
AN ELEMENTARY EQUILIBRIUM EXISTENCE THEOREM

By John K.-H. Quah 1

Summary: This paper gives a proof of the existence of competitive equilibrium under the

added assumption that the excess demand function satis�es the weak axiom. In this case,

a proof using the separating hyperplane theorem, and without using a �xed point theorem,

is possible.

1The author would like to thank Robert M Anderson for helpful discussions.
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1. Introduction

The classic proofs on the existence of competitive equlibrium employ Kakutani's �xed

point theorem (see Debreu (1982) and its references). It is also known that this is the right

theorem to use, provided excess demand functions have no structure apart from Walras'

Law. This is because, as observed by Uzawa (1962), one could prove Kakutani's �xed point

theorem by assuming a fundamental lemma used in equilibrium existence. (A proof of this

result could also be found in Debreu (1982).)

Since Uzawa's observation, it has been established that utility maximization among

agents in an economy imposes no structure on its aggregate excess demand function (see

Sonnenschein (1973, 1974) and Debreu (1974)). In other words, properties like the strong

or weak axiom, which may be expected to hold at the level of the individual agent, are lost

in the process of aggregation. It follows that a general proof of equilibrium existence must

employ �xed point theorems. However, �xed point theorems are not needed in the case when

excess demand is known to possess some aggregate structure; in particular, the properties

of gross substitubility and the weak axiom have been extensively studied. Both these

properties are suÆcient to ensure that the equilibrium price is unique (at least generically)

and that it is stable with respect to Walras' tatonnement. To obtain these properties in

the aggregate must necessarily imply some restriction on the way agents' preferences and

endowments are distributed. A general equilibrium model with such restrictions, where

the excess demand function satis�es gross substitubility has been developed by Grandmont

(1992); for the weak axiom, models have been developed by Hildenbrand (1983), Marhuenda

(1995), Quah (1997a, 1997b) and Jerison (1999) amongst others.
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It is well known that if the excess demand function satis�es gross substitubility, then

there is a very simple proof of equilibrium existence (see, for example, Hildenbrand and

Kirman (1988)). We show in this paper that a simple proof employing the separating hy-

perplane theorem is also available when excess demand satis�es the weak axiom. This proof

has the virtue that it separates very sharply the function of the geometric and continuity

properties of excess demand. Provided an excess demand function satis�es the weak axiom,

there will be some price vector with the following property: holding all other prices �xed,

raising the price of good i leads to excess supply, and lowering it leads to excess demand.

The existence of a price vector with this property does not require the continuity of the

excess demand function, but it is quite easy to see that this price vector is an equilibrium

price, i.e., has an excess demand of zero, provided the excess demand function is continuous.

Indeed, continuity is needed at this step, and nowhere else.

It might be interesting to note that a similar process of simpli�cation has also occurred

in game theory. Von Neumann's (1928) original proof of the minimax theorem employed

Brouwer's �xed point theorem, but the problem in fact has a nice geometrical structure that

allows it to be quite intuitively solved with the separating hyperplane theorem (see Gale et

al (1950)). Similarly, Hart and Schmeidler (1989) showed that the existence of correlated

equilibria could be established with linear methods, even though the proof of the existence

of Nash equilibrium uses Kakutani's �xed point theorem.

2. An Equilibrium Existence Theorem

In this section we give a proof of the existence of general equilibrium using the separat-
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ing hyperplane theorem, under the added assumption that the economy's excess demand

satis�es the weak axiom.

The set P in Rl is a cone if, whenever p is in P , �p is also in P , for all positive �. A cone

is said to be pointed if, whenever p 6= 0 is in P , �p is not in P . A standard approach to the

equilibrium existence problem involves the construction of a correspondence, Z : P ! Rl,

where P is a convex and pointed cone in Rl. In this case, the economy has l goods, P is

the set of price vectors, and Z is the excess demand (see Debreu (1982)). Typically Z will

have a number of properties:

Property 1. Z satis�es Walras' Law, i.e., p � Z(p) = 0 for all p in P .

Property 2. Z is a compact and convex valued, upper hemi-continuous correspondence.

If one is investigating an exchange economy, then P = Rl
++, and Z will typically have two

other properties:

Property 3. Z is bounded below.

Property 4. Z satis�es the following boundary condition: if pn in Rl
++ tends to �p on the

boundary of Rl
++, with �p 6= 0, then jZ(pn)j tends to in�nity. (Note that for any compact

set S in Rl, we denote minfjsj : s 2 Sg by jSj.)

