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Johansen derived the asymptotic theory for his cointegration rank test statisic for
a vector autoregression where the parameters are restricted so the process is inte-
grated of order one. It is investigated to what extent these parameter restrictions
are binding. The eigenvalues of Johansen’s eigenvalue problem are shown to have the
same consistency rates accross the parameter space. The test statistic is shown to
have the usual asymptotic distribution as long as the possibilities of additional unit
roots and of singular explosiveness are ruled out. To prove the results the convergence
of stochastic integrals with respect to singular explosive processes is considered.

1 Introduction

The cointegration rank test statistic of Johansen (1988, 1995a) is analysed. This is a
likelihood ratio test statistic in a vector autoregression. In the initial distributional
analysis attention was restricted to the I(1)-case thereby imposing restrictions on the
parameter space of the vector autoregressive model. Subsequent research has shown
that the same asymptotic distribution can arise in situations where these assumptions
are not satisfied. Johansen and Schaumburg (1998) have shown this is the case
for seasonally integrated processes while Nielsen (2001, 2005) has considered some
scenarios involving explosive roots. In contrast to those results Johansen (1995b)
shows that different asymptotic distributions arise in I(2)-cases. In this paper results
are given for the entire vector autoregressive parameter space.
Two types of results are given. First, the canonical correlations appearing in

Johansen’s eigenvalue problem are shown to be consistent in the entire parameter
space. That is, the largest canonical correlations are shown to have positive limits,
while the smallest canonical correlations vanish at a rate of T−1. An almost sure
version is given under some parameter restrictions.
Secondly, the parameter values are identified for which the rank test statistic has

the usual asymptotic distribution. This happens quite generally in the parameter
space with two exceptions. The first is that additional unit roots appearing in for
instance I(2)-case alter the asymptotic distribution. The second is that while regular
explosive components are allowed the possibility of singular explosive components is
ruled out. Such singular explosive components were noted by Anderson (1959) and
have been discussed by Duflo, Senoussi, and Touati (1991), Phillips and Magdalinos
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(2008) and Nielsen (2008). In the cointegration literature the main variants of the
vector autoregressive model involve constants, linear trends and seasonal dummies.
The presented asymptotic results cover these variants.
To establish these results the convergence of stochastic integrals with respect to

singular explosive processes needs to be considered. The difficulty is that although
singular explosive processes satisfy a Functional Central Limit Theorem they are not
adapted to the natural filtration of the problem. This problem has been encountered
previously in the context of integration with respect to mixing processes by de Jong
and Davidson (2000). The solution considered here has more general integrands
including various functions of random walks while the integrand is a singular explosive
process which is a particular nice version of a mixingale.
Related results have been established previously for some mis-specification tests.

Before conducting a rank test an investigator will be interested in checking the spec-
ification of the vector autoregression. Just as for the rank test asymptotic invariance
with respect to the vector autoregressive parameters would be of interest. This has
been established for lag length determination procedures by Nielsen (2006a, 2008),
whereas the correlograms based on the Yule-Walker equations are not invariant, see
Nielsen (2006b). Likewise Engler and Nielsen (2009) have shown that the empiri-
cal process of the residuals has the desired invariance properties as long as singular
explosive roots are ruled out.
The paper is organsied so that §2 introduces the cointegration model. Granger-

Johansen representations are given in §3. The asymptotic results are presented in §4.
The convergence of stochastic integrals with respect to singular explosive processes is
discussed in §5. Proofs are given in an appendix.
The following notation is used throughout the paper: For a matrix α let α⊗2 = αα0.

When α has full column rank then α = α(α0α)−1 whereas α⊥ is the orthogonal com-
plement so α0⊥α = 0 and (α, α⊥) is invertible. When α is symmetric then λmin (α)
and λmax (α) are the smallest and the largest eigenvalue respectively. For matrices
||α|| = {λmax(α⊗2)}1/2 is the spectral norm, implying that ||α−1|| = {λmin(α⊗2)}−1/2.
While E (εt|Ft−1) is a conditional expectation the residuals of the least squares re-
gression of Yt on Zt are denoted (Yt|Zt) = Yt −

PT
s=1 YsZ

0
s(
PT

s=1 Z
⊗2
s )

−1Zt for a time
series and (yu|zu) = yu −

R 1
0
yvz

0
vdv(

R 1
0
zvz

0
v)
−1zu for continuous processes.

2 Model and rank hypothesis

Suppose a p-dimensional time series,X1−k, . . . ,X0, . . . , XT is available. The statistical
model is then given by the vector autoregression

M : ∆Xt = (Π,Πd)

µ
Xt−1
dt−1

¶
+

k−1X
j=1

Γj∆Xt−j + μDt−1 + εt, (2.1)
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for t = 1, . . . , T, where the innovations εt are independently N(0,Ω)-distributed condi-
tionally on the initial valuesX1−k, . . . ,X0 while dt, Dt−1 are deterministic components
which are discussed below. Note, that in some cases the term Πddt−1 is left out of the
model equation (2.1). The normality assumption is necessary for defining a likelihood
function. For the subsequent asymptotic analysis it can, however, be replaced by a
martingale difference assumption. The parameters of the model are unrestricted so
Π,Γ1, . . . ,Γk−1,Ω ∈ Rp×p, Πd, μ ∈ Rp and vary freely so Ω is positive definite. The
likelihood function is defined accross this parameter space hence the interest in a
distributional analysis of test statistics accross the parameter space.
Two types of deterministic terms are included. Let μDt−1 = μ1D1,t−1+μ\1D\1,t−1,

where (dt, D1,t) are polynomials like a constant, a linear trend, while D\1,t covers
seasonal components. More formally,

dt = dt−1 + (1, 0)D1,t−1, D1,t = D1D1,t−1, D\1,t = D\1D\1,t−1, (2.2)

where D1 is a Jordan block of the form

D1 =

⎛⎜⎜⎜⎝
1 1 0 0

0
. . . . . . 0

...
. . . . . . 1

0 · · · 0 1

⎞⎟⎟⎟⎠ , (2.3)

while D\1 has eigenvalues on the complex unit circle except at one. Thus, D\1,t
can include demeaned seasonal dummies with the property that they sum to zero.
An example would be the biannual dummy D\1,t = (−1)t; see also the discussion of
Johansen (1995, §5.8). In combination, Dt = (D1,t,D\1,t) satisfies the autoregressive
equation Dt = DDt−1, where D is the blockdiagonal matrix D = diag(D1,D\1). It
will be required that deterministic process satisfies rank(D1, . . . ,DdimD) = dimD.
Johansen (1995) introduced five variants of deterministic terms. These are:

Mlq: dt = t2, but omitted in regression, D1,t = (t, 1)
0 so D1 =

µ
1 1
0 1

¶
,

Ml : dt = t, D1,t = 1 so D1 = 1,

Mlc: dt = t,but omitted in regression, D1,t = 1 so D1 = 1,

Mc : dt = 1, D1,t = ∅,
Mz : dt = ∅, D1,t = ∅.

The cointegration analysis of Johansen (1988, 1995) evolves around the reduced
rank restriction

H (r) : rank(Π,Πd) ≤ r
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for some r ≤ p. The reduced rank restriction can be parametised as

(Π,Πd) = αβ∗0 where β∗0 = (β0, δ0),

so α, β ∈ Rp×r, δ ∈ R1×r vary freely. The likelihood ratio test statistic for H(r) is
reviewed below. The interpretation of the hypothesis will, however, depend on the
stochastic properties of the process and hence on the parameters. For the standard
I(1)-case interpretation is given through the Granger-Johansen representation, see
Johansen (1995a, Theorem 4.2). A generalisation of that result is given in §3.
The likelihood ratio test statistic for the rank hypothesis is based on reduced rank

regression. Define X∗
t−1 = (X

0
t−1, dt−1)

0 or simply as X∗
t−1 = Xt−1 if dt−1 is omitted

from the model equation (2.1). The likelihood is then maximised in two steps. First,
∆Xt and X∗

t−1 are regressed on the remaining terms giving the least squares residuals

(R0,t, R1,t) =
¡
∆Xt,X

∗
t−1
¯̄
∆Xt−1, . . . ,∆Xt−k, Dt

¢
, (2.4)

Secondly, the squared sample canonical correlations, 1 ≥ λ̂1 ≥ · · · ≥ λ̂p ≥ 0, of
R0,t and R1,t are found. This is done by computing sample product moments Sij =
T−1

PT
t=1Ri,tR

0
j,t and then solving the eigenvalue problem

0 = det(λS11 − S10S
−1
00 S01). (2.5)

The likelihood ratio test statistic for the reduced rank restriction H(r) is given by

LR {H (r)|H (p)} = −T
pP

j=r+1

log(1− λ̂j).

