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Abstract

This paper introduces a non—parametric binary classification tree approach
to inferring unobserved strategies from the observed actions of economic agents.
The strategies are in the form of possibly nested if-then statements. We ap-
ply our approach to experimental data from the repeated ultimatum game,
which was conducted in four different countries by Roth et al. (1991). We find
that strategy inference is consistent with existing inference, provides new expla-
nations for subject behavior, and provides new empirically-based hypotheses
regarding ultimatum garme strategies. We conclude that strategy inference is
potentially useful as a complementary method of statistical inference in applied
research.
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1 Introduction

One approach to the problem of statistical inference in applied research is to make
assumptions about how actions or decisions might be conditioned on strategically
important variables and then to conduct a regression analysis. Another approach
is to use non—parametric techniques to determine the statistical significance of the
difference in behavior between experimental treatments. For applied work with a
theoretical basis in game theory, however, the solution (i.e., an equilibrium) to a
game requires the specification of strategies for every player. While a regression
may assist in describing behavior, it is generally not interpretable as a strategy. If
instead we could characterize observed decisions using strategies we could bridge a
gap between theory and observed behavior. The problem is that we observe actions
but not the sirategies that generated the actions.

In this paper we introduce a computational procedure to infer unobserved strate-
gies in the form of nested if then statements from the observed actions of economic
agents. An example of a bargaining strategy could be “if my opponent offers me
more than 40% of a pie accept the offer, otherwise reject the offer”. We use clas-
sification analysis (Breiman et al., 1984) to fit strategies to the data, and extend
the procedure using a resampling scheme that tests the robustness of the inference
result.

The procedure is an algorithm which automates part of the model specification
process. The researcher specifies strategy primitives that are thought to be im-
portant to decision—making such as time, past actions or payoffs, or realizations of
variables such as interest rates or unemployment rates. From the list of strategy
primitives the algorithm simultaneously selects both the explanatory variables and
their respective coefficients. Resampling provides an estimate of the distribution of
not only the estimated coefficients but also the functional form of the unobserved
strategy.

This article builds on the literature in which researchers investigate the decision

rules and strategies that pcople play in games. Selten and Mitzkewitz (1997) and



Selten and Buchta (1999) elicit strategies from subjects that are played against
each other. The “strategy method” makes strategies observable; this paper focuses

on environments in which strategies are unobservable. For unobservable decision

in a game with incomplete information using cut- off rules similar to those in this

paper. Engle-Warnick and Ruffle (2001) present a maximum likelihood approach

for individual agents. Duffy and Engle-Warnick (2001a) use symbolic regression in
combination with a genetic algorithm to infer strategies from actions, and Engle—
Warnick and Slonim (2001) present experiments which were specifically designed to
infer repeated-game strategies in the form of deterministic finite automata in a trust
game. This paper differs by applying binary tree classification to the problem of
strategy inference.

We find by computer simulation that our technique accurately recovers known
data generating strategies and interpret its output under behaviorally plausible types
of misspecification. We find evidence for the existence of population strategies in the
data of the Roth et al. (1991) bargaining experiment which was conducted in four
different countries. In two of the four countries we infer nearly identical strategies, in
a third country we infer a clearly different strategy, and in a fourth country we find
that decision making cannot be characterized by a strategy of this type at all. We
conclude that the strategy inference approach provided new information regarding
decision making in the experiments and that it provided new hypotheses regarding
empirically-based strategy models in the ultimatum game.

We begin by defining the binary classification tree and its measure of predictive
performance. We then introduce the estimation procedure and discuss its properties
and limitations. We introduce resampling and summarize results from simulated
data (the details are presented in the Appendix). Lastly, we present results from
the bargaining experiments. We conclude with a summary and argue that the
technique complements existing inference approaches for experiments, and that it is

potentially useful for applied work in general.



2 Binary Classification Tree Definition

We model strategies with binary classification trees because they are interpretable as
if-then statements, because there is an extensive literature on a wide variety of appli-
cations from hospital triage to military friend—or—foe identification (e.g., Breiman et
al., 1984), and because statistical properties of their estimation are known (Devroye
et al.,, 1994). Binary classification tree analysis has also been used for modelling
multiple regimes in cross-country growth behaviour (Durlauf and Johnson, 1995)
and United States output fluctuations (Cooper, 1998).) What’s new in this paper

is the interpretation of the classification tree as a strategy.

2.1 Classification Systems

Imagine your car is making an unusual noise when you drive it. You take it to the
auto shop and the technician asks you a series of diagnostic questions. Is the noise
in the front or back of the car? Is it intermittent or constant? Is the pitch of the
noise constant with the speed of the car? If the answers to these questions are front,
constant, and variable the mechanic may check the history of cars for which the
answers were the same and find that the vast majority of the time the transmission
had failed. These questions are based on past experience with cars that exhibit
unusual noises.

