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Abstract

Suppose we wish to carry out likelihood based inference but we solely have an unbiased simula-
tion based estimator of the likelihood. We note that unbiasedness is enough when the estimated
likelihood is used inside a Metropolis-Hastings algorithm. This result has recently been intro-
duced in statistics literature by Andrieu, Doucet, and Holenstein (2007) and is perhaps surprising
given the celebrated results on maximum simulated likelihood estimation.

Bayesian inference based on simulated likelihood can be widely applied in microeconomics,
macroeconomics and financial econometrics. One way of generating unbiased estimates of the
likelihood is by the use of a particle filter. We illustrate these methods on four problems in
econometrics, producing rather generic methods. Taken together, these methods imply that if
we can simulate from an economic model we can carry out likelihood based inference using its
simulations.
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1 Introduction

Simulation likelihoods are simulation based estimators of the likelihood. They are often quite

straightforward to compute — even for rather complicated models. In this paper we show how to

carry out Bayesian analysis using a simulated likelihood, often computed using a particle filter, for

a number of well known static and dynamic economic models.

Andrieu, Doucet, and Holenstein (2007) and Andrieu, Doucet, and Roberts (2007) have recently

shown the surprising result that when an unbiasedly estimated likelihood is used inside a Metropolis-

Hastings algorithm then the estimation error makes no difference to the equilibrium distribution

of the algorithm — allowing exact inference even when the likelihood is only estimated. Our paper

will be centred around using their insights. The proof of the validity of this expected auxiliary

variable method is simple and will be explained in Section 2. This simplicity heavily contrasts with

the fragility of the maximum simulated likelihood (MSL) estimator of Lerman and Manski (1981)

and Diggle and Gratton (1984), which needs the accuracy of the simulator to increase faster than

the sample size to produce even consistency.

Our focus in this paper is on four models. To illustrate the simplicity of the approach we look

at a standard cross-sectional Probit model. Our other examples come from time series problems,

where we will employ a particle filter to compute the simulated likelihood. The first time series

model we analyse is a standard linear, Gaussian model, where our estimates can be compared

to that obtained using a Kalman filter (which provides the exact likelihood). The second is a

simple stochastic volatility model. The third is a stochastic general equilibrium model. This last

problem is particularly interesting as it will show the unique power of combining the particle filter

with the Metropolis-Hastings algorithm. We believe this combination will have wide application in

economics where standard MCMC algorithms are difficult to apply due to the forward optimising

behaviour which is common in economic models.

1.1 MCMC and particle filters

The use of the Metropolis-Hastings algorithm to produce Markov chain Monte Carlo draws from

the posterior distribution of parameters given the data, is now well established in econometrics.

Chib (2001) provides an extensive discussion of the methods and the corresponding literature. A

difficulty with the application of these methods in some dynamic models is the evaluation of the

likelihood function, even including a variety of possible auxiliary variables. This has held back

the application of these methods for some problems in macroeconomics and microeconomics, where

agents have to perform sophisticated optimisation type calculations in order to update their decision

making. These forward looking problems typically have no explicit likelihood, but can be simulated
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from. As a result they are challenging for MCMC methods.

Instead of having to evaluate the likelihood exactly, this article advocates the use of a simulated

likelihood, often carried out using a particle filter. Not all readers will be familiar with particle

filters and so we will briefly discuss their background here. A particle filter is a sequential simulation

device to carry out on-line filtering for non-Gaussian, non-linear state space models (e.g. Gordon,

Salmond, and Smith (1993), Pitt and Shephard (1999) and Doucet, de Freitas, and Gordon (2001)).

It can be thought of as a modern generalisation of the Kalman filter, for the Kalman filter is able

to analyse only linear, Gaussian state space models. The particle filter has minimal requirements:

the ability to simulate from the dynamics of the state and being able to evaluate the measurement

density.

Both the particle and Kalman filters produce filtered estimates of unobserved states given past

data and estimates of the one-step ahead density, which delivers the likelihood via the prediction

decomposition. In the Kalman case all these quantities are exact, in the particle filter case they

are simulation based estimates. Importantly the particle filter based estimate of the likelihood

is non-continuous with respect to the parameters (see the smoothed version by Pitt (2001) in the

univariate state case and Flury and Shephard (2008) in the multivariate case) — even if common

random numbers are used.

Inside an MCMC algorithm the Kalman filter has been used to compute the likelihood function

in many papers, in vastly more papers it has been used to carry out maximum likelihood estimation

(e.g. Harvey (1989) and Durbin and Koopman (2001)). The particle filter has been used to

estimate the likelihood by Kim, Shephard, and Chib (1998) for the purpose of model comparison.

Pitt (2001) carries out MSL estimation based on a smoothed version of a particle filter, while

Durbin and Koopman (2001) discuss extensively alternative importance samplers as the basis of

the same estimation methods.

Particle filters are increasingly used in economics. Kim, Shephard, and Chib (1998) and Pitt

and Shephard (1999) were the first to use particle filters in economics, where they extracted the

filtered estimate of the current volatility from a stochastic volatility model. Later work on this,

including developments to try to learn parameters on-line using particle filters, can be seen in

Johannes, Polson, and Stroud (2008) and Johannes and Polson (2008).

An interesting application in microeconomics is Gallant, Hong, and Khwaja (2008), who look

at a dynamic game theory model with serially correlated production costs.

In macroeconomics Fernandez-Villaverde, Rudio-Ramirez, and Santos (2006) and Fernandez-

Villaverde and Rudio-Ramirez (2007) used particle filters as a basis for estimating the likelihoods

of some stochastic general equilibrium models, which they then maximised with respect to the
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parameters. This is an application of MSL estimation based on a particle filter. They also

mentioned the possibility of placing the estimated likelihood inside a Metropolis-Hastings algorithm,

but had no rationale for this.

Although our focus has been on combining particle filters with MCMC, other importance sam-

pling estimators of the likelihood can also be combined with MCMC to produce valid samples from

the correct posterior distribution. The work reviewed in Durbin and Koopman (2001) provides a

MSL estimator of many statistical state space models. All of that work can be immediately ported

over to the Bayesian environment, but without any distortions created by the simulation errors.

