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Abstract

New ways of doing things often get started through the actions of

a few innovators, then diffuse rapidly as more and more people come

into contact with prior adopters in their social network. Much of the

literature focuses on the speed of diffusion as a function of the network

topology. In practice, however, the topology may not be known with

any precision, and it is constantly in flux as links are formed and

severed. Here we establish an upper bound on the expected waiting

time until a given proportion of the population has adopted that holds

independently of the network structure. Kreindler and Young [33,

2014] demonstrated such a bound for regular networks when agents

choose between two options: the innovation and the status quo. Our
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bound holds for directed and undirected networks of arbitrary size

and degree distribution, and for multiple competing innovations with

different payoffs.

1 Introduction

Social and technological advances are essential to economic development, but

the mere existence of new and better ways of doing things does not guarantee

that they will be widely used. The time it takes to dislodge inferior practices

is another crucial factor in explaining how rapidly development can occur.

This lag time depends on several crucial factors. One is lack of information:

it may not be immediately evident that the innovation is in fact superior to

the status quo. A second factor is network externalities: the desirability of an

innovation depends not only on its inherent payoff but on how many others

in one’s social network have also adopted. Dislodging an inferior practice or

technology requires a coordinated shift in expectations and behaviors among

members of the group, which may take a long time even if it is already evident

that everyone would be better off if they were to do so.

There is a substantial theoretical and empirical literature on these issues

that we shall discuss below. In contrast to much of this literature, which

is concerned with learning about payoffs from the actions of prior adopters,

our focus here will be on the time it takes to dislodge an inferior practice

when there are increasing returns from adoption and the payoffs are already

known. This allows us to separate the effects of pure network externalities

from the problem of learning about the payoffs by observing the behavior

of others. Moreover, unlike much of the literature, we shall focus on the

question of how long it takes to dislodge an inferior practice or technology
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when little or nothing is known about the topology of social interactions.

Although this would appear to omit the main variable of interest, this is not

the case. In particular, Kreindler and Young [33, 2014] demonstrate that

the expected waiting time to overturn an inferior equilibrium can be usefully

bounded from above for all undirected regular networks.

The theoretical contribution of this paper is to substantially generalize

this result by establishing an upper bound on the expected waiting time that

holds for networks of any size and degree distribution, whether directed or

undirected. We also generalize the analysis by considering multiple compet-

ing innovations instead of a single innovation versus the status quo, which is

the usual assumption in the literature.

1.1 Related Literature

The importance of social interactions in spreading new ideas and practices

has been documented in a wide variety of situations. Ryan and Gross [47,

1943] demonstrated that farmers’ decisions to adopt an agricultural innova-

tion — hybrid corn – were strongly influenced by the adoption decisions of

their neighbors. Subsequently Griliches [26, 1957] showed that the decision

to adopt also depended on the expected gains in payoff from the innovation

relative to the status quo. At about the same time sociologists Coleman,

Katz, and Menzel [14, 1957] analyzed the role of social networks among doc-

tors in the adoption of a new medical treatment (in this case tetracycline),

and showed that adoption was driven to a significant extent by peer effects.1

Since then a substantial theoretical literature has developed on the rate of

1There is an extensive empirical literature on innovation diffusion in networks. See

among others Valente [51, 1995]; Foster and Rosenzweig [20, 1995]; Kohler [30, 1997];

Kohler et al. [31, 2001]; Udry and Conley [50, 2001]; Rogers [46, 2003]; Munshi [43, 2004].
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innovation diffusion as a function of the network topology. A recurrent theme

is that interaction among small close-knit groups can speed up the adoption

process. The logic is that the innovation can gain a local foothold relatively

quickly, and from different local footholds it then spreads throughout the

network (Ellison [16, 1993]; Young [56, 1998]; and [57, 2009]; Montanari and

Saberi [39, 2010]). Experimental studies of games played on networks are

consistent with these predictions (Centola et al. [12, 2015]).2

A related line of work is concerned with the time it takes for a new idea

to spread when it is seeded at one or more locations. Here the key features

are the centrality of the nodes where the new idea is seeded, and the degree

of connectivity of the network (Morris [38, 2000]; Banerjee et al. [6, 2013]).

These are instances of threshold models, in which a given individual adopts

once a sufficient number of his neighbors have adopted (Watts [54, 2002]). In

this literature adoption decisions are typically treated as irreversible, whereas

in the present paper we treat adoption (and disadoption) as random variables

that depend on the distribution of choices by one’s neighbors; they are not

deterministic.

