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Abstract

In this paper we will rigourously study some of the properties of continuous time
stochastic volatility models. We have five main results: (i) the stochastic volatil-
ity class can be linked to Cox process based models of tick-by-tick financial data;
(ii) we characterise the moments, autocorrelation function and spectrum of squared
returns; (iii) based only on discrete time returns, we give a simple consistent and
asymptotically normally distributed estimator of continuous time volatility models
without any simulation or discretisation error. Furthermore, we review a new class
of Ornstein-Uhlenbeck processes of volatility, introduced in a companion paper,
which allows (iv) the discrete time returns to be simulated without any form of dis-
cretisation error, (v) explicit modelling of correlation structures and allow analytic
calculations of the properties of returns.
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1 Introduction

Continuous time stochastic volatility (SV) models have had a substantial impact on theor-

etical financial economics and econometric theory and practice. A review of the literature

is given in Ghysels, Harvey, and Renault (1996). A standard model for the evolution of

an asset price in the literature is where x∗(t) is the log-price and w(t) is Brownian motion,

then x∗(t) follows the solution to a linear stochastic differential equation (SDE) of the

form

dx∗(t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dw(t),

where t ≥ 0 and where σ2(t), the instantaneous volatility, is latent. Such models, by appro-

priate design of the stochastic process for σ2(t), allow aggregated returns {yn} measured

over a period ∆, where

yn =

∫ n∆

(n−1)∆

dx∗(t) = x∗(n∆)− x∗ {(n− 1) ∆} , ∆ > 0,

to be heavy-tailed, exhibit volatility clustering and aggregate to Gaussianity as ∆ gets

large. These are the main features of asset returns surveyed by, for example, Campbell,

Lo, and MacKinlay (1997, pp. 17-21). Common models for σ2(t) include an Ornstein-

Uhlenbeck process with Brownian motion increments written for log σ2(t) (e.g. Hull and

White (1987)), an ARCH diffusion (Nelson (1990)) and a square root process (e.g. Heston

(1993)).

In this paragraph we will assume {σ2(t)} is independent of the {w(t)}. Then whatever

the model for σ2 it follows that

yn|σ2
n ∼ N(µ∆ + βσ2

n, σ
2
n).

where

σ2
n = σ2∗(n∆)− σ2∗ {(n− 1)∆} , and σ2∗(t) =

∫ t

0

σ2(u)du.

This implies integrated volatility plays a crucial role in continuous time volatility models.

Unfortunately, existing models of volatility do not allow an easy treatment of integrated

volatility and so most researchers tend to resort to discretisation approximations even to

simulate return sequences.

In this paper we will rigourously study some of the properties of continuous time

stochastic volatility models. We have five main results: (i) stochastic volatility class can

be linked to Cox process based models, put forwarded independently by Rogers and Zane

(1998) and Rydberg and Shephard (1998), of tick-by-tick financial data; (ii) the moments,

autocorrelation function and spectrum of {y2
n} are characterised; (iii) based only on dis-

crete time returns, we give a simple consistent and asymptotically normally distributed

estimator of continuous time volatility models without any simulation or discretisation
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error. Furthermore, we review a new class of Ornstein-Uhlenbeck processes of σ2(t) in-

troduced in a companion paper Barndorff-Nielsen and Shephard (1998), which allows (iv)

the {yn} to be simulated without any form of discretisation error as well as providing (v)

simple and interpretable dynamic structures for the volatility allowing explicit modelling

of correlation structures and analytic calculations of the properties of returns.

The structure of the paper is as follows. In Section 2 we will formally introduce

our notation and consider some of the basic mathematical properties of x∗(t). In this

section we also connect stochastic volatility models with the recent work on tick-by-tick

models where point processes have been used to model the time between trades (see, for

example, Engle and Russell (1998), Ghysels, Jasiak, and Gourieroux (1998), Rydberg and

Shephard (1998) and Rogers and Zane (1998)). In particular we show that we can derive

the SV class of processes as a limit of a general class of Cox processes for tick-by-tick

data. In Section 3 we will study the moments of yn and derive simple expressions for the

autocorrelation and spectrum of the squared returns. The results can be used to provide

simple consistent and asymptotically normally distributed estimators of the continuous

time models using discrete time return data. In Section 4 we will review our recent work

on the construction of continuous time models for σ2(t). Particularly novel about our work

is that the models will be derived directly on the positive half-line as Ornstein-Uhlenbeck

type processes. In particular we argue for the use of background driving Lévy processes,

rather than Brownian motion, as the forcing mechanisms for these models.

Finally, throughout the paper we shall use the following notation for cumulant and

Laplace transforms of a random variate x with associated probability measure ν.

C (ζx) =C (ζ ‡ x) = log E
(
eiζx

)
L(ux) = L (u ‡ x) =

∫ ∞

0

euxν(dx)

L̄(ux) = L(−ux) =

∫ ∞

0

e−uxν(dx)

K(ux) = K (u ‡ x) = log L(ux)

K̄(ux) = K̄ (u ‡ x) = K (−u ‡ x)
The terms Wiener process and Brownian motion are used synonymously.

2 Basic model type

2.1 Notation and characterisation

Most of the models we shall consider arise by refinement or approximation of the following

basic model type. Let w be a Wiener process, let σ be a positive and (strictly) stationary
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stochastic process with caglad (continuous from left, with limits from the right) sample

paths, and suppose that w and σ are adapted to one and the same filtered probability

space {Ω,F , {Ft}t≥0}. By ξ, ω2 and r we denote, respectively, the mean and, when they

exist, the variance and the autocorrelation function of the process σ2(t). Furthermore, let

σ2∗(t) =

∫ t

0

σ2(u)du (1)

The process σ2∗ has continuous sample paths. We may now introduce a process x∗(t) by

the stochastic differential equation

dx∗(t) = σ(t)dw(t) +
{
µ+ βσ2(t)

}
dt (2)

with solution

x∗(t) =

∫ t

0

σ(u)dw(u) + βσ2∗(t) + µt (3)

where the integral is defined in the Itô sense. Note that σ and w may be dependent

and that, at this stage, no assumptions are made about existence of moments of x∗(t)

beyond the second order. The parameter β expresses a possible asymmetry of the process

x∗(t), the distribution of x∗(t) being symmetric around µt if β = 0. Likewise µ reflects

the possible drift in the log-price. Typically we will set µ = 0 in our mathematical

development for ease of exposition as the drift raises no new issues.

If β = µ = 0, i.e.

x∗(t) =

∫ t

0

σ(u)dw(u) (4)

then x∗(t) is a continuous local martingale (cf., for instance, Protter (1992, theorem 30,

p. 143)) and its quadratic variation is σ∗2(t), i.e. we have

[x∗](t) =p− lim
r→∞

∑
{x∗(tri+1)− x∗(tri )}2 = σ2∗(t) (5)

for any sequence of partitions tr0 = 0 < tr1 < ... < trmr
= t with supi{tri+1 − tri} → 0

for r → ∞. Note also that, since σ2∗(t) is continuous, the two terms in (5) constitute

the Doob-Meyer decomposition of x∗(t). The quadratic variation of volatility models has

recently been highlighted by Andersen and Bollerslev (1998) in order to approximately

estimate integrated volatility in foreign exchange markets. It is clear that for any finite

r such a quadratic variation estimator will be an unbiased estimator of the integrated

volatility, with its variance falling as r →∞. However, in practice this style of continuous

time model will be a poor approximation to the sample paths of the price process when

we look at very fine time intervals, which tend to have some form of discreteness. Hence

there is a bias/variance trade-off. One way of studying this problem would be to use the

tick-by-tick models we study in a subsection below.
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Traditionally there are broadly two forms of models for σ2 used in the literature which

enforce the volatility to be stochastic and positive (positive stochastic processes also

appear in the term structure of interest rates literature — see for example, Cox, Ingersoll,

and Ross (1985)). The most common is where the logarithm of σ2 follows a Gaussian

Ornstein-Uhlenbeck process

d log σ2(t) = −λ{
log σ2(t)− µ

}
dt+ ςdb(t), λ > 0, (6)

where b(t) is a Brownian motion. This process has a marginal distribution for instantan-

eous returns which is a normal mixed with a log-normal, which possess all of its moments.

