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Abstract

This paper studies information transmission in a two-sender, multidimensional cheap

talk setting where there are exogenous constraints on the (convex) feasible set of policies for

the receiver and where the receiver is uncertain about both the directions and the magnitudes

of the senders’ bias vectors. With the supports of the biases represented by cones, we prove

that whenever there exists an equilibrium which fully reveals the state (a FRE), there exists

a robust FRE, i.e. one in which small deviations result in only small punishments. We

provide a geometric condition, the Local Deterrence Condition, relating the cones of the

biases to the frontier of the policy space, that is necessary and sufficient for the existence of

a FRE. We also construct a specific policy rule for the receiver, the Min Rule, that supports

a robust FRE whenever one exists.
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1 Introduction

In sender-receiver games with cheap talk, the decision-maker (receiver) has imperfect in-

formation about the consequences of a policy (the state of the world) and elicits reports

from better-informed experts (the senders), whose preferences are not perfectly aligned

with those of the decision-maker (i.e. the experts are “biased”). The advice transmitted

by the senders is costless but unverifiable (hence, “cheap talk”), and the receiver cannot

commit herself in advance to how she will respond to the senders’ advice.1 Cheap talk

games with two biased experts have been used, for example, in organizational economics

to analyze the interaction between a CEO and division managers, and in political science

to study the transmission of information from legislative committees to the legislature as a

whole.2

Our objective in this paper is to study the combined impact on information transmission

of two frictions that are common in many of the environments which cheap talk models are

designed to represent. The first such friction is constraints on the feasible set of policies.

In the context of resource allocation by managers or legislatures, these constraints arise

from limited budgets. In the context of organizational downsizing or restructuring, they

may arise from legal or institutional constraints. More generally, there almost always exist

physical constraints on what policies can be implemented within any given time frame.

The second friction is uncertainty on the part of the receiver about exactly how and to what

extent the preferences of the senders differ from her own. At any given time, the receiver

may be unsure about a range of factors that affect how the senders evaluate the different

possible decisions, and these privately known factors will affect the senders’ incentives

when communicating with the receiver.

When the receiver needs to elicit information from biased senders, constraints on feasi-

ble policies can generate an informational inefficiency. By limiting the receiver’s potential

responses to the senders’ reports, such constraints can destroy the senders’ willingness to

truthfully reveal their information. And the more uncertain the receiver is about the senders’

preferences, the more likely it is that such constraints will prevent full extraction of the

senders’ information. We analyze the conditions under which biased senders have incen-

tives to truthfully reveal the information the receiver seeks, despite their privately known

biases and despite feasibility constraints in effect tying the receiver’s hands with respect to

punishments for misreporting.

In our two-sender model of simultaneous cheap talk, both senders (but not the receiver)

observe the p-dimensional state of the world. All of the players have quadratic utility func-

tions, and sender i’s ideal p-dimensional policy differs from the receiver’s by a vector, bi,

sender i’s bias vector. Each sender is privately informed about his bias vector, and biases

are distributed independently of the state of the world. We assume that the support of each

1For the seminal paper in this literature see Crawford and Sobel (1982).
2For theoretical models of multisender cheap talk, see Battaglini (2002) and Ambrus and Takahashi (2008).

For the former application, see Alonso and Matouschek (2008), and for the latter, Gilligan and Krehbiel (1989)
and Krishna and Morgan (2001a;b).
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bi is a convex cone; this implies that the receiver is uncertain both about the directions

of the biases and about the magnitudes, which may be arbitrarily large. The set of feasible

policies for the receiver is a closed, convex, p-dimensional subset of Rp, which may or may

not be compact. We study the existence of equilibria in which the receiver fully extracts the

senders’ information about the state of the world, using a strategy with the desirable prop-

erty that it is robust to small mistakes by the senders, in that small discrepancies between

their reports result in only small punishments by the receiver. We call such an equilibrium

a robust fully revealing equilibrium (robust FRE).

We prove three main sets of results about the existence of a robust FRE when the re-

ceiver is uncertain about the senders’ biases and the policy space is exogenously restricted.

First, we show that whenever there exists a FRE, there also exists a robust FRE. For any

given pair of incompatible reports about the state by the senders, the cones representing

the supports of the senders’ biases pin down the directions, relative to the reports, in which

an effective punishment by the receiver must lie. The convexity of the policy space then

guarantees that if there is any feasible punishment in the right directions, there must be a

small feasible punishment. Thus, our focus on robust strategies for the receiver does not

limit the conditions under which a FRE exists.

Second, we provide geometric characterizations of the necessary and sufficient condi-

tions for existence of a (robust) FRE. These are conditions on the shape of the frontier of

the feasible policy space, relative to the cones of the senders’ biases. We provide separate

characterizations for the cases of deterministic and uncertain bias directions and show that,

with uncertain directions, a FRE exists if and only if a FRE would exist for each possible

pair of deterministic directions. This result is more subtle than it may at first appear. If

the receiver knew the directions of the senders’ biases, her strategy in response to incom-

patible reports could depend on these directions. But with uncertain bias directions, a FRE

requires that the receiver’s response to incompatible reports must constitute a punishment

for all possible realizations of these directions.

The geometric characterizations can be interpreted as "local deterrence conditions".

They guarantee, for appropriate points on the frontier of the policy space, that small de-

viations from truthful reporting by either sender can be deterred with a local (i.e. robust)

punishment. Despite their local nature we prove that these conditions are sufficient for all

deviations, including large ones, to be deterred. These geometric conditions are, moreover,

easy to check.

Our final set of results shows how to construct a robust FRE, both for deterministic

and for uncertain bias directions. We provide a strategy for the receiver, which we call

the Min Rule, that implements a robust FRE whenever one exists. The Min Rule takes

a very intuitive and appealing form when the bias directions are deterministic or when

both the policy space and the supports of the biases are two-dimensional. In both of these

cases, there are exactly two dimensions in which the senders’ interests conflict with the

receiver’s. In these dimensions, given any incompatible reports, the policy selected by the

Min Rule constitutes the anonymous punishment which is least severe for each sender,

subject to deterring both of them from misreporting the state, whatever the realizations of
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their biases.3

The rest of the paper is organized as follows. The next subsection briefly reviews the

related literature. Section 2 presents the model and some preliminary results. Section 3

proves the existence of a robust FRE whenever there exists a FRE. In Section 4, we provide

the geometric characterizations of the necessary and sufficient conditions for existence of a

(robust) FRE. Finally, Section 5 shows how to construct a robust FRE, using our Min Rule,

whenever one exists.

1.1 Related Literature

The closest papers to ours are Battaglini (2002), Ambrus and Takahashi (2008), and Krishna

and Morgan (2001a), in all of which a receiver consults two equally informed senders.

Assuming that the policy space is the whole of Rp, Battaglini constructs a FRE in which

each sender has incentives to report truthfully, because his influence over the receiver’s

policy choice is limited to dimensions orthogonal to his bias vector. In such dimensions,

there is no conflict of interest between a sender and the receiver. This construction supports

a FRE that is independent of the magnitudes of the biases and also robust to small mistakes.

However, this construction breaks down in the presence of the two frictions on which we

focus, constraints on the feasible set of policies and uncertainty on the part of the receiver

about the directions of the senders’ bias vectors. Section 5.1 discusses in more detail the

contrast between our construction of a robust FRE, using our Min Rule, and Battaglini’s

approach.

Ambrus and Takahashi (2008) analyze the implications of restricted policy (or state)

spaces for the existence of FRE. They show that when the magnitudes of the biases are

sufficiently small, it is always possible to construct a FRE. However, as the magnitudes of

the biases increase, the restrictions on the policy space might make it impossible to deter

deviations by the senders. For compact policy spaces, they show that there exists a FRE

for arbitrarily large magnitudes of the biases if and only if, as the biases become large,

the senders have a common least-preferred policy; the receiver could use such a common

least-preferred policy as a response to any deviation. Remarking that the use of extreme

punishments after even small deviations is unappealing, since such deviations could in

practice arise from small mistakes, Ambrus and Takahashi introduce a robustness concept

called continuity on the diagonal, which is equivalent to our definition of robustness for the

case of known biases. For a policy space whose frontier is everywhere smooth, they show

that there does not exist such a robust FRE, even when the magnitudes of the biases are

small.

Motivated by the same remark, our paper focuses on the existence and construction

of robust FRE. Our first main result, Proposition 3, implies, in the special case when the

receiver is uncertain about only the magnitudes (not the directions) of the biases and these

can be arbitrarily large, that whenever there exists a FRE there also exists a robust FRE. For

3An anonymous punishment strategy for the receiver, formally defined in Section 2.2, is one that does not
depend on which sender sent which report.
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compact policy spaces, this means that when there exists a common least-preferred policy

with which deviations can be punished, it is also possible to punish deviations locally.

This positive result does not contradict Ambrus and Takahashi (2008)’s negative one for

smooth policy spaces, because the condition for existence of a common least-preferred

policy requires the existence of kinks in the frontier of the policy space.

For convex, closed but unbounded (and hence non-compact) policy spaces, our first

characterization result for the existence of (robust) FRE, Proposition 4, which also assumes

deterministic bias directions, shows that a robust FRE might exist even if there does not

exist a common least-preferred policy and even if the frontier of the policy space is smooth.

In contrast to the analysis in Ambrus and Takahashi (2008), we prove a characterization

result for the existence of a (robust) FRE when the receiver is uncertain about the directions

of the senders’ biases, and we show how to construct robust FRE whenever they exist.

In Krishna and Morgan (2001a), the policy space is one-dimensional. Though their

analysis focuses on sequential communication by the senders, they make the following

observation about the game with simultaneous reporting. If the senders’ ideal points are

both larger than the receiver’s, then a FRE can be supported by the receiver choosing the

smaller of the two reports. Our construction of a robust FRE using the Min Rule can be

seen as a multidimensional generalization of Krishna and Morgan’s observation.

Finally,4 Ambrus and Lu (2014) and Rubanov (2015) construct equilibria in a unidi-

mensional policy space that are arbitrarily close to full revelation. Both papers show that

their equilibria survive the introduction of a small probability of the senders observing a

random state which is independent of the true state. However, the equilibria in these two

papers do not satisfy our robustness concept: The senders might observe states that are

arbitrarily close to each other, yet the receiver’s action in response to the equilibrium mes-

sages might be far away from their observations. Though we do not explicitly model the

occurrence of mistakes, our robustness concept requires the receiver’s response to be close

to the senders’ reports whenever these reports are themselves close, thus ensuring that small

mistakes by the senders do not lead to large responses/punishments by the receiver.

2 The Model

We analyze a game of cheap talk between two senders, S 1, S 2, and a receiver, R. Both

senders perfectly observe the state θ ∈ Θ, where Θ is a convex subset of Rp with p ≥ 1.

After observing θ, each sender S i sends a costless and unverifiable message mi ∈ Mi to the

receiver, who then chooses a policy y from a closed set Y of feasible policies. We refer to

Y as the policy space and throughout the paper we assume that Y = Θ.5

4There is a small recent experimental literature on multi-sender cheap talk. Lai et al. (2015), in particular,
discuss robustness, but because their state and policy spaces are discrete, our concept of robustness cannot be
applied in their setting.

5In our discussion paper, Meyer et al. (2016), we analyzed the case in which Y ( Θ. Given the utility function
for the receiver specified in the next paragraph of the text, Θ is the set of potential ideal policies for the receiver, and
Y ⊂ Θ means that only a subset of these policies are feasible. We showed in Proposition 2 of Meyer et al. (2016)
that given a fixed Y , existence of a (robust) FRE for Θ = Y is necessary and sufficient for existence of a (robust)
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Given the state θ and the chosen policy y, the receiver’s utility is uR(y, θ) = −|y − θ|2

and sender S i’s utility is uS i(y, θ, bi) = −|y − θ − bi|
2, where | · | denotes the Euclidean norm

in Rp. Given these utilities, the ideal policy for the receiver is to match the state, whereas

the optimal policy for sender S i is y = θ + bi. The vector bi is referred to as the bias

vector of sender S i and is private information to S i. We denote by F the joint cumulative

distribution function of (θ, b1, b2), and we assume that (θ, b1, b2) are mutually independent

with full support on Θ × C1 × C2, where Ci ⊆ R
p is a closed and convex cone in Rp, i.e.

for any bi, bi
′ ∈ Ci, tbi + t′bi

′ ∈ Ci for all t, t′ ≥ 0. The assumption that the supports of the

privately-observed biases are convex cones implies that the receiver is uncertain not only

about the directions of the biases but also about their magnitudes, which may be arbitrarily

large.

