(k>U)

k∑
t=U+1

∆γt. (5.3)

In a similar fashion the age-period model, denoted AP in Table 3, arises by eliminat-
ing the cohort double differences ∆2γk = 0 for k = 3, . . . , K. The period-cohort model
PC restricts the age double differences ∆2αi = 0 for i = 3, . . . , I.

5.2 Drift models

The drift models of Clayton and Schifflers (1987a) arise by eliminating two time effects.
The age drift model, denoted Ad in Table 3, is given by the hypothesis

HAd : ∆2β3 = · · · = ∆2βJ = 0, ∆2γ3 = · · · = ∆2γK = 0. (5.4)

Now, there are two linear trends, but only one time effect, so the linear trends can-
not be attributed to the time effect in a clear way. Further discussion of that issue
is given in Clayton and Schifflers (1987a, 1987b). There is therefore no obvious alter-
native to the representation (3.10). We see that the identification problem is tied to
the model specification in an intricate way: The trends are unidentified in the unre-
stricted age-period-cohort model, then identified under the age-cohort restriction (5.1),
but unidentified under the further nested age-drift restriction (5.4).

The age-drift model is fiddly to express in terms of time effects as pointed out by
Clayton and Schifflers (1987b). The two time effect models

µAdik = αi + βc + β`j + δ and µAdik = α′i + γc + γ`k + δ, (5.5)

are equivalent but neither is identified. The models are equivalent since α′i = αi + β`,
γc = βc − β` and γ` = β`.

5.3 One factor models

A single factor model arises by eliminating two sets of double differences and one time
effect. An example is the age model, A, where the hypothesis is

HA : ∆2β3 = · · · = ∆2βJ = 0, ∆2γ3 = · · · = ∆2γK = 0, νc = 0. (5.6)

With this restriction there is one level and one linear slope, so the time effect model is
fully identified:

µAik = αi. (5.7)

The period and cohort models arise in a similar way by the restrictions

HP : ∆2α3 = · · · = ∆2αI = 0, ∆2γ3 = · · · = ∆2γK = 0, νa = νc, (5.8)

HC : ∆2α3 = · · · = ∆2αI = 0, ∆2β3 = · · · = ∆2βJ = 0, νa = 0. (5.9)
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5.4 The trend model

The trend model was introduced in §3.1. It arises from the restriction

Ht : ∆2α3 = · · · = ∆2αI = ∆2β3 = · · · = ∆2βJ = ∆2γ3 = · · · = ∆2γK = 0. (5.10)

The linear plane can be restricted further to slope only in the age, period or cohort
direction, that is

HtA : Ht ∩ (νc = 0), HtP : Ht ∩ (νa = νc), HtC : Ht ∩ (νa = 0). (5.11)

If it has no slope in any direction the mortality is constant, that is

H1 : Ht ∩ (νa = νc = 0). (5.12)

5.5 Sampling theory

The Poisson model is a regular exponential family with canonical parameter ξ and
sufficient statistic T =

∑
i,k∈I YikX

′
ik. Conditionally on the doses the sufficient statistic

has expectation and variance given by

κ1(ξ) = Eξ(T |Z) =
∑
i,k∈I

Zik exp(X ′ikξ)X
′
ik,

κ2(ξ) = Varξ(T |Z) =
∑
i,k∈I

Zik exp(X ′ikξ)XikX
′
ik,

where κ2(ξ) is also the expected information.
The asymptotic sampling theory assumes a fixed index set I, that the total dose

Z·· =
∑

i,k Zik increases to infinity while Zik/Z·· converge to positive constants Σik > 0 for

all i, k. The Central Limit Theorem shows Z
−1/2
·· {Yik−Zik exp(µik)} are asymptotically

independent normal with variance Σik exp(µik). Since the dimension of the index set

I is kept fixed then Z
−1/2
·· {T − κ1(ξ)} is asymptotically normal with variance κ2(ξ).

Applying the inverse mapping κ−11 and noting that κ1(ξ) has derivative κ2(ξ) then

{κ2(ξ)}1/2(ξ̂ − ξ)
D→ N(0, Ip).

As a consequence, the standard output of standard deviations from for instance R is
applicable as long as the doses Zik are not too small. Moreover the likelihood ratio test
statistics, or deviance test statistic, for any smooth hypothesis is asymptotically χ2.