This process for σ2 has been used by, for example, Wiggins (1987), Chesney and Scott

(1989) and Melino and Turnbull (1990) in the context of option pricing, while a discrete

time version of this model was put forward by Taylor (1982) and has been studied from

an econometric viewpoint by, for example, Harvey, Ruiz, and Shephard (1994), Jacquier,

Polson, and Rossi (1994) and Kim, Shephard, and Chib (1998). This process has some

advantages as it has a simple strong solution, while

rlog(u) = cor
{
log σ2(t+ u), log σ2(t)

}
= exp (−λ|u|) , λ > 0.

However, it is not obvious how to work with σ2∗ in this framework without making

discretisation errors.

The other commonly used process is the ‘constant elasticity of variance’ process

dσ2(t) = −λ{
σ2(t)− σ2

}
dt+ γ

{
σ(t)2

}d
db(t), d ≥ 1/2.

This general structure, which is always covariance (and strictly) stationary if λ > 0,

has been recently highlighted by Meddahi and Renault (1996) who strongly argue that

it provides a great deal of tractability in terms of studying temporal aggregation using

different information sets. A principle advantage of this style of model is that

σ2 {∆ (n+ 1)} = σ2
(
1− e−λ∆

)
+ e−λ∆σ2 (∆n)

+e−λ∆γ

∫ ∆(n+1)

∆n

eλ(u−∆n)
{
σ(t)2

}d
db(t)

implying generically that whatever the value of d and γ,

r(u) = cor
{
σ2(t+ u), σ2(t)

}
= exp(−λ|u|).

However, in general this process does not possess an analytic strong solution which allows

us to work out the marginal density of this process, nor can we simulate from it (or its

integrated version) without incurring a discretisation error.

An important special case of the above setup is where d = 1, for this is the so called

ARCH diffusion of Nelson (1990), which can be motivated as the continuous time limit
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of the discrete time GARCH process proposed by Bollerslev (1986) and Taylor (1986).

Important references in this regard are Drost and Nijman (1993) and Drost and Werker

(1996). In this special case σ2’s marginal density is inverse gamma with (4λ/γ2) + 2

degrees of freedom (see also Hurst and Platen (1997)). As λ > 0, it implies this pro-

cess always has a marginal law which is inverse gamma with greater than two degrees of

freedom. As a result ARCH diffusion models have heavier tailed (Student’s t) marginal

continuous time returns than the process generated by (6), although it should be noted

that all ARCH diffusion models for returns possess their first two moments. A problem

with ARCH diffusions is that it is not sufficiently flexible as they have only three paramet-

ers: one governs the average level of volatility (σ2), another the persistence of volatility

(λ), the third the magnitude of the persistence of the volatility (γ). The marginal dis-

tribution of the σ2 process is deduced by the interactions of these parameters and is not

freely determined. Consequently ARCH diffusions typically do not fit the data very well,

although they can produce typical autocorrelation functions for the square returns data,

and have to be combined with jumps in order to become empirically reasonable.

Another important special case is where d = 1/2, the so called square-root diffusion

(see Feller (1951) and Cox, Ingersoll, and Ross (1985) for its use in the context of interest

rates). This model has been used in the option pricing literature by Gennotte and Marsh

(1993) and Heston (1993). The advantage of the square root process is that the distri-

bution of σ2 {∆ (n + 1)} |σ2 (∆n) is a non-central chi-square and has an analytic moment

generating function. Its unconditional marginal density is a gamma distribution — which

has the disadvantage that it implies an unconditional returns density which does not fit

the shape of empirical unconditional distributions of log returns. Further, it is again not

clear that the existence of the strong solution for the square root process is enough for us

to simulate from the integrated volatility without any discretisation error.

In this paper, in contrast, we are interested in processes where σ2 satisfies a (nonanti-

cipative) stochastic differential equation

dσ2(t) = µ
{
x∗(.), σ2(.), t

}
dt+ χ

{
x∗(.), σ2(.), t

}
dz(t) (7)

z being a Lévy process. The simplest form of these, which we study in some detail in

Section 4, is the Ornstein-Uhlenbeck type

dσ2(t) = −λσ2(t)dt+ dz(t) (8)

where λ > 0. Here z(t) will be a process with positive, independent and stationary

increments. For the applications we have in mind it is important to realize that, in

essence, (8) has a stationary solution with a fixed one-dimensional marginal law for σ2 if

and only if that law is selfdecomposable, cf. section 4 below.

Example 2.1 We shall particularly be considering the case where the one-dimensional

marginal law of σ2(t) is inverse Gaussian or inverse gamma and where σ2(t) constitutes
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a process of Ornstein-Uhlenbeck type, or superpositions of such processes. In the case

where σ2 is covariance stationary, then r(u) = exp(−λ|u|). These parametric models

imply instantaneous returns will be normal inverse Gaussian or Student’s t.

�
Lemma 2.1 If the processes w and σ are independent and β = 0 then the cumulant

transform of the finite dimensional distributions of the process

x∗(t) =

∫ t

0

σ(u)dw(u)

are given by, with ζ∗ = (ζ1, ..., ζn), t∗ = (t1, ..., tn), 0 < t1 < ... < tn,

C{ζ∗ ‡ x∗(t∗)} = K̄{J/2 ‡ σ2∗(t∗)} (9)

where x∗(t∗) = {x∗(t1), ..., x∗(tn)}, σ2∗(t∗) = {σ2∗(t1), ..., σ2∗(tn)} and

J =
n∑

i=1

(ζi + ζi+1 + ...+ ζn)2
{
σ2∗(ti)− σ2∗(ti−1)

}
(10)

In particular, for the one-dimensional marginal distributions we have

C{ζ ‡ x∗(t)} = K̄{ζ2/2 ‡ σ2∗(t)}. (11)

�
Proof See Appendix.

Recall that the autocorrelation function of the process σ2 is denoted by r. We now

introduce the notation r∗ for the cumulative autocorrelation function, i.e.

r∗(t) =

∫ t

0

r(u)du (12)

and we let

R∗(t) =

∫ t

0

r∗(u)du (13)

For use below we note that ∫ t

0

∫ t

0

r(u− v)dudv = 2R∗(t) (14)

and consequently, assuming that σ2(t) is square integrable,

Var{σ2∗(t)} = 2ω2R∗(t) (15)
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2.2 Subordination

Typically we think of the σ2(t) process as the instantaneous volatility of x∗(t). However, it

has another equally important interpretation, which is that its integral is a random clock

for the asset price process. This well known result (see, for example, Conley, Hansen,

Luttmer, and Scheinkman (1997)) is stated in Theorem 2.1. It follows directly from the

Dubins-Schwarz representation theorem of continuous local martingales as time trans-

formations of Wiener processes (see, for example, Rogers and Williams (1996, p. 64)).

Theorem 2.1 Consider the process

x∗(t) =

∫ t

0

σ(u)dw(u) (16)

and recall that

σ2∗(t) =

∫ t

0

σ2(u)du (17)

On the filtered probability space {Ω,F , {Ft}t≥0} there exists a Brownian motion b such

that

x∗(t) = b
{
σ2∗(t)

}
(18)

for all t ≥ 0.

�

From the statistical point of view the identity of the processes x∗(·) and b {σ2∗(·)}
implies that we can consistently think of x∗ both as a stochastic volatility model and as

a subordinated model.

There is an extensive literature on modelling economic phenomena in terms of differing

clock speeds. Important work in macroeconomics on this topic includes Stock (1988),

while in finance Clark (1973), Tauchen and Pitts (1983), Ghysels and Jasiak (1994) and

Ané and Geman (1997) study the relationship between calender and financial time as

specified by latent and observable variables such as volume. Ané and Geman (1997) is

particularly interesting from our viewpoint. They report in Figure 1 a density estimator of

the number of trades made on stocks which make up the S&P500 in one minute intervals.

It has a shape which appears consistent with a mixture of two inverse Gaussian random

variables with suitably chosen parameters. This will be consistent with the parametric

volatility models which we develop later in our paper.