This is essentially the problem we face when inferring strategies from actions.
Where the auto shop has data on the symptoms of the failurcs we have the realiza-
tions of economic variables; where the auto shop has data on the final diagnoses we
know the actions taken by the economic agents. Using their data the auto shop has
determined the best questions to ask to arrive at the diagnosis of the problem. Our
goal is to use our data to find the most likely questions the decision—makers asked

when making their decisions, i.e., to find their strategies.

! Hansen (2000) introduces a related threshold regression model and applies it to the growth
model of Durlauf and Johnson (1995).



2.2 The Strategy Model: The Binary Classification Tree

Binary classification trees can be interpreted as nested if then statements; a graph-
ical representation is presented in Figure 1. The context of the strategy is the “ulti-
matum game”, in which a proposer makes an offer to split 1000 units of currency.?
The responder then accepts or rejects the proposal. The strategy in Figure 1 is for
a responder. An acceptance implements the proposal and a rejection sends both
players home with nothing.

The binary tree that models a responder strategy in Figure 1 consists of two
nodes. The top node, which is called the root node, is labelled “Proposal < 384.9”.
The lower node is an internal node and is labelled “Previous Proposal < 368.9”. We
will refer to nodes equivalently as splits because they split the data into different
decision categories (i.e., “accept” and “reject”). The bottom nodes, which are la-
belled “accept” and “reject”, are referred to as terminal nodes. The tree consists of
three sub-trees, which are formed by eliminating exactly one of the internal nodes.
Since there are two internal nodes, exactly zero, one, or two internal nodes may be
removed leaving behind the entire tree, the tree consisting of only the root node, or
no tree.

After receiving a proposal a responder who is playing the strategy in Figure 1
asks “is the proposal less than or equal to 384.97”. If the answer is “no” she proceeds
down the right branch (labelled “F” for false) of the root node of the tree and accepts
the proposal. If the answer is “yes” then she proceeds down the left branch of the
tree (labelled “T” for true) and then asks the question “was the previous proposal
less than or equal to 368.97”. If this answer is “no” then she rejects the proposal,

and accepts it otherwise.

2 Although the context here is specific to the ultimatum game, classification trees may be applied
to any environment in which if-then statements are plausible strategies. Other functional forms
may be used as well: see Duffy and Engle-Warnick (2001b) for an application to linear regression
analysis.



Proposal < 384.9

Previous Proposal < 368.9

T
Accept Reject
Figure 1: A Binary Regression Tree
3 Binary Classification Tree Estimation

To estimate a binary classification tree the data are divided into two disjoint sets:
a training sample and a testing sample.? The training sample is used to identify a
class of binary trees that best—fit the data. The testing sample is used to specify the
best tree in this class according to out—of-sample predictive power. The purpose of
the testing sample is to control for overfitting the data. The following sub—sections

provide the steps of the algorithm.

3.1 Splitting the Data: Training and Testing Samples

The first step is to divide the dataset D,, = {(X1,Y1),...,(X,,Yy)}, which consists
of decisions Y; = {0, 1} and explanatory variables X; € R%, into two sets: a training
set Dy = {(X1,Y1),..., (X, Ye)} and a testing set Dy, = {(Xes1, Yot1)s- -+, (Xetm, Yerm) }s
where £ + m = n. In our application, we take £ = m because of good performance
using simulated data. Data points are selected for the training set by drawing from
the set D, without replacement and with equal probability placed on each data
point for each draw. After ¢ data points are drawn for training the remaining data

are used for testing.

3 See Devroye et al. (1994) for binary classification tree estimation theory.



3.2 Fitting the Data: The Impurity Function

The second step is to find the tree that best—fits the training set D;. Fitness is
defined with respect to how well the tree sorts the decisions at its terminal nodes.
To motivate the concept of fitness imagine two observations of data. The first
observation is an acceptance of a proposal of 425, and the second is a rejection of
a proposal of 370 when the previous proposal had been 350. Now take the first
data point and hold it above the root node of the strategy in Figure 1 and drop it
through the tree. Since the proposal was greater than 384.9 it falls to the right—-most
terminal node. Do the same with the second data point; it falls first down the left
branch of the root node (the proposal is less than 384.9) and then down the left
branch of the second non-terminal node (the previous proposal was less than 368.9)
to the left-most terminal node.

Once each observation is dropped through the tree there is a collection of accep-
tances and rejections at the terminal nodes. The fitness of the tree depends on the
homogeneity of the decisions at the terminal nodes and is represented by an impu-
rity function, which takes on a maximum value for equal numbers of cach decision,
and a minimum value when all decisions are of the same category.

Figure 2 is presented to illustrate how the impurity function works. At each
terminal node we present the number of acceptances and rejections that occurred
in a hypothetical data set. One can get a sense that the right—most terminal node,
where there are seven times as many acceptances as there are rejections (70 vs. 10),
is helping to fit the data well, the middle terminal node somewhat less with a ratio
of less than 2 to 1 for rejections to acceptances, and the left-most node even less
with an even smaller ratio of acceptances to rejections.