1.2 Maximum simulated likelihood estimation

Inference using maximum simulated likelihood estimation goes back at least to Lerman and Manski

(1981) and Diggle and Gratton (1984). In the simplest applications of this technique simulation is

used to unbiasedly estimate the likelihood using M independent and identically distributed (i.i.d.)

draws. The estimate is then numerically maximised with respect to the parameters. Based on a

sample of size T , for i.i.d. data we need that T/M → 0 for this MSL estimator to be consistent

and T/
√

M → 0 to have the same distribution as the maximum likelihood estimator.

This is a deeply disappointing result, for it means in a data rich environment the simulation

demands of the MSL method could be dramatic. Further, it is often difficult to know if T/
√

M

is close to zero. These observations lead to the development of new simulation based inference

strategies in the late 1980s and early 1990s. These included simulated scores, the stochastic EM

algorithm, indirect inference and efficient method of moments. Discussions of these topics can

be found in, for example, Hajivassiliou and McFadden (1998), Gourieroux, Monfort, and Renault

(1993), Smith (1993), Gallant and Tauchen (1996) and Gourieroux and Monfort (1996).

1.3 Outline of the paper

This paper is structured as follows. In Section 2 we provide a self-contained discussion of why using

an estimated likelihood makes no difference to the equilibrium distribution of a Metropolis-Hastings

algorithm. We compare this to the usual MSL approach. In Section 3 we give an example of a static

model. Section 4 treats dynamic models and introduces particle filters as a convenient tool to obtain

unbiased likelihood estimates. In Sections 5-7 we provide some examples from macroeconomics and

finance to demonstrate the performance of this algorithm in dynamic models. Section 8 gives some

conclusions we draw from our paper.
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2 Expected auxiliary variable method

2.1 An auxiliary variable interpretation of importance sampling

The basics of this argument can be expressed simply. Suppose we wish to carry out inference by

sampling from

f(θ|y) ∝ f(y|θ)f(θ),

where θ are the parameters, y the data, f(θ) is a prior and f(y|θ) a likelihood. Here f denotes the

density or probability function for continuous or discrete variables.

This typically requires us to calculate the likelihood f(y|θ), but here we assume that all we

have is a simulation based estimator

f̂u(y|θ),

which is unbiased

Eu

{
f̂u(y|θ)

}
= f(y|θ),

where we average over the simulation denoted by the multivariate u. We assume this estimator is

itself a density function in y. Then we can think of the simulation estimator f̂ as being based on

an auxiliary variable:

f̂u(y|θ) = g(y, u|θ),

that is g is a joint density which, when marginalised over u, delivers f(y|θ).

2.2 Bayesian analysis

This simple insight has significant implications econometrically, because now we can carry out

inference by sampling from

g(u, θ|y) ∝ g(y, u|θ)f(θ),

This simulation based Bayesian method will deliver draws

(
u(1), θ(1)

)
,
(
u(2), θ(2)

)
, ...,

(
u(N), θ(N)

)

so throwing away the u samples leaves us with

θ(1), θ(2), ..., θ(N)
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which are from f(θ|y). These samples can be used to approximate the entire posterior distribution

to arbitrary levels of accuracy, where in turn the statistical accuracy of the simulation-based ap-

proximation can be measured. Further, it can be used to approximate the posterior median, which

is an efficient estimator in the classical sense of θ by the Bernstein- von Mises Theorem.

The sampling can be carried out using generic Markov chain Monte Carlo (MCMC) algorithms.

Sample θ(i) from a proposal dQ
(
θ(i) | θ(i−1)

)
, draw the uniformly distributed u and compute

L̂(i) = f̂ (i)
u (y|θ(i))

The acceptance probability is given by

q = min


 L̂(i)

L̂(i−1)

f(θ(i))
f(θ(i−1))

dQ
(
θ(i−1)|θ(i)

)

dQ
(
θ(i)|θ(i−1)

) , 1


 .

Draw V ∼ U(0, 1) and if V > q set

(
L̂(i), θ(i)

)
=

(
L̂(i−1), θ(i−1)

)
.

Under very weak conditions (e.g. Chib (2001)) the sequence
{

θ(i)
}

for i = 1, . . . , N converges to

samples from f(θ|y) as N →∞.

An important practical observation is that the choice for the precision parameter M of the

likelihood approximation does of course play a role in the algorithm: it can influence the rejection

rate. If M is very small then f̂ will be a very jittery estimator of f which will increase the chance

the algorithm gets stuck. Hence increasing M will improve the mixing of the MCMC chain, so

increasing the incremental information in each new θ(i).

In this paper we suggest that for many economic models the issue of needing M to be large can

be entirely sidestepped — while still insisting on efficiency.

We saw this style of argument first in the context of dynamic models in a paper in statistical

theory by Andrieu, Doucet, and Holenstein (2007). The framework we use is vastly simpler and gets

immediately to the heart of the issue. We also know of an unpublished note by Andrieu, Doucet,

and Roberts (2007) who call this approach the Expected Auxiliary Variable method and we use

that phrase here. We make our contribution by illustrating these themes on some core econometric

problems.

2.3 Simple example

An example of this is the very simplest discrete choice model (e.g. Train (2003)) where yt is binary

Pr(yt = 1|xt, β, ψ) = pt = Pr(x′tβ + εt ≥ 0), εt|xt ∼ Ft(ψ),
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where we assume yt|xt are independent over t. Assume we can simulate from Ft(ψ).1 Write these

simulations as ε
(1)
t , ..., ε

(M)
t . Then the simplest simulation based estimator of pt is

p̂t =
1
M

M∑

j=1

1
x′tβ+ε

(j)
t ≥0

,

delivering the simulated likelihood function

f̂(y|β, ψ) =
T∏

t=1

p̂ yt
t (1− p̂t)1−yt .

It is easy to see that this is an unbiased estimator of the true likelihood

f(y|β, ψ) =
T∏

t=1

pyt
t (1− pt)1−yt ,

but of course the score is biased. It is this bias which drives the fact that the MSL estimator of

θ =
(
β′, ψ′

)′ behaves poorly asymptotically unless M →∞.

2.4 Comparison to MSL estimation

The above algorithm is fundamentally different from common econometric practice, which is to

compute f̂ with common uniform random variables, smoothing out the simulation error of the

estimator of the likelihood as θ varies. Here new uniforms are drawn at each iteration. This is

crucial.