3 Granger-Johansen representation

To establish a Granger-Johansen representation the rank of the autoregressive level
impact matrix Π needs to be known.

Assumption A rank(Π) = r.

For the classical I(1) case the number of unit roots is given as follows.

Assumption B The number of unit roots is p− r.

The I(1)-condition of Johansen (1988, 1995) is an algebraic condition on the pa-
rameters ensuring that the number of unit roots is p − r. The next theorem shows
that the I(1)-condition holds regardless of the location of the remaining roots.
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Theorem 3.1 Assume A holds. Then Assumption B is equivalent to the condition
det(α0⊥Ψβ⊥) 6= 0.

Theorem 3.1 implies that under Assumption A, B then (β,Ψ0α⊥) is invertible and
so it can serve as a basis for Rp. This is seen by pre-multiplying the basis with (β, β⊥)

0

which gives a triangular block matix, see also Johansen (1995a, Exercise 3.7).
The general Granger-Johansen representation theorem now follows. There are two

differences in the formulation as compared to Johansen (1995, Theorem 4.2). First,
the considered parameter space is larger. Secondly, the representation expresses Xt−1
in terms of the regressor Yt−1 = (X∗0

t−1β
∗,∆X 0

t−1, . . . ,∆X 0
t−k+1)

0 of the model equation
(2.1). The result is therefore suited to analysis of the residuals R0,t and R1,t. In those
respects the result generalises the univariate result of Nielsen (2001, Lemma A1).

Theorem 3.2 Suppose seasonal deterministic components are excluded, Dt = D1,t.
Assume A, B. Define the process Yt = (X∗0

t β
∗,∆X 0

t, . . . ,∆X 0
t−k+2)

0, parameters

C = β⊥(α
0
⊥Ψβ⊥)

−1α0⊥, J = {(Ip − CΨ)β,−C
k−1P
j=1

Γj, . . . ,−C
k−1P

j=k−1
Γj},

and the initial condition ε0 = ΨX0 +
Pk−2

c=0

Pk−1
j=c+1 Γj∆X−c + τ ε. Then

Xt = C
tP

s=0

εs + JYt + τDDt + τddt with Yt = YYt−1 + (β, Ip, 0)
0εt,

where Y satisfies det(Y − IdimY) 6= 0 so Y has no roots of unity. In particular, the
cointegrating vectors β remove unit roots so the relation β0Xt has no unit roots.
The deterministic terms satisfy

τd = Cμ (1, 0)0 − (Ip − CΨ)βδ0,

β0τD(1, 0)
0 = α0(ΨC − I)μ(1, 0)0 + α0(ΨCΨ−Ψ)βδ0,

τ ε = −μ{(1, 0)0 d−1 + (I(dimD)−1, 0)0D−1}.

In particular it holds β∗0X∗
t = β0Xt + δ0dt has no dt component.

The standard I(1) result of Johansen (1995a, Theorem 4.2) is a special case. This
involves the assumption that the pk − p+ r roots not of unity are stationary.

Assumption C The characteric polynomial has pk − p+ r stationary roots.

Corollary 3.3 (Johansen, 1995, Theorem 4.2) Assume A, B, C. Then the process
Yt can be given a stationary initial distribution. In particular, the cointegrating rela-
tion β0Xt can be given a stationary initial distribution.
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Other special cases arise under various other assumptions to the pk−p+r roots not
of unity. Johansen and Schaumburg (1998) consider the case of seasonal integration.
Nielsen (2005) considers the case of co-explosive processes.
When there are additional unit roots the exact representation will depend on the

multiplicity of these roots. A result for the standard I(2) case is given by Johansen
(1992). For processes integrated of higher order la Cour (1998) provides a result.
Such results are bound to be somewhat involved in terms of notation. A general
result tailored towards facilitating the present results is given in §A.5.

4 Asymptotic results

For the asymptotic analysis the normality assumption for the innovations can be
replaced by a martingale difference assumption. The assumption is inspired by the
analysis of Lai and Wei (1982, 1983). It involves a bound to the conditional moments
of the innovations which is used to establish their Marcinkiewic-Zygmund result used
for the analysis of the explosive component.

Assumption D Let Ft be some filtration so the initial observations are measurable
with respect to F0. Let (εt,Ft) be a martingale difference assumption, so εt is Ft-
measurable and E(εt|Ft−1) = 0 a.s. Suppose
(i) supt E(||εt||2+γ|Ft−1) <∞ for some γ > 0.
(ii) E(εtε

0
t|Ft−1) = Ω a.s.

The requirement of constant conditional variance is used for two reasons. First, it
is used to establish a Law of Large Number and Functional Central Limit Theorems
involving the innovations εt and so it can it that respect be replaced by an assumption
that such Theorems hold. Secondly, it is used to handle the singular explosive process.
Thus, Assumption D could be modified somewhat if singular explosive processes were
ruled out.
The first result concerns the consistency of the canonical correlations. This result

only requires the cointegration rank is known and does not involve any assumptions
to the characteristic roots.

Theorem 4.1 Assume A, D with γ > 1. Then

(λ̂1, . . . , λ̂r) = OP(1), (λ̂r+1, . . . , λ̂p) = OP(T
−1).

The proof of Theorem 4.1 includes the notion of a stochastic integral with respect
to a singular explosive process. The necessary theory is established in §5.
Strong consistency results can be established for regular vector autoregressions.
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Assumption E The process is regular: any explosive root has geometric multiplicity
of one.

Theorem 4.2 Assume A, D, E hold with γ > 0. Then
(i) lim infT→∞ λ̂r > 0 and (λ̂r+1, . . . , λ̂p) = O(T−ξ) a.s. for all ξ < γ/(2 + γ).

(ii) lim infT→∞ λ̂r > 0 and (λ̂r+1, . . . , λ̂p) = O(T−1 log T ) a.s. if C holds.

Remark 4.3 Some strong consistency results can be established when Yt has singular
roots. For details see Remarks A.6, A.8 involving an argument of Bauer (2009).

The next result shows that the rank test statistic has the usual asymptotic distri-
bution when the number of unit roots is p− r and singular explosiveness is excluded.

Theorem 4.4 Consider either of the models Mlq,Ml,Mcl,Mc,Mz, possible including
a seasonal component D\1,t. Assume A, B, D, E with γ > 2. Then LR has the usual
asymptotic distribution described by Johansen (1995a, Theorems 6.1, 6.2):

LR
D→ tr{

R 1
0
dBuF

0
u(
R 1
0
FuF

0
udu)

−1R 1
0
FudB

0
u}.

Here Bu is a (p− r)-dimensional standard Brownian motion while Fu is given by:

Ml : Fu = {
µ

Bu

u

¶
| 1}, Mc : Fu =

µ
Bu

1

¶
, Mz : Fu = Bu,

Mlq : Fu = {
µ
(Ip−r−1, 0)Bu

u

¶
| 1} assuming α0⊥μ1

µ
1
0

¶
6= 0,

Mcl : Fu =

µ
(Ip−r−1, 0)Bu

1

¶
assuming α0⊥μ1 6= 0.

Remark 4.5 If the process has no explosive components it suffices that γ > 0 in
Assumption D as discussed in Remark A.12.

Special cases of this result are as follows. The standard I(1) result of Johansen
(1995a, Theorem 6.1). The seasonal integration result of Johansen and Schaumburg
(1998). The univariate result, p = 1, allowing explosive roots by Nielsen (2001). The
co-explosive result with one explosive root by Nielsen (2008).

Remark 4.6 If the Assumptions A, B to the number of unit roots are not satisfied
the rank test statistic will not have the correct limit. If the algebraic multiplicity of
the unit root is higher than the geometric multiplicity then the process is integrated
of order two, I(2), or higher. Johansen (1995b) and Rahbek, Kongsted and Jørgensen
(1999) discuss the limit distribution in I(2) situations. If the algebraic and geometric
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multiplicity are the same but with more than r unit roots the process is I(1), but
with less than r cointegrating relations. The limit distribution is discussed by Nielsen
(2004) for a bivariate situation. In general, combinations of such types of distributions
can appear.

Remark 4.7 For singular vector autoregressions the rank test statistic has the usual
limit. As an example consider the bivariate second order vector autoregression

∆Xt = ρ∆Xt−1 + εt with X0 = ∆X0 = 0, Ω = I2.