It is well known that if excess demand has Properties 1 to 4, then an equilibrium exists,

i.e., there will be a price p� in Rl
++ such that 0 2 Z(p�) (see Debreu (1982)). This result is

usually established with Kakutani's �xed point theorem. We show here that another, quite

instructive method, is available if Z also satis�es a weak form of the weak axiom. For an

excess demand function, the weak axiom is usually de�ned as the following: if p �Z(p0) � 0

and Z(p) 6= Z(p0), then p0 � Z(p) > 0. The de�nition we give below is an extension to
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correspondences, and is also weaker than the usual de�nition when applied to functions.

DEFINITION: The correspondence Z : P ! Rl satis�es the weak weak axiom if the

following is true: whenever there exists z0 in Z(p0) such that p � z0 � 0, then p0 � Z(p) � 0.

We will now set out to show that an excess demand correspondence satisfying Properties

1 to 4, and the weak weak axiom will have an equilibrium price. We begin with a lemma

which guarantees that a �nite set of excess demand vectors must have a supporting price.

LEMMA 2.1: Suppose that the correspondence Z : P ! Rl satis�es Property 1 and

the weak weak axiom. Then for any �nite set S = fz1; z2; :::; zng where zi is an element of

Z(pi), there is x
�, in the convex hull of fp1; p2; :::png such that x� � S � 0.

Proof: We proof by induction on n. If n = 1, choose x� = p1. If n = 2, then either

p2 � z1 or p1 � z2 is non-negative. If it is the latter, choose, x
� = p1.

Assume now that the proposition is true for n and assume that it is not true for n+ 1.

Consider the following constrained maximization problem:

maxx � zk subject to x satisfying the conditions:

(a) x � zi � 0 for i in Ik = f1; 2; :::k � 1; k + 1; :::; n + 1g and

(b) x is in the convex hull of Pk = fpi : i 2 Ikg.

By varying k, we have n+ 1 problems of this sort.

Consider the case when k = n + 1. By the induction hypothesis, there is certainly x

such that x � zi � 0 for all i in In+1, since this set has only n elements. Furthermore, the

convex hull of Pn+1 is compact, so the problem has at least one solution, which we denote

by �xn+1. Since we are proving by contradiction, we assume that �xn+1 � zn+1 < 0.

We will now show that �xn+1 � zi = 0 for all i in In+1. If not, the set J = fi : �xn � zi =

5



0g [ fn+ 1g has n elements or less, and so there is �y with �y � zi � 0 for all i in J . Consider

now the vector ��y + (1 � �)�xn+1, which is in the convex hull of fp1; p2; :::; pn+1g, provided

� is in [0; 1]. Then

(i) [��y + (1� �)�xn+1] � zi � 0, for i in J n fn+ 1g

(ii) [��y + (1� �)�xn+1] � zi > 0, for i =2 J provided � is suÆciently small

(iii) [��y + (1� �)�xn+1] � zn+1 � (1� �)�xn+1 � zn+1 > �xn+1 � zn+1.

This means that �xn+1 does not solve the constrained maximization problem.

So the solution to this problem, �xn+1, must satisfy �xn+1 � zi = 0 for i in In+1 and

�xn+1 � zn+1 < 0. We can apply the same argument to a solution of the other problems. In

this way, we obtain �xk, for k = 1; 2; :::; n + 1 with

(i) �xk � zi = 0 for i in Ik and

(ii)�xk � zk < 0.

De�ne �x = [
P

n+1

i=1
�xi]=(n + 1); �x is certainly in the convex hull of fp1; p2; :::; pn+1g. Fur-

thermore, �x � zi < 0, for i = 1; 2; :::; n + 1. By the weak weak axiom, pi � Z(�x) > 0 for all

i. Since �x is in the convex hull of the pis, we have �x � Z(�x) > 0, which contradicts Walras'

Law (Property 1). QED

Lemma 2.1 showed that any �nite set of excess demand vectors has a supporting price.

Our next objective is to apply this result to show that the entire range of Z has a supporting

price, but before we do that, we review some basic results on cones. Suppose that A is a

convex and pointed cone in Rl. De�ne the set A� = fv 2 Rl : v �a < 0 for all a 2 A; a 6= 0g;

and the set A0 = fv 2 Rl : v � a � 0 for all a 2 A; g: The set A0 is usually referred to as the

polar cone or negative polar cone of A. A� is de�ned similarly, except that the inequality is
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strict rather than weak.

LEMMA 2.2: Suppose that A is a convex and pointed cone. The following is true:

(i) cl(A�) = (clA)0 and (ii) If A is closed, (A0)0 = A.

(We denote the closure of any set S by clS.)

Proof: (i) If x is in cl(A�), there is xn such that xn � a < 0 for all a in A n f0g. Taking

limits, we have x � �a � 0 for all �a in clA. So x is in (clA)0.