When one uses common random numbers u, which are drawn once from a large dimensional

uniform distribution and held fixed as we vary θ, then

f̂u(y|θ) = g(y, u|θ),

such that we converge to the wrong posterior, which is proportional to

f̂u(y|θ)f(θ)

if we use this inside the Metropolis-Hastings algorithm. This posterior then needs M to increase

quickly in order for it not to have an impact on the solution.

As mentioned before, the MSL estimator has the inconvenient property that for a sample of

size T , for i.i.d. data we need that T/M → 0 for it to be consistent and T/
√

M → 0 to have the

same distribution as the maximum likelihood estimator. In a data rich environment the simulation

demands of the MSL method could be dramatic and it is often difficult to know if T/
√

M is close

to zero.
1It is interesting to note there is no requirement to be able to compute Ft(ψ).
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In the approach considered in this paper, our only concern for the choice of M is that the

likelihood estimate is not too jittery. The choice of M is quite easy in practice and unless we have

an extremely large number of observations, or a very spiky likelihood, a moderate M value is often

found to be sufficient.

3 Example: binary choice models

3.1 The model and prior

To start off we illustrate the workings of the algorithm in a rather simple static setup: a binary

choice model. We use the classical data set from Mroz (1987) to study the labour force participation

of T = 753 women. We perform inference on the parameters of the binary choice model by using an

unbiased estimate of the likelihood inside an MCMC algorithm. We will make sufficiently strong

assumptions that in this case an analytic likelihood is available, which allows us to cleanly assess

the effectiveness of the expected auxiliary variable method.

In this model we have a binary variable yt which takes the value 1 if a woman works and 0

otherwise. We assume that yt = 0 if y∗t ≤ 0 and yt = 1 if y∗t > 0, where

y∗t = β0 + β1nwifeinct + β2educt + β3expert + β4exper2t + β5aget

+ β6kidslt6t + β7kidsge6t + εt

The explanatory variables are non-wife income, education, experience, experience squared, age,

number of children less than six years old, and number of children between the ages of 6 and 18.

We write

pt = Pr(yt = 1|xt, β, ψ) = Pr
(
x′tβ + εt ≥ 0

)
= Pr

(−εt ≤ x′tβ
)

= F
(
x′tβ | ψ

)

where β = (β0, . . . , β7)
′. Here we choose the normal distribution for F (x′tβ | ψ). We assume a

Gaussian prior given by β ∼ N
(
β0, I8

)
where2

β0 = (0.5855,−0.0034, 0.0380, 0.0395,−0.0006,−0.0161,−0.2618, 0.0130)′ .

Given the Gaussian errors we can easily compute the true likelihood and thus use the results from

this exact likelihood model as a benchmark3.
2The prior mean β0 was set as the least squares estimator of the corresponding linear probability model.
3Of course much Bayesian econometric work on discrete choice models has been carried out based on MCMC

methods — see, for example, Chib and Greenberg (1998). These use different auxiliary variables, chosen to reflect
the particular problem at hand, rather than generic simulated likelihood methods. It should be expected that these
tailored methods will be more computationally efficient than the methods we are advocating here.
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3.2 Simulated likelihood

For the simulation based estimator of pt we draw

ε
(j)
t

i.i.d.∼ N
(
0, σ2

ε

)
, j = 1, . . . , M,

and compute the simulation based estimators of the probabilities as

p̂t =
1
M

M∑

j=1

1
x′tβ+ε

(j)
t ≥0

.

The estimate of the likelihood is given by

f̂(y|β, σ2
ε ) =

T∏

t=1

p̂yt
t (1− p̂t)1−yt .

We then use this estimator inside an MCMC algorithm as discussed above in order to make inference

on β.

We recall here that in the usual Probit model the variance has to be normalized, for it is

impossible to estimate both β and σ2
ε as

Pr
(
εt ≤ x′tβ

)
= Pr

(
εt

σε
≤ x′tβ

σε

)

In Probit models one usually sets σε = 1. In our setup the choice of σε can matter for the perfor-

mance of the algorithm. If we fix σε too small we can end up with a pair (yt = 1, p̂t = 0) which

results in f̂(y|β, ψ) = 0. We suggest setting σε = 1 by default and if this causes problems to tune

it such that we just avoid this undesirable outcome.

3.3 The sampling algorithm

Throughout we will use a Metropolis-Hastings algorithm to sample from the posterior distribution,

using the estimated likelihood. Instead of making proposals to update all the parameters at once,

we break the updating into a series of univariate proposals.

Throughout we have chosen to use random walk proposals for the parameters, each applied one

at a time:

β0,i = β0,i−1 + 0.1326ν1,i, β4,i = β4,i−1 + 0.0005ν5,i,

β1,i = β1,i−1 + 0.0058ν2,i, β5,i = β5,i−1 + 0.0031ν6,i,

β2,i = β2,i−1 + 0.0109ν3,i, β6,i = β6,i−1 + 0.2317ν7,i,

β3,i = β3,i−1 + 0.0108ν4,i, β7,i = β7,i−1 + 0.0703ν8,i,

where νj,i
i.i.d.∼ N (0, 1) for j = 1, . . . , 8 and i = 1, . . . , N . The variances in the random walk

proposals were chosen to aim for a 40% acceptance probability for each parameter, see e.g. Gelman,
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exact likelihood M = 1, 000 M = 2, 000 M = 4, 000
mean mcse Pr inef mean mcse Pr inef mean mcse Pr inef mean mcse Pr inef

β0 0.295 .033 .42 364 0.313 .039 .28 593 0.349 .035 .33 462 0.376 .030 .36 420
β1 -0.012 .000 .41 31 -0.012 .000 .28 57 -0.012 .000 .33 35 -0.012 .000 .36 42
β2 0.130 .001 .41 143 0.130 .002 .27 328 0.130 .001 .33 209 0.126 .001 .36 168
β3 0.124 .001 .41 149 0.125 .001 .27 149 0.123 .001 .32 160 0.124 .001 .36 197
β4 -0.002 .000 .41 130 -0.002 .000 .28 135 -0.002 .000 .33 162 -0.002 .000 .36 189
β5 -0.053 .001 .41 299 -0.054 .001 .28 479 -0.054 .001 .33 458 -0.054 .001 .37 321
β6 -0.868 .004 .43 70 -0.871 .004 .29 100 -0.876 .004 .34 128 -0.871 .004 .37 67
β7 0.035 .001 .41 81 0.034 .002 .28 125 0.032 .002 .33 94 0.032 .001 .36 77

Table 1: Results from MCMC for labour force participation using N = 100, 000, M = 1, 000,
M = 2, 000 and M = 4, 000. mcse denotes the estimate of the Monte Carlo standard error of the
posterior expectation, Pr denotes the probability of accepting a Metropolis-Hastings proposal for
that parameter and inef denotes the rate of inefficiency of the MCMC sampler.