Yet another branch of the literature investigates how network structure

affects the rate at which agents update their priors about the desirability of

the innovation, based on observation of their neighbors’ choices. A key issue

here is the identification of conditions on the network topology and updat-

ing rules under which the process converges to correct beliefs and optimal

actions.3 The actual learning behaviour of subjects who are embedded in

2Targeting small close-knit groups is a strategy that policy makers sometimes use to

try to overturn inferior or harmful practices, such as foot binding in China and female

genital mutilation practices in Africa (Mackie [35, 1996]).
3See Banerjee [5, 1992]; Bikchandani et al. [7, 1992]; Ellison and Fudenberg [17, 1993];

Bala and Goyal [4, 1998]; Jackson [29, 2008]; Solan et al. [49, 2009]; Golub and Jackson
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different types of networks has been investigated experimentally by Gale and

Kariv [21, 2003] and Maes and Nax [36, 2016].

In this paper we focus instead on the situation where the payoffs are

known in advance or have already been learned. In particular we assume

that people know that the new practice or technology would be inherently

better than current practice provided that a sufficient number of people in

one’s network adopt it. The source of such network externalities depends

very much on the situation. A social website is more valuable the more

people who use it. A market is more valuable the more traders it attracts. A

similar logic holds for communication technologies, technological standards,

and many other innovations with increasing returns.4

A different type of network externality arises when people are sanctioned

for not conforming to a current norm or practice. Demographers have found,

for example, that social norms are a significant factor in explaining the pace

and pattern of contraceptive use in developing countries.5 In the United

States, norms of medical treatment for a given medical condition differ widely

among states and even among counties within the same state. These differ-

ences appear to be the product of two types of network externality: peer

effects and information sharing. Physicians tend to conform to the choices

of local opinion leaders, and once a given practice becomes established its

benefits are enhanced by local knowledge sharing within the group.6

These and other sources of network externalities can be modelled as a net-

[23, 2010] [24, 2012]; Acemoglu et al. [1, 2011]; Mueller-Frank [41, 2013]; Mueller-Frank

and Pai [42, 2016]; Mossel et al. [40, 2015].
4David [15, 1993] and Arthur [3, 1994].
5See Bongaarts and Watkins [9, 1996]; Montgomery and Casterline [37, 1996]; Kohler

[30, 1997]; Kohler et al. [31, 2001]; Munshi and Myaux [43, 2006].
6See Wennberg and Gittelsohn [55, 1973]; Phelps and Mooney [45, 1993]; Chandra and

Staiger [13, 2007]; Burke et al. [10, 2007], [11, 2010].
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work game in which individuals repeatedly play a coordination game against

their neighbors (Blume [8, 1993]; Jackson and Yariv [28, 2007]; Jackson [29,

2008]; Vega-Redondo [53, 2007]; Golub and Jackson [23, 2008]; [23, 2010]).

Individuals periodically update their choices according to a random arrivals

process. When individuals update they choose an optimal response given the

inherent payoff from the choice as modified by the current choices of their

neighbors (the coordination payoff) plus an idiosyncratic utility shock. Given

the payoff parameters and the distribution of random shocks, we establish

an upper bound on the expected waiting time until a given proportion of

the population has adopted, where the bound is independent of the size and

topology of the network itself.

A similar approach was taken by Kreindler and Young [32, 2013], [33,

2014]); indeed the present paper was inspired by their work. Using martingale

theory, they show that when the perturbations are sufficiently noisy and/or

the payoff gain from the innovation is sufficiently large, the expected time it

takes to reach a given target level of adoption (say one-half) can be bounded

above for all regular undirected networks. In the case of irregular networks,

they establish a similar bound for reaching a given degree-weighted adoption

rate, but not the adoption rate as such.7

Here we employ different methods to establish a much more general bound

on the waiting time to reach a given target (weighted or unweighted) that

holds for all directed and undirected networks of arbitrary size, and for a

very broad class of error distributions. These bounds are especially useful

when the network is difficult to observe and is constantly changing as agents

7Ellison, Fudenberg, and Imhof [18, 2016] establish criteria for rapid convergence in

more general games using Lyapunov functions. Using different techniques, Arieli and

Young [2, 2016] bound the rate of convergence of stochastic learning dynamics when agents

interact globally instead of locally.
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form and sever links with one another.8 The mathematical techniques rely

on recent advances in estimating the distribution of arbitrarily large sums of

independent random variables [19, 22].

The plan of the paper is as follows. In the next section we formulate the

stochastic updating model. In sections 3-4 we establish a general bound on

the expected waiting time until a target proportion of the population has

adopted, starting from the state where everyone is playing the status quo.