Recent work by Muller, Dacorogna, Olsen, Pictet, Schwarz, and Morgenegg (1990)

and Guillaume, Dacorogna, Dave, Muller, Olsen, and Pictet (1997) has modelled financial

time, which they call ‘theta-time’, as a function of quote changes and geographical inform-

ation on closures in markets. One of their important findings is that theta-time can be

best thought of as a stochastic process with components with differing rates of persistence
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— reflecting the structure of the market which has traders which have different trading

horizons. Finally, Engle and Russell (1998), Ghysels, Jasiak, and Gourieroux (1998), Ro-

gers and Zane (1998) and Rydberg and Shephard (1998) model the time between price

movements as a stochastic process.

2.3 Aggregational Gaussianity

It follows immediately from the subordination representation (18) that if σ2(t) is ergodic

then, as t→∞,

t−1σ2∗(t) a.s.→ ξ,

implying t−1/2x∗(t) is asymptotically normal with mean 0 and variance ξ (i.e. the log

returns tend to normality for long lags). Thus, in particular, no assumptions need to

be made about existence of third or fourth moments of the prices or the returns. One

implication of this results is that all ARCH diffusion models aggregate to Gaussianity (as

they all possess their second moment). The convergence of t−1/2x∗(t) to normality will,

however, be slow in case the process σ2(t) exhibits long range dependence. In that case

one has that

r(t) ∼ L(t)t−2H̄

as t→∞ and where L(t) is a slowly varying function and H̄ ∈ (0, 1
2
). Typically then

Var{t−1σ2∗(t)} = 2ω2t−2R∗(t) ∼ L(t)t−2H̄

which tends to 0 slower than t−1, and very slowly if H̄ is close to 0. Hence asymptotic

normality will be achieved but this will be a poor approximation unless t is very large.

2.4 Stochastic volatility and tick-by-tick data

Recent studies of tick-by-tick data by Engle and Russell (1998) have demonstrated that it

is sometimes useful to think of financial data measured at very high frequencies as being

generated by processes with discontinuous sample paths. Instead, focus could be placed

on the time between trades (see also Ghysels, Jasiak, and Gourieroux (1998)). In this

section we will discuss unifying this style of approach with the continuous time stochastic

volatility models discussed above.

To enable us to present general results we will adopt the Rydberg and Shephard (1998)

framework for tick-by-tick data. A special case of this model has recently been independ-

ently proposed by Rogers and Zane (1998), while an interesting alternative autoregressive

style model has been independently studied by Russell and Engle (1998). We model the

number of trades N(t) up to time t as a Cox process (which is sometimes called a doubly

stochastic point process) with random intensity λ(t) = λσ2(t) > 0. In general we write τi
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as the time of the i− th event and so τN(t) is the time of the last recorded event when we

are standing at calender time t.

Then we model the current price as

x∗λ(t) = µτN(t) + βσ2∗ {
τN(t)

}
+

1√
λ

{
y1 + ... + yN(t)

}
, (19)

where the {yi} are NID(0, 1) and σ2∗(t) =
∫ t

0
σ2(u)du. We assume the Cox process and

the {yi} are all completely independent. This model models prices as being discontinuous

in time, jumping with the arrivals from the Cox process. Then we have the following

result.

Theorem 2.1 For the price process (19), if yi ∼ NID(0, 1), σ2∗(t) =
∫ t

0
σ2(u)du, N(t) is

a Cox process with random intensity λ(t) = λσ2(t) > 0, then

lim
λ↑∞

x∗λ(·) L→ x∗(·).

Proof: Given in the Appendix.

The interpretation of this is that the tick-by-tick model of the price evolution will

converge to a general standard stochastic volatility model as the amount of trading gets

large and the average tick size becomes small. Of course for infrequently traded markets

the models can be substantially different.

We should note that the requirement that the {yi} are NID(0, 1) can be relaxed

to allow general sequences of {yi} which exhibit a central limit theorem for the sample

average. This is particularly useful for it may be helpful in applied work to allow the price

innovations to live on a lattice (see Rydberg and Shephard (1998)).

3 Returns

3.1 Various moments

Now consider the model type (3) and assume that w and σ are independent. Let ∆ > 0

and, for n = 1, 2, ..., write

yn =

∫ n∆

(n−1)∆

{σ(u)dw(u) + βσ2(u) + µdu}

=

∫ n∆

(n−1)∆

σ(u)dw(u) + β
[
σ2∗(n∆)− σ2∗ {(n− 1)∆}] + µ∆ (20)

In the financial context the yn are the log asset returns over time periods of length ∆.

We have

E{yn} = β∆ξ + µ∆ (21)

Var{yn} = ∆ξ + 2β2ω2R∗(∆) (22)
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and

E
[{(yn − E (yn)}3] = 6βω2R∗(∆) + β3ω3

∫ ∆

0

∫ ∆

0

∫ ∆

0

r(u, v, w)dudvdw

where r(u, v, w) denotes the third order normalized autocumulant function of the σ2

process. Recall R∗(.) is defined in (13). In the rest of this section we assume that

β = µ = 0. Then, for s = 1, 2, ...,

cor{yn, yn+s} = 0

while for the series of squared returns y2
n we have

E{y2
n} = ∆ξ (23)

Var{y2
n} = 6ω2R∗(∆) + 2∆2ξ2

and

Cov{y2
n, y

2
n+s} = E{y2

ny
2
n+s} − E{y2

n}2

= E

{∫ n∆

(n−1)∆

σ(u)2du

∫ (n+s)∆

(n+s−1)∆

σ(v)2dv

}
−∆2ξ2

=

∫ n∆

(n−1)∆

∫ (n+s)∆

(n+s−1)∆

{E{σ(u)2σ(v)2} − ξ2}dudv

=

∫ n∆

(n−1)∆

∫ (n+s)∆

(n+s−1)∆

Cov{σ(u)2σ(v)2}dudv

= ω2

∫ n∆

(n−1)∆

∫ (n+s)∆

(n+s−1)∆

r(v − u)dudv

= ω2

∫ ∆

0

∫ (s+1)∆

s∆

r(v − u)dudv

= ω2

∫ ∆

0

{r∗((s+ 1)∆− u)− r∗(s∆− u)}du (24)

i.e.

Cov{y2
n, y

2
n+s} = ω2♦R∗(∆s)

where

♦R∗(s) = R∗(s+ ∆)− 2R∗(s) +R∗(s−∆) (25)

Consequently the correlation is

cor{y2
n, y

2
n+s} = q−1∆−2♦R∗(∆s) (26)

where

q = 6∆−2R∗(∆) + 2(ξ/ω)2 (27)
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Recall that the spectral density f̄ of a time series with autocorrelation function ρ(s), say,

is defined by f̄ = (2π)−1f where

f(ψ) =
∞∑

s=−∞
ρ(s) cos(sψ)

for ψ ∈ [0, 2π]. For notational convenience we shall refer to both f̄ and f as the spectral

density. Thus, using the notation (25), the spectral density of the series y2
n may be written

as

f(ψ) = 1 + 2q−1∆−2
∞∑

s=1

♦R∗(∆s) cos(sψ) (28)

Example 3.1 Suppose that

r(u) = e−λ|u| (29)

for some λ > 0. (This is true, in particular, if the process σ2(t) is of Ornstein-Uhlenbeck

type, see further in section 4.) Then, for u > 0,

r∗(u) =

∫ u

0

r(v)dv = λ−1(1− e−λu), (30)

so

R∗(u) =

∫ u

0

r∗(v)dv = λ−2
(
λu+ e−λu − 1

)
. (31)

This implies

♦R∗(∆s) = λ−2(1− e−λ∆)2e−λ∆(s−1) (32)

which falls exponentially with s. Hence (26) takes the form

cor{y2
n, y

2
n+s} = ce−λ∆(s−1) (33)

where

c = q−1(λ∆)−2(1− e−λ∆)2 (34)

and

q = 6(λ∆)−2(e−λ∆ − 1 + λ∆) + 2(ξ/ω)2 (35)

Note that 0 < c < 1 and that (33) implies that y2
n follows a constrained ARMA(1,1)

process. This implies yn is weak GARCH(1,1) in the sense of Drost and Nijman (1993).

Andersen and Bollerslev (1997b, p. 137) have fitted GARCH(1,1) models to (seasonally

adjusted) equity and exchange rate returns measured using a variety of values of ∆ and

found that the above aggregation results broadly describe the fit of the various GARCH

models.