The impurity function we use here is the Gini Function, a common measure of
inequality. The Gini score is computed as 2p(1 — p) where p is the proportion of
either decision type (acceptance or rejection) at the terminal node and 1 — p is the

proportion of the other decision type.* The fitness score of a node is the sum of

* For simplicity the algorithm which was used in this paper takes a monotonic transformation
of this function and uses the product of the number of acceptances and number of r¢jections as the



Proposal < 384.9

Previous Proposal < 368.9

T 10 Reject

70 Accept
Reject 9 17

Accept 12 9

Figure 2: Impurity Function Example

the Gini scores at its two terminal nodes. The tree is “grown” one node at a time
by finding the variable-coefficient pair that results in the lowest node fitness score.

Taking p as the proportion of rejections at each node, the fitness score for each
terminal node from left to right in the example in Figure 2 is 2%(1 — 29—1) = (.49,
215(1 — 1) = 0.453, and 283(1 — 13) = 0.245. These fitness scores order the effec-
tiveness of the terminal nodes from right to left, with the right-most terminal node
most effective and left—-most node least effective in classifying the data.

The best—fit tree is grown as follows. Beginning with the root node of the tree,
search over every possible coefficient of every variable to find the split that minimizes
the fitness of the resulting tree. Repeat this procedure at all terminal nodes of the
resulting tree one split at a time until a stopping criterion is reached (e.g., an upper
limit on impurity or a maximum number of splits). In this study the stopping

criterion is three splits.> The tree is forced to make the majority decision at each

terminal node.

score.

5 As the tree becomes more complex, fewer observations are found at each node, increasing the
number of splits that fit the data equally well. In the data it was not uncommon to find more than
1000 strategies that fit the data equally well when four splits were permitted; since this did not
occur with three splits or less we identified three splits as a breakpoint. For examples of reasoning
to levels of three in a different context see Nagel (1995) and Stahl and Wilson (1997). Endogenizing
the stopping rule is a subject for further research.



3.3 Specifying the Model: Selecting the Best Sub—tree

The third step is to specify the model. Consider the set of sub-trees (defined in
Section 2.2) denoted Cy of the best-fitting tree. Let ¢ denote a member of this set.
The testing sample D, is used to select a classifier ¢pes from Cy. This is done by
minimizing the number of classification errors, f%m(@, which are committed on the
testing sample by choice of ¢ € Cy:
A 1 £+m
Prest = ngnLe,m(d)) = — > Tpxoeriy

m .
1=f+1

where ¢(X;) is the binary tree that maps the explanatory variables to an action
and I is an indicator variable. Hence If4(x,)+y;) takes on the value of 1 when a
misclassification occurs and 0 otherwise.

As an example let Figure 1 represent the decisions of a tree which have been
determined by data on a training sample and let Figure 2 represent the collection
of testing sample decisions which fell to the terminal nodes. Since the tree specifies
(from left to right across terminal nodes) accept, reject, and accept the number of
misclassified data points is the number of (from left to right) rejections + acceptances
+ rejections = 94+9+4 10 = 28. Now to find the optimal subtree, begin by removing
the split that specifies the “previous proposal” leaving only the tree with the single
split on the “proposal” and its two terminal nodes. Assume now that from the
training sample, the left terminal node specified the action accept and the right
one reject. Now the number of misclassified data points is equal to the number of
acceptances + rejections = 21 4+ 10 = 31. Since removing the node resulted in a
sub—tree that committed more errors on the testing sample than the original tree,
we specify the entire tree as the inferred strategy.

In general we remove internal nodes from the best-fitting tree, one at a time,
and test for an improvement in the out—of-sample predictive power of the tree.
We continue the procedure from the bottom of the tree up until removing nodes
no longer improves the out—-of-sample fitness, or until the tree itself is completely

eliminated.



Table 1: Training Sample: Growing the Tree
Divide the data into a training and a testing sample
Begin with the root node of the tree
Select a terminal node
Select an explanatory variable
Select a coefficient value
Attach the split to the tree and store its fitness score
If any coefficient values remain, go to 5

If any explanatory variables remain, go to 4

OO ~J| S| O =W DN~

If any terminal nodes remain, go to 3
Add the split with the best classification value to the tree
If stopping criterion not reached, go to 3

—
o

—_
—

Table 2: Testing Sample: Specifying the Tree
Count the number of misclassification errors for best-fitting tree
Remove an internal node which is attached to two terminal nodes
Count the number of misclassification errors for resulting sub—tree
If sub—tree error count is less than tree error count remove the node
If any internal nodes remain go to 2

Y (WD —

3.4 The Estimation Procedure: Summary

The algorithm finds the best—fit tree using the training sample by minimizing the
impurity score of the tree one split at a time until a stopping criterion is reached.
From the best—fit tree it selects the sub—tree that minimizes the error count in
the testing sample as the output of the regression. Tables 1 and 2 summarize the

tree-growing and tree specification algorithms.