Then it holds, see Appendix A.8 for details, that

LR = tr{(I − cP )I01I−111 I10}+ oP(1),

where I10 =
PT

t=1(
Pt−1

s=1 εs)ε
0
t, I11 =

PT
t=1(

Pt−1
s=1 εs)

⊗2, c = ρ2/(ρ2 − 1) and P =
w⊥(w

0
⊥w⊥)

−1w0⊥ where w⊥ be the orthogonal complement of the Marcinkiewicz-Zyg-
mund limit ρ−t∆Xt → w =

P∞
s=1 ρ

−sεs a.s.

5 Convergence of stochastic integrals involving
singular explosive processes

The asymptotic analysis of the likelihood statistics involves cross sample moments of
random walk type variables and the singular explosive process. To analyse these it
is natural to develop some convergence results for stochastic integrals with respect
to singular explosive processes. The difficulty is that the singular explosive process
is not adapted so the standard semi-martingale result of Jakubowski, Mémin and
Pages (1989) does not apply. de Jong and Davidson (2000) considered related sto-
chastic integrals where both the integrand and the integrator are mixing processes
with Brownian limits. Here the integrator has to be of a more general type but at
the same type it can be exploited that the singular process integrand is a particular
nice mixingale.
Consider a singular explosive process Zt =

P∞
j=1W

−jeW,t+j where |eigen(W)| > 1
and eW,t is a linear function of εt. The simplest stochastic integral of interest is

1

T

TP
t=1

(
t−1P
s=1

εs)Z
0
t−1.

This arises as a cross product sample moment of some of the regressors, hence the
timing. Since (W− I)Zt−1 = eW,t +∆Zt, see Nielsen (2008, Theorem 3.4), it holds

1

T

TP
t=1

(
t−1P
s=1

εs)Z
0
t−1(W

0 − I) =
1

T

TP
t=1

(
t−1P
s=1

εs)e
0
W,t +

1

T

TP
t=1

(
t−1P
s=1

εs)(∆Zt)
0. (5.1)
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The first term converges to a stochastic integral in the usual way. The second term
is o(1) a.s. To prove this apply partial summation

1

T

TP
t=1

(
t−1P
s=1

εs)(∆Zt)
0 =

1

T
(
TP
t=1

εt)Z
0
T −

1

T

TP
t=1

εtZ
0
t. (5.2)

For the first term,
PT

t=1 εt is o(T
1/2+η) for any η > 0 by a Law of Iterated Logarithms,

see Lai andWei (1985, Theorem 1), while ZT = o(T
1/2−η) for a sufficiently small η > 0,

see Nielsen (2008, Corollary 4.3), both assuming D(i) with γ > 0. The second term
can be argued to vanish
These arguments can be generalised for rather general integrands. This is needed

because vector autoregressions can generate integrated processes of large order. For
this general result introduce the processes

JT,u = T−1/2
int(Tu)P
t=1

εt, KT,u = T−1/2
int(Tu)P
t=1

Zt−1

defined as (p + dimW)-dimensional process on the space DRp+dimW [0, 1] of functions
on [0, 1] with left limits and right continuity taking the value 0 at 0 endowed with the
Skorokhod metric with a univariate deformation. As in (5.1) it holds

(W− I)KT,u = T−1/2
int(Tu)P
t=1

eW,t + T−1/2(Zint(Tu) − Z0).

The latter term is o(1) uniformly in u with probability one, see Nielsen (2008, Corol-
lary 4.3) assuming D(i). It then holds that

(JT , KT )
D→ (J,K), (5.3)

on DRp+dimW [0, 1] by Chan and Wei (1988, Theorem 2.2) assuming D, where the limit
is a Brownian motion with variance matrix

Var

µ
Ju
Ku

¶
= u

µ
Ω ΩεZ

ΩZε ΩZZ

¶
.

Now, let h : DRp[0, 1] × [0, 1] 7→ DRm [0, 1] be a continuous function, let τ be the
identity function: τ(u) = u, and define HT = h(JT , τ) and H = h(J, τ). Examples
could be integrals like HT,u =

R u
0
JT,sds representing integrated processes of higher

order which will be considered here and powers like HT,u = J2T,u as well as polyno-
mials in time like HT,u = u. Then by the continuous mapping theorem it holds on
DRm+p+dimW [0, 1] that

(HT , JT ,KT )
D→ (H, J,K). (5.4)

9



Since JT is a quadratic martingale with respect to the filtration FT,u = Fint(Tu) it
holds jointly with (5.4) that

R u
0
HT,s−dJ

0
T,s

D→
R u
0
HsdJ

0
s, see Jakubowski, Mémin and

Pages (1989). The question is then if
R u
0
HT,s−dK

0
T,s

D→
R u
0
HsdK

0
s, jointly with the

previous convergence. The difficulty is that KT is not FT -adapted. The solution is
to decompose R u

0
HT,s−dK

0
T,s(W− I)

=
R u
0
HT,s−d(T

−1/2
int(Ts)P
t=1

eW,t)
0 +
R u
0
HT,s−dT

−1/2(Zint(Ts) − Z0)
0. (5.5)

Assuming that HT is FT -adapted the first term converges by Jakubowski, Mémin and
Pages (1989) so it is left to argue that the latter vanishes.

Theorem 5.1 Assuming D with γ > 0, that h satify the condition

sup
0≤u≤1

|| ∂

∂u
{h(·, ·)(u)}

¯̄̄̄
(JT ,τ)

|| a.s.= o(T η)

for all η > 0 and HT is FT -adapted then it holds on DR(m+1)(p+dimW+1)−1 [0, 1] that

(HT , JT ,KT ,
R ·
0
HT,s−dJ

0
T,s,
R ·
0
HT,s−dK

0
T,s)

D→ (H,J,K,
R ·
0
HsdJ

0
s,
R ·
0
HsdK

0
s).

Remark 5.2 The condition to the derivative of h holds if h(JT , τ) satisfies a Law of
Iterated Logarithms. This holds for (repeated) integrals of random walks, see Lai and
Wei (1985, Theorem 1) of Nielsen (2005, Theorem 5.1) and for power functions due
to the same Law of Iterated Logarithms.
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A Proofs

A.1 Proofs of representation results

Proof of Theorem 3.1. For this argument the deterministic terms are irrelevant.
Let Yt = {(β0Xt)

0,∆X 0
t, . . . ,∆X 0

t−k+2}0. The companion vector (X 0
tβ⊥, Y

0
t )
0 satisfiesµ

β0⊥Xt

Yt

¶
=

µ
Ip−r β0⊥ν
0 Y

¶µ
β0⊥Xt−1
Yt−1

¶
+

µ
β0⊥
ιY

¶
εt,

where Y, ιY , ν are given below. The triangular structure of the companion matrix
implies that Assumption B is equivalent to det(Y− Ip(k−1)+r) 6= 0. Now, Y, ιY , ν are

Y =

⎛⎝ Ir + β0α β0Γ1 β0ϕ
α Γ1 ϕ
0 ψ N0

⎞⎠ , ιY =

⎛⎝ β0

Ip
0

⎞⎠ , ν = (α,Γ1, . . . ,Γk−1) (A.1)

where ϕ = (Γ2, . . . ,Γk−1) and ψ0 = (Ip, 0) are {p × p(k − 2)}-dimensional, while the
{p(k − 2)× p(k − 2)}-dimensional Nx and its inverse, for x 6= 0, are

Nx =

⎛⎜⎜⎜⎝
−xIp
Ip

. . .

. . . . . .
Ip −xIp

⎞⎟⎟⎟⎠ , N−1
x = −

⎛⎜⎝ x−1Ip
...

. . .
x1−kIp · · · x−1Ip

⎞⎟⎠
−1

.

Partitioned inversion gives det(Y − Ikp−p+r) = det(N1) det(D), where det(−N1) = 1
and D is given by

D =
µ

β0α β0Γ1
α Γ1 − Ip

¶
−
µ

β0

Ip

¶
ϕN−1

1 ψ
¡
0 Ip

¢
.

Inserting the expressions for ϕ,N−1
1 , ψ and recalling Ψ = I −

Pk−1
j=1 Γj gives

D =
µ

β0α β0Γ1
α Γ1 − Ip

¶
+

µ
β0

Ip

¶
(0,

k−1P
j=2

Γj) =

µ
β0α β0(Ip −Ψ)
α −Ψ

¶
.

Pre-multiply and post-multiply D with regular matrices⎧⎨⎩ 0

µ
α0

α⊥

¶
Ir −β0

⎫⎬⎭D
½

0 Ir¡
β, β⊥

¢
0

¾
=

⎛⎝ −α0Ψβ −α0Ψβ⊥ Ir
−α0⊥Ψβ −α0⊥Ψβ⊥ 0

Ir 0 0

⎞⎠ .