The bound depends on the shape of the error distribution, on the payoff gap

between the innovation and the status quo, and on the magnitude of the

coordination payoffs relative to the inherent payoffs from different choices,

but it does not depend on the topology of the network per se. Section 5

extends the analysis to multiple competing innovations.

2 Model

A weighted directed network with m nodes can be represented by an m ×m

row-stochastic matrix P (t) = {Pij(t)}. We interpret Pij(t) as the probability

that agent i interacts with j during the current period. Alternatively we can

view Pij(t) as the relative weight that i attaches to interactions with j in

the current period. For expositional simplicity we shall begin by considering

the situation where each agent chooses one of two actions: the innovation A,

or the status quo B. In Section 5 we shall extend the analysis to multiple

innovations with different payoffs.

The payoff from choosing an action consists of two parts: i) an inherent

payoff that is independent of how many others choose it, and ii) a coordi-

8There is a large literature on the dynamics of link formation in social networks. See

among others Skyrms and Pemantle [48, 2000]; Jackson and Watts [27, 2002]; Goyal and

Vega-Redondo [53, 2007]; Jackson [27, 2008].
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nation payoff that results from coordinating with others. For an interaction

with a single neighbour, we represent the payoffs by the following 2×2 matrix

0 1

0 c 0

1 a a + c

Here a > 0 is the payoff difference between the innovation 1 and the status

quo 0, and c > 0 is the coordination payoff that results from making the same

choice as someone with whom one interacts. Note that when c < a there is

a unique equilibrium, whereas if c > a there are three equilibria: two pure

and one mixed. The subsequent analysis holds in either case but we shall

typically assume that there are multiple equilibria.

The state of the process at the end of each period t is an n-vector s(t) ∈

{0,1}m, where si(t) = 1 if agent i chooses the innovation at t, and si(t) = 0

otherwise. The updating process works as follows. Time is continuous and

the initial state is s(0) = (0, . . . ,0). We suppose that every agent receives

updating opportunities according to a Poisson arrival process with rate one

per time period, and suppose that these processes are independent among

the individuals. Suppose that i receives such an opportunity at time t. Given

the current network structure P = P (t) and the current state s(t), let

xi(t) = ∑
j∈[m]

Pijsj(t).

Thus i’s expected payoff from interacting with a randomly drawn neighbor

(drawn according the distribution P (t)) is ui(1) = a + cxi(t) if he chooses

action 1, and u1(0) = c(1 − x(t)) if he chooses action 0. Let us assume that

the difference between the payoff from 1 and the payoff from 0 is perturbed

by a random payoff shock ei(t) with c.d.f. F (e). For ease of interpretation

we shall assume that F has a continuous density f(e) that is symmetrically
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distributed about the origin, and all shocks are i.i.d. among agents and

among time periods. If the perturbed payoff difference is positive agent

i chooses action 1; otherwise he chooses action 0. This class of perturbed

best reply dynamics is very general and includes such standard dynamics as

the logit response where the payoff shocks are distributed according to the

extreme value distribution. Moreover, experimental evidence on learning in

networks shows that subjects do deviate from best reply with a probability

that is decreasing in the resulting payoff loss, which is consistent with this

class of models (Maes and Nax [36, 2016]).

Conditional on receiving an updating opportunity at time t, the proba-

bility that i chooses 1 is

Pr[si(t) = 1∣xi(t)] = Pr[a + eit + cxi(t) > c(1 − xi(t))] (1)

= Pr[eit > c − a − 2cxi(t)] = F (a − c + 2cxi(t)),

where the latter holds because by assumption F (e) = 1−F (−e). We shall call

this the response function and write

r(xi(t)) = F (a − c + 2cxi(t)). (2)

In particular, r(0) = F (a− c) and r(1) = F (a+ c). To illustrate, suppose that

F (e) is the standard cumulative normal distribution Φ as shown in Figure

1.

More generally, suppose that F has a density f(e) that is symmetric about

the origin and is non-increasing in ∣e∣, that is, smaller errors are at least as

probable as larger errors. Then r(x) is increasing and convex-concave with

inflection point 0.5.

We define the supporting line L(x) (see Figure 2) to be the unique line
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Figure 1: The CDF of the standard normal distribution.

that is the solution to the following maximization problem:

max L(0)

subject to L(1) = r(1) and L(x) ≤ r(x) for x ∈ [0,1].

In this paper we restrict attention to the case where L(0) > 0. (For a dis-

cussion of this assumption see Section 3.1). The slope of L is denoted by

1 − α ∶= L(1) −L(0) < 1, and its fixed point is denote by p = L(0)
α .