Carlin, Stern, and Rubin (2003). We loop through the parameters to make a proposal for each

one individually and accept or reject it. The proposal variances were tuned on the exact likelihood

model. This will allow us to see how fast the estimated likelihood comes close to the truth as we

increase M . For the algorithm we set M = 1, 000, M = 2, 000, M = 4, 000 and N = 100, 000.

3.4 The results

Table 1 shows the following statistics for the MCMC algorithm: The arithmetical mean, the Monte

Carlo standard error, the acceptance probability, and the inefficiency of the MCMC algorithm

compared to a hypothetical sampler which produces i.i.d. draws from the posterior distribution.4

We discard the first half of the MCMC sample, to reduce the impact of burn-in, so that all statistics

are based on the second half and so roughly represent draws from the posterior distribution.

posterior covariance and correlation

Exact likelihood M = 4, 000

β0 .20 .07 -.54 -.15 .18 -.75 -.30 -.41 .16 .02 -.43 -.21 .23 -.71 -.29 -.40
β1 .00 .00 -.34 .05 .02 -.13 .04 -.04 .00 .00 -.34 .03 .05 -.09 .08 -.01
β2 -.01 .00 .00 -.06 .04 .00 -.17 .05 .00 .00 .00 -.03 .03 -.16 -.25 -.04
β3 .00 .00 .00 .00 -.92 -.07 -.03 .06 .00 .00 .00 .00 -.92 -.06 -.01 .09
β4 .00 .00 .00 .00 .00 -.06 .01 .02 .00 .00 .00 .00 .00 -.07 .01 -.01
β5 .00 .00 .00 .00 .00 .00 .44 .29 .00 .00 .00 .00 .00 .00 .44 .29
β6 -.02 .00 .00 .00 .00 .00 .01 .10 -.01 .00 .00 .00 .00 .00 .01 .10
β7 -.01 .00 .00 .00 .00 .00 .00 .00 -.01 .00 .00 .00 .00 .00 .00 .00

Table 2: Results from MCMC for labour force participation; exact likelihood model with N =
100, 000 and approximate analysis using M = 4, 000; posterior covariance (lower triangle) and
correlation (upper triangle) matrix.

The acceptance probabilities increase with M , so that with M = 4, 000 we have almost the

40% acceptance rate as the proposal variances were tuned for the exact likelihood model. The

inefficiency decreases with M but not monotonically so. Almost all of the posterior means based

on the estimated likelihood models are not significantly different from the exact likelihood model.
4Inefficiency is defined as 1 + 2

∑500
l=1

(
1− l

500

)
ρl where ρl denotes autocorrelation at lag l.
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Figure 1: Labour force participation model; Likelihoods and ACFs of parameters. Fist column:
L̂

(
θ(i)

)
for i = 1, . . . , 2000; second column: L̂

(
θ(i)

)
for i = 2001, . . . , 8N ; third column: ACF of

θ(i). First row: exact likelihood model; second row: estimated likelihood with M = 1000; third
row: M = 2000; fourth row: M = 4000.

Our results are very close to those from an ordinary Probit regression. All parameter estimates

have the expected sign, except β7.

Table 2 shows the posterior covariance (lower triangle) and correlation (upper triangle) matrix

of the parameters. For brevity we only report the covariance matrices of the exact likelihood and

the M = 4, 000 estimated likelihood model.

Since the θ(i) are highly correlated we use the Newey-West Heteroskedasticity and Autocorre-

lation Consistent (HAC) estimator for the computation of the Monte Carlo standard error (mcse).

The choice of the lag length B for this estimator is not obvious. The results reported are based on

a choice of B = 500.

Figure 1 compares the likelihood estimates and the autocorrelation functions (ACFs) for N =

100, 000 between the exact likelihood model, and the ones with estimated likelihoods with M =

1000, M = 2000 and M = 4000. Figure 2 compares the estimated posterior densities of the

parameters. We note that the performance improves as M increases.
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Figure 2: Labour force participation model; non-parametric kernel estimator of posterior density for
i = 50, 000, . . . , 100, 000. Black: exact likelihood model; red: estimated likelihood with M = 1, 000;
blue: M = 2, 000; green: M = 4, 000.

4 Dynamic economic models

We now move on to treat parameter estimation in dynamic economic models. First, we provide the

very general assumptions on the models we consider here. Then, we describe the MCMC algorithm

and particle filter we will use.

4.1 Assumptions

We assume we have some observations

y = (y1, y2, . . . , yT )

and wish to make Bayesian inference on some unknown parameters θ. We consider an underlying

non-linear and non-Gaussian state-space model of the following type.

Assumption 1 The simulation state space (SSS) model:

1. We can compute the measurement density

f(yt|αt,Ft−1, θ), t = 1, 2, ..., T,

where αt is the unobserved state and Ft−1 = y1, y2, . . . , yt−1 is the natural filtration.
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2. We can simulate from the random variable

αt|αt−1,Ft−1, θ, t = 1, 2, ..., T,

where we assumed that we can also draw from the initial condition α0|F0, θ.

3. We can compute the prior f(θ).

At no point do we assume we can compute f(αt+1|αt,Ft, θ). Computing this distribution is

often hard in models encountered in economics and finance, but we can often simulate from it. We

do not assume that such simulations are continuous with respect to θ with common random num-

bers (which allows the use of rejection in the simulation). Continuity in θ plays no role at all in our

analysis. We will argue in Sections 6 and 7 that a large number of intractable econometric models

are of this simulation state space form. Leading examples are DSGE models, some (continuous

time) stochastic volatility models and some models in industrial organisation.