5.6 Illustration: Belgian lung cancer data

Table 4 presents a deviance table for the Belgian lung cancer data. The table is organised
in line with Table 3. Columns 2-4 show the deviance of the sub-model along with the
associated degrees of freedom and the p-value when judged against a χ2-distribution.
Columns 5-7 show the log likelihood ratio statistics, or relative deviance, for the sub-
model against the age-period-cohort model along with degrees of freedom and p-value.
Finally, column 8 shows the information criteria suggested by Akaike.
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deviance dfdev pdev LR dfLR pLR aic
APC 20.2 18 0.32 341.4

AP 25.6 30 0.70 5.3 12 0.95 322.7
AC 21.5 20 0.37 1.2 2 0.54 338.6
PC 99.2 27 0.00 79.0 9 0.00 402.4
Ad 26.6 32 0.74 6.4 14 0.96 319.8
Pd 253.6 39 0.00 233.3 21 0.00 532.7
Cd 100.7 29 0.00 80.5 11 0.00 399.9
A 85.6 33 0.00 65.4 15 0.00 376.7
t 254.5 41 0.00 234.3 23 0.00 529.7

Table 4: Deviance table for Belgian lung cancer data.

deviance dfdev pdev LR dfLR pLR aic
Ad 26.6 32 0.74 319.8

Adc 31.5 39 0.80 5.0 7 0.66 310.7
Adq 39.4 40 0.50 12.9 8 0.11 316.6

Table 5: Further analysis of the age-drift model.

Among the two factor models, the age-cohort model, p = 0.54, and the age-period
model, p = 0.95, cannot be rejected, while the period-cohort model, p = 0.00, is re-
jected. This suggests the age effect is needed, while the period and cohort effects are
not significant. A further reduction to the age-drift model, p = 0.96, cannot be rejected.
The age-drift model is nested in both the age-period model and the age-cohort model,
see Figure 5. Further reductions are not supported. The conclusion is in line with Clay-
ton and Schifflers (1987a), who used these data to illustrate the age-drift model. The
estimates under the age-drift model are similar to those for the age-period-cohort model
and therefore not reported here.

In the discussion of Figure 3(g) it was suggested that the age effect could be cubic or
quadratic. Table 5 investigates this. Its structure is similar to that in Table 5 albeit the
age-drift model is taken as reference point for the likelihood ratios statistics in column
5. The age drift model has 3 deterministic parameters and I − 2 = 9 age parameters.
Imposing that the age effect is cubic cannot be rejected, p = 0.66. Imposing a quadratic
age effect cannot be reject against the age-drift model, p = 0.11, but it is rejected
against the cubic model with a deviance of 7.9 and just one degree of freedom. With
this information it seems reasonable to settle on the cubic age-drift model. It has five
parameters, three for the linear plane and two for the cubic age effect, or rather for the
linear age double differences, that is

ν̂0 = 1.97, ν̂a = 0.49, ν̂c = 0.088, ∆̂2αi = −0.15 + 0.014(i− 2), i = 3, . . . , I.
(5.13)

The linear plane estimates are in line with those reported in (3.20). The linear age
double differences increase from −0.15 to just about −0.02 throughout the 9 periods,
see §4.2 for interpretation.
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6 Variations of the statistical model

A generalized linear model framework allows for a variation of the distributional as-
sumptions of the statistical model. A few of those variations deserve mentioning.

6.1 Poisson response model

In some situations only responses Yik are observed while doses or exposure Zik are
unobserved. We saw in (3.1) that a Poisson dose-response model gives an age-period-
cohort structure to the log conditional expectation of responses given doses. In a similar
fashion a Poisson response model arises by giving an age-period-cohort structure to the
unconditional log expectation of responses.

A prominent example is the chain-ladder model using for reserving in general in-
surance. The data are typically triangular in age and cohort and the standard model
in that literature is an age-cohort model. In that literature age and cohort are called
development year and policy or accident year and the model is used for forecasting.
England and Verrall (2002) give an overview. Kuang, Nielsen and Nielsen (2008b, 2009)
discuss, respectively, a general forecasting theory for age-period-cohort models and the
maximum likelihood estimation of the chain ladder model.