For ∆ →∞ we have q → 2(ξ/ω)2 and

cor{y2
n, y

2
n+s} ∼ {2(ξ/ω)2}−1(λ∆)−2e−λ∆(s−1) (36)

13



Thus the effect of ∆ → ∞ is to reduce the constant in front of the exponential and to

increase the slope of the damping down in the autocorrelation function. We also note

that the spectral density corresponding to (33) is given by

f(ψ) = 1 + 2c
cosψ − e−λ∆

1− 2e−λ∆ cosψ + e−2λ∆
(37)

= 1 + ceλ∆ 2e−λ∆ cosψ − 2e−2λ∆

1− 2e−λ∆ cosψ + e−2λ∆

= 1− ceλ∆ + ceλ∆ 1− e−2λ∆

1− 2e−λ∆ cosψ + e−2λ∆
(38)

Letting ρ = exp(−λ∆) we may rewrite this as

1− cρ−1 + cρ−1a(ψ; ρ)

where

a(ψ; ρ) =
1− ρ2

1− 2ρ cosψ + ρ2

equals the autocorrelation function for an autoregressive process of order 1 with regression

coefficient ρ.

�
Example 3.2 More generally, suppose that r(u) is a weighted sum of exponentials

r(u) = w1 exp (−λ1 |u|) + ...+ wm exp (−λm |u|) (39)

where the wi are positive and sum to 1. This type of model has the interpretation that the

(squared) volatility follows a weighted sum of Ornstein-Uhlenbeck processes with different

persistence rates. Hence some of the components of the volatility may represent short term

variation in the process while others represent long term movements. Alternative empirical

models of this, written directly in discrete time, are discussed by Engle and Lee (1992)

and Dacorogna, Muller, Olsen, and Pictet (1997), the latter type termed HARCH models.

Under (39) it is, by linearity, straightforward to obtain the corresponding expressions for

the right hand sides of (33) and (37). In particular, for m = 2 we obtain, using 0 and 1

as indices instead of 1 and 2,

cor{y2
n, y

2
n+s} = q−1[w0(λ0∆)−2 {1− exp (−λ0∆)}2 exp (−λ0∆(s− 1))

+w1(λ1∆)−2 {1− exp (−λ1∆)}2 exp (−λ1∆(s− 1))] (40)

where

q = 6{w0(λ0∆)−2(exp (−λ0∆)− 1 + λ0∆)

+w1(λ1∆)−2(exp (−λ1∆)− 1 + λ1∆)}
+2(ξ/ω)2 (41)

14



�
Example 3.3 By choosing the weights and damping factors in (39) appropriately and

letting m→∞ it is possible to construct tractable models with long range or quasi long

range dependence. For an informal discussion of this see Cox (1991). In particular, there

exists (Barndorff-Nielsen (1998b)) a model such that x∗(t) has stationary increments with

normal inverse Gaussian laws and for which, for λ > 0,

r(u) = (1 + λ |u|)−2(1−H) (42)

with H ∈ (1
2
, 1) being the long memory parameter (H = (1− H) from section 2). Note

that r(u) may be, for u > 0, reexpressed as

r(u) = Γ {2(1−H)}−1

∫ ∞

0

x2(1−H)−1e−xe−λuxdx (43)

showing that (42) is a limiting version of (39). For r(u) of the form (42) we have

r∗(u) = λ−1(2H − 1)−1(1 + λu)2H−1 (44)

and, writing v = λ−2{2H(2H − 1)}−1

R∗(u) = v(1 + λu)2H . (45)

This implies

♦R∗(∆s) = v
{
(1 + λ∆ (s+ 1))2H − 2(1 + λ∆s)2H + (1 + λ∆ (s− 1))2H

}
,

which seems difficult to usefully simplify without approximation.

One way of approximating this expression is to think of it with fixed ∆ and letting s

increase to infinity. Write then, for s > 1,

♦R∗(∆s) = v(1 + λ∆s)2H

[{
1 + λ∆ (s+ 1)

1 + λ∆s

}2H

− 2 +

{
1 + λ∆ (s− 1)

1 + λ∆s

}2H
]

= v(1 + λ∆s)2H

[{
1 +

λ∆

1 + λ∆s

}2H

− 1 +

{
1− λ∆

1 + λ∆s

}2H

− 1

]
.

But if we use two Taylor expansions of
{

(1 + x)2H − 1
}

about x = 0, the first terms

disappear while all the odd terms in the expansion cancel. This leaves for large s

♦R∗(∆s) ∼ v(1 + λ∆s)2H × 2
2H (2H − 1)

2

(
λ∆

1 + λ∆s

)2

= v′(1 + λ∆s)2H−2.

This implies, for large s,

cor{y2
n, y

2
n+s} ∼ v′′(1 + λ∆s)2H−2

15



which is directly inherited from the original long memory model for volatility (42). The

role of the stochastic volatility and aggregation is to introduce a constant in front of the

slowly decaying factor (as with all stochastic volatility models) and to change the decay

rate from λ to ∆λ. Importantly, this theory suggests that aggregation of returns does not

change the long memory parameter at all. That is estimating the long memory parameter

for yearly returns should give the same parameter as estimating the model using daily or

10 minute returns. Andersen and Bollerslev (1997a) have already found, using fractionally

integrated GARCH models, that this result holds empirically for speculative returns data.

This argument generalises in a number of directions. Clearly we could weight and add

short and long memory components by writing, in a simple form,

r(u) = w1(1 + λ1|u|)−2(1−H) + w2 exp (−λ2|u|) ,

where the wi are positive and sum to one. This again allows analytic calculations of the

correlations of the squares and the spectrum.

The framework also allows for multifractal behaviour where

r(u) =

m∑
i=1

wi(1 + λi|u|)−2(1−Hi), Hi ∈ (
1

2
, 1), λi > 0,

where the wi are positive and sum to one. Multifractal behaviour is familiar in the

turbulence literature but seems unstudied in finance.

�

Example 3.4 Suppose the log of the volatility follows a Gaussian Ornstein-Uhlenbeck

process

d log σ2(t) = −λ{
log σ2(t)− µ

}
dt+ ςdb(t), λ > 0,

where b(t) is a Wiener process. Writing the autocorrelation function of the log-volatility

as rlog(u) = exp(−λ|u|) and ξlog = Var {log σ2(t)}, then using the properties of log-normal

that

cov
{
σ2(t+ u), σ2(t)

}
= E exp

{
log σ2(t+ u) + log σ2(t)

}− E
{
exp log σ2(t)

}2

= exp
[
2E log σ2(t+ u) + ξlog + cov

{
log σ2(t+ u), log σ2(t)

}]
− exp

{
2E log σ2(t+ u) + ξlog)

}
= E

{
σ2(t)

}2
[exp {ξlogrlog(u)} − 1] ,

it follows that

r(u) = cor
{
σ2(t+ u), σ2(t)

}
=

exp {ξlogrlog(u)} − 1

exp {ξlog} − 1
.
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The implication is that

{exp {ξlog} − 1} r∗σ2(u) =

∫ u

0

[exp {ξlogrlog(v)} − 1] dv

=
∞∑

j=1

(ξlog)
j

j!

∫ u

0

exp(−λj|v|)dv

=

∞∑
j=1

(ξlog)
j

j!
j−1r∗log(ju).

As a result

R∗
σ2(u) =

1

{exp {ξlog} − 1}
∞∑

j=1

(ξlog)
j

j!
j−2R∗

log(ju).

Of course for this model

R∗
log σ2(u) = λ−2

(
λu+ e−λu − 1

)
,

and

♦R∗
log σ2(∆s) = λ−2

(
1− e−λ∆

)2
e−λ∆(s−1).

As a result

♦R∗
σ2(∆s) =

1

{exp{ξlog} − 1}
∞∑

j=1

(ξlog)
j

j!
j−2♦R∗

log(j∆s)

=
λ−2(1− e−λ∆)2

{exp{ξlog} − 1}
∞∑

j=1

(ξlog)
j

j!
j−2e−λ∆(js−1)

=
λ−2(1− e−λ∆)2

{exp{ξlog} − 1}e
λ∆

∞∑
j=1

(ξloge
−λ∆s)j

j!
j−2

This is useful as

cor{y2
n, y

2
n+s} ∝ ♦R∗

σ2(∆s) ∝
∞∑

j=1

(
ξloge

−λ∆s
)j

j!j2
.