The latter matrix is regular if and only if det (α0⊥Ψβ⊥) 6= 0 as desired.
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Proof of Theorem 3.2. Homogenous equation. Leaving out deterministic terms
and recalling that Ψ = Ip −

Pk−1
j=1 Γj the model equation (2.1) can be rewritten as

Ψ∆Xt = αβ0Xt−1 +
k−1P
j=1

Γj(∆Xt−j −∆Xt) + εt.

Insert ∆Xt−j −∆Xt = −
Pj−1

c=0∆
2Xt−c and interchange the two sums to get

Ψ∆Xt = αβ0Xt−1 −
k−2P
c=0

(
k−1P
j=c+1

Γj)∆
2Xt−c + εt.

Pre-multiply by C = β⊥(α
0
⊥Ψβ⊥)

−1α0⊥, sum over t, and recall the definition of ε0 to
get

CΨXt =
tP

s=0

Cεs −
k−2P
c=0

(
k−1P

j=c+1

CΓj)∆Xt−c. (A.2)

Assuming A, B then Theorem 3.1 implies that (β,Ψ0α⊥) is a basis. Then CΨ is
the associated skew projection on β⊥ along α

0
⊥Ψ, and it holds (Ip−CΨ)β⊥ = 0 giving

the skew projection identity

Ip = CΨ+ (Ip − CΨ)ββ0. (A.3)

Therefore Xt = CΨXt + (Ip − CΨ)ββ0Xt. Insert CΨXt from (A.2) and identify the
JYt component from the ∆Xt−c and β

0Xt terms. Note that Yt has no unit roots under
Assumption B as discussed in the proof of Theorem 3.1.
Inhomogenous equation. It is assumed that the seasonal deterministic terms D\1,t

are absent so Dt = D1,t. Replace εt by εt + αδ0dt−1 + μDt−1. For the common trend
component, C

Pt
s=0 εs, the additional contribution is Cμ

Pt
s=0Ds−1. Since dt and Dt

satisfy the equation (2.2) then

(1, 0)Dt−1 = ∆dt and (0, I(dimD)−1)Dt−1 = (I(dimD)−1, 0)∆Dt. (A.4)

The determistic contribution to the common trends is then

Cμ
tP

s=0

Ds−1 = Cμ (1, 0)0 (dt − d−1) + Cμ(I(dimD)−1, 0)
0(Dt −D−1). (A.5)

The equation for the non-unit root component is, in terms of Y, ιY of (A.1),

Yt = YYt−1 + ιY (εt + μDt−1),

noting that Yt now includes the component β
∗0X∗

t = β0Xt + δ0dt. Since Y does not
have unit roots then Ỹt = Yt−κDDt solves the homogeneous equation for Yt for some
κD as argued in Nielsen (2005, §3).

12



Combining these results it follows that

Xt = X̃t + τDDt + τddt + τ̃ ε, (A.6)

where X̃t solves the homogenous equation. It holds τd = Cμ(1, 0)0 − (Ip − CΨ)βδ0

where the first term originates from the common trend, while the second term arises
from β∗0X∗

t with impact (Ip − CΨ)β noting that ∆Xt has no dt term. Further,
τ̃ ε = Cτ ε where τ ε = −μ{(1, 0)0 d−1 + (I(dimD)−1, 0)0D−1} is the initial condition for
the common trends, see (A.5), noting that initial values for Yt are implicitly included
in the equation for Yt. The term τD is to be determined.
Insert the expression (A.6) for Xt in the model equation (2.1) to get

{∆X̃t + τD∆Dt + τd(1, 0)Dt−1} = α(β0X̃t−1 + β0τDDt−1)

+
k−1P
j=1

Γj{∆X̃t−j + τD∆Dt−j + τd(1, 0)Dt−j−1}+ μDt−1 + εt,

noting β0τd = −δ0. As X̃t solves the homogeneous equation it must hold that

τD∆Dt + τd(1, 0)Dt−1 = αβ0τDDt−1 +
k−1P
j=1

Γj{τD∆Dt−j + τd(1, 0)Dt−j−1}+ μDt−1.

Pre-multiply by β0, focus on the first element of Dt, that is D
(1)
t = (1, 0)Dt say, and

note that the first element of ∆Dt does not involve D
(1)
t . Hence, β0τD(1, 0)0 solves

τd = αβ0τD(1, 0)
0 +

k−1P
j=1

Γjτd + μ(1, 0)0.

Insert the expression for τd, rearrange and pre-multiply with α0 to get the desired
expression for β0τD(1, 0)0.

A.2 Some initial remarks on the eigenvalue problem

The cointegration analysis is done in terms of the residuals R0,t and R1,t defined in
(2.4). These residuals arise by regressing on ∆Xt−1, . . . ,∆Xt−k+1, Dt−1. As indicated
by the model equation (2.1) and the Granger-Johansen representation in Theorem 3.2
then it is convenient to extend this set of regressors by β∗0X∗

t−1 giving the regressor
(Y 0

t−1,D
0
t−1)

0 where Yt = (X∗0
t β

∗,∆X 0
t, . . . ,∆X 0

t−k+2)
0.

To appreciate the consequences of this extention the residual R1,t has to rotated
by β∗ as well as a complement, β∗⊥ say, of β

∗, so (β∗, β∗⊥) has full rank, but it is not
necessary that β∗0⊥β

∗ = 0. Different choices for β∗⊥ depending on whether B is assumed
or not, see §A.4, A.5. Thus, define the residuals

Rβ,t = β∗0R1,t, R0·β,t = (∆Xt | Yt−1,Dt−1) , Rβ⊥·β,t = (β
∗0
⊥X

∗
t−1 | Yt−1,Dt−1),

13



noting that by the model equation (2.1) then R0·β,t = (εt | Yt−1,Dt−1) . Define also
the conditional product momentsµ

S00·β S0β⊥·β
Sβ⊥0·β Sβ⊥β⊥·β

¶
= T−1

TP
t=1

µ
R0·β,t
Rβ⊥·β,t

¶⊗2
.

The original eigenvalue problem 0 = det(λS00 − S01S
−1
11 S10) can then be written as

0 = det{λS00·β + (λ− 1)S0βS−1ββSβ0 − S0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·β}. (A.7)

The asymptotic analysis of the cointegration rank test then rests on an analysis of
the terms S00·β, S0βS−1ββSβ0, S0β⊥·βS

−1
β⊥β⊥·βSβ⊥0·β. The first two terms involve only the

extended regressor (Y 0
t , D

0
t)
0 which is a generalised cointegration vector. These terms

are discussed in §A.3. Two different analyses are made for the third term depending
on whether B is assumed or not, see §A.4, §A.5.
For the analysis the following algebraic result will be useful.

Lemma A.1 Define εt and xt = (y0t, z
0
t)
0. Then Sεy·zS−1yy·zSyε·z and SεzS

−1
zz Szε are both

O(SεxS
−1
xx Sxε).

Proof of Lemma A.1. By the partial inversion formula then

Sεy·zS
−1
yy·zSyε·z + SεzS

−1
zz Szε = SεxS

−1
xx Sxε.

Then apply that all involved terms are positive semi-definite.

A.3 Analysis of the generalised cointegration vector

The terms S00·β, S0βS−1ββSβ0 are investigated.
The extended regressor (Y 0

t , D
0
t)
0 where Yt = (X∗0

t β
∗,∆X 0

t, . . . ,∆X 0
t−k+2)

0 satisfiesµ
Yt
Dt

¶
=

µ
Y ιY μ
0 D

¶µ
Yt−1
Dt

¶
+

µ
ιY
0

¶
εt,

where Y, ιY were given in (A.1). Following the argument in Nielsen (2005, §3) an
invertible matrix M and a matrix m exist soµ

M m
0 I

¶µ
Yt
Dt

¶
=

⎛⎝ Kt

Wt

Dt

⎞⎠ (A.8)

satisfies the equation⎛⎝ Kt

Wt

Dt

⎞⎠ =

⎛⎝ K 0 μK
0 W 0
0 0 D

⎞⎠⎛⎝ Kt−1
Wt−1
Dt−1

⎞⎠+µ MιY
0

¶
εt.
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where |eigen(K)| ≤ 1 and |eigen(W)| > 1. In fact, M can be chosen so

K =

⎛⎝ U
V1

V\1

⎞⎠ , Kt =

⎛⎝ Ut

V1,t
V\1,t

⎞⎠ ,

where |eigen(U)| < 1, |eigen(V\1)| = 1 so eigen(V\1) 6= 1, and eigen(V1) = 1. If K,
D have no common eigenvalues m could be chosen so also μK = 0.
Some further analysis is needed for the explosive component. This satisfies

Wt =WWt−1 + eW,t,

where eW,t are the elements ofMιY εt associated withWt.TheMarcinkiewicz-Zygmund
result of Lai and Wei (1983) then shows

W−tWt
a.s.→ W =W0 + Z0 where Zt =

∞P
j=1

W−jeW,t+j,

where W has a continuous distribution assuming D. As pointed out by Anderson
(1959) thenWtW may have linearly dependent elements which will give a singular-
ity that needs to be taken into account in the asymptotic analysis. Nielsen (2008,
Theorem 3.1) shows that this singularity arises when some of the eigenvalues of W
have geometric multiplicity larger than one. The degree of singularity is determined
by the dimension n which is the sum of the dimensions of the largest Jordan blocks
associated with the distinct eigenvalues ofW. Moreover, Wt has the representation

Wt = wλt − Zt, (A.9)

where w ∈ RdimW×n is a function of the limiting random vector W and has full
column rank with probability one, while the vector λt ∈ Rn is deterministic and of
exponential order in t; see (A.16) for an example.
Having the singularity in mind the process Yt can be decomposed a little further.