Given the private information of the senders, we can assume without loss of generality

that the message space for S i isMi = Rp×Ci. A pure strategy for sender S i is a measurable

function si : Θ × Ci −→ Mi. A pure strategy for the receiver is a measurable function

yR :M1×M2 −→ Y . Given messages m1,m2, µ(m1,m2) denotes the receiver’s belief about

(θ, b1, b2) after receiving messages m1,m2.6 We define

Invs1,s2(m1,m2) ≡ {(θ, b1, b2) ∈ Θ ×C1 ×C2 | s1(θ, b1) = m1, s2(θ, b2) = m2}.

Invs1,s2(m1,m2) is the set of triples (θ, b1, b2) that lead to messages m1,m2 if the senders are

using strategies s1, s2.

The equilibrium concept we use is Perfect Bayesian Equilibrium.

Definition 1. The strategies (s1, s2, yR) constitute a Perfect Bayesian Equilibrium if there

exists a belief function µ such that:

(i) si(θ, bi) is optimal given s−i and yR, for any θ ∈ Θ and bi ∈ Ci, for i ∈ {1, 2}.

(ii) yR(m1,m2) is optimal given µ(m1,m2) for each (m1,m2) ∈ M1 ×M2.

(iii) If Invs1,s2(m1,m2) , ∅, µ(m1,m2) puts probability one on Invs1,s2(m1,m2). Moreover,

if Invs1,s2(m1,m2) has positive probability with respect to F, µ(m1,m2) is derived from

Bayes’ rule.

We focus on Perfect Bayesian Equilibria in which the receiver perfectly learns the state

from the senders’ messages. We say that the strategies (s1, s2) fully reveal the state if for

any θ ∈ Θ and any b1 ∈ C1, b2 ∈ C2, the receiver’s marginal belief about the state given

messages s1(θ, b1) and s2(θ, b2) puts mass one on θ. We call an equilibrium with strategies

that fully reveal the state a fully revealing equilibrium (FRE).

FRE for Θ ⊃ Y . For the case Θ ⊂ Y and given the receiver’s utility function specified below, we can without loss
of generality ignore all those policies in Y that are not in Θ, since no such policies could be best responses for the
receiver given that Θ is convex.

6For clarity of exposition, the players are restricted to using pure strategies throughout the paper. Given the
convexity of the policy space, it is always optimal for the receiver to use a pure strategy. Moreover, we can
show that our assumption that the supports of the bias vectors are cones (and hence that their magnitudes may be
arbitrarily large), coupled with the convexity of Y , implies that if there does not exist a (robust) FRE when the
senders are restricted to pure strategies, then there does not exist a (robust) FRE when they are allowed to use
mixed strategies. The argument is similar to that used to prove Lemma 1 below.
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2.1 Robustness

Our goal is to characterize the conditions under which there exist equilibria that are fully

revealing, despite the uncertainty about the biases, and that also satisfy an additional desir-

able property: robustness. Our definition of robustness is motivated by the possibility that

the senders might make small mistakes, because they might not perceive the state perfectly

accurately. In such situations, it is natural to require the receiver’s response to be close to

the response that would have resulted in the absence of such mistakes. We now formally

define robustness.

Given x ∈ Rp, r > 0, denote by B(x, r) = {θ ∈ Rp | |θ − x| < r} the open ball with centre

x and radius r.

Definition 2. Given some strategies (s1, s2) that fully reveal the state, the receiver’s strategy

yR is robust if for any θ ∈ Θ and any ε > 0, there exists a δ > 0 such that, if θ′, θ′′ ∈

B(θ, δ) ∩ Θ, then

yR(s1(θ′, b1), s2(θ′′, b2)) ∈ B(θ, ε) ∩ Y ∀b1 ∈ C1, b2 ∈ C2

A fully revealing equilibrium (s1, s2, yR) in which yR is robust is called a robust fully re-

vealing equilibrium.7

Definition 2 imposes conditions both on and off the equilibrium path. On the equilib-

rium path, the definition imposes a continuity requirement on the senders’ fully revealing

strategies. Specifically, when the senders’ small mistakes result in a pair of messages that

could have been observed jointly on the equilibrium path, we require the receiver’s policy

choice to be close to the policy that would have resulted in the absence of mistakes.

More importantly, robustness imposes a restriction on the receiver’s response off the

equilibrium path. Consider two incompatible reports m1,m2, i.e. reports such that

Invs1,s2(m1,m2) = ∅. Suppose that m1,m2 are close in the following sense: given the fully

revealing strategies s1, s2, there are two states θ′, θ′′ that are close to each other and that

could have generated those messages, i.e. s1(θ′, b1) = m1 for some b1 and s2(θ′′, b2) = m2

for some b2. The robustness restriction in Definition 2 requires that the receiver’s optimal

response must also be close to the states θ′ and θ′′. Note that this definition does not

constrain the receiver’s response if either of the messages is never sent in equilibrium.

Although our robustness requirement is motivated by the possibility of small mistakes

by the senders, our formal analysis assumes that, ex ante, the senders and the receiver

are unaware that these mistakes might happen. Definition 2 ensures that as the size of

the mistakes goes to zero, any robust equilibrium outcome in the presence of mistakes

approaches the outcome when mistakes never occur.

7In the Appendix we show that this concept of robustness is equivalent, in the case of known biases, to the
concept of diagonal continuity introduced by Ambrus and Takahashi (2008).
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2.2 Preliminary Results

In a fully revealing equilibrium, the receiver perfectly learns the state from the pair of

messages, and neither sender has an incentive to try to mislead the receiver by sending a

different message. Lemma 1 below shows that we can restrict our attention, without loss of

generality, to fully revealing equilibria in which (i) each sender S i truthfully reports (θ, bi)

and (ii) the receiver’s action depends only on the states reported by the senders and not on

the reported biases. The strategy si is truthful if for all (θ, bi) ∈ Θ × Ci, si(θ, bi) = (θ, bi).

An equilibrium with truthful strategies is called a truthful equilibrium.

Lemma 1. Given Y ⊆ Rp and C1,C2 ⊆ R
p, if there exists a (robust) fully revealing equi-

librium, there exists a (robust) truthful equilibrium in which the receiver’s strategy depends

only on the states reported.

Proof: All proofs are in the Appendix.

The logic behind Lemma 1 is as follows. First, an argument similar to the revela-

tion principle implies that for any FRE, there exists a truthful equilibrium that is outcome-

equivalent to it. Second, given any truthful equilibrium, consider a new strategy for the

receiver constructed by taking the expectation, over b1 and b2, of the receiver’s strategy in

the given truthful equilibrium. This new strategy depends only on the states reported. The

assumption that the supports of the bias vectors are cones (and hence that their magnitudes

may be arbitrarily large), coupled with the mutual independence of (θ, b1, b2), ensures that

this new strategy continues to deter both senders from deviating from truthful reporting.

Throughout the paper, b · x denotes the inner product between b and x. Recall that we

are assuming Y = Θ, so from now on we will suppress references to Θ. We denote by θ′

and θ′′ the reports made by S 1 and S 2, respectively.

Proposition 1 articulates the conditions that a strategy and a robust strategy for the

receiver must satisfy to deter each sender from misreporting. It allows us to abstract from

specifying particular belief functions when proving the existence or nonexistence of robust

fully revealing equilibria.

Proposition 1. Given Y ⊆ Rp, and C1,C2 ⊆ R
p,

(i) There exists a fully revealing equilibrium if and only if for any θ′, θ′′ ∈ Y, there exists

y ∈ Y such that:
b1 · y ≤ b1 · θ

′′ ∀b1 ∈ C1

b2 · y ≤ b2 · θ
′ ∀b2 ∈ C2

(1)

(ii) There exists a robust fully revealing equilibrium if and only if condition (i) is satisfied

and for any θ ∈ Y and any ε > 0, there exists δ > 0 such that for any θ′, θ′′ ∈

B(θ, δ) ∩ Y, there exists y ∈ B(θ, ε) ∩ Y such that,

b1 · y ≤ b1 · θ
′′ ∀b1 ∈ C1

b2 · y ≤ b2 · θ
′ ∀b2 ∈ C2

(2)
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Given non-matching reports θ′ and θ′′, the receiver does not know whether the true

state was θ′′ and S 1 deviated to a report of θ′, or the true state was θ′ and S 2 deviated to

a report of θ′′. If the receiver’s response, y, satisfies the first set of inequalities in (1), then

(y− (θ′′+b1))2 > (θ′′− (θ′′+b1))2 for any b1 ∈ C1, so y would punish S 1 for deviating from

truthfully reporting θ′′ given any bias b1 ∈ C1. Moreover, if b1 ·y > b1 ·θ
′′ for some b1 ∈ C1,

then we can find a sufficiently large scalar t > 0 such that (y−(θ′′+tb1))2 < (θ′′−(θ′′+tb1))2,

so sender S 1 with bias tb1 would benefit from deviating from truthtelling, and since C1 is a

cone, tb1 ∈ C1. Hence the first set of inequalities in (1) is both necessary and sufficient to

deter deviations by S 1. Analogously, the second set of inequalities in (1) is necessary and

sufficient to deter S 2 from deviating from truthfully reporting θ′, given that the support of

his bias is the cone C2. Condition (2) ensures that a feasible punishment for reports θ′ , θ′′

can be found arbitrarily close to these reports when these are sufficiently close to each other.

Denote by

PRC(θ) = {x ∈ Rp | b · x ≤ b · θ ∀b ∈ C}

the Punishment Region for a sender who observes state θ and whose bias has support C.

Any policy in this (individual) punishment region, and only such policies, would deter

that sender from deviating from truthfully reporting θ, for any possible realization of the

magnitude and direction of the bias in C. Because the support C of the bias is a cone, the

(individual) punishment region is also a cone.

Given a pair of non-matching reports θ′, θ′′ and supports C1,C2, for S 1 and S 2, respec-

tively, the Feasible Punishment Region for that deviation is Y ∩ PRC1(θ′′) ∩ PRC2(θ′), the

set of policies y ∈ Y that would constitute a punishment for both senders simultaneously.

Figure 1 illustrates these regions given cones of the biases C1 and C2.

C1

C2

θ′
θ′′

Y

Figure 1: The blue and red shaded areas are PRC1 (θ′′) and PRC2 (θ′), respectively. The joint intersection of
these areas with the policy space Y is the feasible punishment region for the incompatible reports θ′, θ′′, given
supports C1, C2.

In what follows it will be convenient to focus on anonymous FRE. An anonymous FRE

is an FRE in which the receiver’s strategy satisfies yR(θ′, θ′′) = yR(θ′′, θ′) for all θ′, θ′′. That

is, yR depends only on the reports and not on which sender sent which report.
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Incorporating anonymity into Proposition 1 requires replacing the inequalities in Con-

ditions (1) and (2) by

b · y ≤ min{b · θ′, b · θ′′} ∀b ∈ co(C1 ∪C2), (3)

where co(S ) denotes the convex hull of the set S . The feasible anonymous punishment

region for the incompatible reports θ′, θ′′ then corresponds to Y ∩ PRC(θ′) ∩ PRC(θ′′),

where C = co(C1 ∪C2).

Proposition 2 shows that in many scenarios, whenever there exists a FRE, there exists

an anonymous FRE, and hence restricting attention to anonymous FRE in those cases is

without loss of generality. In what follows we define the dimension of a cone C, dim(C),

as the dimension of the minimum subspace that contains it.

Proposition 2. Consider Y ⊆ Rp and suppose C1,C2 ⊆ R
p satisfy one of the following

conditions:

1. Deterministic directions of the biases: C1 = {tb1 | t ≥ 0}, C2 = {tb2 | t ≥ 0}

2. Identical support: C1 = C2

3. Full dimensionality: dim(C1) = dim(C2) = p

If there exists a fully revealing equilibrium, there exists an anonymous fully revealing equi-

librium.