The implication is that when the log-volatility follows a Gaussian Ornstein-Uhlenbeck

process the squared aggregated returns do not follow a weak GARCH process, although

it could be well approximated by a weighted sum of such processes.

The analysis we have presented above extends to where we add together a number

of uncorrelated exponentiated Gaussian Ornstein-Uhlenbeck processes. Finally the argu-

ment extends to where the log-volatility is fractional Brownian motion.

�
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3.2 Quasi-likelihood estimation of dynamics

Suppose that σ2(t) is covariance stationary, then the {y2
n} are covariance stationary and

have a spectrum for the squared returns which is

f (ψ) = 1 +
2

q∆2

∞∑
s=1

♦R∗ (s∆) cos (sψ) , where q = 6∆−2R∗(∆) + 2(ξ/ω)2. (46)

This is parameterized by ξ = E {σ2(t)} , ω = Var {σ2(t)} and the autocorrelation func-

tion r(u) which in turn determines R∗(∆) through (13) and ♦R∗ (s∆) through (25). It

does not depend on the other more refined distributional properties of the σ2(t) pro-

cess. Simple analytic expressions for ♦R∗ (s∆) were given in Examples 3.1,2,3 for typical

autocorrelation functions for the volatility process,

A scaled version of the spectrum can be estimated by the periodogram. Define the

sample Fourier coefficients of the squared data

A(ψp) =
√

2
T

∑T−1
n=0 y

2
n cos (nψp) , ψp = 2πp

T
,

B(ψp) =
√

2
T

∑T−1
n=0 y

2
n sin (nψp) , p = 0, ...,

[
T
2

]
.

(47)

Notice B(0) = 0, while for T even B(ψT/2) = 0. Then we know that if {y2
n} is covariance

stationary and has short memory, then for large samples (see, for example, Brillinger and

Rosenblatt (1967)) A0
p→ 2ξ∆ while

A(ψ)
d→ N

{
0,
f(ψ)

q∆

}
and B(ψ)

d→ N

{
0,
f(ψ)

q∆

}
, ψ ∈ (0, 2π). (48)

The implication is that the periodogram

I(ψ) = A(ψ)2 +B(ψ)2 d→ χ2
1

f(ψ)

q∆
. (49)

Further, it is known that asymptotically I
{
ψ(2)

}
and I

{
ψ(1)

}
are asymptotically uncor-

related if ψ(1) 6= ψ(2).

If we write down a parametric model for r(u) then it is possible to estimate the model

directly using the Whittle quasi-likelihood applied to the {y2
n} whatever the value of ∆.

As the {y2
n} are not Gaussian such a procedure is going to be inefficient, although the

resulting estimator is well known to be consistent and asymptotically normal under short-

range dependence models for r(u) (see, for example, Rice (1979)). An elegant exposition

of quasi-likelihoods and an application to point processes is given in Chandler (1997).

Typically the quasi-likelihood is written down having estimated ∆ξ by simply the

average of the {y2
n}. Hence we will work with the periodogram on the

{
y2

n − y2
}

and will

ignore the zero frequency in the periodogram. The resulting quasi-likelihood is

lq
{
r, ω; y2

1, ..., y
2
T

}
= const+

[T/2]

2
log q − 1

2

[T/2]∑
p=1

log f(ψp)− q∆

2

[T/2]∑
p=1

I(ψp)

f(ψp)
. (50)

18



Of course this method is likely to behave poorly if the volatility process is close to

losing its fourth moment. In particular, in such cases the spectrum is likely to be close

to being flat, even if there is a great deal of dependence in volatility, and so the quasi-

likelihood function will be poorly behaved. In such cases full likelihood methods, based on

distributional models of σ2(t), are particularly attractive. This is discussed in Barndorff-

Nielsen and Shephard (1998).

3.3 Multivariate versions

A simple q-dimensional version x∗(t) =
{
x∗1(t), ..., x

∗
q(t)

}
of the process x∗(t) considered

in lemma 2.1 and theorem 2.1 is obtained by letting

x∗i (t) = βi

∫ t

0

σ0(u)dw0(u) +

∫ t

0

σi(u)dwi(u)

Here β1, ..., βq are unknown parameters and σ0, σ1, ..., σq and w0, w1, ..., wq are 2(q + 1)

processes such that σ0, σ1, ..., σq are square integrable and stationary while w0, w1, ..., wq

are mutually independent Wiener processes. (Note that the present β-s have a meaning

quite different from the β in (2).) For simplicity we also assume that σ0, σ1, ..., σq are

independent of w0, w1, ..., wq, but no assumption is made at this stage about independence

or dependence among σ0, σ1, ..., σq. The process x∗(t) is a continuous q-dimensional local

martingale. It constitutes a factor style model with a common, but differently scaled,

stochastic volatility model and individual stochastic volatility models for each series. It

generalizes straightforwardly to allow for two or more factors. This style of model is in

keeping with the latent factor models of Diebold and Nerlove (1989), King, Sentana, and

Wadhwani (1994) and Shephard and Pitt (1998).

Writing σ = (σ0, σ1, ..., σq) and

σ2∗
0 (t) =

∫ t

0

σ2
0(u)du and σ2∗

i (t) =

∫ t

0

σ2
i (u)du

(i = 1, ..., q) we find

E{x∗i (s)x∗i (t) | σ} = β2
i σ

2∗
0 (s) + σ2∗

i (s)

while for i 6= j

E{x∗i (s)x∗j (t) | σ} = βiβjσ
2∗
0 (s)

Furthermore, for 0 < t1 < ... < tn we have

ζ1x
∗(t1) + ... + ζnx

∗(tn) = (ζ1 + ... + ζn)x
∗(t1)

+(ζ2 + ... + ζn)(x
∗(t2)− x∗(t1))

+...

+(ζn−1 + ζn)(x∗(tn)− x∗(tn−1))

+ζnx
∗(tn) (51)
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Hence, letting β = (β1, ..., βq) we find

ζ1x
∗(t1) + ...+ ζmx

∗(tm) | σ ∼ Nq(0, J)

where

J =

n∑
i=1

(ζi + ζi+1 + ...+ ζn)2{Σ∗(ti)− Σ∗(ti−1)}

and

Σ∗(t) = β>βσ2∗
0 (t) + diag{σ2∗

i (t)}
It follows that

C{ζ∗ ‡ x∗(t∗)} = K̄{J/2 ‡ σ}
generalizing (11). Now, for i = 1, ..., q, let

σ̃2
i (u) = β2

i σ
2
0(u) + σ2

i (u)

and

σ̃2∗
i (u) =

∫ t

0

σ̃2
i (u)du

and define a stopping time τit by

σ̃2∗
i (τit) = t

In extension of theorem 2.1 we have that

bi(t) = x∗i (τit)

is a Brownian motion and that

x∗i (t) = bi
{
σ̃2∗

i (t)
}

is a representation of x∗i (t) by subordination. However, the law of the q-dimensional

process [
b1

{
σ̃2∗

1 (t)
}
, ..., bq

{
σ̃2∗

q (t)
}]

is not identical to that of x∗(t). The quadratic variation and covariation processes of x∗(t)

take the form

[x∗i ](t) = β2
i σ

2∗
0 (t) + σ2∗

i (t)

[x∗i , x
∗
j ](t) = βiβjσ

2∗
0 (t) (i 6= j)

and the basic moments are

E{x∗i (t)} = 0

Var{x∗i (t)} = t(β2
i ξ0 + ξi)

Cov{x∗i (s), x∗j(t)} = min{s, t}βiβjξ0 (i 6= j)
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where ξ0 = E{σ2
0(t)}, ξi = E{σ2

i (t)} (i = 1, ..., q). Furthermore, for the returns

yin = x∗i (n∆)− x∗i ((n− 1)∆)

=

∫ n∆

(n−1)∆

{βiσ0(u)dw0(u) + σi(u)dwi(u)} (52)

we obtain

E{yin} = 0

E{y2
in} = ∆(β2

i ξ0 + ξi)

and, assuming independence of the σ1, ..., σq, the basic moments are

cor{yin, yjn} =
βiβj

{(β2
i + ξi/ξ0)(β2

j + ξj/ξ0)}1/2

Var{y2
in} = 6{β4

i ω
2
0R

∗
0(∆) + ω2

iR
∗
i (∆)}+ 2∆2(β2

i ξ0 + ξi)
2

Cov{y2
in, y

2
in+s} = β4

i ω
2
0♦R∗

0(∆s) + ω2
i♦R∗

i (∆s)

Cov{y2
in, y

2
jn} = 2β2

i β
2
j {3ω2

0R
∗
0(∆) + ∆2ξ2

0}
Cov{y2

in, y
2
jn+s} = β2

i β
2
jω

2
0♦R∗

0(∆s)

here i 6= j and s > 0.