4.2 Predictive decomposition

For dynamic models we can always decompose the likelihood using the predictive decomposition

f(y|F0, θ) =
T∏

t=1

f(yt|Ft−1, θ).

This is key to the success of the Kalman filter and the use of hidden Markov models (e.g. Durbin

and Koopman (2001)), where the predictive distributions f(yt|Ft−1, θ) can be computed exactly

using recursive formulae.

In more general models the predictive distributions can only be approximated. Here we will

use simulation to unbiasedly estimate f(yt|Ft−1, θ). This will be carried out using a particle filter,

whose recursive structure will allow us to calculate an unbiased estimator of f(y|F0, θ). This can

then be used as the basis for inference using an MCMC algorithm analogous to the above strategy.

4.3 Particle filter estimator of the likelihood

The modern statistical literature on particle filters started with Gordon, Salmond, and Smith

(1993), while a book length review is given in Doucet, de Freitas, and Gordon (2001). Kim,

Shephard, and Chib (1998) and Pitt and Shephard (1999) introduced particle filters into economics

and estimated the likelihood function f(y|θ) as a by-product in order to do model comparison

via marginal likelihoods. Particle filters have recently received some attention in macroeconomics

due to the work of, for example, Fernandez-Villaverde and Rudio-Ramirez (2007) and Aruoba,

Fernandez-Villaverde, and Rubio-Ramirez (2006).
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Here we give a very simple particle filter, which can be generically coded for simulation state

space models.

Particle filter

1. Draw α
(1)
1 , ..., α

(M)
1 from α1|F0, θ. Set t = 1 and l0 = 0.

2. Compute the weights

w
(j)
t = f(yt|α(j)

t ,Ft−1, θ), j = 1, . . . , M

and the normalised weights so that

W
(j)
t =

w
(j)
t∑M

k=1 w
(k)
t

j = 1, . . . , M

3. Resample by drawing u ∼ U (0, 1) and let

u(j) =
u

M
+

j − 1
M

for j = 1, . . . , M . Find the indices i1, . . . , iM such that

ij−1∑

k=1

W
(k)
t < u(j) ≤

ij∑

k=1

W
(k)
t (1)

4. Sample

α
(j)
t+1 ∼ αt+1|α(ij)

t ,Ft, θ

for j = 1, . . . , M .

5. Record

lt(θ) = lt−1(θ) + log





1
M

M∑

j=1

w
(j)
t





Let t = t + 1 and goto 2.

Then it is relatively easy to show that

exp (lT (θ)) a.s.→ f(y|θ)

as M →∞ (see for example Del-Moral (2004))5, while crucially for us

E [exp(lT (θ))] = f(y|θ).
5An important aspect of the convergence is that it is pointwise: particle filters are not continuous with respect to θ

so neither is lT (θ). This is a fundamental property of particle filters and it is caused by the resampling step (1), which
is very hard to overcome unless αt is univariate — see Pitt (2001). Discontinuous estimates of the likelihood function
cause problems for maximum simulated likelihood techniques such as those proposed by Fernandez-Villaverde,
Rudio-Ramirez, and Santos (2006) and Fernandez-Villaverde and Rudio-Ramirez (2007). To our knowledge only
Flury and Shephard (2008) offer a smooth particle filter which circumvents this problem in the multivariate state case.
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See also Del-Moral (2004).

In order to carry out MCMC we proceed by replacing f(y|θ) by its particle filter estimate

L̂ (θ) = exp {lT (θ)}

which we are allowed to do as the particle filter indeed provides an unbiased estimate of f (y | θ),
which can be used inside an MCMC algorithm as discussed in Section 2.2. This has the same

structure as before, delivering simulations from the posterior distribution.

We now move on to provide some examples in economics to demonstrate the performance of

this algorithm.

5 Example: Gaussian linear model

We start off by analysing a simple linear Gaussian model where an analytical expression for f (y | θ)
is readily available from the Kalman filter in order to be able to evaluate the particle MCMC

algorithm.

We consider the Gaussian linear model (see e.g. Harvey (1989) and Durbin and Koopman

(2001))

yt = µ + αt + σεεt,
αt+1 = φαt + σηηt,

(
εt

ηt

)
i.i.d.∼ N (0, I) ,

where α0 ∼ N
(
0, σ2

η/
(
1− φ2

))
. In order to guarantee positive variances we parameterise the log

of the variances, while we impose that φ ∈ (−1, 1) by allowing no prior probability outside that

region. We take θ =
(
µ, log σ2

ε , φ, log σ2
η

)′, where µ controls the unconditional mean of yt, φ the

autocorrelation and σ2
η the variance of the latent process. The likelihood can be computed using

the Kalman filter and this will serve us as a benchmark. For our simulation study we generate

T = 1, 000 observations from this DGP with parameterization θ∗ = (0.5, log 1, 0.825, log 0.75)′. We

assume a Gaussian prior given by θ ∼ N (θ0, I4) where θ0 = (0.25, log 1.5,0.475, log 0.475)′.

Any proposals for φ 6∈ (−1, 1) are automatically rejected. We are using the following four

random walk proposals for the transformed parameters, each applied one at a time:

µi = µi−1 + 0.3298ν1,i φi = φi−1 + 0.0671ν3,i

log σ2
ε,i = log σ2

ε,i−1 + 0.1866ν2,i log σ2
η,i = log σ2

η,i−1 + 0.2676ν4,i

where νj,i ∼ i.i.N (0, 1) for j = 1, . . . , 4 and i = 1, . . . , N . The variances in the random walk

proposals were chosen to aim for a 40% acceptance probability for each parameter. We loop through

the parameters to make a proposal for each one individually and accept or reject it. Generally we

run the MCMC algorithm with N iterations and allow for a burn-in period of N
2 , such that all of

the below statistics are computed with the second half of the draws.
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We start by running the Kalman filter for a chain length of N = 100, 000. The last column in

Figure 4 shows the Markov chain output for µ|y and σ2
ε |y and the histograms, which are only based

on the second half of the chains (the other parameters have similar types of sample paths). Next we

ran the particle filter at M = 100 and N = 100, 000. As we can see in the first column in Figure 4,

using only M = 100 particles appears to be insufficient for the length of the chain considered here.

