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1 Introduction

This paper proposes an interesting approach for estimating the parameters of nonlinear diffusion

models with discretely sampled data. The parameter estimates are obtained by maximizing an

approximate likelihood function that is obtained by a Monte Carlo importance sampling method.

As the authors point out, the elements of their approach are not substantially new. In particular,

the idea of approximating the transition density of the process by integrating out the “missing

values” between each successive observation is due to Pedersen (1995); the use importance

sampling to estimate the likelihood in which the missing values are drawn from a “tied-down”

distribution is due to Elerian, Chib, and Shephard (2001); and finally, the idea of transforming

the process to one with a constant diffusion coefficient in order to improve the accuracy of the

Euler approximation scheme is due to Doss (1977).

As we see it, the paper makes two main contributions. First, it provides a detailed comparison

of various extant methods for estimating the likelihood function of univariate diffusion models.

Elerian (1999) has done related work along the same lines. Taken together these two papers

have enhanced our understanding of what methods are effective for approximating the likelihood

function. We are pleased that the value of such comparative work has been recognized by this

journal. Second, the paper provides a new proposal density for the importance sampling step
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that appears to be numerically quite efficient. Because this is perhaps the central contribution

of the paper we begin our discussion by presenting the Durham – Gallant (DG) proposal density

in a form that has intuitive appeal. We then conclude with comments on the connections of this

work to other recent research.

2 DG proposal density

2.1 Importance sampler

To begin, in the notation of the paper, write the Markov process for the auxiliarly observations

as

um+1|um ∼ N(um + µ(um; θ)δ, σ2(um; θ)δ) , (1)

where δ is the time gap. The objective is to evaluate the integral in equation (3) of the paper.

Pedersen (1995) suggests that the integral be approximated by drawing samples on (u1, ..., uM−1)

by simulating the above process. The implied importance sampling function is, therefore, just

the product of these one-step ahead transition densities. Elerian, Chib, and Shephard (2001)

pointed out that the Pedersen importance function ignores the end-point information uM and

that a better importance function can be developed by utilizing this information. The optimal

importance function is given by the non-linear or tied-down process,

p(u1, ..., uM−1|u0, uM ) =

{
M∏

m=1

p(um|um−1)

}
/p(uM |u0), (2)

under which the importance sampling estimate of the likelihood would have zero variance even

with a single draw. Of course this choice is not available because it requires knowledge of

p(uM |u0), which if known, would directly lead to an estimate of the likelihood. In practice we

need to approximate p(u1, ..., uM−1|u0, uM ) with a distribution that is both easy to sample and

compute. One possibility, proposed by Elerian, Chib, and Shephard (2001), is a multivariate

Gaussian or Student-t approximation based on the mode and Hessian of the target distribution.

This approximation is quite efficient in general although the search for the mode imposes a

computational burden that can be high when M is large.

In the current paper another approximation is suggested which we think is worth discussing
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in full. From (2) we can write (noting the cancelation in the first line)

p(u1, ..., uM−1|u0, uM ) =

{
M−1∏
m=1

p(um|um−1)

} [{
M−1∏
m=1

p(uM |um)

}
/

{
M−1∏
m=1

p(uM |um−1)

}]
(3)

=
M−1∏
m=1

{p(um|um−1)p(uM |um)/p(uM |um−1)}

=
M−1∏
m=1

p(um|um−1, uM ). (4)

Next DG work with

p(um|um−1, uM ) = p(um|um−1)p(uM |um)/p(uM |um−1), (5)

were p(um|um−1) is known and Gaussian but we cannot, by definition, know p(uM |um) or

p(uM |um−1), as it is the same problem as calculating p(uM |u0). As a result the above is not

feasible. At this point DG approximate the above by using a standard Euler approximation to

uM |um−1, that is

uM |um−1 ∼ N(um−1 + µ(um−1; θ)δ+, σ2(um−1; θ)δ+), (6)

but a more non-standard

uM |um ∼ N(um + µ(um−1; θ)δ∗, σ2(um−1; θ)δ∗). (7)

The latter approximation is used in order to get tractability. We write these approximate densi-

ties as p(uM |um−1) and p̂(uM |um). By Bayes theorem, we now have a Gaussian approximation

to um|um−1, uM which can be written as

p(um|um−1, uM ) = p(um|um−1)p̂(uM |um)/p(uM |um−1), (8)

leading to the feasible importance sampler

p(u1, ..., uM−1|u0, uM ) =
M−1∏
m=1

p(um|um−1, uM ) (9)

This is attractive as this is a Gaussian density which is easy to simulate and evaluate. Note that

we can rewrite the latter density as

p(u1, ..., uM−1|u0, uM ) =

{
M−1∏
m=1

p(um|um−1)

} [{
M−1∏
m=1

p̂(uM |um)

}
/

{
M−1∏
m=1

p(uM |um−1)

}]
(10)
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under which the resulting estimate of the likelihood contribution is

p(uM |u0) =
∫

p(u1, ..., uM−1, uM |u0)
p(u1, ..., uM−1|u0, uM )

p(u1, ..., uM−1|u0, uM )du1...,duM−1

=
∫

p(uM |uM−1)
∏M−1

m=1 p(uM |um−1)∏M−1
m=1 p̂(uM |um)

p(u1, ..., uM−1|u0, uM )du1...,duM−1

= p̂(uM |u0)
∫ ∏M−1

m=0 p(uM |um)∏M−1
m=0 p̂(uM |um)

p(u1, ..., uM−1|u0, uM )du1...,duM−1

= p̂(uM |u0)Eu|u0,uM

{∏M−1
m=0 p(uM |um)∏M−1
m=0 p̂(uM |um)

}
. (11)

This has the rather elegant interpretation of being the Euler approximation of p(uM |u0), which

we have written as p̂(uM |u0), times the expected value of a likelihood ratio of two predictive

models. In practice we evaluate the expectation by simulating from p(u1, ..., uM−1|u0, uM ),

which is straightforward.