3.5 Resampling: A Robustness Test

The estimation procedure returns the best out—of-sample predictor from the class of
trees defined by the best—fit tree in—sample. How accurate is this estimate? There
could, for example, be more than one tree that fit the data equally well. This
observational equivalence of trees occurs when there is no realization of decisions
in the data that enable the researcher to distinguish between competing theoretical
models of strategies in terms of their ability to fit the data. Two related issues are

(1) there exist distributions for which trees that arc generated by impurity functions

10



are not consistently estimated, and (2) estimates of the predictive performance of
such strategies can be inaccurate (see the bootstrap example in Efron, 1982).

To address these issues we introduce a resampling scheme. Resampling validates
the impurity function method of binary tree inference by checking for consistency
between randomly drawn samples, and avoids the arbitrary assignment of a single
best strategy to the data. We randomly select a training and corresponding testing
sample from the data set 1000 times and estimate a binary classification tree on each
of these random samples. By reporting the frequency of occurrence of each type of
strategy that results from each of the 1000 regressions we produce an estimate of
the distribution of the functional form of the strategy we are inferring.

From sample to sample the functional form of the estimated strategy may differ
considerably. Trees may differ from each other by both the number of splits and
the type of splits they contain. In the strategy presented in Figure 1 there is one
split on the proposal level and one on the previous proposal level. With a different
randomly drawn sample there may, for example, have been only a single split on the
proposal level, or there may have been two splits on the proposal level and none on
the previous proposal level. The number of possible types of strategies depends on
the number of candidate explanatory variables.%

To report the types of strategies that result from the regression output on each
random sample we introduce the following notation. Define the strategy type as a
vector z € I¢, where each element of z represents the number of times the variable
x; € X (X is the vector of candidate explanatory variables) occurs in a split in the
strategy. For example if d = 4 (i.e., there are four explanatory variables, e.g., z1: the
proposal, z2: the previous proposal, z3: the previous decision, and x4: time), and
the inferred strategy is given in Figure 1, then the strategy type is z = {1,1,0,0}.
After reporting the frequency distribution of the inferred strategy types we will
report the functional form of the modal strategy, an estimate of the mean and the

variance of the split coefficients, and an estimate of the mean and the variance of

5 There are four possible one-split, ten possible two-split and 20 possible three-split strategy
types in the sct of strategies we consider in the following section.

11



Proposal < 384.9(7.65)

Past Proposal < 368.9 (17.4)

T 10.32  (2.23) Reject

70.8  (3.09)  Accept
Reject 9.4  (2.72) 178 (3.09)

Accept 127 (2.17) 9.0 (2.3)

Figure 3: Modal Strategy Report Format

the number of acceptances and rejections at the terminal nodes.

For example, Figure 3 displays the modal strategy from an estimate on actual
data. At each split we report the variable, and the mean and the standard deviation
of its estimated coefficient. At the split labelled “ Proposal < 384.9 (7.65)” the vari-
able is “Proposal”, the mean of the estimated coefficient is 384.9, and its standard
deviation is 7.65. At each terminal node we report the mean and variance of the
number of rejections and acceptances that occurred in the data. For example, the
right-most terminal node in Figure 3 reveals that the mean number of rejections
at this node was 10.32 with a standard deviation of 2.23, and the mean number of
acceptances was 70.8 with a standard deviation of 3.09.

In summary we resample the data and estimate a strategy on each randomly
selected sample. We report the output of this regression in two stages. In the first
stage we report the number of times we find each specific realization of a combination
of variables that make up the splits of the strategy (i.e., each realization of a strategy
type). In the second stage we report the functional form of the modal strategy type,
the estimates of the variable coefficients, and the mean number of acceptances and

rejections at the terminal nodes.

12



4 Simulated Data Inference Results

In the Appendix we present the results of the inference procedure using simulated
data. We infer strategies when the data are generated by a single known strategy
(with errors), by two strategies that condition on different variables, and by players
who learn over time. We show that the procedure accurately recovers an estimate
of the known strategy, that results are interpretable under the condition of hetero-
geneity when there are two strategies, and that results are interpretable under the

learning condition. With these results we turn to the experimental data.

5 The Four Country Ultimatum Game Experiment

In this section we illustrate the procedure with data from the four country ultima-
tum game experiment of Roth et al. (1991). This experiment is a good test of the
procedure because the game and the experiment are well known, and because it pro-
vides an environment where levels may well be important to decision making. The
random repairing of subjects makes the assumption of independence of observations
reasonable. Inferring reasonable levels in an experiment that has been well studied
will help to validate the new estimation technique while providing a demonstration
of the additional information that can be learned from strategy analysis. 7
Subjects were randomly and anonymously paired to play a one—shot ultimatum
game. Proposers made an offer to responders to split a pie of 1000 units of currency
in increments of 5 units, and then responders accepted or rejected the proposal. An
acceptance implemented the proposal and a rejection resulted in a payoff of 0 to both
subjects. The experiments were conducted in Jerusalem, Ljubljana, Pittsburgh, and
Tokyo. It is well known that the proposal levels differed in the four treatments, and
that the probability of rejection was lower in countries where the proposals were

lower. Proposals were highest in Pittsburgh and Ljubljana and lowest in Jerusalem.