4 Ornstein-Uhlenbeck type volatilities

4.1 Motivation

In this section we will develop some new models for the volatility process σ2. These

dynamic models will be linear, allowing a great deal of analytic tractability. Our basic

approach is to specify a marginal distribution D for σ2 and then ask if it is possible to

construct an Ornstein-Uhlenbeck type process

dσ2(t) = −λσ2(t)dt+ dz(λt)

with a marginal distribution D restricted to the positive halfline and where z is a Lévy

process? If it is, then we work out the behaviour of the always positive increments for

the process. One of the main advantages of this type of model is that we can use the

Barndorff-Nielsen (1998a, p. 50-1) result that

σ2∗(t) =

∫ t

0

σ2(u)du = λ−1{z(λt)− σ2(t) + σ2(0)}, (53)

which implies

σ2
n+1 = σ2∗ {(n + 1)∆} − σ2∗(n∆)

= λ−1 [z {λ∆ (n+ 1)} − z (λ∆n) + σ2(∆n)− σ2 {∆ (n+ 1)}]
L
= λ−1

{(
1− e−λ∆

)
σ2(∆n) +

∫ λ∆

0

(
1− e−λ∆es

)
dz(s + ∆n)

}
.
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to study integrated volatility. In particular if assume E {dz(s)} = $ds exists then the

minimum mean square forecast of integrated volatility will be

E
{
σ2

n+1|σ2(∆n)
}

= λ−1

{(
1− e−λ∆

)
σ2(∆n) +$

∫ λ∆

0

(
1− e−λ∆es

)
dz(s + ∆n)

}
= λ−1

{(
1− e−λ∆

)
σ2(∆n) +$

(
λ∆− 1 + e−λ∆

)}
= $∆ +

(
1− e−λ∆

)
λ

{
σ2(∆n)−$

}
.

As λ ↓ 0 then this forecast converges to ∆σ2(∆n) the most recent instantaneous volat-

ility, while as λ → ∞ the forecast becomes ∆$ reflecting the long term average of

the process. Likewise, if we assume E {dz(s)−$ds}r = µrds exists we have that

E
〈[
σ2

n+1 − E
{
σ2

n+1|σ2(∆n)
}]r |σ2(∆n)

〉
equals

λ−rµr

{∫ λ∆

0

(
1− e−λ∆es

)r
ds

}
, r = 2, 3,

λ−4

[
µ4

∫ λ∆

0
(1− e−λ∆es)4ds+ 3µ2

2

{∫ λ∆

0
(1− e−λ∆es)2ds

}2
]
, r = 4

.

Of course another useful result is that if σ2 is covariance stationary then

r(u) = cor
{
σ2(t+ u), σ2(t)

}
= exp(−λ|u|).

Our paper will detail results for D chosen to be generalized inverse Gaussian. Special

cases of this family of densities are: inverse gamma, gamma, inverse Gaussian and positive

hyperbolic.

As we noted in the second section, there are diffusion alternatives to the models we

are designing which will have the same autocorrelation function of squared aggregated

returns and similar unconditional densities. However, those models will not be OU type

processes, but instead have complicated non-linear dynamic structures. This hinders our

understanding of integrated volatility as such models do not in general obey such simple

linear results as (53).

4.2 Background driving Lévy process

We now review some recent work by Barndorff-Nielsen and Shephard (1998) which studies

the construction of OU type processes with fixed marginal densities. That paper in turn

develops some ideas from Barndorff-Nielsen (1998a). We recall that a (homogeneous)

Lévy process z is a stochastic process with independent stationary increments. Without

essential restriction it is assumed that z(0) = 0 and that z has cadlag (right continuous

with left limits) sample paths.

The stationary process σ2 is of Ornstein-Uhlenbeck type if it is representable as

σ2(t) = e−λtσ2(0) +

∫ t

0

e−λ(t−s)dz(λs) (54)
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for some Lévy process z = {z(t) : t ≥ 0} and where λ is a positive number. It then

satisfies a stochastic differential equation

dσ2(t) = −λσ2(t)dt+ dz(λt) (55)

The process z(t) is termed the background driving Lévy process (BDLP) corresponding to

the process σ2(t).

4.3 Existence

In essence, given a one-dimensional distribution D (not necessarily restricted to the pos-

itive halfline) there exists a stationary process of Ornstein-Uhlenbeck type whose one-

dimensional marginal law is D if and only if D is selfdecomposable, i.e. if and only if the

characteristic function φ of D satisfies φ(ζ) = φ(cζ)φc(ζ) for all ζ ∈ R and all c ∈ (0, 1)

and for some family of characteristic functions {φc : c ∈ (0, 1)}. This restriction does,

however, still leave a great flexibility in the choice of D. The precise statement of existence

is as follows, cf. Wolfe (1982) and Jurek and Vervaat (1983) (see also Barndorff-Nielsen,

Jensen, and Sørensen (1998)).

Theorem 4.1 Let φ be the characteristic function of a random variable x. If x is selfde-

composable, i.e. if

φ(ζ) = φ(cζ)φc(ζ) (56)

for all ζ ∈ R and all c ∈ (0, 1), then there exists a stationary stochastic process x(t) and

a Lévy process z(t) such that x(t)
L
= x and

x(t) = e−λtx(0) +

∫ t

0

e−λ(t−s)dz(λs) (57)

for all λ > 0.

Conversely, if x(t) is a stationary stochastic process and z(t) is a Lévy process such

that x(t)
L
= x and x(t) and z(t) satisfy the equation (57) for all λ > 0 then x is selfde-

composable.

�

4.4 Lévy densities

Suppose we choose a probability distribution D on the positive halfline which is self-

composable. Then there exists a strictly stationary Ornstein-Uhlenbeck process

σ2(t) = e−λtσ2(0) +

∫ t

0

e−λ(t−s)dz(λs). (58)
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Then the Lévy density w of z(1) is related to the Lévy density u of σ2(t) by the formula

w(x) = −u(x)− xu′(x) (59)

(this presupposes that u is differentiable) and, letting

Q(x) =

∫ ∞

x

w(y)dy (60)

we have, moreover,

Q(x) = xu(x) (61)

cf. Barndorff-Nielsen (1998a).

4.5 Integrals of the BDLP

The fundamental result that

σ2∗(t) = λ−1{z(λt)− σ2(t) + σ2(0)},

implies

σ2
n+1 = λ−1

[
z {λ∆ (n+ 1)} − z (λ∆n) + σ2(∆n)− σ2 {∆ (n+ 1)}] .

Thus we can simulate sequences of integrated volatilities by simulating the bivariate

process of the BDLP and the instantaneous volatility. In particular by defining ρ =

exp (−λ∆) and noting

σ2 {∆ (n + 1)} = ρσ2(∆n) + w1,n+1,
z {λ∆ (n + 1)} = z (λ∆n) + w2,n+1.

where the innovations

wn
L
=

{
ρ

∫ λ∆

0
esdz(s)∫ λ∆

0
dz(s)

}
, (62)

we have that a convenient representation of integrated volatility. In particular

σ2
n+1 = λ−1

〈[
w2,n+1 + σ2(∆n)− {

ρσ2(∆n) + w1,n+1

}]〉
We can use the following result to simulate the innovations. Suppose f is a positive

and integrable function on [0, λ] then∫ λ

0

f(s)dz(s)
L
=

∞∑
i=1

Q̄−1(a∗i /λ)f(λri)
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where {a∗i } and {ri} are two independent sequences of random variables with the ri

independent copies of a uniform random variable r on [0, 1] and a∗1 < ... < a∗i < ... as the

arrival times of a Poisson process with intensity 1. Further,

Q̄−1(x) = inf{y > 0 : Q̄(y) ≤ x}.