Define the random transformation

N =

µ
NQ

w0⊥NW

¶
where NQ =

µ
IdimYt−dimW 0

0 w0

¶
, NW =

µ
0

IdimW

¶0
,

so N is invertible with probability one. A process Qt exists soµ
Qt

w0⊥Zt

¶
= NMYt, (A.10)

and Qt satisfies Qt = QQt−1+NQ(μ
0
K , 0)

0Dt−1+NQMιY εt whereQ has non-explosive
and regularly explosive eigenvalues.
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The singular component Zt−1 satisfies jointly with εt a Law of Large Numbers

1

T

TP
t=1

µ
Zt−1
εt

¯̄̄̄
Dt−1

¶⊗2
a.s.→
µ

ΩZZ ΩZε

ΩεZ Ω

¶
, (A.11)

see Nielsen (2008, Equation 4.5, Theorem 4.7) assuming A, D, where

ΩZZ =
∞P
j=1

W−jNWMιYΩι
0
YM

0N 0
W (W

0)−j, ΩZε =W
−1NWMιYΩ.

In singular situations some bias terms arise with the following properties.

Lemma A.2 Define the terms

Ωεε·Z = Ω−ΩεZw⊥(w
0
⊥ΩZZw⊥)

−1w0⊥ΩZε,

αlim = α+ αbias where αbias = {0p×dimQ,ΩεZw⊥(w
0
⊥ΩZZw⊥)

−1w0⊥}NWMιY .

(i) Assuming D then Ωεε·Z and α0limαlim are invertible a.s.
(ii) Assuming E then Ωεε·Z = Ω and αlim = α.

Proof of Lemma A.2. This follows from Nielsen (2008, Lemma A.2).

Finally, it is convenient to define the residuals and product moment matrices

RQ,t = (Qt−1 | Dt−1), R(ε,Z),t = {
µ

εt
Zt−1

¶
| Dt−1}, Sij = T−1

TX
t=1

Ri,tR
0
j,t,

for i, j = Q, (ε, Z). Some weak and strong convergence results are established for Sij.

Lemma A.3 Assuming A, D with γ > 1 then
(i) S−1QQ = OP(1),

(ii) S
−1/2
QQ SQ,(ε,Z)S

−1/2
(ε,Z),(ε,Z) = oP(1).

Proof of Lemma A.3. (i) The components Kt, λt, w
0
⊥Zt of Qt are uncorrelated

in probability due to Nielsen (2005, Theorem 9.1, 9.2, 9.4), Nielsen (2008, Theorem
4.7). Then apply Nielsen (2008, Theorem 4.9) for each element.
(ii) Follows from Nielsen (2008, Theorem 4.7). Note that if there are no singular

component then γ > 0 suffices in (ii) using Nielsen (2005, Theorem 2.4) instead.

Lemma A.4 Assuming A, D with γ > 1 then
(i) S00·β = Ωεε·Z + oP(1).
(ii) S0βS

−1
ββ = αlim + oP(1).

(iii) S−1ββ = OP(1).
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Proof of Lemma A.4. (i) Note R0,t = (εt|Yt−1, Dt−1). Transform Yt by NM
so R0,t = (εt|Qt−1, w

0
⊥Zt−1,Dt−1). By the uncorrelatedness of Qt−1 and (ε0t, Z

0
t−1)

0, see
Lemma A.3(ii) assuming A, D then S00·β = T−1

PT
t=1(εt|w0⊥Zt−1)

⊗2 + oP(1). Then
use the Law of Large Numbers in (A.11) assuming A, D.
(ii) Under the hypothesis the model equation implies S0βS−1ββ = α+SεβS

−1
ββ where

the latter term is the partial regression estimator

SεβS
−1
ββ = SεY S

−1
Y Y ιβ with RY,t = (Yt−1|Dt−1),

and where ιβ = {Ir, 0r×p(k−1)}0. As in (i) transform Yt by NM and apply Lemma
A.3(ii) to get

SεβS
−1
ββ = (SεQS

−1
QQ, SεZS

−1
ZZ)NMιβ{1 + oP(1)},

defined in terms of RQ,t = (Qt−1|Dt−1) and RZ,t = (w
0
⊥Zt−1|Dt−1). For the first term

note SεQS
−1/2
QQ = o(1) a.s. by Nielsen (2005, Theorem 2.4), while S−1QQ = OP(1) by

Lemma A.3(i). For the second term use the Law of Large Numbers in (A.11).
(iii) As in (ii) note Sββ = ι0βSY Y ιβ, transform Yt by NM, use Lemma A.3 to get

Sββ = ι0β(M
0)−1(N 0)−1(SQQ, SZZ)N

−1M−1ιβ{1 + oP(1)}.

Since M,N have full rank with probability one then by the Poincaré separation the-
orem, see Magnus and Neudecker (1988, Theorem 11.12) it suffices to argue that
λmin{T−1

PT
t=1(Qt−1, w

0
⊥Zt−1|Dt−1)

⊗2} and λmin{T−1
PT

t=1(w⊥Zt−1|Dt−1)
⊗2} have pos-

itive limiting points. The latter follows from the Law of Large Numbers in (A.11),
while S−1QQ = OP(1) by Lemma A.3(i).

Lemma A.5 Assuming A, D, E with γ > 0 then
(i) S00·β → Ωεε a.s.,
(ii) S0βS

−1
ββ = α+ o(1) a.s.,

(iii) lim inf λmin(Sββ) > 0 a.s.

Remark A.6 The results in Lemma A.5 hold more generally. An argument could be
made along the lines of Lemma A.3, A.4 under either of the following conditions:
(a) If the model has singular explosive terms and deterministic terms, but Yt has no
roots on the unit circle and Assumption D holds with γ > 1; see Nielsen (2008, The-
orem 4.7).
(b) If the model has singular explosive terms, but no deterministic terms, and As-
sumption D holds with γ > 1, then Yt can have roots on the unit circle at rational
frequencies exp(±i2πp/q) where p, q ∈ N so 0 < 2p < q as long as these roots have
the same algebraic and geometric multiplicity. This is argued by combining Nielsen
(2008, Theorem 4.7) with Bauer (2009).
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Proof of Lemma A.5. (i, ii) This is proved in the same way as Nielsen (2005,
Theorem 2.4, Corollary 2.6, Theorem 2.8). Those results are concerned with vector
autoregressions so an adjustment has to be made since the regressor Yt−1 only is a
part of the companion vector of a vector autoregression.
(iii) Combine Nielsen (2005, Corollary 9.5) with the argument involving the

Poincaré separation theorem in Lemma A.4(iii).

A.4 Analysis of the generalised common trends assuming B

When Assumptions A, B hold the Granger-Johansen representation in Theorem 3.2
applies and the analysis of Rβ⊥·β,t is relatively simple. As complement of β

∗ chose

β∗0⊥ = B
µ

α0⊥Ψβ⊥β
0
⊥ 0

0 1

¶µ
Ip −τd
0 1

¶
, (A.12)

so (β∗, β∗⊥) is regular, but β
∗0
⊥β

∗ need not be zero. Here B = Ip−r+1 if dt−1 is present
in the model equation (2.1) whereas if dt−1 is absent then α0⊥Ψβ⊥β

0
⊥τd = α0⊥μ1(1, 0)

0

so B = {Ip−r, α0⊥μ1(1, 0)0}. Combing the representation of Theorem 3.2 along with
β∗0⊥ then gives, for instance if dt−1 is present, that

Rβ⊥·β,t = B{
µ

α0⊥
Pt−1

s=0 εs
dt−1

¶
| Yt−1,Dt−1}. (A.13)

Two results then emerge concerning S0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·β. The first is a consistency

result and the second a distributional result.