The rate of acceptance of proposals was lowest in Ljubljana and highest in Jerusalem

" For different interpretations of the behavior in this experiment see Costa~Gomes and Zauner
(2001) and the references therein.
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Table 3: Ultimatum Game Variables and Coeflicients

Explanatory Variables

Variable Notation | Coeflicients | Increment
Time t proposal P(t) 0-1000 5
Time t-1 proposal | P(t-1) 0-1000 5
Time t-1 decision | D(t-1) 0 -
Round number t 1-9 1

and Tokyo. We will further investigate this behavior by inferring strategies from
the actions of the responders.

The set of conditioning variables will be the time ¢ proposal, P(t), the time
t — 1 proposal, P(t — 1), the decision to reject or accept the proposal at time ¢ — 1,
D(t — 1), and time (the round number), ¢. The set of conditioning coefficients for
P(t) and P(t — 1) is the set of integers from zero to 1000 in increments of five. For
D(t — 1) we include only the integer 0 for conditioning and interpret the statement
“if D(t—1) <0” as a rejection if true and acceptance otherwise. The conditioning
set for ¢ is one through nine. We expect P(t) to figure prominently in decision
making, and allow the algorithm to determine whether any of the other variables
should be included in strategies. Time is included to test for an end game effect.

The variables and their parameters are summarized in Table 3.

6 Experimental Results

Table 6 presents the frequency distribution of the number of splits in the inferred
strategy for each of the 1000 randomly drawn samples in the experimental treat-
ments. Each entry represents the number of strategies that were inferred with the
corresponding number of splits. For example, in the Jerusalem treatment 806 zero—
split, 0 one—split, 138 two-split, and 56 three-split strategies were inferred. The table
reveals that the modal number of splits in the Jerusalem, Ljubljana, Pittsburgh and
Tokyo treatments were zero, two, two, and two with the smallest frequency of oc-
currence of 669 in Ljubjana and the largest 936 in Pittsburgh. There appears to be

evidence of population strategies in three of the four treatments.
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Table 4: Frequency Distribution of Number of Strategy Splits
‘ Number of Splits ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘

Jerusalem 306 0 138 | 56

Ljubljana 35 | 270 | 669 | 26

Pittsburgh 39 5 936 | 20
Tokyo 36 | 163 | 800 | 1

Table 5: Inferred Strategy Distribution for Sessions in Jerusalem
‘ Distribution of Inferred Strategy Types |

Strategy Type (z) No. of Strategies
Split Type | P(t) | P(t-1) [ D(t-1) | T

Number 0 0 0 0 806

of Splits 1 0 0 1 115
1 0 1 0 5
1 1 0 0 10
2 0 0 0 8
1 0 1 1 1
1 1 0 1 29
1 1 1 0 12
1 2 0 0 5
2 0 0 1 4
2 0 1 0 1
2 1 0 0 3
3 0 0 0 1

In the Jerusalem treatment zero splits were inferred 80.6% of the time (Table 5).
Intuitively this is because there is no level associated with any of the four condi-
tioning variables at which the population majority decision switched from rejection
to acceptance. It is known that the overall level of acceptance was higher in these
sessions than in the other three, but also that the average proposal was lower. A
conjecture is that the proposals were not low enough to trigger a switch—over in
the majority decision, i.e., that the proposals did not achieve a low enough level to

identify the responder strategies.

The distribution of inferred strategies in Ljubljana is quite different (Table 6).
The modal strategy occurred 624 times and is shown in Figure 4. There are two
splits, both of which occur on the variable P(t). From the mean number of decisions

at the terminal nodes one can see that the strategy is highly accurate whenever the



Table 6: Inferred Strategy Distribution for Sessions in Ljubljana

‘ Distribution of Inferred Strategy Types

Strategy Type (z) No. of Strategies
Split Type | P(t) | P(t-1) | D(t-1) | T
Number 0 0 0 0 35
of Splits | 1 0 0 |0 270
1 0 1 0 3
1 1 0 0 42
2 0 0 0 624
1 1 0 1 7
1 1 1 0 2
2 0 1 0 4
2 1 0 0 5
3 0 0 0 8
P(t) < 415.42 (7.59)
P(t) < 371.11 (11.21)
7.68 (3.22) Reject
70.44 (6.07)  Accept
Reject 19.38  (3.96) 12.64 (3.18)
Accept  6.15  (3.79) 18.71 (4.64)

Figure 4: Inferred Modal Strategy for Sessions in Ljubljana

16

proposal is less than 371 (where it predicts the action reject) or greater than 415
(where it predicts the action accept), but in the interval between 370 and 415 its
prediction is not as accurate. This suggests that decision—-making is more predictable
above and below the two different thresholds than in the interval between them.
There is further evidence for the significance of the modal inferred strategy. The
single split strategy with the variable P(¢) occurred 270 times, had a mean coefficient
of 412.20, and is consistent with the root node of the modal strategy. These two

strategies accounted for 894 of the 1000 strategies inferred from the different samples.