The chain gets stuck on specific parameter values for a considerable time. To see what happens in

the very long run we let the MCMC algorithm run up to N = 1, 000, 000 and the second column in

Figure 4 shows the parameter chains and histograms in this scenario. We see that even though the

number of particles is too small at M = 100, we can make up for it by having the Markov chain

run longer. The chain still gets stuck but the histograms start to look better. We now look at the

impact of increasing the number of particles from only M = 100 to M = 1, 000. The third column

in Figure 4 shows the drastic improvement in the performance of the algorithm from this increase.

Both parameter chains and histograms start looking very similar to the Kalman filter results.

Table 3 compares the output of the MCMC algorithm from the Kalman Filter, with that from

the M = 100, N = 1, 000, 000 and that from the M = 1, 000, N = 100, 000 particle filter. The

table shows the following statistics: The arithmetical mean, the Monte Carlo standard error, the

acceptance probability, the posterior variance and the inefficiency. We see how the acceptance

probabilities improve with M . We do not report it here for brevity, but with M = 2, 000 we

achieve an acceptance probability of 30%. To see that effect more clearly Figure 3 compares the

evolution of the ACFs and likelihoods as we run through the setups M = 100 with N = 100, 000,

M = 100 with N = 1, 000, 000 and M = 1, 000 with N = 100, 000 with the Kalman filter output.

exact likelihood M = 100, N = 106 M = 1, 000
mean mcse Pr var inef mean mcse Pr var inef mean mcse Pr var inef

µ 0.562 .001 .40 .015 7.2 0.553 .002 .02 .013 531 0.562 .001 .25 .014 7.8
σ2

ε 1.030 .003 .40 .012 39 1.033 .003 .02 .010 855 1.031 .003 .25 .012 29
ρ 0.783 .001 .39 .001 37 0.785 .001 .02 .001 775 0.783 .001 .25 .001 30
σ2

η 0.621 .004 .40 .015 48 0.607 .003 .02 .011 784 0.618 .003 .26 .015 36

Table 3: Results from MCMC for the linear state space model using N = 100, 000 for the exact
likelihood (computed by the Kalman filter) and the simulation likelihood based on M = 1, 000.
When M = 100 the MCMC algorithm became very inefficient and we needed to use N = 1, 000, 000.
mcse denotes the estimate of the Monte Carlo standard error of the posterior expectation, Pr denotes
the probability of accepting a Metropolis-Hastings proposal for that parameter and inef denotes
the rate of inefficiency of the MCMC sampler.

As a final note we would like to comment on how we suggest choosing M and the variances of

the random-walk proposals. We find that a good indication whether one has reached a sufficient

number of particles – sufficient in the sense of achieving a likelihood estimate that is not too jittery –

is when the speed with which the acceptance probabilities increase with M starts to slow down and

improvements become only marginal. Once this point has been reached we recommend tuning the
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Figure 3: Random walk with noise model; first row: likelihoods and ACFs from M = 100 with
N = 100, 000 particle filter; second row: M = 100 with N = 1, 000, 000; third row: M = 1, 000
with N = 100, 000; fourth row: Kalman filter with N = 100, 000.

proposal variances to get the desired levels for the acceptance probabilities. If one ends up having

to decrease variances by a lot to get acceptance probabilities of around 40% for long chains this is

an indication that M is not sufficiently large. It is helpful to always keep an eye on the ACFs. If

one has to use small proposal variances to get acceptance probabilities of 40% and observes highly

autocorrelated chains at the same time this is another strong indicator that M is too small.

6 Example: discrete time Gaussian SV model

We now turn to a simple real life problem and estimate the Gaussian discrete time stochastic

volatility model (e.g. the reviews in Ghysels, Harvey, and Renault (1996) and Shephard (2005)).

The stock returns are assumed to follow the process

yt = µ + exp {β0 + β1αt} εt

and the stochastic volatility factor

αt+1 = φαt + ηt,

where
(

εt

ηt

)
i.i.d.∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, α0 ∼ N

(
0,

1
1− φ2

)
.
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Figure 4: Random walk with noise model; particle chains and histograms for parameters µ and
σ2

ε ; first column: particle filter with M = 100 and N = 100, 000; second column: M = 100 and
N = 1, 000, 000; third column: M = 1, 000 and N = 100, 000; fourth column: Kalman filter with
N = 100, 000.

Now we have θ = (µ, β0, β1, φ, ρ)′. For this model the likelihood is not available. Researchers have

used MCMC, MSLE, method of moments and indirect inference to estimate this type of model.

See the reviews above for a discussion of the literature on this.

We assume a Gaussian prior given by θ ∼ N (θ0, I5) where θ0 = (0.036,−0.286, 0.077, 0.984,−0.794)′.

Any proposals for φ, ρ 6∈ (−1, 1) are automatically rejected. We are using the following random

walk proposals

µi = µi−1 + 0.017ν1,i, φi = φi−1 + 0.004ν4,i,
β0,i = β0,i−1 + 0.104ν2,i, ρi = ρi−1 + 0.067ν5,i,

β1,i = β1,i−1 + 0.010ν3,i,

where νj,i
i.i.d.∼ N (0, 1) for j = 1, . . . , 5 and i = 1, . . . , N . We loop through the parameters to make

a proposal for each one individually and accept or reject it.

The data we use for this study is the end-of-day level of the SNP500 Composite Index (NYSE/AMEX

only) from CRSP. We use 3271 daily observations from 03.01.1995 until 31.12.2007. The daily re-

turns are defined as

yt = 100 (log SNP500t − log SNP500t−1)

The statistics are displayed in Table 4. The most interesting aspect of the estimated parameters
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mean mcse Pr posterior covariance and correlation inef
µ 0.042 0.000 0.410 0.000 -0.686 -0.137 0.304 0.145 15
β0 -0.141 0.001 0.395 -0.001 0.006 0.061 -0.222 -0.044 12
β1 0.080 0.000 0.398 0.000 0.000 0.000 -0.688 -0.015 18
φ 0.982 0.000 0.424 0.000 0.000 0.000 0.000 -0.054 16
ρ -0.742 0.000 0.427 0.000 0.000 0.000 0.000 0.002 6.4

Table 4: Results from the particle MCMC algorithm for the stochastic volatility model; N =
100, 000, M = 2, 000. The correlations are above the leading diagonal. Inef denotes the rate of
inefficiency of the MCMC sampler, Pr denotes the probability of accepting a Metropolis-Hastings
proposal for that parameter and mcse denotes our estimate of the Monte Carlo standard error of
the posterior expectation.

is the extremely strong negative statistical leverage parameter ρ and the high negative posterior

correlation between µ and β0 and β1 and φ. It is interesting to observe that ρ is not importantly

correlated with the other parameters in the model.