The conditions listed in Proposition 2 do not exhaust all the cases for which an anony-

mous FRE exists whenever a FRE does. In fact, the triplets (Y,C1,C2) for which a FRE

exists but an anonymous FRE does not are non-generic. Example 1 in Appendix A.1 illus-

trates such non-generic situations.

In light of these observations, we will focus henceforth on anonymous FRE.

3 Robustness of Fully Revealing Equilibrium

This section introduces our first main result. It states that when co(C1 ∪ C2) has finitely

many extreme biases, if there exists a FRE, then there is a FRE that is robust. In other

words, requiring robustness does not restrict the conditions for existence of a FRE.

Given a set of vectors {b1, ..., bm} ⊂ Rp, we denote by C(b1, ..., bm) the convex cone

spanned by those vectors: C(b1, ..., bm) = {t1b1 + ... + tnbm | t1, ..., tn ≥ 0}. The vectors bi

such that {b1, ..., bm} is a minimal set spanning C(b1, ..., bm) are called the extreme rays.8 A

cone that has a finite number of extreme rays is called a polyhedral cone.

Assumption 1. co(C1 ∪C2) is a polyhedral cone.

Proposition 3. Consider Y ⊆ Rp and C1,C2 ⊆ R
p satisfying Assumption 1. Whenever

there exists an anonymous fully revealing equilibrium, there exists a robust anonymous

fully revealing equilibrium.
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y

y′
θ

B(θ, ε)θ′
θ′′

Y

C = co(C1 ∪C2)

C1

C2

Figure 2: The dark shaded area is the feasible anonymous punishment region: Y ∩ PRC(θ′) ∩ PRC(θ′′).
Whenever an anonymous punishment is feasible, a robust anonymous punishment is feasible.

The intuition behind Proposition 3 for a two-dimensional policy space is illustrated in

Figure 2, in which C = co(C1∪C2). If there exists an anonymous FRE, then for the incom-

patible reports θ′, θ′′, the feasible anonymous punishment region Y ∩ PRC(θ′) ∩ PRC(θ′′)

must be non-empty. Denote by y a feasible anonymous punishment. Given that Y is convex,

and θ′, θ′′, and y are all feasible policies, any point in the triangle of convex combinations

of these three policies is also feasible. As θ′ and θ′′ converge to θ, PRC(θ′) ∩ PRC(θ′′)

contains policies, such as y′, that not only lie in that triangle but also get closer to θ, even-

tually belonging to the ball B(θ, ε). Such policies are therefore feasible local anonymous

punishments.

The intuition for policy spaces of arbitrary dimension is similar, as long as the individual

punishment regions PRC(θ′) and PRC(θ′′) are polyhedral cones. If so, it remains true that

as the two incompatible reports θ′ and θ′′ converge to θ, there are points, lying in the

intersection of PRC(θ′) ∩ PRC(θ′′) with the feasible triangle formed by θ′, θ′′, and y, that

approach θ. This is not necessarily the case, though, if the cones of the biases have infinitely

many extreme rays. In Appendix A.1, we provide a three-dimensional example, Example

2, in which Assumption 1 is violated and, while there exists an anonymous FRE, there is

no robust anonymous FRE. The example assumes a very special relationship between Y

and C, and we discuss how by enlarging Y marginally, we can ensure the existence of a

robust anonymous FRE, even though C does not satisfy Assumption 1. In general, any

convex cone can be approximated by a sequence of polyhedral cones, and hence along the

sequence, Proposition 3 would hold.

Proposition 3 relies on the assumption that the supports of the biases are cones, which

implies that the magnitudes of the biases may be arbitrarily large. If the magnitudes of the

biases were known to be sufficiently small, any policy sufficiently far from the reports (in

any direction) could serve as a punishment. Such a response would obviously not be robust.

When the supports are cones, the cones pin down the directions, relative to the reports, in

which any effective punishment must lie. The convexity of the policy space then guarantees

8If C(b1, ..., bm) is strictly included in a half-space, such a minimal set will be unique.
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that if there is any feasible punishment in the right directions, there must be a small feasible

punishment.9

4 Geometric Characterization of FRE

In this section we provide geometric conditions, on the shape of the policy space and the

support of the biases, that characterize when an anonymous FRE exists.

Given a policy space Y , we will denote by Fr(Y) the frontier of Y . For any θ ∈ Fr(Y),

we will define

PY (θ) ≡ {n ∈ Rp | |n| = 1, n · y ≥ n · θ ∀y ∈ Y}.

PY (θ) is the set of unit normal vectors of the supporting hyperplanes of Y at θ, pointing

in the direction of Y . We define the dimension of PY (θ), dim(PY (θ)), as the dimension

of the minimal subspace that contains it. We say that θ is a smooth point of Fr(Y) if

dim(PY (θ)) = 1. In such a case, there is only one supporting hyperplane of Y at θ, and we

denote by nY (θ) the inward normal vector to Fr(Y) at θ, so that PY (θ) = {nY (θ)}. We say

that θ is a partially smooth point of Fr(Y) if 1 < dim(PY (θ)) < p, and that θ is a kink point

of Fr(Y) if dim(PY (θ)) = p. Finally, we will denote by int(S ) the interior of set S .

We first analyze the case of deterministic directions of the biases. Our result here will

then be used as a building block for the general characterization for uncertain biases.

4.1 Deterministic Directions of the Biases

Consider the case in which the receiver knows the directions of the biases, that is C1 =

C(b1) = {tb1 | t ≥ 0} and C2 = C(b2) = {tb2 | t ≥ 0} for some linearly independent

b1, b2 ∈ R
p.10 For this case, Proposition 2 shows that requiring the receiver’s strategy to be

anonymous does not restrict the conditions for existence of a FRE. Moreover, co(C1∪C2) =

C(b1, b2), so Assumption 1 is satisfied.

When the orientations of the bias vectors are known by the receiver, the directions of

conflict between the senders and the receiver are limited to those on the plane spanned

by these bias vectors. This implies that the senders will have no incentives to deviate by

misreporting dimensions of the state orthogonal to this plane. Proposition 4 provides a

9In two dimensions, even if the magnitudes of the biases were known to be small, the directions in which an
effective robust punishment would have to lie would still be determined entirely by the possible orientations of
the biases. In our discussion paper, Meyer et al. (2016), we showed that in two-dimensional spaces, a robust FRE
exists for known magnitudes of the biases if and only if there exists a FRE for arbitrarily large magnitudes.

10 If b1 = tb2, then if t > 0 there always exists a robust FRE, independently of the shape of Y . The receiver’s
policy

yR(θ′, θ′′) =


θ′ i f b1 · θ

′ < b1 · θ
′′

θ′′ i f b1 · θ
′′ < b1 · θ

′

θ′+θ′′

2 i f b1 · θ
′ = b1 · θ

′′

implements an anonymous robust FRE.
If t < 0, then there is no FRE unless Y is included in a lower dimensional hyperplane that is orthogonal to b1, so

all policies have the same inner product with b1, b2. In such a case there exists a robust FRE as well: a robust FRE
is supported by yR(θ′, θ′′) = λθ′ + (1 − λ)θ′′, for λ ∈ [0, 1].
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geometric characterization for existence of FRE that indeed depends only on the projection

of the policy space onto the plane spanned by b1 and b2.

Given b1 and b2, we denote by Πb1,b2 the plane spanned by these vectors. For any

θ ∈ Rp, we denote by θb1,b2 the orthogonal projection of θ onto Πb1,b2 and by Yb1,b2 the

orthogonal projection of Y onto Πb1,b2 .

Proposition 4. Consider Y ⊆ Rp and C1 = C(b1), C2 = C(b2) with b1, b2 ∈ R
p linearly

independent. If Yb1,b2 is closed, then there exists a fully revealing equilibrium if and only if

for every smooth point θb1,b2 ∈ Fr(Yb1,b2),

nYb1 ,b2
(θb1,b2) < int(C(b1, b2)) (Local Deterrence Condition)

To understand Proposition 4, think first about the two-dimensional case, p = 2, for

which b1 and b2 span the whole space and hence we can abstract from the projections.

Here, the Local Deterrence Condition (LDC) can be rewritten as nY (θ) < int(C(b1, b2)) for

any smooth point θ on Fr(Y). This condition is satisfied if and only if in state θ, there

exists, close to θ, a feasible policy that, no matter the magnitudes of the biases, is worse for

both senders than the policy y = θ. In other words, this condition ensures that any small

deviation from the smooth point θ by either sender is deterrable with a local (i.e. robust)

punishment.

For higher dimensional spaces, p > 2, the senders’ interests are aligned with those of

the receiver in any direction orthogonal to the plane spanned by b1 and b2. For a deviation

to be profitable for a sender it would have to induce a policy y whose projection yb1,b2

had a higher inner product with that sender’s bias vector than the projection of the true

state θb1,b2 . Hence, if the receiver can ensure that her response to a deviation constitutes a

punishment in the projection onto Πb1,b2 , she can deter all deviations. Furthermore, since

the unknown magnitudes of the senders’ biases can be arbitrarily large, it is not possible for

the receiver to be sure of punishing a deviation unless her response constitutes a punishment

in the projection. Thus, responding to a deviation by choosing a policy whose projection

onto Πb1,b2 is worse for both senders is both necessary and sufficient for deterrence of

misreporting. This is the logic behind the general form of the Local Deterrence Condition

stated in Proposition 4.

The “if” part of Proposition 4 demonstrates that the feasibility of deterring small devia-

tions (with local punishments) guarantees the existence of punishments for large deviations

as well.1112 This proposition shares with Proposition 3 a focus on local punishments for

local deviations, but the two messages and their emphases are distinct. Proposition 3 shows

that the feasibility of punishing small deviations with small punishments is necessary for

full revelation, while Proposition 4 shows that the feasibility of punishing small deviations

is sufficient.

11This result relies on the convexity of Y , which is assumed throughout the paper. In our working paper, Meyer
et al. (2016), we showed that for non-convex policy spaces in R2, the local deterrence condition needs to be
supplemented with a global deterrence condition in which Fr(Y) is replaced by Fr(co(Y)).

12For p > 2, this result uses the assumption that Yb1,b2 is closed, as is explained in more detail in the Appendix.
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Figure 3 illustrates the applicability of the LDC in a pair of two-dimensional examples.

In panel (a), Y is a half-space: Y = {y ∈ R2 | n · y ≥ k}. All points on the frontier of Y

are smooth, with the same inward normal vector n. It is easy to see that for C1 = C(b1)

and C2 = C(b2), the LDC is satisfied, so all local deviations can be punished locally. For

example, the incompatible reports (θ′, θ′′) close to θ can be punished by y, which is also

close to θ. Given that the LDC is satisfied, it then follows from Proposition 4 that there

exists a FRE.

In panel (b) of Figure 3, the bias directions are the same as in panel (a), but the shape

of Y is different. This panel illustrates the necessity of the LDC for existence of a (robust)

FRE. The LDC is violated at θ, which implies that nearby incompatible reports along the

frontier, such as (θ′, θ′′), cannot be punished; this can be confirmed by observing that the

punishment region for the deviation (θ′, θ′′) does not intersect Y . One might argue that

violations of the senders’ incentives for truthtelling along the frontier are a minor problem

if, for instance, the probability of those states arising is close to zero. However, the fact that

local deviations along the frontier are not deterrable implies that bigger deviations, such as

(θ̃′, θ̃′′), are not deterrable either.

Y

θ
y

b1

b2

nY (θ)

θ′′

θ′

(a) Y is a halfspace. The LDC is satisfied
and there exists a (robust) FRE.

Y

b1

b2

θ

nY (θ)
θ′′

θ′

θ̃′′

θ̃′

(b) The LDC is violated and there is no
FRE.

Figure 3: The LDC for Y ⊂ R2.