Lemma A.7 Assume A, D with γ > 0. Then
(i) If C holds then S0β⊥·βS

−1
β⊥β⊥·βSβ⊥0·β = O(T

−1 log T ) a.s.,
(ii) If E holds then S0β⊥·βS

−1
β⊥β⊥·βSβ⊥0·β = O(T

−ξ) a.s. for all ξ < γ/(2 + γ).

Remark A.8 The results in Lemma A.7 hold more generally under the conditions
(a), (b) of Remark A.6. The proof would be a modification of the proof of Lemma
A.10. There are two arguments. First, the uncorrelatedness of Yt−1 and

Pt−1
s=1 εs

also hold with explosive roots under conditions (a), (b) so Sβ⊥β⊥·β = SCC{1 + o(1)}
with SCC = T−1

PT
t=1(α

0
⊥
Pt−1

s=1 εs)
⊗2. Secondly, the uncorrelatedness of Qt−1 and

(εt, Zt−1) then shows S0β⊥·βS
−1/2
CC = T−1

PT
t=1(εt|w0⊥Zt−1)(cα

0
⊥
Pt−1

s=1 εs)
0S
−1/2
CC + o(1).

Then argue as in Remark A.6.

Proof of Lemma A.7. Note R0,t = (εt|Yt−1,Dt−1). Let St = (X∗0
t β

∗
⊥, dt, Y

0
t ,D

0
t)

be the full companion vector. Then S0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·β = O(SεSS

−1
SSSSε) by Lemma

A.1. Then apply Nielsen (2005, Theorem 2.4) assuming either of C, E.
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Lemma A.9 Consider either of the models Mlq,Ml,Mcl,Mc,Mz. Assume A, B, D, E
with γ > 0. Then
(i) S0βS

−1
ββ = α+ SεβS

−1
ββ where SεβS

−1
ββSβε = oP(T

−ξ) for all ξ < γ/(2 + γ).

(ii) S0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·β = OP(T

−1).

(iii) Define Bu, Fu as in Theorem 4.4, let Ωα⊥α⊥ = α0⊥Ωα⊥ B̃u. Then

TΩ−1/2α⊥α⊥
α0⊥S0β⊥·βS

−1
β⊥β⊥·βSβ⊥0·βα⊥Ω

−1/2
α⊥α⊥

D→ B =
R 1
0
dBuF

0
u(
R 1
0
FuF

0
udu)

−1R 1
0
FudB

0
u.

Proof of Lemma A.9. (i) Under the hypothesis the model equation implies
S0βS

−1
ββ = α + SεβS

−1
ββ . To establish the desired bound note that by Lemma A.1

then SεβS−1ββSβε = O(SεY S
−1
Y Y SY ε) where, for instance, SεY = T−1

PT
t=1 εt(Yt−1|Dt−1)

0.
Then bound SεY S

−1
Y Y SY ε using Nielsen (2005, Theorem 2.4) assuming D, E.

(ii, iii) Assuming B, E then MYt = (Ut, V\1,t,Wt). These components are asymp-
totically uncorrelated a.s. given Dt−1, see Nielsen (2005, Theorem 9.1, 9.2, 9.4), so
they can be treated individually. These terms on the one hand and on the other hand
RC = {(

Pt−1
s=1 ε

0
s, dt−1)

0|D1,t−1} are asymptotically uncorrelated given D\1,t−1. This
holds a.s. for Ut,Wt, see Nielsen (2005, Theorem 9.2, 9.4), and in probability for V\1,t,
see Chan and Wei (1988), Chan (1989). It follows that Sβ⊥β⊥·β = BSCCB0{1+oP(1)}.
For the models Ml,Mc,Mz then B = Ip+1. Note that R0·β,t = (εt|Yt−1,Dt−1). It

then holds in a similar way S0β⊥·βS
−1/2
CC = SεCS

−1/2
CC +oP(1). Then apply Theorem 5.1

to get the limiting result.
For the models Mlq,Mcl then B = {Ip−r, α0⊥μ1(1, 0)0} is not a square matrix so the

analysis has to take into account that dt−1 is of larger order than
Pt−1

s=1 εs. A rotation
argument can be applied as in the proof of Johansen (1995, Theorem 11.1).

A.5 Analysis of the generalised common trends, not assuming B

When Assumption B does not hold the Granger-Johansen representation in Theorem
3.2 fails in that the process can be integrated of higher order. A result giving the
order of S0β⊥·βS

−1
β⊥β⊥·βSβ⊥0·β can then be established using Lemma A.1 in conjunction

with a more general representation result.
The general representation comes about by extending the companion form argu-

ments of §A.3. Let St = (X 0
tβ⊥, dt, Y

0
t , D

0
t) recalling Yt = (X

∗0
t β

∗,∆X 0
t, . . . ,∆X 0

t−k+2)
0

of Theorem 3.2. This vector satisfies the equation St = SSt−1 + ιSεt where, recalling
the definitions of Y,ιY , ν in (A.1), it holds

S =

⎛⎜⎜⎝
Ip−r 0 β0⊥ν β0⊥μ
0 1 0 (1, 0)
0 0 Y μY
0 0 0 D

⎞⎟⎟⎠ , ιS =

⎛⎜⎜⎝
β0⊥
0
ιY
0

⎞⎟⎟⎠ . (A.14)
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The companion matrix can be decomposed following the argument in Nielsen (2005,
§3). In general the matrix Y may have some unit roots. Thus, there exists a regular,
deterministic matrix M and matrices m1Y ,m1D,mY D so that

S̃t =

⎛⎜⎜⎝
Ip−r 0 m1Y m1D

0 1 0 0
0 0 M m
0 0 0 IdimD

⎞⎟⎟⎠St =

⎛⎜⎜⎝
β0⊥Xt +m1Y Yt +m1DDt

dt
(U 0

t, V
0
1,t, V

0
\1,t,W

0
t)
0

(D0
1,t, D

0
\1,t)

0

⎞⎟⎟⎠ ,

satisfies the equation S̃t = S̃S̃t−1 + ι̃Sεt where, for some ν1, μ11, μY 1, μY \1, it holds

S̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ip−r 0 0 ν1 0 0 μ11 0

0 1 0 · · · · · · 0 (1, 0)
...

...
. . . U

. . .
...

...
...

. . . V1
. . .

... μY 1 0
...

. . . V\1 0 0 μY \1
...

. . . W 0 0
...

. . . D1 0
0 · · · · · · · · · · · · · · · 0 D\1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ι̃S =

⎛⎜⎜⎜⎜⎝
β0⊥ +m1Y ιY

0
MιY
0
0

⎞⎟⎟⎟⎟⎠ .

Here |eigen(U)| < 1, eigen(V1) = 1, |eigen(V\1)| = 1 but eigen(V\1) 6= 1, and
|eigen(W)| > 1. When Assumption B does not hold the parameters V1, ν1, μY 1 can
generate higher order integrated components along with higher order deterministic
polynomials. These unit root components satisfy V̆t = V̆V̆t−1 + ιV̆ εt, where

V̆t =

⎛⎜⎜⎝
β0⊥Xt +m1Y Yt +m1DDt

dt
V1,t
D1,t

⎞⎟⎟⎠ , V̆ =

⎛⎜⎜⎜⎝
Ip−r 0 ν1 μ11
0 1 0 (1, 0)
...

. . . V1 μY 1
0 · · · 0 D1

⎞⎟⎟⎟⎠ ,

and ιV̆ is defined conformably from ιS̃. Since it is ultimately of interest to analyse the
residuals of β0⊥Xt−1 given Yt−1,Dt−1 the term m1Y Yt+m1DDt in the first component
of V̆t will not play any role and is ignored in the subsequent manipulations.
The next step is to separate unit root and deterministic components as in Nielsen

(2005, equation 3.5). That is, there exists a matrix m̆ so V̆t = m̆L̃t where

L̃t =

µ
Ṽt
D̃t

¶
=

µ
Ṽ1 0

0 D̃1

¶µ
Ṽt−1
D̃t−1

¶
+

µ
ιṼ
0

¶
εt
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where Ṽ1 is a (p−r+dimV1)-dimensional block diagonal matrix so the diagonal blocks
are Jordan blocks of the type (2.3) while D̃1 is a (dim Ṽ1+1+dimD1)-dimensional Jor-
dan blocks of the type (2.3), and where ιṼ is defined from the (β

0
⊥Xt, V1,t)-components

of ιV̆ . Thus, consider the following result.