We will now show that (clA)0 � cl(A�). In fact, we will show something a little stronger,

that A0 � cl(A�). If x is in A0, by de�nition, x � a � 0 for all a in A. Since A is convex and

pointed, by the separating hyperplane theorem, there is w 6= 0 such that w � A > 0, for all

a in A n f0g. Since [x� (w=n)] � a < 0 for all a, x� (w=n) is in A�. Letting n go to in�nity,

we see that x is in cl(A�).

(ii) If a is in A, for all v in A0, v � a � 0, so a is certainly in (A0)0. On the other

hand, if a is not in A, then by the separating hyperplane theorem, there is w such that

w � a > w � A. (Note that the inequality is strict because A is closed and pointed.) This

means that w � A � 0; otherwise the right hand side of the inequality is unbounded above.

So w is A0. We also have w � a > 0, so this means that a is not in (A0)0. QED

PROPOSITION 2.3: Suppose that the correspondence Z : P ! Rl satis�es Property 1

and the weak weak axiom. Then there is p� in the closure of P such that (p�� p) �Z(p) � 0

for all p in P .

Proof: We claim that coZ\P � = �, where coZ is the convex hull of the set fZ(p) 2 Rl :

p 2 Pg and P � = fv 2 Rl : v � p < 0 for all p 2 P; p 6= 0g: If not, we can �nd
P

K

i=1 �izi in

P �, where zi is in Z(pi) for some pi, and the �is are non-negative numbers that add up to 1.
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By Lemma 2.1, there is x in P , with x �zi � 0 for all i, and consequently, x � [
P

K

i=1 �izi] � 0,

contradicting the de�nition of P �. So our claim is true. The separating hyperplane theorem

guarantees that there is p� 6= 0 such that p� � Z(p) � p� � P �. Since P � is a cone, the right

hand side of this inequality could be bounded above only if is non-positive, so we have

p� � Z(p) � 0 for all p in P .

We also claim that p� is in clP . Since p� � P � � 0, we also have p� � (clP �) � 0. By part

(i) of Lemma 2.2, p� � (clP )0 � 0, so p� is in (P 0)0, which is equal to clP by part (ii) of the

Lemma 2.2. QED

It is worth pointing out that p� in Proposition 2.3 is really very close to an equilibrium

price. To see that, let p be a price in P , with pi = p�i for all i, except i = k. Proposition

2.3 tells us that (p�k � pk)Zk(p) < 0. In other words, if pk is greater than p�k there will be

excess supply of k; if it is lower, there will be excess demand of k. Note that we arrived at

the existence of p� relying exclusively on the geometric properties of Z. Continuity is not

used at all. It is only needed to arrive at an equilibrium in the conventional sense.

LEMMA 2.4: Suppose that the correspondence Z : P ! Rl satis�es Property 2 and

that there exists a price p� in the interior of the cone P such that (p�� p) �Z(p) � 0 for all

p in P . Then 0 2 Z(p�).

Proof: Suppose not; then 0 and Z(p�) are disjoint and convex sets, and so by the

separating hyperplane theorem, there is v 6= 0 such that v � Z(p�) < 0. Note that the strict

inequality is guaranteed by the compactness of Z(p�). De�ne p = p���v, for some positive

number �. Since p� is in the interior of P , for � suÆciently small p is also in P ; furthermore,

(p� � p) � Z(p) = �v � Z(p) which is strictly negative provided � is suÆciently small so that
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v � Z(p) < 0. The last condition is possible since, by Property 2, Z(p) is compact and Z is

upper hemi-continuous. QED

The next theorem gathers together our results so far to establish the existence of an

equilibrium in the case when the excess demand correspondence satis�es properties typically

attained in an exchange economy.

THEOREM 2.5: Suppose that the correspondence Z : Rl
++ ! Rl

satis�es Properties 1

to 4, and the weak weak axiom. Then there is a price p� � 0 such that 0 2 Z(p�).

Proof: Proposition 2.3 guarantees that a supporting price p� exists in Rl
+. If we can show

that p� cannot be on the boundary, then Lemma 2.4 guarantees that p� is an equilibrium

price. Assume, to the contrary, that J = fi : p�i = 0g is non-empty. We de�ne the price

vector pn by pin = 1=n if i is in J , and pin = p�i if i is not in J . So the sequence pn tends to

p� on the boundary. Choose a sequence zn, where zn is in Z(pn). Then

(p� � pn) � zn = (p� � pn) � zn

=
lX

i=1

(p�i � pin)z
i

n

= �
1

n

"X
i2J

zin

#

If this term is negative, we have a contradiction. Indeed it is, because [
P

i2J z
i
n] is positive

when n is suÆciently large. To see this, note that zin is bounded below (Property 3), so

in order for Walras' Law to be satis�ed, zin cannot tend to in�nity if i is not in J ; but the

boundary condition (Property 4) requires jznj to tend to in�nity, so zin must tend to in�nity

for some i in J . QED
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