2.2 Markov chain Monte Carlo based on DG’s proposal density

Of course the DG proposal density could also be used in the context of a Bayesian analysis

of the non-linear diffusion model. Indeed it fits rather naturally into the Markov chain Monte

approach of Elerian, Chib, and Shephard (2001). Suppose the current state of the auxiliary

points is uc
1, ..., u

c
M−1 and that we make a proposal unew

1 , ..., unew
M−1 from

p(u1, ..., uM−1|u0, uM ), (12)

then the Metropolis-Hastings acceptance probability (Chib and Greenberg (1995)) would be

min

[
1,

p(unew
1 , ..., unew

M−1, uM |u0)
p(uc

1, ..., u
c
M−1, uM |u0)

p(uc
1, ..., u

c
M−1|u0, uM )

p(unew
1 , ..., unew

M−1|u0, uM )

]

= min

[
1,

∏M−1
m=0 p(uM |unew

m )∏M−1
m=0 p̂(uM |uc

m)

]
. (13)

Elerian, Chib, and Shephard (2001) also consider Markov chain algorithms in which (u1, ..., uM−1)

are updated in smaller, random blocks. The above proposal density can be adapted for that case

as well. The advantage of DG proposal density over the Elerian, Chib, and Shephard (2001)

proposal density is that it avoids the numerical evaluation of the mode.
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3 Other points

Section 8 of the paper extends the analysis to cover the case of a partially observed diffusion

— stochastic volatility. Unfortunately we found the material concerning propagation difficult to

follow. We believe that the authors are employing the adapted particle filter approach discussed

by Pitt and Shephard (1999). Here we give a slightly different derivation of this solution,

adapting the above notation to the bivariate case with u0 = (Xi−1, Hi−1) and uM = (Xi, Hi).

In a particle filter we approximate the density of Hi−1|Fi−1 by a sample of particles (think

bootstrap!), written H1
i−1, ..., H

N
i−1. If we let uj

0 = (Xi−1, H
j
i−1), then our task is to find a way

of simulating from Hi|Fi in order to produce a desired new sample H1
i , ..., HN

i . We do this by

augmentation, sampling N times from

p̃(j, u1, ..., uM |Fi) ∝ p(uM |uM−1)...p(u2|u1)p(u1|uj
0), j = 1, 2, ..., N, (14)

(keeping Xi fixed) and then throwing away all the draws except uj
M = (Xi, H

j
i ). As N goes to

infinity these draws converge to samples from Hi|Fi for this is a particle approximation to

p̃(u1, ..., uM |Fi) ∝ p(uM |uM−1)...p(u2|u1)
∫

p(u1|u0)p(u0|Fi−1)du0. (15)

The only remaining propagation question concerns the sampling of p̃(j, u1, ..., uM |Fi).

Sampling from p̃ can be carried out under the DG proposal by using a bridge process for the

observations (as above) and an unconstrained sampler for the volatilities. If we write the DG

sampler as p(u1, ..., uM−1, uM |u0, Xi) then the auxiliary particle filter method has the following

algorithmic form

1. Set k = 1.

2. Choose j randomly from 1, ..., N . Call this draw jk.

3. Sample and store

ujk
1 , ..., ujk

M−1, u
jk
M from p(u1, ..., uM−1, uM |ujk

0 , Xi) (16)

and compute

wk =
p(ujk

M |ujk
M−1)...p(u

jk
2 |ujk

1 )p(ujk
1 |ujk

0 )

p(ujk
1 , ..., ujk

M−1, u
jk
M |ujk

0 , Xi)
. (17)
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4. Repeat 1 until k = R.

5. Resample the from the particles
(
uj1

1 , ..., uj1
M−1, u

j1
M

)
, ...,

(
ujR

1 , ..., ujR
M−1, u

jR
M

)
with proba-

bilities proportional to w1, ..., wR.

Typically we choose R = 10N , then the theory of particle filters implies that as N goes to

infinity this provides a valid sample of size N from Hi|Fi.

The resampling operation given above is important but it introduces considerable variability

in output from the particle filter, implying that the corresponding estimated likelihood func-

tion will not be differentiable everywhere. Recently Pitt and Walker (2001) gave a solution to

this problem in the context of the univariate non-Gaussian OU based SV models developed by

Barndorff-Nielsen and Shephard (2001) (which has such a convenient structure that data aug-

mentation can be avoided entirely). Their method, which has been developed for state space

models with univariate states by Michael Pitt in unpublished work, seems similar to the use of

Hermite functions at the end of Section 8. Pitt’s solution does not easily extend to multivariate

states. Could the authors comment on whether this will be true of their method?

Finally, we conclude by noting that the use of augmentation to deal with likelihood based

inference for continuous time SV models was first suggested by Kim, Shephard, and Chib (1998,

Section 6.2).
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