The modal strategy in the Pittsburgh treatment occurred 872 times and is nearly
identical to the strategy inferred from the data from Ljubljana. Table 7 summarizes



Table 7: Inferred Strategy Distribution for Sessions in Pittsburgh

‘ Distribution of Inferred Strategy Types

Strategy Type (z) No. of Strategies
Split Type | P(t) | P(t-1) | D(t-1) | T
Number 0 0 0 0 39
of Splits | 1 0 0 |0 5
1 0 0 1 7
1 0 1 0 47
1 1 0 0 10
2 0 0 0 872
1 0 2 0 4
1 1 0 1 3
1 1 1 0 2
2 0 1 0 4
2 1 0 0 7
P(t) < 405.84 (10.57)
P(t) < 378.35 (15.44)
8.39 (2.10) Reject
51.20 (4.10) Accept

Reject 13.36  (2.29) 9.11 (2.90)
Accept  4.31  (1.60) 21.63 (3.46)

Figure 5: Inferred Modal Strategy for Sessions in Pittsburgh
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the strategy distributions and Figure 5 shows the estimate of the modal strategy.

The results from the sessions that were conducted in Tokyo are summarized
in Table 8. The modal strategy type occurred 681 times; it includes splits on the
variables P(t) and P(t — 1). Figure 6 shows the form of this two-split strategy,
which initially splits the data along P(t) at a level of 385.47. If the proposal is less

than 385.47 then there is another split at the P(¢ — 1) level of 365.69.

For a look at how the strategy assigns dccisions, note the number of acceptances

and rejections at the terminal nodes in Figure 6. From the first split, if P(¢) > 384.9,



Table 8: Inferred Strategy Distribution for Sessions in Tokyo

‘ Distribution of Inferred Strategy Types

Strategy Type (z) No. of Strategies
Split Type | P(t) | P(t-1) | D(t-1) | T
Number 0 0 0 0 36
of Splits 1 0 0 0 163
1 0 0 1 8
1 0 1 0 107
1 1 0 0 681
2 0 0 0 4
1 1 1 0 1
P(t) < 385.47 (6.69)
P(t—1) <365.69 (15.44)
10.15 (2.40) Reject
68.65 (4.41) Accept
Reject 8.63 (2.34) 17.59  (2.79)
Accept  12.32  (2.41) 8.68 (2.48)

Figure 6: Inferred Modal Strategy for Sessions in Tokyo

high proposal at time £.

18

the mean number of rejections is 10.15 and the mean number of acceptances is 68.65.
At the second split, if P(t — 1) < 365.69, the mean number of rejections is 8.63 and
the mean number of acceptances is 12.32. If P(t — 1) > 365.69 the mean number
of rejections is higher than that of acceptances: 17.59 vs. 8.68. Subjects tended to
accept proposals above the cut—off level P(t) = 385.47, but if the time ¢ proposal was
lower than this level, they tended to reject if the previous proposal was relatively
high. Subjects in the Tokyo treatment appear to have been conditioning in part
on the change in proposal levels from one period to the next. A relatively high

proposal in the previous period appears to have created a preference for a relatively

Recall from Table 8 that the strategy with a single split on P(¢) occurred 163

times. The mean of the P(t) coefficient for this single-split strategy was 383.25.



This is consistent with the root node of the modal strategy reported above, and
provides further evidence of the importance of that particular variable and coefficient
combination.

To compute the estimate of overall decision strategy accuracy we report the
average proportion of misclassification errors on the testing sample for each of the
modal strategies. In the sessions that were conducted in Tokyo, Ljubljana, and
Pittsburgh this estimated error rate is 0.241, 0.196, and 0.202 respectively. The
strategies are able to correctly classify the data in the testing sample (i.e, they are
able to predict the correct action taken) roughly 75%-80% of the time.

Summarizing the findings from the data we find evidence of heterogeneity with
regard to strategies between treatments. The lack of an inferred strategy in the
Jerusalem treatment may reveal as much about proposer behavior as responder
behavior: proposals may not have been below the threshold level for rejection. In
Ljubljana and in Pittsburgh a high and a low threshold assist in classifying decisions:
in the interval between these thresholds decision—making is less predictable. In
Tokyo the inferred behavior is dynamic: a relatively high proposal in the previous
period appears to increase the probability of rejection in the current period. Most
importantly, the classifier approach suggests that decision—making in three of the

populations may be characterized by a binary classification tree strategy.