When Y is compact, the Local Deterrence Condition in Proposition 4 can be shown to be

equivalent to the condition that there exists a common “worst point” for the two senders in

the policy space.13 This latter condition, which can equivalently be stated as the existence

of a θ ∈ Fr(Y) such that b1, b2 ∈ PY (θ), was shown by Ambrus and Takahashi (2008) to

characterize existence of FRE for compact policy spaces and arbitrarily large, but known,

magnitudes of the biases. However, when Y is not bounded, the existence of a common

13By a sender’s “worst point" in Y , we refer to a point with the lowest inner product with that sender’s bias
vector. For Y compact and for sufficiently large magnitude of the bias, such a point will indeed minimize the
sender’s utility over Y , whatever the state. For small biases, it need not do so. However, independent of the
magnitude of the bias, such a point will constitute a punishment for that sender for any deviation.
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worst point is not necessary for the existence of a FRE, as Figure 3(a) illustrates. The LDC

in Proposition 4 thus provides a more general characterization for existence of FRE.

4.2 Uncertain Directions of the Biases

We now characterize the existence of robust FRE when the receiver is uncertain about both

the directions and the magnitudes of the senders’ biases, for which the supports are the

cones C1 and C2. To simplify the characterization we make a second technical assumption

about the cones of the biases.

Assumption 2. dim(co(C1 ∪C2)) = p

Proposition 5. Consider Y ⊆ Rp and C1,C2 satisfying Assumptions 1 and 2. Denote by

b1, ..., bm (with superscripts) the extreme rays of co(C1 ∪C2). The following statements are

equivalent:

(i) There exists an anonymous FRE given C1 and C2.

(ii) For any pair of biases b1, b2 ∈ co(C1∪C2), there exists a FRE given C(b1) and C(b2).

(iii) (a) For any smooth θ ∈ Fr(Y), nY (θ) < C(b1, ..., bm) \ {b1, ..., bm}, and

(b) For any partially smooth θ ∈ Fr(Y), PY (θ) ∩ int(C(b1, ..., bm)) = ∅.

The fact that (ii) implies (i) in Proposition 5 is more subtle than it may at first appear.

Condition (ii) allows for the strategy of the receiver supporting a FRE with known bias

directions b1, b2 ∈ co(C1 ∪C2) to depend on these directions when the senders’ reports are

incompatible. But condition (i) requires that, in response to a deviation, a single policy must

constitute a punishment for all possible realizations of b1 in C1 and b2 in C2. Even though

condition (ii) appears to be weaker than (i), our proof demonstrates their equivalence.

Given Assumption 1, one might be tempted to weaken Condition (ii) by replacing all

possible combinations of b1, b2 ∈ co(C1 ∪ C2) by all possible pairs of extreme biases

bi, b j ∈ {b1, ..., bm}. However this weaker condition is no longer sufficient for existence

of an anonymous FRE given C1 and C2, as illustrated by Example 3 in Appendix A.1.

Condition (ii) in Proposition 5 could easily be translated to an equivalent geometric

condition using Proposition 4. However it might be tedious to check the appropriate Local

Deterrence Condition for each possible combination of b1, b2 ∈ co(C1 ∪ C2). Condition

(iii) provides a simpler generalization of the LDC for uncertain biases.

To better understand Condition (iii), it is helpful to see how it simplifies for several

special cases. Consider first the two-dimensional case, p = 2. For Y ⊆ R2, all points

on the frontier of Y are either smooth points or kink points; there are no partially smooth

points. Hence Condition (iii)(b) is irrelevant. Furthermore, for co(C1 ∪ C2) ⊆ R2, there

are at most two extreme biases, which we denote by b and b. Given this, Condition (iii)(a)

reduces to the following condition: For any smooth θ ∈ Fr(Y), nY (θ) < int(C(b, b)). Thus in

two dimensions, the LDC for uncertain bias directions takes the same form as the LDC for

deterministic bias directions, except that the least aligned possible pair of bias directions,

b and b, replaces the known pair b1 and b2. Correspondingly, in the two-dimensional case,
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Condition (ii) is equivalent to the condition that there exists a FRE if the bias directions are

known to be the extreme biases b and b.

Consider now the case where p is arbitrary and Y is a half-space: Y = {y ∈ Rp | n·y ≥ k}.

In this case, all points on the frontier of Y are smooth, with the same inward normal vector

n. Here, therefore, Condition (iii) simplifies to n < C(b1, ..., bm) \ {b1, ..., bm}.

Finally, suppose that Y ⊆ Rp is compact. In this case, it can be shown that Condition

(iii) reduces to the following single condition: For any θ ∈ Fr(Y) such that dim(PY (θ)) < p,

PY (θ) ∩ int(C(b1, ..., bm)) = ∅.

Our analysis so far has assumed that θ, b1, and b2 are mutually independent. It is natural

to ask to what extent Proposition 5 generalizes if, holding the supports C1 and C2 fixed, we

allow the (conditional) distributions of the biases to vary with the state. As long as the

senders are restricted to making reports about the state only, Condition (iii) in Proposition

5 remains sufficient for the existence of an anonymous FRE.14 The reason is that Condition

(iii) guarantees that, whatever the state and the realization of bi in Ci, each sender S i has

incentives for truthful reporting. Moreover, if in every state the conditional distribution of

bi given the state has full support Ci, then Condition (iii) also remains necessary for the

existence of an anonymous FRE.

5 Construction of Robust FRE

We now study how to construct robust and anonymous FRE. As in the previous section,

we start with the case of deterministic directions of the biases. For this case we provide

a strategy for the receiver, which we call the Min Rule, that is feasible and implements a

robust FRE whenever one exists. We then generalize the construction to the case where the

receiver is uncertain about the directions of the biases.

5.1 Deterministic Directions of the Biases

Suppose that the directions of the biases are deterministic, i.e. C1 = C(b1) = {tb1 | t ≥ 0}

and C2 = C(b2) = {tb2 | t ≥ 0} for some linearly independent b1, b2 ∈ R
p.15 Given any pair

of reports (θ′, θ′′), define Mb1,b2(θ′, θ′′) as follows:

Mb1,b2(θ′, θ′′) =

x ∈ Rp |
b1 · x = min{b1 · θ

′, b1 · θ
′′}

b2 · x = min{b2 · θ
′, b2 · θ

′′}


Mb1,b2(θ′, θ′′) is a subspace of Rp orthogonal to Πb1,b2 . Its projection onto the plane

Πb1,b2 corresponds to the point in that plane which is the coordinate-wise minimum of

the projections of the senders’ reports, using the coordinate system formed by the normal

14Lemma 1 relied on (θ, b1, b2) being mutually independent to show that, given any truthful equilibrium, there
is a truthful equilibrium in which the receiver’s strategy depends only on the states reported. Since with state-
dependent biases the mutual independence condition is violated, we here restrict the senders to reporting the state
only.

15For deterministic linearly dependent biases, see the discussion in footnote 10.
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vectors to b1 and b2.

By construction, for any point in Mb1,b2(θ′, θ′′), its inner product with each bias vector is

weakly smaller than the inner products of both θ′ and θ′′ with that bias. Hence regardless of

the magnitudes of the biases, any policy in Mb1,b2(θ′, θ′′) is weakly worse for both senders

than both of the reports. Therefore, any feasible policy in Mb1,b2(θ′, θ′′) can serve as a

punishment for the deviation (θ′, θ′′).

Figure 4 illustrates the projection of Mb1,b2(θ′, θ′′) onto Πb1,b2 for different scenarios.

This projection is denoted by {Mb1,b2(θ′, θ′′)}b1,b2 . In panel (a), bi · θ
′′ < bi · θ

′ for i = 1, 2,

so {Mb1,b2(θ′, θ′′)}b1,b2 coincides with θ′′b1,b2
. In panel (b), by contrast, b1 · θ

′′ < b1 · θ
′ but

b2 · θ
′′ > b2 · θ

′, so {Mb1,b2(θ′, θ′′)}b1,b2 is distinct from both θ′b1,b2
and θ′′b1,b2

.

b1

b2
Πb1,b2 θ′′b1,b2 θ′b1,b2

{Mb1,b2 (θ′, θ′′)}b1,b2

(a) Projection of Mb1,b2 (θ′, θ′′) onto
Πb1,b2 when the senders have the
same ranking over the reports θ′

and θ′′

b1b2

Πb1,b2

θ′b1,b2

θ′′b1,b2

{Mb1,b2 (θ′, θ′′)}b1,b2

(b) Projection of Mb1,b2 (θ′, θ′′) onto
Πb1,b2 when the senders have differ-
ent rankings over the reports θ′ and
θ′′

Figure 4: Projection of Mb1,b2 (θ′, θ′′) onto Πb1,b2

Proposition 6 shows that whenever there exists a FRE, the subspace Mb1,b2(θ′, θ′′) does

in fact intersect the policy space.

Proposition 6. Consider Y ⊆ Rp and C1 = C(b1),C2 = C(b2), with b1, b2 ∈ R
p linearly

independent. There exists a fully revealing equilibrium if and only if, for any θ′, θ′′ ∈ Y,

Mb1,b2(θ′, θ′′) ∩ Y , ∅.

In the two-dimensional case, p = 2, Mb1,b2(θ′, θ′′) consists of a single point. Here, we

define the Min Rule strategy for the receiver as yb1∧b2(θ′, θ′′) ∈ Mb1,b2(θ′, θ′′). The Min

Rule is an anonymous strategy. It is also robust, since as the two reports converge to each

other, the policy selected by the Min Rule also converges to the reports. Propositions 3 and

6 together imply that whenever there exists a FRE, the Min Rule is feasible and supports a

robust FRE.

The same conclusion holds for higher dimensional spaces, once we define an appropri-

ate generalization of the Min Rule to select a policy in Mb1,b2(θ′, θ′′) ∩ Y . For any p ≥ 2

and any θ′, θ′′ ∈ Y , we define the Min Rule as implementing the policy

yb1∧b2(θ′, θ′′) =
1
2

 arg min
y∈Mb1 ,b2 (θ′,θ′′)∩Y

|y − θ′| + arg min
y∈Mb1 ,b2 (θ′,θ′′)∩Y

|y − θ′′|

 .
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Since Y and Mb1,b2(θ′, θ′′) are both convex, yb1∧b2(θ′, θ′′) ∈ Mb1,b2(θ′, θ′′) ∩ Y . This gener-

alized Min Rule is also easily seen to be anonymous and robust.

An appealing feature of the Min Rule is the way it selects a punishment for the senders

in the dimensions in which their interests conflict with the receiver’s. In these dimensions,

policies in Mb1,b2(θ′, θ′′) constitute the anonymous punishments which are least severe for

each of the senders, subject to deterring both of them from misreporting, no matter how

large their biases. In our working paper Meyer et al. (2016), we showed that this feature of

the Min Rule makes it particularly attractive in deterring collusion by the senders. Specif-

ically, for two dimensions, we showed that if the FRE supported by the Min Rule is not

collusion-proof, then no other FRE can be collusion-proof when the unknown magnitudes

of the biases can be arbitrarily large.16

Our multidimensional Min Rule generalizes an observation made by Krishna and Mor-

gan (2001a) for a one-dimensional policy space. They observed that if the senders’ ideal

points are both larger than the receiver’s, then a FRE can be supported by the receiver

choosing the smaller of the two reports. In our multidimensional setting, whenever a FRE

exists, our Min Rule supports full revelation by exploiting the existence of some overlap

in the senders’ preferences over policies, even when their bias vectors are not perfectly

aligned.

The Min Rule may appear reminiscent of Battaglini (2002)’s construction of a FRE,

which also uses the coordinate system formed by the normal vectors to the senders’ biases.

Battaglini’s construction provides incentives for each sender to report truthfully, by restrict-

ing each sender’s influence over the receiver’s policy to dimensions orthogonal to his bias

vector. However, our Min Rule is distinct from the receiver’s strategy in Battaglini’s con-

struction in that ours is anonymous. This is important since, in restricted policy spaces, as

Proposition 6 shows, a robust FRE exists if and only if the Min Rule is feasible for all pairs

of reports. In contrast, in restricted policy spaces, the receiver’s strategy in Battaglini’s

construction may be infeasible and yet a robust FRE could still exist. Such a situation is

illustrated in Figure 3(a). There, if S 1 were to report θ′′ and S 2 to report θ′ (note that this

is a reversal from our usual notational convention), Battaglini’s construction would dictate

the choice of the policy x such that b1 · x = b1 · θ
′ and b2 · x = b2 · θ

′′, which lies outside the

feasible set Y . The point x corresponds to the intersection of the dashed lines in Figure 3.