The data together with the filtered time-series for daily volatility E {exp (β0 + β1αt) |Ft}, es-

timated by using the posterior means of the parameters, is plotted in Figure 5. Figure 6 depicts

likelihoods and ACFs from the MCMC output.

This analysis is based on M = 2, 000 and N = 100, 000. Convergence looks pretty fast for

this algorithm, with very modest inefficiency factors. Of course it is computationally demanding

as each simulated likelihood evaluation is quite expensive in terms of time, but the coding effort

is very modest indeed. The implementation of this method is quite simple and seems competitive

with other procedures put forward in the literature.

7 Example: a dynamic stochastic equilibrium model

We now estimate a simple DSGE model. An and Schorfheide (2007) were the first to consider

Bayesian inference for DSGE models. Fernandez-Villaverde and Rudio-Ramirez (2007) were the

first to consider using particle filters to perform parameter inference. In their paper however

they only report maximum simulated likelihood estimates and indicate the possibility of using this

present algorithm but provide no rationale for why it would work. As mentioned earlier the kind

of maximum simulated likelihood approach they use runs into difficulties incurred because of the

pointwise convergence of the particle filter estimate of the likelihood. Amisano and Tristani (2007)

seem to use this particle filter in MCMC algorithm to estimate a DSGE model, but without any

further justification.

The model we consider here is a simple version of a DSGE model. There is a representative

household maximizing its lifetime utility, given by

max
{Ct,Lt}∞t=0

E0

[ ∞∑

t=0

βt {log (Ct) + ψ log (1− Lt)}
]

, β ∈ (0, 1) , ψ > 0,
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Figure 5: Stochastic volatility model; Top: log-returns on end-of-day level of the SNP500 Compos-
ite Index (NYSE/AMEX only) from 03.01.1995 until 31.12.2007; bottom: E {exp (β0 + β1αt|Ft)}
based on posterior means of the parameters.

where Ct is consumption, Lt ∈ [0, 1) labour, β the discount factor and ψ determines labour supply.

In this economy there is one single good which is produced according to

Yt = AtK
α
t L1−α

t ,

where Kt is the stock of capital and At technology. The stock of capital evolves according to

Kt+1 = (1− δ)Kt + UtIt,

where It is investment, Ut investment technology and δ the depreciation rate.

We further assume this to be a closed economy without government, such that the aggregate

resource constraint is given by

Ct + It = Yt.

In the discussion that follows Et stands for the expectation of functions of future (At, Ut) given

information available at time t.

We assume the following model for the technologies

log At = ρa log At−1 + σaηa,t,
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Figure 6: Stochastic volatility model; particle filter with M = 2000: Likelihoods and ACFs of
parameters. Top: L̂

(
θ(i)

)
for i = 1, . . . , 2000; middle: L̂

(
θ(i)

)
for i = 2001, . . . , 5N ; bottom: ACF

of θ(i).

log Ut = ρu log Ut−1 + σuηu,t,

where ηa,t, ηu,t
i.i.d.∼ N (0, 1).

It is supposed that the econometrician is given time series of Yt and Lt observed with noise and

that the task is to carry out inference on

θ =
(
α, β, δ, ψ, ρa, ρu, σεy , σεl

, σa, σu

)′
,

where σεy , σεl
are the standard errors of the measurement error for the observations. Their func-

tional form will be explained in more detail in a minute.

In this economy the central planner and the competitive equilibrium coincide. We decide to

solve the central planner’s problem

max
{Kt+1,Lt}∞t=0

{
E0

[ ∞∑

t=0

βt

(
log

{
AtK

α
t L1−α

t +
1
Ut

((1− δ) Kt −Kt+1)
}

+ ψ log {1− Lt}
)]}

The first order equilibrium conditions

1
Ct

= UtβEt

[
1

Ct+1

{
αAt+1K

α−1
t+1 L1−α

t+1 +
1

Ut+1
(1− δ)

}]
,

ψ
1

1− Lt
=

1
Ct

(1− α) AtK
α
t L−α

t ,
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Figure 7: Stochastic volatility model; particle filter with M = 2, 000: θ(i) for i = 1, . . . , 100, 000
and histogram of parameters for i = 50, 000, . . . , 100, 000.

together with the resource constraint

Ct = AtK
α
t L1−α

t +
1
Ut

((1− δ) Kt −Kt+1) ,

and the technology processes fully characterize the solution to the problem.

Solving this system of non-linear expectational difference equations involves finding policy func-

tions g and h such that

(Ct, Lt)
′ = g (Kt, At, Ut) ,

(Kt+1, At+1, Ut+1)
′ = h (Kt, At, Ut) + σΩηt+1,

where σ is the perturbation parameter and

Ω =




0 0
σa 0
0 σu


 , ηt+1 =

(
ηa,t+1

ηu,t+1

)
.

We find a second order approximation to these policy functions by perturbation methods. We

solve the system in terms of log-deviations from a non-stochastic steady-state and use notation

ĉt = log Ct/Css, where Css denotes the non-stochastic steady-state.

Now unify notation by letting x̂t denote the state variables x̂t =
(
k̂t, ât, ût

)′
. The solution will
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be of the state space form

k̂t+1 = hx,1x̂t + 1
2 x̂′thxx,1x̂t + 1

2hσσ,1σ
2,

ât = ρaât−1 + σaηa,t,

ût = ρuût−1 + σuηu,t,

(2)

and

ĉt = gx,1x̂t + 1
2 x̂′tgxx,1x̂t + 1

2gσσ,1σ
2,

l̂t = gx,2x̂t + 1
2 x̂′tgxx,2x̂t + 1

2gσσ,2σ
2.