Mart́ınez Miranda, Nielsen and Nielsen (2014) apply the Poisson response model to
forecast the future burden of mesothelioma mortality. It is proposed to use a multino-
mial sampling scheme where the cumulated response Y·· =

∑
i,k∈I Yik increases in the

asymptotic argument while the frequencies Yik/Y·· are kept fixed. Asymptotic distribu-
tion theory is given for estimators and distribution forecasts.

6.2 Logistic dose-response model

In the dose-response situation a logistic specification could be used as an alternative to
the Poisson specification. In that case responses Yik are binomially distributed given
doses Zik with count parameter Zik and success (mortality) probability πik and log odds
satisfying the age-period-cohort specification in (1.1), that is

log
πik

1− πik
= µik.

Inference can be conducting using the same sampling scheme as in §5.5.

7 Discussion

The traditional formulation of the age-period-cohort model is viewed as a motivation or a
symbolic description in the tradition of Wilkinson and Rogers (1973). The identification
problem is addressed through a reparametrization in terms of the freely varying canonical
parameter. A unified parametrization covering all three Lexis diagrams was suggested.
A new plot of ad hoc identified time effects was suggested and interpretation was offered.
A deviance table for a range of sub-models was suggested. The methods are implemented
in the R package apc.
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A Technical details

A.1 Proof of Theorem 3.1

(i) The expression (3.10) is seen to be a function of the parameter ξ in (3.9). Thus, it
suffices to argue that (3.10) holds. First, we check the formula in the three anchoring
points. From (3.11)-(3.13) it is seen that AU = AU+1 = B2U−1 = B2U = CU = CU+1 = 0.
Insert this in (3.10) along with the definitions of ν0, νa, νc from (3.5), (3.6) to see
that the formula correctly gives µUU , µU+1,U , µU,U+1. Secondly, we check that the
representation (3.10) has the correct double differences. Taking double difference of
µik as indicated in Figure 1 indicates that it suffices to check that ∆2Ai = ∆2αi for
i = 3, . . . , I, ∆2Bj = ∆2βj for j = L+ 1, . . . , L+ J and ∆2Ck = ∆2γk for k = 3, . . . , K.
In the case of Ai it is convenient to check the cases i > U + 3, i = U + 3, i = U + 2,
i = U + 1, i = U and i < U separately. The case of Ck follows in the same way. In the
case of Bj consider odd and even L separately. For odd L then 2U = L+ 3 and consider
cases j > 2U + 2, j = 2U + 2, j = 2U + 1 and j = 2U . For even L then 2U = L+ 2 and
consider cases j > 2U + 2, j = 2U + 2 and j = 2U + 1.

(ii) is proved in the same way as Theorem 1 of Kuang, Nielsen and Nielsen (2008a):
First, consider the case where ν†0 6= ν‡0. Then µ†UU 6= µ‡UU so µ† 6= µ‡. Secondly, consider
the case where ν†0 = ν‡0 but ν†a 6= ν‡a. Then µ†UU = µ‡UU but µ†U+1,U 6= µ‡U+1,U so µ† 6= µ‡.

Thirdly, consider in the same way the case where ν†0 = ν‡0 ν
†
a = ν‡a. but ν†c 6= ν‡c . Fourthly,

consider the case where ν†0 = ν‡0 ν
†
a = ν‡a. ν

†
c 6= ν‡c . but ∆2β†2U+1 6= ∆2β‡2U+1. Following

Figure 1(b) then ∆2µ†U+1,U+1 = ∆2β†2U+1 6= ∆2β‡2U+1 = ∆2µ‡U+1,U+1 Since µ takes the

same value at the points (U,U), (U + 1, U) and (U,U + 1) then µ†U+1,U+1 6= µ‡U+1,U+1.
Continue in the same way with the remaining parameters of (3.10). .

A.2 Quadratic and cubic time effects

The quadratic expression (4.2) is a special case of the cubic expression (4.3). The formula
(4.3) is zero for i = 1, I. Thus it suffices to show that ∆2αdetrendi = a + b(i− 2). Write
out the expression for αdetrendi in (4.3) as

αdetrendi =
a

2
{i2−(I+1)i+I}+ b

6
[i3+{(I−2)−(I+1)}i2+{I−(I+1)(I−2)}i+I(I−2)].

Take second differences noting that linear trends have second difference zero while

∆2i2 = i2 − 2(i− 1)2 + (i− 2)2 = 2, (A.1)

∆2i3 = i3 − 2(i− 1)3 + (i− 2)3 = 6(i− 1). (A.2)
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