Another crucial difference between our analysis and Battaglini’s is that our construction

of robust FRE can be extended to accommodate uncertainty about the directions of the

senders’ biases, whereas Battaglini’s construction cannot.

5.2 Uncertain Directions of the Biases

Now let the receiver be uncertain about both the directions and the magnitudes of the

senders’ biases, and consider first the two-dimensional case, p = 2. As noted in Sec-

tion 4.2, for p = 2 there are at most two extreme biases, denoted b and b. For this case,

we can generalize the Min Rule for deterministic bias directions b1 and b2 by replacing

16We used the same concept of collusion-proofness as used by Battaglini (2002).
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these known directions with b and b, the least aligned possible pair of directions. Thus, the

two-dimensional Min Rule with uncertain biases is the strategy yb∧b(θ′, θ′′) ∈ Mb,b(θ′, θ′′).

The following proposition follows from combining Proposition 6 with Proposition 5 when

p = 2.

Proposition 7. Suppose that Y ⊆ R2 and co(C1 ∪ C2) = C(b, b), with b, b ∈ R2 linearly

independent. There exists an anonymous fully revealing equilibrium if and only if, for any

θ′, θ′′ ∈ Y,

Mb,b(θ′, θ′′) ∩ Y , ∅.

The logic for this result is the same as the logic behind the generalization of the LDC to

uncertain biases in two dimensions: If deviations can be punished for the least aligned pos-

sible pair of bias directions b, b, then they can be punished for any possible bias directions

b1, b2. See Figure 5.

b

bθ′′

θ′

Mb,b(θ′, θ′′)

b1

b2

Mb1,b2 (θ′, θ′′)

Figure 5: The uncertain biases have support C(b, b). For any realization b1, b2 ∈ C(b, b), Mb,b(θ′, θ′′) is an
anonymous punishment.

For higher-dimensional spaces, assume that co(C1∪C2) satisfies Assumption 1 and that

there is no b such that b,−b ∈ co(C1 ∪ C2). Denote the extreme rays of co(C1 ∪ C2) by

{b1, ..., bm}.

It would be natural to try to generalize the Min Rule for uncertain biases and p > 2 by

defining the set Mb1,...,bm(θ′, θ′′) ≡ {x | bi · x = min{bi · θ′, bi · θ′′}, i = 1, ..,m}. However,

co(C1 ∪ C2) might have m > p distinct extreme biases, and in such cases it is obviously

impossible to satisfy simultaneously all of the equalities defining Mb1,...,bm(θ′, θ′′). In fact,

even if 2 < m ≤ p, it might be that Mb1,...,bm(θ′, θ′′) ∩ Y = ∅ even though there exists an

anonymous FRE. Example 4 in Appendix A.1 demonstrates this possibility.

To generalize the Min Rule to uncertain biases and p > 2, we therefore must relax the

equality constraints imposed in the definition of Mb1,...,bm(θ′, θ′′). Define C = co(C1 ∪ C2).

For p > 2 and any θ′, θ′′ ∈ Y , define the generalized Min Rule with uncertain biases as

implementing the policy

y∧C (θ′, θ′′) =
1
2

 arg min
y∈PRC(θ′)∩PRC(θ′′)∩Y

|y − θ′| + arg min
y∈PRC(θ′)∩PRC(θ′′)∩Y

|y − θ′′|
 .
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This strategy is anonymous and robust. Moreover, since both Y and PRC(θ′) ∩ PRC(θ′′)

are convex, whenever PRC(θ′) ∩ PRC(θ′′) ∩ Y , ∅, the policy y∧C (θ′, θ′′) will be a feasible

punishment. Hence this Min Rule supports a robust anonymous FRE whenever one exists.
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A Appendix

A.1 Examples

Example 1: Anonymous vs non-anonymous FRE

Example 1 illustrates a non-generic case in which a FRE exists but an anonymous FRE

does not.

Example 1. Consider Y a half-space of R2, C1 a one-dimensional cone spanned by the

bias b1 which is orthogonal to the frontier of Y, and C2 a two-dimensional cone containing

b1 in its interior. See Figure 6. For any pair of incompatible reports (θ′, θ′′), the feasible

(non-anonymous) punishment region, Y∩PRC1(θ′′)∩PRC2(θ′), is not empty and hence there

exists a FRE. Panel (a) depicts a pair of incompatible reports θ′, θ′′, where θ′′ lies on the

frontier of Y. The receiver can use a policy in Y ∩ PRC1(θ′′)∩ PRC2(θ′), for example policy

y, to punish this deviation. Panel (b) depicts the same deviation but restricts the receiver to

using an anonymous strategy. Since co(C1 ∪C2) = C2, the feasible anonymous punishment

region is Y ∩ PRC2(θ′) ∩ PRC2(θ′′), which is empty. It is thus impossible to punish this

deviation anonymously. However, if the bias b1 were tilted in either direction even slightly,

so that it was no longer orthogonal to the frontier of Y, then a non-anonymous FRE would

no longer exist, as illustrated in panels (c) and (d).

θ′′

θ′

Y

y
b1

C2

(a) Policy y lies in the feasible
punishment region Y ∩ PRC1 (θ′′) ∩
PRC2 (θ′), so can serve as a non-
anonymous punishment for θ′ , θ′′.

θ′′

θ′

Y C2

C2

(b) The feasible anonymous pun-
ishment region Y ∩ PRC2 (θ′) ∩
PRC2 (θ′′) is empty, so θ′ , θ′′ can-
not be punished anonymously.

θ′′

θ′

Y
b1

C2

(c) For b1 tilted slightly relative to
panel (a), there is no FRE.

θ′

θ′′

Y
b1 C2

(d) For b1 tilted slightly relative to
panel (a), there is no FRE.

Figure 6: Non-anonymous vs. anonymous FRE

In order for a FRE to exist while an anonymous FRE does not, the support of the bias of

one sender must be contained in a subspace orthogonal to the frontier of Y , and the support

of the other sender’s bias must contain in its interior one bias that is also orthogonal to the

frontier of Y .
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Example 2: A FRE that is not robust

Example 2 illustrates a situation in which Assumption 1 is not satisfied and, while there

exists a FRE, there is no robust FRE.

Example 2. Let C = C1 = C2 be a circular convex cone. Such a cone has an infinite

number of extreme rays. For C1 = C2, any policy that punishes the deviation (θ′, θ′′) also

punishes the deviation (θ′′, θ′), so is an anonymous punishment.

Define Y = {θ ∈ R3 | b · θ ≥ 0, ∀b ∈ C}. See Figure 7. Clearly, given any θ and for any

bias b ∈ C, θ is weakly preferred to θ ≡ (0, 0, 0), and hence θ can be used as an anonymous

punishment for any deviation. Therefore an anonymous FRE exists.

However, there is no robust anonymous FRE: Consider θ′ on the frontier of Y. Given

the definition of Y, there exists b ∈ C such that b · θ′ = 0. Any potential punishment y for a

deviation from θ′ must be on the ray connecting θ′ and θ; if it were not, then b ·y > 0 = b ·θ′,

so the deviation would be attractive for a sender with bias tb for sufficiently large t. In

other words, for any point θ′ on the frontier, the individual feasible punishment region is

PRC(θ′) ∩ Y = [θ′, θ]. Now consider another point θ′′ on the frontier, arbitrarily close to

θ′, as shown in the figure. Then PRC(θ′) ∩ PRC(θ′′) ∩ Y = [θ′, θ] ∩ [θ′′, θ] = θ, so the only

punishment for the pair of reports θ′, θ′′ is θ. Consequently, condition (ii) in Proposition 1

fails to hold, so a robust anonymous FRE does not exist.

θ

Y

PRC(θ′)

θ′

PRC(θ′) ∩ Y

PRC(θ′′) ∩ Y
θ′′

Figure 7: The cone of the biases C has infinitely many extreme rays. There is no local punishment for the
deviation (θ′, θ′′), even though there exists a global punishment θ.

The example assumes a very special relationship between Y and C: Y is the dual cone of

C, and hence PRC(θ′)∩Y has dimension 1. In fact if we slightly enlarge Y , PRC(θ′)∩Y will

have full dimension, and the conclusion in the example will no longer hold. In particular, if

we approximate Y with polyhedral cones Yn with Y ⊂ Yn, it can be shown that there would

exist a robust anonymous FRE for every Yn. Analogously, if we fix Y and consider any

sequence of polyhedral cones Cn ⊂ C converging to C, a robust anonymous FRE would

exist for any cone in the sequence.
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Example 3 for Section 4.2

Example 3 shows that the existence of a FRE for any pair of extreme biases is not sufficient

to guarantee the existence of a FRE.

Example 3. Let C1 = C2 = C(b1, b2, b3), where the extreme biases are the canonical

vectors in R3: b1 = (1, 0, 0), b2 = (0, 1, 0), and b3 = (0, 0, 1). Let Y ⊂ R3 be the tetrahedron

with vertices A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1), and D = (1, 1, 1). See Figure 8. It

is easy to check that no FRE exists: To punish the incompatible reports (A, B), the receiver

would need to implement a policy y such that bi · y ≤ 0 for i = 1, 2, 3, but there is no such

policy in Y.

Yet, for any given pair of extreme biases, any deviation is punishable, as can be con-

firmed by applying Proposition 4. For example, if the cones were known to be C(b1) and

C(b2), the deviation (A, B) would be punished by point C; if they were known to be C(b2)

and C(b3), the same deviation would be punishable by A; and if they were known to be

C(b1) and C(b3), it would be punishable by B.

b1

b2

b3

A

B

C

D

Figure 8: There is no FRE given C(b1, b2, b3), but for any pair of extreme biases bi, b j, there exists a FRE
given C(bi) and C(b j).

Example 4 for Section 5.2

Example 4 shows that even when there exists an anonymous FRE and the set Mb1,...,bm(θ′, θ′′)

is not empty, this set need not contain a feasible policy.

Example 4. Let C1 = C2 = C(b1, b2, b3), where the extreme biases are the canonical

vectors in R3: b1 = (1, 0, 0), b2 = (0, 1, 0), and b3 = (0, 0, 1). For any θ′ = (x′, y′, z′) and

θ′′ = (x′′, y′′, z′′), Mb1,b2,b3(θ′, θ′′) = {(min{x′, x′′},min{y′, y′′},min{z′, z′′})}.

Let Y ⊂ R3 be the tetrahedron with vertices O = (0, 0, 0), A = (0, 1, 1), B = (1, 0, 1),

C = (1, 1, 0). See Figure 9. It is easy to see that an anonymous FRE exists: For all biases

in C(b1, b2, b3), the policy O can serve as a punishment for any deviation. However, for the

deviation (A, B), Mb1,b2,b3(A, B) = {(0, 0, 1)}, but (0, 0, 1) is not a feasible policy.
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b1

b2
b3

A

B

C

O

Mb1,b2,b3 (A, B)

Figure 9: There exists an anonymous FRE given C(b1, b2, b3) but Mb1,b2,b3 (A, B) ∩ Y = ∅.

A.2 Proofs

Notation used throughout the Appendix

Given a (bias) vector b ∈ Rp and a scalar k ∈ R, we define H(b, k) ≡ {x ∈ Rp | b · x > k}

and h(b, k) ≡ {x ∈ Rp | b · x = k}, where b · x denotes the inner product between b and x. In

words, H(b, k) is the open upper half-space composed of all the points in Rp whose inner

product with b is strictly greater than k, and h(b, k) is the boundary of H(b, k).

Proof of Lemma 1:

Given F, the joint cumulative distribution function of (θ, b1, b2), which are mutually inde-

pendent, we denote by Fθ, F1, F2 the corresponding marginal distributions of θ, b1 and

b2.

Consider a fully revealing equilibrium (s1, s2, yR) supported by the belief function µ(·).

Now consider the strategies (s̃1, s̃2, ỹ), where s̃1 and s̃2 are truthful strategies and ỹ : (Θ ×

C1) × (Θ × C2) −→ Y is such that ỹ((θ′, b1), (θ′′, b2)) = yR(s1(θ′, b1), s2(θ′′, b2)). Define

the belief function µ̃((θ′, b1), (θ′′, b2)) = µ(s1(θ′, b1), s2(θ′′, b2)). Then the strategy profile

(s̃1, s̃2, ỹ) supported by the belief µ̃ is a truthful equilibrium.