Lemma A.10 Assuming A, D with γ > 1. Let K̃t = (U
0
t, V

0
\1,t, λ

0
t, D\1,t)

0. Then
(i) SL̃L̃·K̃,w0⊥Z

= SL̃L̃{1 + oP(1)},
(ii) SεL̃·K̃,w0⊥Z

S
−1/2
L̃L̃

= OP(T
−1/2).

Proof of Lemma A.10. (i) First, Zt−1 is asymptotically uncorrelated with
K̃t−1, L̃t−1 in probability by Nielsen (2008, Theorem 4.7) assuming A, D with γ >
1. Secondly, it is argued that K̃t−1 and L̃t−1 are asymptotically uncorrelated in
probability. To see this note that Ut−1, λt−1 are asymptotically uncorrelated with
each other and with the remaining terms a.s. by Nielsen (2005, Theorem 9.1, 9.2, 9.4)
and note that V\1,t−1, D\1,t−1 are asymptotically uncorrelated with L̃t−1 in probability
by arguments as in Chan and Wei (1988), Chan (1989).
(ii) Note first that SεL̃·K̃,w0⊥Z

= nTS(ε,w0⊥Z),L̃·K̃
where nT = (Ip,−Sε,w0⊥ZS

−1
w0⊥Z,w

0
⊥Z
)

is convergent by the Law of Large Numbers in (A.11) assuming A, D with γ > 0.

Then write S(ε,w0⊥Z),L̃·K̃S
−1/2
L̃L̃

= S(ε,w0⊥Z),L̃
S
−1/2
L̃L̃
− S(ε,w0⊥Z),K̃

S−1
K̃K̃

SK̃L̃S
−1/2
L̃L̃

.

The first term S(ε,w0⊥Z),L̃
S
−1/2
L̃L̃

: note that T−1/2
Pint(Tu)

s=1 (ε0s, Z
0
s−1w⊥)

0 is asymp-

totically Brownian assuming D, see (5.3). The vector L̃t, which has unit root and
polynomial components is a continuous function of

Pint(Tu)
s=1 εs and there exists a nor-

malisation matrixNL̃,T soNL̃,T L̃int(Tu) has a non-degenerate limit, see (5.4). Theorem

5.1 then implies S(ε,w0⊥Z),L̃S
−1/2
L̃L̃

= OP(T
−1/2).

The second term, S(ε,w0⊥Z),K̃S
−1/2
K̃K̃

is O(1) a.s. due to the Law of Large Numbers

in (A.11) and since the correlation matrix S−1/2(ε,w0⊥Z),(ε,w
0
⊥Z)

S(ε,w0⊥Z),K̃
S
−1/2
K̃K̃

is O(1).

The third term S
−1/2
K̃K̃

SK̃L̃S
−1/2
L̃L̃

is OP(T−1/2). To see this apply an argument as in
Chan and Wei (1988) and Chan (1989).

Lemma A.11 Assuming A, D with γ > 1 then S0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·β = OP(T

−1).

Proof of Lemma A.11. Note that R0·β,t = (εt|Yt−1,Dt−1). So it suffices to
show Sεβ⊥·βS

−1
β⊥β⊥·βSβ⊥ε·β = OP(T

−1). Recall the definitions of K̃t, L̃t. Then Lemma
A.1 shows Sεβ⊥·βS

−1
β⊥β⊥·βSβ⊥ε·β = O(SεL̃·w0⊥Z,K̃

S−1
L̃L̃·w0⊥Z,K̃

SL̃ε·w0⊥Z,K̃
). The latter matrix

is OP(T−1) by Lemma A.10(i, ii).
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A.6 Proof of consistency

Proof of Theorem 4.1. Recall the rewritten eigenvalue problem (A.7), that is

0 = det{P (λ)}, P (λ) = λS00·β + (λ− 1)S0βS−1ββSβ0 − S0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·β. (A.15)

Note that rank(S0βS−1ββSβ0) ≤ r and rank(S0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·β) ≤ p−r indicating how

the eigenvalues can be separated. For the weak consistency result it suffices
(a) If ρr is the smallest non-zero eigenvalue of S0βS

−1
ββSβ0 then ρ−1r = OP(1).

(b) The limit of S00·β has full rank.
(c) S0β⊥·βS

−1
β⊥β⊥·βSβ⊥0·β = OP(T

−1).
For result (a) note first that by Lemma A.4(ii) assuming A, D with γ > 1 then

A = α0limS0βS
−1
ββSβ0αlim = {Ir + oP(1)}Sββ{Ir + oP(1)}.

Since S−1ββ = OP(1) by Lemma A.4(iii) assuming A, D with γ > 1 then the smallest
eigenvalue, ρ̃r say, of A satisfies ρ̃

−1
r = OP(1). Since ρ̃r ≤ ρr by Poincaré’s separation

theorem, see Magnus and Neudecker (1988, Theorem 11.12), then also ρ−1r = OP(1).
Here (b) follows from Lemma A.4(i) while (c) follows from Lemma A.11, both

assuming A, D with γ > 1.

Proof of Theorem 4.2. Follow the proof of Theorem 4.1 with two modifications.
Apply Lemma A.5 assuming A, D, E with γ > 0 instead of Lemma A.4. Apply Lemma
A.7 assuming A, D, E with γ > 0 instead of Lemma A.11. Note that different rates
apply depending on whether Assumption C holds or not.

A.7 Proof of asymptotic distribution of rank test

Proof of Theorem 4.4. The solutions to the eigenvalue problem (A.15) equal to
those of 0 = det{P̃ (()} where

P̃ (() = A0TP (T
−1()AT =

½
Pαα(T

−1() Pαα⊥(T
−1()

Pα⊥α(T
−1() Pα⊥α⊥(T

−1()

¾
,

with AT = (Aα,T , Aα⊥,T ) = (αS
−1/2
ββ , α̃⊥T

1/2) and α̃⊥ = α⊥(α
0
⊥Ωα⊥)

−1/2. To describe
P̃ (() note that Lemmas A.4, A.9 assuming A, B, D, E with γ > 0 show

S00·β = Ω+ oP(1), S−1ββ = OP(1), S0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·β = OP(T

−1),

S0βS
−1
ββ = α+ SεβS

−1
ββ , SεβS

−1
ββSβε = oP(T

−ξ) for all ξ < γ/(2 + γ).

Moreover, Tα̃0⊥S0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·βα̃⊥

D→ B =
R 1
0
dBuF

0
u(
R 1
0
FuF

0
udu)

−1 R 1
0
FudB

0
u.
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In the following results for the components of P̃ (() are given. For the term
A0α,TS0βS

−1
ββSβ0Aα⊥,T it is needed that SεβS

−1
ββSβε = oP(T

−1/2) which holds if γ > 2.

A0α,TS00·βAα,T = S
−1/2
ββ α0ΩαS

−1/2
ββ {1 + oP(1)},

A0α,TS00·βAα⊥,T = T 1/2S
−1/2
ββ α0Ωα̃⊥{1 + oP(1)},

A0α⊥,TS00·βAα⊥,T = TIp−r{1 + oP(1)},
A0α,TS0βS

−1
ββSβ0Aα,T = Ir + oP(1),

A0α,TS0βS
−1
ββSβ0Aα⊥,T = T 1/2S

−1/2
ββ Sβεα̃⊥ + oP(1).

A0α⊥,TS0βS
−1
ββSβ0Aα⊥,T = Tα̃0⊥SεβS

−1
ββSβεα̃⊥,

A0α,TS0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·βAα,T = oP(1),

A0α,TS0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·βAα⊥,T = oP(1),

A0α⊥,TS0β⊥·βS
−1
β⊥β⊥·βSβ⊥0·βAα⊥,T = B+ oP(1).

It follows that

Pαα(T
−1() = −Ir + oP(1),

Pαα⊥(T
−1() = −T 1/2S−1/2ββ Sβεα̃⊥ + oP(1),

Pα⊥α⊥(T
−1() = (Ip−r −B+ oP(1)− Tα̃0⊥SεβS

−1
ββSβεα̃⊥.

By the partitioned inversion formula the eigenvalue problem is rewritten as

0 = det{P̃ (()} = det{Pαα(T
−1()}det{Pα⊥α⊥·α(T

−1()},

where Pα⊥α⊥·α = Pα⊥α⊥ − Pα⊥αPααPαα⊥. Inserting the above results gives

0 = det{P̃ (()} = det{−Ir + oP(1)}det{(Ip−r −B+ oP(1)}.

The eigenvalues of the second matrix have the desired trace.