7 Conclusion

We introduced a computational procedure to infer strategies from observed actions
and demonstrated it using both simulated and experimental data. Using simulated
data we showed that the procedure is capable of uncovering known strategies and
showed how to interpret its output under misspecification. We inferred unobserved
strategies from the observed actions of subjects in a classic ultimatum game experi-
ment. Results were consistent with existing data analysis: levels were important in
the ultimatum game experiments, conditioning levels were different across countries,

and responder behavior in two of the countries was similar.
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The results provided new information regarding strategic behavior. We did not,
for example, infer a strategy from the actions of the responders in the Jerusalem
treatment. We can interpret this as a lack of evidence of the existence of a strat-
egy of the type we hypothesized, or as proposal behavior that did not permit the
identification of responder strategies. Further research into proposer strategies may
clarify this result. In Ljubljana and Pittsburgh we found evidence for behavior that
is not predictable within a range of proposals but is predictable outside of the range.
Responder behavior in Tokyo was different in that it exhibited a dynamic element
by conditioning on level of the proposal in the previous period of the game.

We tested the robustness of the procedure in four ways: (1) by fitting with a
training sample and selecting the model with a testing sample, (2) by reporting
results from resampling, (3) by comparing the results to inference previously per-
formed on these data, and (4) by testing performance on simulated data. Each of
these steps was taken to ensure that we did not infer unmeaningful behavior from
the actions of the subjects. In particular we reported an estimate of the distribu-
tion of the functional form of the unobserved strategy through resampling. This
provided more information regarding the accuracy of the specification than existing
procedures that report the single functional form of the best fitting model.

The application of binary classification estimation is not limited to experimental
data nor is it limited to population strategies. Any decision making environment
where nested if then statements may characterize repeated decision making may
be investigated using the methods in this paper (e.g. federal reserve decisions or
strike decisions). An extension to a three-category decision case can be found in
Engle-Warnick and Ruffle (2001), and an extension to strategies estimated by linear
regression can be found in Duffy and Engle-Warnick (2001b).

The benefits of the procedure are the direct interpretation of the model as strate-
gies, and the generality of the approach which simultaneously and automatically
specifies the specific functional form of the model and estimates its coefficients.
When combined with existing methods of statistical inference the binary classifica-

tion estimator can advance the ability of game theory to describe and understand
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observed behavior.

A Results from Simulated Data

In the Appendix we report on the effectiveness of recovering strategies from sim-
ulated data. We show that when the model is properly specified, i.c., when there
is a population strategy that generates the data, the procedure accurately recovers
it. When there are multiple strategies generating the data we find evidence for the
actual conditioning variables and their coefficients, but must take care when inter-
preting the regression output. Lastly, when agents learn over proposal levels with a
common strategy type, we recover the corrcct strategy type with a relatively high

variance estimate for the level.

A.1 Constructing the Strategies for the Simulations

We simulate responder behavior against the actual proposer decisions in the data,
hence no distributional assumptions are necessary for the behavior of the proposers,
and variance of the actions of the simulated strategy when played against the data
is ensured. An error is defined as transitioning down the wrong branch of the tree
at an internal node. The distribution of the error process is modelled as a truncated
normal density and is shown in Figure 7. The mean of the density is the median
proposal level and is estimated from the actual data. The standard deviation of
the error density (labeled &) was selected by finding the 5th and 95th percentiles of
the proposals and placing them two standard deviations from the median.® The
density is truncated at 36, hence the error under the curve shown in Figure 7 is
normalized to 1.

At proposal levels below the median proposal less 3¢ no error can occur; at
proposal levels between the median proposal less 36 and the median proposal the
probability of committing an error is F'(-) (the error density shown in Figure 7); at

proposal levels between the median proposal and the median proposal plus 36 the

8 Using the estimate of the mean and standard deviation from the data does not qualitatively
affect the results. The 5th and 95th percentiles happened to be symmetrical about the median.
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Figure 7: Modelling the Strategy Error Term

probability of committing an error is 1 — F(-); at proposal levels above the median
proposal plus 36 the probability of committing an error is zero. Hence the further
away the proposal is from the median proposal the lower the probability of deviating

from the strategy specification.

A.2 One Responder Strategy: Conditioning on the Time ¢ Proposal

In this sub—section we report results from the simulation of a single responder strat-
egy with a single split that specifies rejecting a proposal if it is less than or equal
to 400. The error density is centered on a proposal level of 400 and has a standard
deviation of 100.° Thus the probability of committing an error is zero whenever
proposal levels are above 700 and below 100, and is 0.5 whenever the proposal level
is exactly 400. These simulated subjects are more likely to reject lower proposals at
time ¢ than higher proposals.