We now show that whenever there exists a truthful equilibrium, there exists a truthful

equilibrium in which the receiver’s strategy depends only on the states reported.

Suppose that there exists a truthful equilibrium. Then for any reported states θ′, θ′′, for

any reported biases b̂1, b̂2, and for any true biases b1, b2, we have that∫
C2

[yR(θ′, b̂1, θ
′′, b2) − (θ′′ + b1)]2dF2(b2) ≥ b2

1

⇔
∫

C2
[yR(θ′, b̂1, θ

′′, b2) − θ′′]2dF2(b2) ≥ 2b1 · (Eb2[yR(θ′, b̂1, θ
′′, b2)] − θ′′)

and
∫

C1
[yR(θ′, b1, θ

′′, b̂2) − (θ′ + b2)]2dF1(b1) ≥ b2
2

⇔
∫

C1
[yR(θ′, b1, θ

′′, b̂2) − θ′]2dF1(b1) ≥ 2b2 · (Eb1[yR(θ′, b1, θ
′′, b̂2)] − θ′)

The first inequality is the incentive compatibility condition for sender S 1, guaranteeing that
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in state θ′′ and for realized bias b1, and given that S 2 is reporting truthfully, S 1 has no

incentive to deviate to reporting (θ′, b̂1). The second inequality is the analogous incentive

compatibility condition for S 2 in state θ′ and for realized bias b2. Since C1 and C2 are

cones, these two inequalities must be satisfied for any magnitudes of the biases b1, b2. This

implies that for any θ′, θ′′,

b1 · (Eb2[yR(θ′, b̂1, θ
′′, b2)] − θ′′) ≤ 0 ∀b1, b̂1 ∈ C1

b2 · (Eb1[yR(θ′, b1, θ
′′, b̂2)] − θ′) ≤ 0 ∀b2, b̂2 ∈ C2

Now construct a new strategy for the receiver which depends only on the states reported, as

follows: y∗(θ′, θ′′) = Eb1,b2[yR(θ′, b1, θ
′′, b2)]. Note that y∗(θ′, θ′′) ∈ Y , since Y is convex.

Given the mutual independence of (θ, b1, b2), y∗(θ′, θ′′) = Eb1[Eb2[yR(θ′, b1, θ
′′, b2)]]

= Eb2[Eb1[yR(θ′, b1, θ
′′, b2)]], and using this, it follows from the preceding inequalities that

b1 · (y∗(θ′, θ′′) − θ′′) ≤ 0 ∀b1 ∈ C1

b2 · (y∗(θ′, θ′′) − θ′) ≤ 0 ∀b2 ∈ C2

These inequalities ensure that the strategy y∗(θ′, θ′′) serves to deter both S 1 from deviat-

ing from truthfully reporting θ′′, for any b1 ∈ C1, and S 2 from deviating from truthfully

reporting θ′, for any b2 ∈ C2.

Finally, note that if (s1, s2, yR) is a robust FRE, then y∗(θ′, θ′′) = Eb1,b2[yR(θ′, b1, θ
′′, b2)]

is robust as well. Hence whenever there exists a robust FRE, there exists a robust truthful

equilibrium in which the receiver’s strategy depends only on the states reported.

Proof of Proposition 1:

Condition (i) in Proposition 1 can be rewritten as

Y *
⋃

b1∈C1
b2∈C2

H(b1, b1 · θ
′′) ∪ H(b2, b2 · θ

′),

and Condition (ii) as

B(θ, ε) ∩ Y *
⋃

b1∈C1
b2∈C2

H(b1, b1 · θ
′′) ∪ H(b2, b2 · θ

′).

Statement (i) (⇒): Suppose there exist θ′, θ′′ ∈ Y such that

Y ⊆
⋃

b1∈C1,b2∈C2 H(b1, b1 · θ
′′) ∪ H(b2, b2 · θ

′). We show that there does not exist a truthful

equilibrium in which the receiver’s response is independent of the biases reported, and

therefore by Lemma 1, there does not exist a FRE. Consider any possible response by the

receiver given the report (θ′, θ′′) and denote it by y. Then there exists either a b1 ∈ C1 such

that b1 · (y − θ′′) > 0 or a b2 ∈ C2 such that b2 · (y − θ′) > 0. Suppose that b1 · (y − θ′′) > 0

and consider t1 >
|y−θ′′ |2

2b1·(y−θ′′)
. Then y ∈ B(θ′′+ t1b1, t1|b1|), which implies that sender S 1 with

bias t1b1 ∈ C1 has an incentive to deviate to (θ′, b1) in state θ′′. The symmetric argument
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could be made if b2 · (y − θ′) > 0 with t2 >
|y−θ′ |2

2b2·(y−θ′)
.

Statement (i) (⇐): Consider truthful strategies and a belief function µ(·) such that µ(θ, θ)

allocates mass one to θ and, for θ′ , θ′′, µ(θ′, θ′′) puts mass one on an element of Y \⋃
b1∈C1,b2∈C2 H(b1, b1 ·θ

′′)∪H(b2, b2 ·θ
′). Denote by yR the optimal response by the receiver

given those beliefs. Given a report (θ′, θ′′), yR(θ′, θ′′) <
⋃

b1∈C1,b2∈C2 H(b1, b1·θ
′′)∪H(b2, b2·

θ′), so in particular yR(θ′, θ′′) < B(θ′′ + b1, |b1|) for any b1 ∈ C1 and yR(θ′, θ′′) < B(θ′ +

b2, |b2|) for any b2 ∈ C2. So none of the senders has an incentive to deviate.

Statement (ii) (⇒): Suppose there exists a robust fully revealing equilibrium. Then for

any θ ∈ Y and any ε > 0, there exists δ > 0 such that for every θ′, θ′′ ∈ B(θ, δ),

yR(s1(θ′), s2(θ′′)) ∈ B(θ, ε) ∩ Y \ (B(θ′ + b1, |b1|) ∪ B(θ + b2, |b2|)) for any b1 ∈ C1, b2 ∈ C2.

Hence B(θ, ε) ∩ Y *
⋃

b1∈C1,b2∈C2 H(b1, b1 · θ
′′) ∪ H(b2, b2 · θ

′).

Statement (ii) (⇐): By Lemma 1, we can focus on truthful strategies for the senders and

strategies for the receiver that are independent of the biases reported. For any θ′ , θ′′ ∈ Θ,

define

yR(θ′, θ′′) ∈ arg min

|s − θ′| : s ∈ Y \

 ⋃
b1∈C1,b2∈C2

H(b1, b1 · θ
′′) ∪ H(b2, b2 · θ

′)


 .

By part (i) we know that Y \
(⋃

b1∈C1,b2∈C2 H(b1, b1 · θ
′′) ∪ H(b2, b2 · θ

′)
)

is not empty, so

such a yR(θ′, θ′′) exists. To see that this strategy, together with truthful strategies for

the senders, constitutes a robust FRE, consider any θ ∈ Θ and any ε > 0. By the hy-

pothesis, for ε̃ = ε/3 there exists 0 < δ < ε̃ such that for all θ′, θ′′ ∈ B(θ, δ) ∩ Y ,

B(θ, ε̃) ∩ Y *
⋃

b1∈C1,b2∈C2 H(b1, b1 · θ
′′) ∪ H(b2, b2 · θ

′). Consider any θ̂ ∈ B(θ, ε̃) ∩ Y *⋃
b1∈C1,b2∈C2 H(b1, b1 · θ

′′) ∪ H(b2, b2 · θ
′). Then |yR(θ′, θ′′) − θ| ≤ |yR(θ′, θ′′) − θ′| + |θ′ −

θ| ≤ |θ̂ − θ′| + |θ′ − θ| ≤ |θ̂ − θ| + 2|θ′ − θ| < 3ε̃ = ε, hence yR(θ′, θ′′) ∈ B(θ, ε) \(⋃
b1∈C1,b2∈C2 H(b1, b1 · θ

′′) ∪ H(b2, b2 · θ
′)
)
⊂ B(θ, ε)\

(⋃
b1∈C1,b2∈C2 B(θ′′ + b1, |b1|) ∪ B(θ′ + b2, |b2|)

)
.

�

Proof of Proposition 2:

We prove the assertion for the three scenarios considered:

1. Deterministic directions of the biases:

Consider θ′ , θ′′. There are two possible scenarios:

(a) Aligned preferences: Either b1 · θ
′ ≤ b1 · θ

′′ and b2 · θ
′ ≤ b2 · θ

′′ or b1 · θ
′′ ≤ b1 · θ

′

and b2 · θ
′′ ≤ b2 · θ

′.

(b) Misaligned preferences: Either b1 · θ
′′ < b1 · θ

′ and b2 · θ
′ < b2 · θ

′′ or b1 · θ
′ < b1 · θ

′′

and b2 · θ
′′ < b2 · θ

′.

For any θ′, θ′′ satisfying (a), y = arg minθ∈{θ′,θ′′} bi · θ is feasible and anonymous.

Suppose θ′, θ′′ satisfy (b). Suppose b1 · θ
′′ < b1 · θ

′ and b2 · θ
′ < b2 · θ

′′ and consider the

report (θ′, θ′′). Since there exists an FRE, there exists y ∈ Y such that b1 ·y ≤ b1 ·θ
′′ < b1 ·θ

′

and b2 · y ≤ b2 · θ
′ < b2 · θ

′′ so biy ≤ min{bi · θ
′, bi · θ

′′}. Analogously, if b1 · θ
′ < b1 · θ

′′ and
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b2 · θ
′′ < b2 · θ

′, consider the report (θ′′, θ′). Since there exists a FRE, there exists a y ∈ Y

such that b1 · y ≤ b1 · θ
′ < b1 · θ

′′ and b2 · y ≤ b2 · θ
′′ < b2 · θ

′ so biy ≤ min{bi · θ
′, bi · θ

′′}.

And therefore there is always an anonymous FRE.

2. Identical support:

Consider θ′ , θ′′ ∈ Y . Given the report (θ′, θ′′), since there exists a FRE, there is y ∈ Y

such that b1 · y ≤ b1 · θ
′′ for all b1 ∈ C, b2 · y ≤ b2 · θ

′ for all b2 ∈ C. Therefore, for any

b ∈ C, b · y ≤ min{b · θ′, b · θ′′} and the same y could be a punishment for the report (θ′′, θ′).

So there exists an anonymous FRE.

3. Full dimensionality of C1 and C2:

We will denote by (C1,C2) a situation in which the support of S 1’s bias is C1 and the support

of S 2’s bias is C2. Suppose that there exists a FRE for (C1,C2) but not an anonymous FRE.

Since there exists a FRE, each of the cones C1 and C2 must be contained on an open

halfspace of Rp. Otherwise it is impossible to punish a deviation for biases bi and −bi

simultaneously. We proceed in two steps.

Step 1: If there exists a FRE but not an anonymous FRE for (C1,C2), then either there does

not exist a FRE for (C1,C1) or there does not exist a FRE for (C2,C2).

Proof of Step 1: Suppose for contradiction that there exists a FRE for (Ci,Ci) i = 1, 2, then

for any (θ′, θ′′) there exists yi ∈ Y such that bi · yi ≤ min{bi · θ
′, bi · θ

′′} for any bi ∈ Ci.

Consider the incompatible reports (y2, y1). Since there exists a FRE for (C1,C2), there

exists ŷ ∈ Y such that b1 · ŷ ≤ b1 · y1 ≤ min{b1 · θ
′, b1 · θ

′′} for all b1 ∈ C1 and b2 · ŷ ≤

b2 ·y2 ≤ min{b2 ·θ
′, b2 ·θ

′′} for all b2 ∈ C2, and hence ŷ is a feasible anonymous punishment

for (θ′, θ′′). �

We can, therefore, without loss of generality assume that there is not a FRE for (C2,C2).