Remark A.12 In the proof of Theorem 4.4 it is used that γ > 2 as opposed to γ > 0
to ensure that SεβS−1ββSβε = oP(T

−1/2). For non-explosive cases that result could be
proved along the lines of Chan and Wei (1988) and Chan (1989) assuming γ > 0.

A.8 On the limit distribution for singular cases

Remark 4.7 gives an example of singular explosive process. The Granger-Johansen
representation for this process is

Xt =
1

1− ρ

tP
s=1

εt − ρ∆Xt =
1

1− ρ

tP
s=1

εt +
1

ρ− 1ρ
t

tP
s=1

ρ−sεt;
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see Theorem 3.2 or Nielsen (2008, Theorem 1). As a consequence

R0,t = (∆Xt | ∆Xt−1) = (εt | ∆Xt−1),

R1,t = (Xt−1 | ∆Xt−1) = (
1

1− ρ

tP
s=1

εt | ∆Xt−1).

Moreover, as in (A.9) it holds that

∆Xt = ρt
tP

s=1

ρ−sεs = wλt − Zt, (A.16)

where λt = ρt, Zt =
P∞

s=1 ρ
−sεt+j and w = Z0. Thus, in R0,t, R1,t the regressor∆Xt−1

can be replaced by ρt−1, w0⊥Zt−1. Due to the uncorrelatedness of εt,
Pt

s=1 εs with ρ
t−1

and the uncorrelatedness of
Pt

s=1 εs with w0⊥Zt−1 then

(1− ρ)2T−1S11 = T−2
TP
t=1

(
t−1P
s=1

εs)
⊗2{1 + oP(1)},

(1− ρ)2S10 = T−1
TP
t=1

(
t−1P
s=1

εs)(εt | w0⊥Zt−1)
0 + oP(1),

S00 = T−1
TP
t=1

(εt | w0⊥Zt−1)
⊗2.

By Theorem 5.1 it then holds

(1− ρ)2T−1S11
D→ I11(I − aP ), (1− ρ)2S10

D→ I10(I − aP ),

and S00 → I − aP in probability, where

I11 =
R 1
0
BuB

0
udu I10 =

R 1
0
BudB

0
u, P = w⊥(w

0
⊥w⊥)

−1w0⊥, a =
ρ2 − 1
ρ2

.

It follows that

LR = tr(S−100 S01S
−1
11 S10) + oP(1) = tr{(I − a−1P )I01I−111 I10}+ oP(1).

A.9 Stochastic integrals

Proof of Theorem 5.1. It is argued that the second term in (5.5) vanishes. Apply
partial summation formula, with ZT,t = T−1/2Zt and HT,t−1 = h(JT )(t−1)/T , to get

int(Tu)P
t=1

(HT,t−1 −HT,0)∆Z 0T,t = (HT,int(Tu) −HT,0)Z
0
T,int(Tu) −

int(Tu)P
t=1

∆HT,tZ
0
T,t.
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First term. Note that HT,int(Tu) is convergent to a continuous process so its supre-
mum also converges, while ZT,int(Tu) = o(1) a.s. uniformly in u by Nielsen (2008,
Corollary 4.3). Thus the first term vanishes.
Second term. Note that ZT,t = T−1/2

P∞
j=1W

−jeW,t+j and rewrite the second

term
Pint(Tu)

t=1 ∆HT,tZ
0
T,t = I1,T,u + I2,T,u where

I1,T,u = T−1/2
int(Tu)P
s=2

s−1P
t=1

∆HT,t(W
t−seW,s)

0,

I2,T,u = T−1/2
int(Tu)P
t=1

∆HT,t

∞P
s=1

(W−T+t−seW,T+s)
0.

The term I1,T,u. It suffices to consider each coordinate ofWt−seW,s. Assume this
is univariate or apply a Jordan decomposition argument. Since eW,s is a martingale
difference and ∆HT,t is Fs−1-adapted then by Lai and Wei (1982, Lemma 1)

I1,T,u = T−1/2O[log λmax{
int(Tu)P
s=2

(
s−1P
t=1

∆HT,tW
t−s)⊗2] a.s.

It suffices to argue that the double sum is of polynomial order. By the Cauchy-Schwarz
inequality and noting |eigen(W−1)| ≤ 1 then

int(Tu)P
s=2

(
s−1P
t=1

∆HT,tW
t−s)⊗2 ≤

int(Tu)P
s=2

(
s−1P
t=1

||∆HT,t||2)(
s−1P
t=1

||W||2(t−s))

≤ (
int(Tu)P
s=2

s−1P
t=1

||∆HT,t||2)(
∞P
t=1

||W||−2t).

The mean value theorem gives

||∆HT,t|| = ||{
∂

∂u
h(·, ·)(u)

¯̄̄̄
(JT ,τ),u=t/T

}{T−1/2(ε∗0t , u∗)0}||

for some ε∗t and u∗ so ||ε∗t || ≤ ||εt|| and 0 ≤ u∗ ≤ u1/2 ≤ 1. This is bounded by

||∆HT,t|| ≤ { sup
0≤u≤1

|| ∂

∂u
h(·, ·)(u)

¯̄̄̄
(JT ,τ),u=t/T

||}{T−1/2 sup
t≤T
(||εt||, 1)}

Due to the assumed bound to h and since ||εt||2 = o(T 1−ξ) for all ξ < γ/(2 + γ), see
Lai and Wei (1985, Theorem 1) then ||∆HT,t|| = o(T−ξ/2) uniformly in t. Thus, the
above double sum is of polynomial order in T , uniformly in u with probability one.
In turn ||I1,T,u|| = o(1) a.s. uniformly in u.
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The term I2,T,u. Apply first the triangle inequality to get a uniform bound in u

||I2,T,u|| ≤ JT = (
TP
t=1

||W−1||T−t||T−1/2∆HT,t||)(||
∞P
s=1

W−seW,T+s||).

It holds JT = o(1) a.s. if for all constants K > 0 it holds
P∞

T=1 1(||JT || > K) =P∞
T=1 1(||JT ||α > Kα) < ∞ a.s. for any α > 0. By the conditional Borel-Cantelli

lemma of Chen (1978) this holds a.s. on the set where
P∞

T=1 P(||JT ||α > Kα|FT ) <∞.
Now, by the Markov inequality

P(||JT ||α > Kα|FT ) ≤
1

Kα
E(||JT ||α|FT ), (A.17)

so it suffices to show E(||JT ||α|FT ) = o(T
−ζ) for some ζ > 1.

The expectation E(||JT ||α) may be undefined. In that case apply the truncation
argument in the proof of Lai and Wei (1982, Lemma 2): Choose constants at so
P(||∆HT,t||α > at) < t−2. By the Borel-Cantelli Lemma, see Breiman (1968, p.41),
then P(∆HT,t = ∆H∗

T,t for large t) = 1 where ∆H∗
T,t = ∆HT,t if ||∆HT,t||α < at and

zero otherwise.
To bound E(||JT ||α|FT ) note that a sum nt =

P∞
j=1 ajmj can be bounded using the

spectral norm inequality ||ajmt+j|| ≤ ||aj|| ||mt+j|| and the Jensen inequality through
the inequality ||nt||α ≤ (

P∞
j=1 ||aj||)α−1

P∞
j=1 ||aj||||mt+j||α for α > 1, see also Nielsen

(2008, equation 4.2). Apply this bound to each of the sums in JT to get

||JT ||α ≤ cT (
TP
t=1

||W−1||T−t||T−1/2∆HT,t||α)(
∞P
s=1

||W−1||s||eW,T+s||α),

where cT = ||W−1||α−1(1− ||W−1||T )α−1(1− ||W−1||)2(1−α) is bounded uniformly in
T . Noting that ∆HT,t is FT -measurable then

E(||JT ||α|FT ) ≤ cT (
TP
t=1

||W||t−T ||T−1/2∆HT,t||α){
∞P
s=1

||W||−sE(||eW,T+s||α|FT )}.

By Assumption D then supt E(||eW,T+s||α|FT ) <∞ a.s. for α < 2 + γ, which implies
that the sum in s is finite a.s. For the sum in t use the bound from above that
||∆HT,t|| = o(T−ξ/2), uniformly in t. Thus, the sum in t is bounded by the product of
o(T−(1+ξ)α/2) and the bounded sum

PT
t=1 ||W||t−T . Thus, the sum in t is o(T−(1+ξ)α/2).

Since it must hold that (1 + ξ)α/2 > 1 while ξ < γ/(2 + γ) and α < 2 + γ then
(1 + ξ)α/2 < {2(1 + γ)/(2 + γ)}(2 + γ)/2 ≤ 1 + γ. Thus (1 + ξ)α/2 can be chosen
larger than unity for any γ > 0.
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