The distribution of the inferred strategies for this simulated data is given in
Table 9. We inferred a strategy with one split 993 times (out of 1000 randomly
selected samples from the simulated data), a strategy with two splits five times,
and a strategy with three splits twice. The table presents the distribution of the

strategy types in the inferred strategies. The four numbers in the rows which are

9 We used the data from the sessions which were run in Japan for the simulations.
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Table 9: Inferred Strategy Distribution for Single Strategy Simulation
‘ Distribution of Inferred Strategy Types ‘

Strategy Type (z) No. of Strategies
Split Type | P(t) | P(t-1) | D(t-1) | T
Number 1 0 0 0 993
of Splits | 2 0 0 |0 5
2 0 0 1 2
P(t) < 404.89 (6.1)
v\
Reject:  48.68 ( 6.10) 15.17 (5.80)
Accept: 17.67 (4.45) 44.49  (5.05)

Figure 8: Inferred Modal Strategy for Single Strategy Simulation

labelled “number of splits” make up the type vector z. In this simulation we inferred
a strategy with exactly one P(t) split 993 times (first row), a strategy with two P ()
splits five times (second row), and a strategy with one split each containing P ()

and t twice (third row).

For the single split strategy, the mean of the split level was 404.89 with a standard
deviation of 6.1. Thus 993 times out of 1000 we inferred a strategy with the correct
number of splits and with the corrcect conditioning variable. Further, the mean of
the coefficient was very close to the true coeflicient of 400. Figure 8 shows the tree
representation of the inferred modal strategy and also reveals that the majority votes
of the decisions at the terminal nodes are correct. We conclude that the procedure

accurately uncovered the known population strategy.
A.3 Two Responder Strategies: Conditioning on Either the Time

t or t — 1 Proposal

In this sub—section we demonstrate the interpretation of the regression output when

there is heterogeneity in the population of decision-makers. We simulated two
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Table 10: Inferred Strategy Distribution for Two Strategy Simulation
‘ Distribution of Inferred Strategy Types ‘

Strategy Type (z) No. of Strategies
Split Type | P(t) | P(t-1) | D(t-1) | T
Number 1 0 0 0 602
of Splits 0 1 0 0 258
1 1 0 0 111
0 2 0 0 18
2 0 0 0 3
1 2 0 0 4
2 1 0 0 4

responder strategies, with half of the subjects in the population playing according
to the strategy in the previous sub—section, and the other half playing according to
a second strategy that contains a single split on the time ¢ — 1 proposal P (¢ — 1).
The error term for the second strategy is centered on a coeflicient of 400 with a
standard deviation of 100 (i.e., the error parameterization is the same as that for
the first strategy).

Table 10 presents the distribution of the inferred strategies. Table 10 reveals
that 602 times we inferred a one-split strategy that conditioned on P(¢) and 258
times we inferred a one-split strategy that conditioned on P(f — 1). In fact every
single strategy type contains either one or the other or both of these two variables,

which in fact were components of the two data generating strategies.

For the strategy type {1,0,0,0} the mean and variance of the P(t) coefficient
was 400 (6.47); for the strategy type {0,1,0,0} the mean and variance of the P(t —
1) coeflicient was 408.64 (21.92); for the strategy type {1,1,0,0} the means and
variances of the P(t) and P(¢t—1) coeflicients were 398.64 (17.52) and 408.74 (23.82).
Although the regression is unable to take this type of heterogeneity into account
explicitly, the combination of these three strategy types proxied for the two strategies

that actually generated the data.
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Table 11: Inferred Strategy Distribution for Reinforcement Learning Simulation

‘ Distribution of Inferred Strategies Types ‘

Strategy Type (z) No. of Strategies
Split Type | P(t) | P(t-1) [ D(t-1) | T
Number 1 0 0 0 963
of Splits 2 0 0 0 36
2 0 0 0 1

A.4 Learning Rule: Learning to Condition on Different Levels

In this sub—section we interpret the regression output when the data are generated
by a learning model that has been successful in describing subject behavior in these
experiments. The data are generated using reinforcement learning (see Roth and
Erev, 1995). In reinforcement learning subjects choose strategies probabilistically
with propensities that are updated according to payoffs. Strategies that result in
relatively high payoffs are more likely to be repeated. For proposers we take the
strategy space to be the proposals 100, 200, 300, 400, 500, 600, 700, 800, and 900 as
in Roth and Erev (1995). Responders condition on these same levels and accept a
proposal if it is less than or equal to the level and reject it otherwise.'? All players
began the game with uniform (cqual) propensities to play each strategy. The agent
based computer simulations replicate exactly the conditions in the experimental
laboratory.

Results are given in Table 11. The table shows that in 963 cases out of 1000
we inferred a strategy with a single—split on the variable P(t). This is a sensible
result because responders were all playing a strategy that matches this description.
Figure 9 shows that the mean split level was 463.95 and the standard deviation was
35.51. The estimate of the standard deviation is higher than in the first simulation
(with a single population strategy) because different subjects begin the game con-
ditioning on different levels and learned to play using different levels over the ten

rounds of the game.

19 For consistency with Roth and Erev (1995) we do not include the error term in these simula-
tions; subjects play the chosen strategies deterministically.
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P(t) < 463.95 (35.5)

N\

Reject:  49.35  (5.12) 19.57  (4.75)
Accept:  9.23 (5.41) 47.85 (6.09)

Figure 9: Inferred Modal Strategy for Reinforcement Learning Simulation
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