We rely on code from Schmitt-Grohe and Uribe (2004) and Klein (2000) to solve for the unknown

derivatives hx, gx, hxx, gxx, hσσ, gσσ.

We make the simple assumption that the observable variables are given by

ĜDP t = ŷt + σεyεy,t,

Ĥt = l̂t + σεl
εl,t,

(3)

where ĜDP t represents detrended real GDP per capita and Ĥt represents hours worked per capita.

From our model we compute these as

ŷt = ât + αk̂t + (1− α) l̂t,

l̂t = gx,2x̂t +
1
2
x̂′tgxx,2x̂t +

1
2
gσσ,2σ

2.

Equations (2) together with the observation equations (3) specify a non-linear state-space system,

from which we can easily simulate and hence use the particle filter to evaluate the likelihood of the

model L̂ (θ). The parameters of the model are

θ =
(
α, β, δ, ψ, ρa, ρu, σεy , σεl

, σa, σu

)′
.

As a demonstration of the model fitting exercise we limit ourselves to estimating a subset of the

parameters. In particular we take α, β, δ and ψ as fixed and fit the remaining parameters. We use

the particle filter in MCMC algorithm. The algorithm to obtain L̂ (θ) inside the MCMC algorithm

works as follows

1. Given θ(i), compute Kss, Ass, Uss, Css, Lss.

2. Use perturbation methods to find numerical values for hx, gx, hxx, gxx, hσσ, gσσ.

3. Run the particle filter on the state-space system (3) and (2) to obtain L̂
(
θ(i)

)
.

We use this model to simulate a realization of the economy. We generate T = 200 observations

with the parameterization

α β δ ψ ρa ρu log σεy log σεl
log σa log σu

0.37 .9992 .0154 1.956 .98 .96 log 0.002457 log 0.004877 log 0.005 log 0.042
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The values chosen are inspired by the findings in Fernandez-Villaverde and Rudio-Ramirez (2007).

In order to guarantee positive standard errors in the MCMC algorithm we parameterise the log

of the standard errors. We assume a Gaussian prior with mean θ0, given by

ρa ρu log σεy log σεl
log σa log σu

.95 .90 log 0.003457 log 0.005877 log 0.006 log 0.052

Any proposals for ρa, ρu 6∈ (−1, 1) are automatically rejected. We are using the following random

walk proposals

ρa,i = ρa,i−1 + 0.0545ν1,i, log σεl,i = log σεl,i−1 + 0.159ν4,i,

ρu,i = ρu,i−1 + 0.0077ν2,i, log σa,i = log σa,i−1 + 0.1125ν5,i,

log σεy,i = log σεy,i−1 + 0.251ν3,i, log σu,i = log σu,i−1 + 0.06ν6,i,

where νj,i ∼ i.i.N (0, 1) for j = 1, . . . , 6 and i = 1, . . . , N . We loop through the parameters to make

a proposal for each one individually and accept or reject it.

For the particle filter we chose M = 60, 000 particles. We have to use such a large number of

particles because k̂t does not have a stochastic noise term itself. This makes it a slowly mixing

process and this gives the particle filter a hard time. It will take a long period of time to “forget”

a small mistake made at t = 0, so the initial draw k̂0 is very important for the performance of the

DSGE estimation. The small variances in the observation processes make it a very spiky likelihood

and this results in very few particles x̂
(i)
0 having very large weights. This results in the MCMC

algorithm being stuck for a long time if we do not have a rather large number of particles.

We produce results for N = 10, 000. As usual we display the likelihood and the ACFs in Figure

8 and the parameter histories and their histograms in Figure 9.

Table 5 shows the usual statistics and the variance-covariance matrix. The posterior means

take reasonable values. The estimates for ρa and ρu seem a bit far away from their true values.

mean mcse Pr inef posterior covariance and correlation
ρa 0.9512 .001 .396 18 5.26E-04 0.034 0.100 0.029 -0.209 0.047
ρu 0.9353 .002 .487 78 0.17E-04 4.49E-04 -0.137 0.111 0.001 0.668
σεy 0.0020 .000 .448 103 0.02E-04 -0.03E-04 0.01E-04 -0.614 -0.291 -0.057
σεl

0.0053 .000 .424 22 0.01E-04 0.03E-04 -0.01E-04 0.01 -0.198 0.012
σa 0.0055 .000 .386 32 -0.03E-04 0.00E-04 0.00E-04 0.00E-04 0.00E-04 -0.004
σu 0.0394 .000 .421 54 0.04E-04 0.46E-04 0.00E-04 0.00E-04 0.00E-04 0.11E-04

Table 5: Results from MCMC with particle filter; N = 10, 000, M = 60, 000.

Fitting the DSGE model here is done in a spirit of demonstrating the workings and capabilities

of the algorithm rather than gaining any new insight on model parameters. This concludes the

dynamic model example section.
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Figure 8: DSGE model; particle filter with M = 60, 000: Likelihoods and ACFs of parameters.
Top: L̂

(
θ(i)

)
for i = 1, . . . , 2000; middle: L̂

(
θ(i)

)
for i = 2001, . . . , 6N ; bottom: ACF of θ(i).

8 Conclusion

In the econometric literature estimated likelihoods are sometimes used as the basis for approximate

maximum likelihood estimation. Such maximum simulated likelihood estimators have a deep the-

oretical flaw, as emphasised in the literature. In this paper we note that the effect of estimation

can be removed by replacing the maximisation of the likelihood by placing the estimated likelihood

inside an MCMC algorithm. The theory of this is very simple.

In this paper we show the power of this approach, providing examples drawn from microecono-

metrics, financial econometrics and macroeconomics. When we use these methods on dynamic

models it is convenient to use a particle filter to deliver an unbiased estimator of the likelihood.

Such estimators are pretty general as they just need one to be able to simulate from the dynamics

of the model to be able to implement it.

Particle filter based estimation of dynamic models is not fast, but it is conceptionally simple

and applies very widely in economics. We believe that it provides a simple generalisation of the

Kalman filter and can now handle many problems where estimation was previously cumbersome.
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Figure 9: DSGE model; particle filter with M = 60, 000: θ(i) for i = 1, . . . , 10, 000 and histogram
of parameters for i = 5, 000, . . . , 10, 000.
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