This follows from work of Marcus (1987) and Rosinski (1991). A thorough exposition

with self-contained proofs is given in Barndorff-Nielsen and Shephard (1998). A seeming

difficulty with the infinite sum representation of the integral is that it involves Q̄−1 which

has to be inverted numerically. However, this is straightforward as it is always convex. In

practice this infinite sum has proven to be quickly convergent allowing many hundreds of

draws to be made per second on a fast PC.

A convenient feature of these infinite sum representations is that if we fix {a∗i } and

{ri} then the simulations we draw from these integrals will be differentiable with respect

to parameters which index Q̄ and λ. This is extremely convenient for some modern forms

of simulation based econometric estimators rely on this type of smoothness assumption.

In particular the indirect inference estimator of Smith (1993), which was generalized by

Gourieroux, Monfort, and Renault (1993) and recast into EMM by Gallant and Tauchen

(1996), can be used on these models due to this feature of the simulator.

In the next subsection we will give some results for the case where D is the general-

ized inverse Gaussian distribution. For more extensive results see Barndorff-Nielsen and

Shephard (1998) who discuss general methods for deriving these types of results.

4.6 Generalized inverse Gaussian distributions

4.6.1 General case

The generalized inverse Gaussian (GIG) marginal law means σ2(t) ∼ GIG(λ, δ, γ) has a

density of

(γ/δ)λ

2Kλ(δγ)
xλ−1 exp

{
−1

2
(δ2x−1 + γ2x)

}
, x > 0,

where Kλ is a modified Bessel function of the third order. Note that when δ or γ are 0,

the norming constant in the formula for the density of the generalized inverse Gaussian

distribution has to be interpreted in the limiting sense, using the well-known results that

for x ↓ 0 we have
− log x if λ = 0

Kλ(x) ∼
Γ(|λ|)2|λ|−1x−|λ| if λ 6= 0

Special cases of the GIG density are: (i) the inverse Gaussian law, where λ = −1
2
, (ii) the

positive hyperbolic law where λ = 1, (iii) and the inverse chi-squared (inverse gamma)

law with ν degrees of freedom which occurs when γ = 0, λ = −v/2 and δ =
√
ν, (iv)
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gamma, where δ = 0 and λ > 0. Of course if σ2 ∼ GIG(λ, δ, γ) and is independent of

ε ∼ N(0, 1), then σε is the generalized hyperbolic with density

(γ/δ)λ

√
2πγλ−1/2Kλ(δγ)

(√
δ2 + x2

)λ−1/2

Kλ−1/2

(
γ
√
δ2 + x2

)
. (63)

Hence a continuous time volatility model built using a volatility model of OU type with

GIG marginals will have generalized hyperbolic marginals. Special cases of this include

the normal inverse Gaussian distribution, the hyperbolic and the Student t.

It is known that the GIG(λ, δ, γ) law is self-decomposable (Halgreen (1979)). The

following theorem, which is in Barndorff-Nielsen and Shephard (1998), computes the

Lévy measure.

Theorem 4.1 The Lévy measure of the generalized inverse Gaussian distribution is

absolutely continuous with density

u(x) =

[
δ2

∫ ∞

0

e−xξgλ(2δ
2ξ)dξ + max{0, λ}λx−1

]
exp

(−γ2x/2
)

(64)

where

gλ(x) =
[
(π2/2)x

{
J2

|λ|(
√
x) +N2

|λ|(
√
x)

}]−1

and Jλ and Nλ are Bessel functions.

�
For further information on these Bessel functions see, for instance, Gradstheyn and

Ryzhik (1965, pp. 958-71). We have reproduced the proof of Barndorff-Nielsen and

Shephard (1998) in the Appendix for the convenience of the reader. We will now discuss

various special cases of this result.

4.6.2 Inverse Gaussian distribution

The inverse Gaussian marginal law means σ2(t) ∼ IG(δ, γ) whose density is

δ√
2π
eδγx−3/2 exp

{
−1

2

(
δ2x−1 + γ2x

)}
, x > 0,

where the parameters δ and γ satisfy δ > 0 and γ ≥ 0. This is the distribution of the first

passage time to level δ of Brownian motion with drift γ and unit diffusion coefficient.

When the law of σ2(t) is IG(δ, γ) we find the upper tail integral (recalling Q(x) =

xu(x)) is

Q(x) =
δ√
2π
x−1/2 exp

(
−1

2
γ2x

)
.
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4.6.3 Positive hyperbolic distribution

The density of the positive hyperbolic distribution is

(γ/δ)

2K1(δγ)
exp

{
−1

2
(δ2x−1 + γ2x)

}
, x > 0,

where the parameters δ and γ satisfy δ > 0 and γ ≥ 0. The corresponding distribution for

σε, where ε is standard normal and independent of σ, i.e. the hyperbolic, and the associ-

ated Lévy process have been suggested for high frequency financial data by Eberlein and

Keller (1995), who model the log price as having independent and stationary increments.

When the law of σ2(t) is positive hyperbolic we find the upper tail integral is

Q(x) =

{
δ2x

∫ ∞

0

e−xξg1(2δ
2ξ)dξ + 1

}
exp

(−γ2x/2
)
.

4.6.4 Inverse gamma distribution

We now look at Ornstein-Uhlenbeck processes with an inverse gamma marginal law. The

implication is that instantaneous returns will be Student’s t, which is the same as the

marginal distribution of an ARCH diffusion (see section 2) when the degrees of freedom is

strictly greater than two. The reciprocal gamma distribution (i.e. the law of the reciprocal

of a gamma variate) has density

{2νΓ(ν)}−1x−ν−1 exp

(
−1

2
x−1

)
, ν > 0.

We denote this distribution by Γ−1(ν, 1
2
).

When σ2(t) ∼ Γ−1(ν, 1
2
) then the corresponding upper tail integral is

Q(x) =
1

2

∫ ∞

0

exp

(
−1

2
xξ

)
gν(ξ)dξ (65)

where

gν(x) = 2
[
π2x

{
J2

ν (
√
x) +N2

ν (
√
x)

}]−1

and Jν and Nν are Bessel functions.

4.6.5 Gamma distribution

We now look at Ornstein-Uhlenbeck processes with a gamma marginal law. This has the

density
1

Γ
(
λ
)xλ−1 exp (−x) , x > 0.

This has the corresponding upper tail integral of

Q(x) = λe−x,
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which has the convenient property that it can be analytically inverted. In particular

Q̄−1(a∗i /λ) = max

{
0,− log

(
a∗i
λλ

)}
= max

{
0,− log a∗i + log

(
λλ

)}
.

Discussion The positive hyperbolic and inverse Gaussian densities are reasonably un-

familiar to most econometricians and so it maybe helpful to compare their implications

with that implied by the inverse gamma. We can see that the inverse Gaussian and (a

special case of) the inverse gamma both arrive from the GIG distribution when λ = −1/2.

This is an important special case as it allows instantaneous returns to be Cauchy and so

possess no moments. More generally the densities for the implied instantaneous returns

are always inside the class of generalized hyperbolic densities (63).

For large returns x→ ±∞ we have that the density (63) of the generalized hyperbolic

distribution behaves as

c |x|λ̄−1 e−γ|x|

provided γ > 0. This follows from the result that as x→∞,

Kλ (x) ∼
√
π

2
x−1/2e−x,

and holds whatever the value of λ. We can have γ = 0 only if λ̄ < 0 and then the density

reduces to the Student law

c(δ2 + x2)λ̄−1/2.

4.7 Alternative modelling approach

Instead of specifying a model for σ2(t) and working out the density for the BDLP, it

is possible to go the other way and construct the model through the BDLP. Of course

there are constraints on valid BDLPs which must be satisfied. In this subsection we give a

simple valid construction which allows easy simulation and analytic results for the implied

density of σ2(t).

Suppose the BDLP z has a Lévy density w with tail integral

Q(x) = cx−ε(1 + x)−β exp

(
−1

2
γ2x

)
where c is a positive constant, 0 ≤ ε < 1, 0 ≤ β, 0 ≤ γ and max{(β − 1), γ} > 0. Then

w(x) = c{εx−1 + β(1 + x)−1 +
1

2
γ2}x−ε(1 + x)−β exp

(
−1

2
γ2x

)
= c{εx−1 + β(1 + x)−1 +

1

2
γ2}Q(x) (66)
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and, since the Lévy density u of σ2(t) satisfies xu(x) = Q(x), we have

u(x) = cx−1−ε(1 + x)−β exp

(
−1

2
γ2x

)
The integral

∫ ∞
0

min{1, x2}u(x)dx is finite and hence u is indeed a Lévy density. Further-

more, xu(x) is decreasing so that σ2(t) is selfdecomposable.