Step 2: Denote by Fr(Y) the frontier of Y . If there is not a FRE for (C2,C2), there exists

θ̃′ , θ̃′′ ∈ Fr(Y), such that

{θ̃′} = Y \ ∩b2∈C2 H(b2, b2 · θ̃
′) and {θ̃′′} = Y \ ∩b2∈C2 H(b2, b2 · θ̃

′′)

Proof of Step 2: If there is not a FRE for (C2,C2), there exists θ′ , θ′′ ∈ Y such that there

is no y ∈ Y with b2 · y ≤ min{b2 · θ
′, b2 · θ

′′} for all b2 ∈ C2. But given that C2 is strictly

contained in a half space of Rp, there is always a x ∈ Rp such that b2x < min{b2 · θ
′, b2 · θ

′′}

for all b2 ∈ C2. Since x < Y we can define θ̃′, θ̃′′ as the unique points such that

{θ̃′} = arg min{|θ − x| s.t. θ = tθ′ + (1 − t)x, t ∈ [0, 1], θ ∈ Y}

{θ̃′′} = arg min{|θ − x| s.t. θ = tθ′′ + (1 − t)x, t ∈ [0, 1], θ ∈ Y}

Then θ̃′ , θ̃′′ ∈ Fr(Y) and there exist b′2, b′′2 ∈ C2 such that θ̃′ ∈ arg miny∈Y b′2y, θ̃′′ ∈

arg miny∈Y b′′2 y. Lastly, since dim(C2) = p, this implies that

{θ̃′} = Y \ ∩b2∈C2 H(b2, b2 · θ̃
′) and {θ̃′′} = Y \ ∩b2∈C2 H(b2, b2 · θ̃

′′). �

Finally, consider θ̃′ , θ̃′′ as in Step 2. Since there exists an FRE for (C1,C2),
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(a) for the report (θ̃′, θ̃′′), yR(θ̃′, θ̃′′) = θ̃′.

(b) for the report (θ̃′′, θ̃′), yR(θ̃′′, θ̃′) = θ̃′′.

In particular (a) implies b1 · θ̃
′ ≤ b1 · θ̃

′′ for all b1 ∈ C1, and (b) implies b1 · θ̃
′′ ≤ b1 · θ̃

′ for

all b1 ∈ C1. Hence b1 · θ̃
′ = b1 · θ̃

′′ for all b1 ∈ C1. But θ̃′ , θ̃′′ implies dim(C1) < p which

is a contradiction.

Proof of Proposition 3:

Define C ≡ Co(C1 ∪C2) and suppose that C satisfies Assumption 1, so C = C(b1, ..., bm).

Consider θ ∈ Θ and ε > 0. Recall that the (individual) punishment region PRC(θ) = {x ∈

Rp | b · x ≤ b · θ for all b ∈ C} is the cone consisting of all points that are weakly worse than

θ for all realizations of the bias b ∈ C. Note that θ ∈ PRC(θ)∩Y and hence PRC(θ)∩Y , ∅.

Define

N(θ) = min
θ′∈PRC(θ)∩Y

#{bk ∈ {b1, ..., bm} | bk · θ′ = bk · θ}.

Note that N(θ) ∈ {0, ..., p}.

Suppose that N(θ) = p. Then PRC(θ) ∩ Y ≡ {θ}. Note that since there exists a FRE, for any

θ′ ∈ Θ, Y ∩ PRC(θ) ∩ PRC(θ′) , ∅. Therefore, since PRC(θ) ∩ Y ≡ {θ}, it means that for

any θ′ ∈ Θ, θ ∈ PRC(θ′), or in other words, b · θ ≤ b · θ′ for all θ′ ∈ Y , and θ is itself a local

punishment.

Suppose now that N(θ) < p and consider θ̄ ∈ PRC(θ) ∩ Y such that #{bk ∈ {b1, ..., bm} |

bk · θ̄ = bk · θ} = N(θ). By convexity of Y , we can pick up θ̄ ∈ B(θ, ε). Denote by

B(θ̄) = {bk ∈ {b1, ..., bm} | bk · θ̄ = bk · θ}. Define

δ = min
b∈{b1,...,bm}\B(θ̄)

b
|b|
· (θ − θ̄) > 0

We now show that for all θ′ ∈ B(θ, δ) ∩ Y , b · θ̄ ≤ b · θ′ for all b ∈ C, and hence θ̄ is a local

punishment:

- By construction of δ, if b ∈ {b1, ..., bm} \ B(θ̄) and θ′ ∈ B(θ, δ),

b · θ′ > b · θ − δb ·
b
|b|
≥ b · θ −

(
b
|b|
· (θ − θ̄)

)
b ·

b
|b|

= b · θ̄.

- Consider bk ∈ B(θ̄). If there exists a θ′ ∈ B(θ, δ) ∩ Y such that bk · θ′ < bk · θ̄,

then by the existence of a FRE, there exists θ∗ ∈ Y such that b · θ∗ ≤ b · θ′ and

b · θ∗ ≤ b · θ̄ ≤ b · θ for all b ∈ C. In particular θ∗ ∈ PRC(θ) ∩ Y and for all

b ∈ {b1, ..., bm} \ B(θ̄), b · θ∗ ≤ b · θ̄ < b · θ, and bk · θ∗ ≤ bk · θ′ < bk · θ̄ = bk · θ.

Therefore #{bk ∈ {b1, ..., bm} | bk · θ∗ = b · θ} < N(θ) which contradicts the definition

of N(θ). Therefore bk · θ̄ ≤ bk · θ′ for any θ′ ∈ B(θ, δ).

- Finally, any b ∈ C can be written as a linear combination of b1, ..., bm and hence, for

any b ∈ C and any θ′ ∈ B(θ, δ), b · θ̄ ≤ b · θ′.

Therefore θ̄ is a local punishment for θ.
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Proof of Proposition 4:

We will first look at the case of two-dimensional spaces:

Proposition 8. Given Y ⊆ R2 and C1 = C(b1), C2 = C(b2) with b1, b2 ∈ R
2 linearly

independent, there exists a fully revealing equilibrium if and only if for every smooth point

θ ∈ Fr(Y),

nY (θ) < int(C(b1, b2))

Proof of Proposition 8:
⇒) Suppose there exists θ ∈ Fr(Y) smooth such that nY (θ) ∈ C(b1, b2). Then Y ⊂

H̄(b1, b1θ) ∪ H̄(b2, b2θ). Moreover, since nY (θ) , b1 and nY (θ) , b2, for any δ > 0 there

exists θ′ ∈ Y ∩ B(θ, δ) and θ′′ ∈ Y ∩ B(θ, δ) such that b2 · θ
′ < b2 · θ and b1 · θ

′′ < b1 · θ. But

then Y ⊂ H̄(b1, b1θ) ∪ H̄(b2, b2θ) ⊂ H(b1, b1 · θ
′′) ∪ H(b2, b2 · θ

′) and local deviations from

θ cannot be deterred, which contradicts the existence of a FRE.

⇐) Suppose that there exist θ′, θ′′ ∈ Y such that PRC(b1)(θ′′) ∩ PRC(b2)(θ′) ∩ Y = ∅ and

consider x, such that b1 ·x = b1 ·θ
′′ and b2 ·x = b2 ·θ

′. The point x ∈ PRC(b1)(θ′′)∩PRC(b2)(θ′)

and hence x < Y . Consider any θ ∈ Fr(Y) smooth that lies in the triangle formed by θ′, θ′′

and x.17 See Figure 10. In particular, since Y is convex, h(nY (θ), nY (θ) · θ) is a hyperplane

separating Y from x, and

nY (θ)(θ′ − θ) ≥ 0 (4)

nY (θ)(θ′′ − θ) ≥ 0 (5)

nY (θ)(x − θ) < 0. (6)

Note that the inequality in (6) is strict. This is because if, for all smooth points in the triangle

formed by {θ′, θ′′, x}, nY (θ) · (x − θ) = 0, then x would be a kink point in the frontier of Y .

In particular, it would be feasible (since Y is closed), and it would constitute a punishment

for the deviation.

Since b1, b2 span R2, there exist α, β ∈ R such that nY (θ) = αb1 + βb2. Substituting this

into equations (4), (5), (6), and then substracting (6) from (4) and (5), we obtain

0 < αb1 · (θ′ − x) − βb2 · (θ′ − x) = αb1 · (θ′ − θ′′) (7)

0 < αb1 · (θ′′ − x) − βb2 · (θ′′ − x) = βb2 · (θ′′ − θ′), (8)

where the equalities follow by the definition of x. And given that b1 · θ
′ > b1 · θ

′′ and

b2·θ
′ < b2·θ

′′, (7) and (8) imply α > 0 and β > 0, respectively. Hence nY (θ) ∈ int(C(b1, b2)).

�

In order to prove Proposition 4 for higher dimensions, we show the following result:

Proposition 9. Given Y ⊆ Rp and C1 = C(b1), C2 = C(b2) with b1, b2 ∈ R
p linearly

independent, the following statements are equivalent:

17Note that Fr(Y) has at most a countable number of kinks. Since Y is convex, Fr(Y) is locally the graph of a
concave (convex) function and hence the derivative of this function is monotonic, and it has at most a countable
number of jumps.
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x

PRC(b1)(θ′′) ∩ PRC(b2)(θ′)

θ′

θ′′

nY (θ)

θ

Θ ≡ Y

h(nY (θ), nY (θ) · θ)

b1

b2

Figure 10: If there is no FRE then the LDC is violated.

(i) There exists a fully revealing equilibrium in Y.

(ii) There exists a fully revealing equilibrium in Yb1,b2 .

Proof of Proposition 9: Given b1, b2 ∈ R
p, Πb1,b2 the plane spanned by b1, b2 and b ∈

Πb1,b2 , denote by Hb1,b2(b, k) = {xb1,b2 ∈ Πb1,b2 | b · xb1,b2 > k}. Then, for any θ ∈ Rp and

b ∈ Πb1,b2 ,

x ∈ H(b, b ·θ)⇐⇒ b · x > b ·θ ⇐⇒ b · xb1,b2 > b ·θb1,b2 ⇐⇒ xb1,b2 ∈ Hb1,b2(b, b ·θb1,b2). (9)

Given Proposition 1-(i), there exists a FRE in Y given C(b1) and C(b2) if and only if for

any θ′, θ′′ ∈ Y , Y * H(b1, b1 · θ
′′) ∪ H(b2, b2 · θ

′). By (9) this is equivalent to the statement

that for any θ′b1,b2
, θ′′b1,b2

∈ Yb1,b2 , Yb1,b2 * Hb1,b2(b1, b1 · θ
′′
b1,b2

)∪ Hb1,b2(b2, b2 · θ
′
b1,b2

) which,

given Proposition 1-(i), is equivalent to the existence of a FRE in Yb1,b2 given C(b1) and

C(b2). �

The proof of Proposition 4 follows immediately from Propositions 8 and 9 given that

we have assumed that Yb1,b2 is closed. Throughout the paper, Y is assumed to be closed, but

since the projection of a closed set onto a plane is not necessarily closed, Yb1,b2 is not nec-

essarily closed. Proposition 9 holds for any Y ∈ Rp (closed or not) but the characterization

in Proposition 8 requires Y to be closed. �

Proof of Proposition 5:

In order to prove this result, we introduce some new concepts and intermediate results.

For any convex cone C, we denote by C∗ the dual cone of C: C∗ = {v ∈ Rp | b · v ≥ 0∀b ∈

C}. Note that PRC(θ) = {x ∈ Rp | x − θ ∈ −C∗}.

Lemma 2. For any convex cone C ⊂ Rp and θ ∈ Rp, if x ∈ PRC(θ) then PRC(x) ⊆ PRC(θ).

Proof. For any z ∈ PRC(x), z − x ∈ −C∗. Similarly, since x ∈ PRC(θ), x − θ ∈ −C∗. But

then z − θ = (z − x) + (x − θ) ∈ −C∗ since −C∗ is a cone. Therefore z ∈ PRC(θ). �
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Lemma 3. Given Y ⊆ Rp, C ⊂ Rp a convex cone, and θ′ ∈ Y. If PRC(θ′)∩ Y is unbounded

and dim(PRC(θ′) ∩ Y) = dim(Y), then PRC(θ′) ∩ PRC(θ′′) ∩ Y , ∅ for any θ′′ ∈ Y.