Note that for ε = 1
2

and β = 0 we recover the IG law for σ2(t).

If γ = 0, implying β > 1, then for the moments of σ2(t) we have

E
[{
σ2(t)

}ν]
<∞ if and only if ν < β + ε

Furthermore, the j-th order cumulant of σ2 (j < β + ε) is

κj = cB(j − ε, β + ε− j)

where B(x, y) denotes the beta function, i.e.

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

It follows that

κj =
j − ε− 1

β + ε− j
κj−1

which should be helpful for estimating β and ε.

Finally, we are currently working on generalising this approach of specifying models

through BDLPs to the multivariate case. This raises a number of interesting technical and

modelling issues. If successful this work will allow us to write down general multivariate

Ornstein-Uhlenbeck processes with multivariate increments, which are independent and

stationary but dependent across series.

5 Conclusion

We have presented five basic results which provide a sounder theoretical underpinning of

the use of continuous time stochastic volatility models. In particular we have presented

some simple results on moments of SV models and a new class of volatility models.

This second result is particularly attractive as it allows the construction of a wide class

of positive continuous time processes which may have broad application in economics.

We have given general methods for simulating such processes and have discussed broad

methods for their construction.
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6 Appendix: a lemma and some proofs

Proof of Lemma 2.1 Conditionally on the process σ we have

ζ1x
∗(t1) + ... + ζnx

∗(tn) | σ ∼ N

{
0,

∫ ∞

0

I(u; ζ∗, t∗)σ2(u)du

}
where

I(u; ζ∗, t∗) =

{
n∑

i=1

ζi1[0,ti](u)

}2

=

n∑
i=1

ζi(ζi + 2ζi+1 + ... + 2ζn)1[0,ti](u)

It follows that

C{ζ∗ ‡ x∗(t∗)} = log E

[
exp{−1

2

∫ ∞

0

I(u; ζ∗, t∗)σ2(u)du}
]

= log E {exp{−J/2}}
= K̄{J/2 ‡ σ2∗(t∗)}

�

Lemma 6.1 Let N(t) be a Cox process with random intensity λ(t) = λσ2(t) > 0. We

write τi as the time of the i− th event and so τN(t) is the time of the last recorded event

when we are standing at calender time t. Then for λ→∞ we have that τN(t)
p→ t.

Proof: It suffices to show that for every ε > 0 we have that

Pr (no event in [t− ε, t]) → 0 as λ→∞.

Now, via conditioning on the intensity process we find, for every δ > 0,

Pr (no event in [t− ε, t]) = E {Pr (no event in [t− ε, t] |λ(.))}
= E

[
exp

{
−

∫ t

t−ε

λ(s)ds

}]
= E

[
exp

{
−λ

∫ t

t−ε

σ2(s)ds

}]
= E

[
exp

{−λ{
σ2∗(t)− σ2∗(t− ε)

}}]
= E

[
1σ2∗(t)−σ2∗(t−ε)>δ exp

{−λ{
σ2∗(t)− σ2∗(t− ε)

}}]
+E

[
1σ2∗(t)−σ2∗(t−ε)≤δ exp

{−λ{
σ2∗(t)− σ2∗(t− ε)

}}]
≤ Pr

{
σ2∗(t)− σ2∗(t− ε) ≤ δ

}
+ e−δλ

Consequently

lim
λ↑∞

sup Pr (no event in [t− ε, t]) ≤ Pr
{
σ2∗(t)− σ2∗(t− ε) ≤ δ

}
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and since this holds for all δ > 0 the conclusion of the Lemma follows.

�

Proof of Theorem 2.1 It is helpful to rewrite the process as

x∗λ(t) = −µ{
t− τN(t)

}
+ β

[
σ2∗(t)− σ2∗ {

τN(t)

}]
+ βσ2∗ (t) + µt+

1√
λ

{
y1 + ... + yN(t)

}
.

We obtain from Lemma 6.1 and the continuity of σ2∗(.) that the limiting behaviour in

the distribution of x∗λ(t), as λ→∞, is the same as that of

x∗λ(t) = µt+ βσ2∗ (t) +
1√
λ

{
y1 + ... + yN(t)

}
.

Further, for the characteristic function of x∗λ(t) we find that

E [exp {iξx∗λ(t)}] = exp (iξtµ)E

〈
exp

{
iξβσ2∗(t)

}
E exp

[
iξ

1√
λ

{
y1 + ...+ yN(t)

}]
|λ(.)

〉
= exp (iξtµ)E

[
exp

{
iξβσ2∗(t)

}
E exp

{
iξ

√
N(t)

λ
yN(t)

}
|λ(.)

]
,

where yN(t) =
√

1
n

(y1 + ... + yn). Trivially, conditionally on λ(.) we have that N(t)/λ
a.s.→

σ2∗(t) as λ→∞ and yN(t) ∼ N(0, 1) exactly. Thus

lim
λ↑∞

E [exp {iξx∗λ(t)}] = lim
λ↑∞

E [exp {iξx∗λ(t)}]
= lim

λ↑∞
exp (iξtµ)E

[
exp

{
iξ

(
βσ2∗(t) + σ∗(t)u

)}]
,

where u ∼ N(0, 1) and is independent of σ2∗(t). That is the limiting distribution of x∗λ(t)

is the same as the law of x∗(t). This argument is easily extended to convergence of all

finite dimensional distributions of x∗λ(t), i.e. x∗λ(·) L→ x∗(·).
�

Proof of Theorem 4.1 Let z ∼ GIG(λ, δ, γ). From Halgreen (1979) we have that if

λ ≤ 0 then

K̄{θ ‡ z} = −δ2

∫ ∞

γ2/2

gλ{2δ2(y − γ2/2)} log(1− θ/y)dy

Differentiating both sides of this equation with respect to θ and transforming the integral

by setting ξ = y − γ2/2 we obtain

∂K̄{θ ‡ z}
∂θ

= −δ2

∫ ∞

0

gλ{2δ2ξ}(γ2/2− θ + ξ)−1dξ

= −δ2

∫ ∞

0

gλ{2δ2ξ}
∫ ∞

0

exp
{−(γ2/2− θ + ξ)x

}
dxdξ

= −
∫ ∞

0

eθxu(x)dx
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where

u(x) = δ2

∫ ∞

0

e−xξgλ{2δ2ξ}dξ exp
(−γ2x/2

)
For λ > 0 the expression for q(ξ) follows from the convolution formula

GIG(λ, δ, γ) = GIG(−λ, δ, γ) ∗ Γ(λ, γ2/2)

where Γ(λ, φ) is the gamma distribution with probability density

φλ

Γ(λ)
xλ−1e−φx

and corresponding Lévy density

λx−1e−φx

�

7 Acknowledgements

This paper represents around a half of a longer piece of work discussed at numerous con-

ferences and departmental seminars under the title ‘Continuous time volatility: model

construction and inference.’ The other half of that original piece of work is now presented

in Barndorff-Nielsen and Shephard (1998). We are grateful to a number of people for their

comments on earlier revisions. In particular we would like to thank Gary Chamberlain

and Jan Pedersen for various discussions, while the comments of Torben Andersen on a

summary of ‘Continuous time volatility: model construction and inference’ were particu-

larly helpful. We also thank Chris Rogers for allowing us to quote his unpublished paper

on high frequency data. NS thanks the ESRC for their financial support through the

grant ‘Estimation via simulation in econometrics,’ while we both thank the Centre for

Analytical Finance at Aarhus University for financial support.

References

Andersen, T. G. and T. Bollerslev (1997a). Heterogeneous information arrivals and

return volatility dynamics: Uncovering the long-run in high frequency returns. J.

Finance 52, 975–1005.

Andersen, T. G. and T. Bollerslev (1997b). Intraday periodicity and volatility persist-

ence in financial markets. J. Empirical Finance 4, 115–58.

Andersen, T. G. and T. Bollerslev (1998). Answering the skeptics: yes, standard volat-

ility models do provide accurate forecasts. Unpublished paper: Kellogg School of

Management, Northwestern University.

32
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