Proof. If PRC(θ′) ∩ Y is unbounded and dim(PRC(θ′) ∩ Y) = dim(Y), there exists r ∈

−int(C∗) such that θ′ + λr ∈ PRC(θ′) ∩ Y for any λ ≥ 0. Since r ∈ −int(C∗), for any

vector s ∈ Rp there exists λs ≥ 0 sufficiently large such that s + λsr ∈ −C∗. Therefore,

for s = θ′ − θ′′, there exists λs such that θ′ − θ′′ + λsr ∈ −C∗. But then θ′ + λsr ∈

PRC(θ′) ∩ PRC(θ′′) ∩ Y . �

Lemma 4. Consider C1 and C2 satisfying Assumption 1 with C = co(C1∪C2) = C(b1, ..., bm).

Let Y be a half-space: Y = {y ∈ Rp | n · y ≥ k}. If n < C \ {b1, ..., bm} then there exists an

anonymous FRE in Y given C1 and C2.

Proof. If n < C \ {b1, ..., bm} then either n < C or n = b j for some j ∈ {1, ...,m}.

Case 1: n < C. Since C is a closed convex cone, (C∗)∗ = C by the Bipolar Theorem, and

hence C = {b ∈ Rp | b · v ≥ 0 ∀v ∈ C∗}. In particular, if n < C, there exists v ∈ C∗

such that n · v < 0, or analogously, there exists a r ∈ −C∗ such that n · r > 0. Consider

any pair of reports θ′, θ′′ ∈ Y . Since n · r > 0 and r ∈ −C∗, PRC(θ′) ∩ Y is unbounded and

dim(PRC(θ′) ∩ Y) = dim(Y). Hence by Lemma 3, PRC(θ′) ∩ PRC(θ′′) ∩ Y , ∅, and there

exists an anonymous FRE.

Case 2: n = b j for some j ∈ {1, ...,m}. Since C is a convex cone, then there exists r ∈ Rp

orthogonal to n (i.e., n·r = 0) such that C ⊂ {v ∈ Rp | v·r ≥ 0}. In particular, for any θ′, θ′′ ∈

Y , there exists θ′n ∈ Fr(Y) ∩ PRC(θ′), θ′′n ∈ Fr(Y) ∩ PRC(θ′′) and dim(PRC(θ′n) ∩ Fr(Y)) =

dim(Fr(Y)) = p − 1 and unbounded. Hence by Lemma 3, PRC(θ′n) ∩ PRC(θ′′n ) ∩ Fr(Y) , ∅

and by Lemma 2, PRC(θ′n)∩ PRC(θ′′n )∩ Fr(Y) ⊂ PRC(θ′)∩ PRC(θ′′)∩ Y , so there exists an

anonymous FRE. �

We are now ready to prove Proposition 5.

Proof of Proposition 5
(i)⇒ (ii) is trivial.

(ii)⇒ (iii): Suppose first that there exists a smooth θ ∈ Fr(Y) such that nY (θ) ∈ C(b1, ..., bm)\

{b1, ..., bm}, then there exists b, b′ ∈ C such that n ∈ int(C(b, b′)). Moreover, as θ is smooth,

θb,b′ is a smooth point of Fr(Yb,b′) and nYb,b′ (θb,b′) ∈ int(C(b, b′)). Hence, by Proposition 4

there is no FRE given C(b) and C(b′).

Suppose instead that there exists a partially smooth θ ∈ Fr(Y), i.e., 1 < dim(PY (θ)) < p,

such that there exists n ∈ PY (θ)∩ int(C(b1, ..., bm)). Since θ is partially smooth, there exists

a plane Π such that the projection of θ onto Π is a smooth point of Fr(YΠ), the frontier of the

projection of Y onto Π. Moreover, since n ∈ int(C(b1, ..., bm)) and dim(C(b1, ..., bm)) = p,

we can choose b, b′ ∈ C(b1, ..., bm) such that n ∈ int(C(b, b′)), and Πb,b′ = Π. In particular,

n = nYb,b′ (θb,b′) ∈ int(C(b, b′)), so by Proposition 4 there is no FRE given C(b) and C(b′).

(iii) ⇒ (i): Denote by C = co(C1 ∪ C2) = C(b1, ..., bm). Suppose for contradiction that

there is not an anonymous FRE given C1 and C2. If so, there exist θ′, θ′′ ∈ Y such that
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PRC(θ′) ∩ PRC(θ′′) ∩ Y = ∅. Since both Y and PRC(θ′) ∩ PRC(θ′′) are convex sets, there

exists a supporting hyperplane to Y that strictly separates Y from PRC(θ′) ∩ PRC(θ′′). In

other words, there exists n ∈ Rp and θ ∈ Fr(Y) such that Y ⊆ {x ∈ Rp | n · x ≥ n · θ}

and PRC(θ′) ∩ PRC(θ′′) ⊂ {x ∈ Rp | n · x < n · θ}. Note that for any normal vector n to

a separating hyperplane supported at θ, n ∈ PY (θ). We consider in turn the two possible

cases:

Case 1: There exists a smooth θ ∈ Fr(Y) that supports a hyperplane strictly separating Y

from PRC(θ′)∩PRC(θ′′). Denoting by H = {x ∈ Rp | nY (θ)·x ≥ nY (θ)·θ} the supporting half-

space that contains Y , we have PRC(θ′) ∩ PRC(θ′′) ∩ H = ∅, so there is not an anonymous

FRE in H given C. But then, by Lemma 4, nY (θ) ∈ C \ {b1, ..., bm} which contradicts (iii)

(a).

Case 2: There are no smooth points in Fr(Y) that support a hyperplane that strictly sepa-

rates Y from PRC(θ′) ∩ PRC(θ′′). We show below that there must exist a partially smooth

θ ∈ Fr(Y) supporting a strictly separating hyperplane whose normal vector n satisfies

n ∈ int(C).

1. If all the strictly separating hyperplanes are supported on a kink point θ ∈ Fr(Y), then

C ⊆ PY (θ) which implies that b · θ ≤ b · y for all y ∈ Y and hence θ is a punishment for

any deviation and θ ∈ PRC(θ′) ∩ PRC(θ′′), which contradicts the fact that there was a

strictly separating hyperplane supported at θ.

2. If a partially smooth point θ supports a strictly separating hyperplane, denoting by

H = {x ∈ Rp | n · x ≥ n · θ} the corresponding half-space that containing Y , we have

that by Lemma 4, n ∈ C \ {b1, ..., bm}.

3. If all the normal vectors of the supporting strictly separating half-spaces at a partially

smooth point θ satisfy that n < int(C), then there exists bi, b j such that all those

normal vectors n lie in the face of C spanned by bi and b j. This is because if there

is n, n′ ∈ PY (θ) such that n is in the face spanned by bi, b j and n′ is in the face

spanned by bk, bl then any convex combination of n and n′ will also by in PY (θ), so

it will support a half-space strictly separating Y from PRC(θ′) ∩ PRC(θ′′), and it will

be in the interior of C. Moreover, given bi, b j, there exists a direction r orthogonal

to bi, b j, such that θ is smooth in that direction, i.e., r belongs to all the supporting

hyperplanes to Y at θ. Finally, since C is strictly contained in a half-space, either

C ⊂ {v ∈ Rp | v · r ≥ 0} or C ⊂ {v ∈ Rp | v · r ≤ 0}. Without loss of generality we can

assume that b · r ≥ 0 for all b ∈ C.

4. Suppose that for all the partially smooth points supporting strictly separating hyper-

planes, and for all the normal vectors to those separating hyperplanes, n < int(C).

5. Consider any of those partially smooth point θ and the direction of smoothness r

defined in 3. By 4, {θ − λr | λ ∈ [0,Λr]} ⊂ Fr(Y). If not we would be able to

find another partially smooth point supporting a strictly separating hyperplane with

n ∈ int(C). If all the Λr are finite, then there exists θ̂ such that C ⊂ PC(θ̂), in which

case as in 1, θ̂ ∈ PRC(θ′) ∩ PRC(θ′′), which contradicts the existence of a strictly

separating hyperplane.
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If there exists a Λr that is not finite, i.e, Y is unbounded in the direction −r, we can use

such a direction to punish any deviation. in other words, PRC(θ′)∩PRC(θ′′)∩FR(Y) ,

∅, which again contradicts the existence of a strictly separating hyperplane.

Therefore, there must exists a partially smooth point supporting a strictly separating hyper-

plane with normal vector n ∈ int(C). But n ∈ PY (θ) so n ∈ PY (θ)∩ int(C) which contradicts

(iii) (b). �

Proof of Proposition 6:

⇒): Define xb1,b2 to be the projection of Mb1,b2(θ′, θ′′) onto Πb1,b2 , i.e, xb1,b2 is the point

in Πb1,b2 such that b1 · xb1,b2 = min{b1 · θ
′, b1 · θ

′′} and b2 · xb1,b2 = min{b2 · θ
′, b2 · θ

′′}.

If Mb1,b2(θ′, θ′′) ∩ Y = ∅, then xb1,b2 < Yb1,b2 . Replicating the argument in the proof of

Proposition 4, this implies the LDC is violated and hence there is not a FRE.

⇐): Suppose that for all θ′, θ′′ ∈ Y , there exists y ∈ Mb1,b2(θ′, θ′′) ∩ Y . Then b1 · y ≤ b1 · θ
′′

and b2 · y ≤ b2 · θ
′ and hence y is a punishment for the deviation (θ′, θ′′). �

Proof of Proposition 7:

The proposition is a direct consequence of Propositions 5 and 6. �

A.3 Equivalence of Robustness and Continuity on the Diagonal

Ambrus and Takahashi (2008) define a notion of continuity for the receiver’s strategy. We

state their definition for fully revealing equilibrium:

Definition 3 (Ambrus and Takahashi (2008)). A fully revealing equilibrium (s1, s2, yR) is

continuous on the diagonal if

lim
n→∞

yR(s1(θn
1), s2(θn

2)) = θ

for any sequence {(θn
1, θ

n
2)}n∈N of pairs of states such that limn→∞ θ

n
1 = limn→∞ θ

n
2 = θ.

We now show that this notion of continuity is equivalent to our definition of robustness

in the case of known biases b1, b2.

Lemma 5. A fully revealing equilibrium (s1, s2, yR) is robust if and only if it is continuous

on the diagonal.

Proof. ⇒) Consider any pair of sequences {(θn
1, θ

n
2)}n∈N ⊂ Θ such that limn→∞ θ

n
1 =

limn→∞ θ
n
2 = θ. Since yR is robust, for every ε > 0 there exists a δ > 0 such that for

all θ′, θ′′ ∈ B(θ, δ) ∩ Y , yR(s1(θ′), s2(θ′′)) ∈ B(θ, ε). Now, limn→∞ θ
n
1 = limn→∞ θ

n
2 = θ

implies that for that δ > 0, there exists n0 ∈ N such that for all n ≥ n0, θn
1, θ

n
2 ∈ B(θ, δ) ∩ Y ,

which implies that yR(s1(θn
1), s2(θn

2)) ∈ B(θ, ε) and hence the equilibrium is continuous on

the diagonal.
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⇐) We argue by contradiction. Suppose that yR is not robust. Then there exists θ ∈ Θ and

ε > 0 such that for all n0 ∈ N there exists n > n0 with θn
1, θn

2 such that θn
1, θ

n
2 ∈ B(θ, 1

n ) ∩ Y

and

yR(s1(θn
1), s2(θn

2)) < B(θ, ε) \
(
B(θn

1 + b2, |b2|) ∪ B(θn
2 + b1, |b1|)

)
.

Note that for any n such that 1
n < ε, θn

1 , θ
n
2, because if θn

1 = θn
2, yR(s1(θn

1), s2(θn
2)) = θn

1 ∈

B(θ, ε)\
(
B(θn

1 + b2, |b2|) ∪ B(θn
2 + b1, |b1|)

)
. Since (s1, s2, yR) is an equilibrium, yR(s1(θn

1), s2(θn
2)) <

B(θn
1 + b2, |b2|) ∪ B(θn

2 + b1, |b1|), otherwise either sender S 1 would have an incentive to de-

viate to s1(θn
1) when θn

2 is realized, or sender S 2 would have an incentive to deviate to s2(θn
2)

when θn
1 is realized. Hence yR(s1(θn

1), s2(θn
2)) < B(θ, ε), which contradicts the diagonal con-

tinuity of the equilibrium. �
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