3 A General Result on Waiting Times

The question we wish to address is the following: starting from the state x(0)

and given a target proportion q ∈ [0,1], how long does it take in expectation

to reach a state in which at least q of the agents have adopted the innovation?

More precisely, we wish to find an upper bound on the expected waiting time

defined as follows

Tq(F,P (t)) = E[min{t ∶ 1

n
∑
i∈[n]

si(t) ≥ q, s(0) = (0, . . . ,0)}].

We can now state our main result:
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x
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e = a − c

(x = 0)

x = p e = a + c

(x = 1)

Figure 2: Supporting line L(x) and response function r(x) based on the

normal distribution.

Theorem 3.1. Let F be an error distribution function. Suppose that the

supporting line L(x) satisfies L(0) > 0, has slope 1−α, has fixed point p, and

that q < p. Then for every dynamic network P (t) we have

Tq(F,P (t)) ≤ 7.2

pα
(1 + ln( p

p − q
)) = 7.2

L(0)
(1 + ln( p

p − q
)) . (3)

The crucial point is that the right-hand side does not depend on the

network structure or on how rapidly it is evolving.

As we mentioned earlier, the closest result in the literature is due to
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Kreindler and Young [33, 2014]. Using martingale methods they derive the

following upper bound on the expected waiting time until a majority have

adopted and P (t) is any regular, undirected network, namely9

Tq(F,P (t)) ≤ 1

α(p − q)
. (4)

The same bound holds for irregular networks provided that the target q is

expressed as the degree-weighted proportion of adopting agents. This is quite

different than insisting that a given proportion of agents adopt. In a star

network, for example, a degree-weighted majority (q = 1
2) is achieved when

just the central node has adopted. By contrast, Theorem 1 holds for any

weighting of the agents and any (possibly asymmetric) amount of influence

between the agents. Note that our bound depends logarithmically on 1/p− q

whereas the martingale bound in [33, 2014] is proportional to 1/p − q which

grows much more rapidly as q approaches p.

3.1 Discussion of the condition L(0) > 0

A key assumption underlying Theorem 1 is that the tangent line L(x) must

have a strictly positive intercept L(0). If this is not the case the theorem

does not apply. When will L(0) be negative? The answer is when the payoff

advantage a is too small (given c), or the variance of the distribution F is

too small. The first case is shown in Figure 3. By shifting to the right by an

amount b, the intercept becomes positive, as shown in the right panel. The

second case is illustrated in Figure 4. Rescaling the standard deviation by

an amount σ is equivalent to rescaling the horizontal axis by 1
σ , which leads

to a positive intercept if σ is small enough, as shown in the right panel of

Figure 4.

9For the case q = 1
2

Kreindler and Young [33, 2014] show that the numerator in (4) can

be replaced by 0.42.
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x

1

e = a − c

e = a + c
L(0)

L(x)

r(x)

x

1

e = a + b − c e = a + b + c

L(x)

r(x)

Figure 3: Increasing the payoff advantage of the innovation by an amount b

increases the intercept L(0).

3.2 Proof Sketch of Theorem 3.1

Conditional on receiving a revision opportunity, an agent chooses action 1

with probability r(x), where x is the weighted average proportion of his

neighbors who are currently choosing 1. The idea is to analyse the linear

dynamic where an agent that faces the proportion x updates his action to 1

with probability L(x) instead of r(x). Since L(x) ≤ r(x), the expected time

it takes the linear dynamic to reach the threshold q is at least as long as the

expected time under the actual dynamic.
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x

1

0

e = a − c

e = a + c
L(0)

L(x)

r(x)

x

1

e = a−c
σ e = a+c

σ

L(0)

L(x)

r(x)

Figure 4: Increasing the standard deviation of the error distribution by a

factor σ increases the intercept L(0).

It will be notationally convenient to analyze the corresponding discrete

time linear dynamic such that at each time t an agent is chosen uniformly at

random to update his action. (This discrete time dynamic is m times slower

than the corresponding continuous time dynamic, while m is the number of

agents.)

An advantage of analysing the linear dynamic is that it can be viewed

as an imitation dynamic. Namely, at each time t ∈ N an agent i is chosen

uniformly at random. With probability α agent i chooses his action according
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to a coin toss with probability of success p. With probability (1 − α) he

imitates a neighbor that is drawn according to the distribution Pi(t).

0 1 2 3 4 5 6 7

1

2

3

4

5

time

Agents
Origin agents

Coin-toss agents

Figure 5: The imitation forest of the following history. At time t = 1, agent

3 imitates agent 2. At time t = 2, agent 4 tosses a coin. At time t = 3, agent

2 imitates agent 4. At time t = 4, agent 2 imitates agent 1. At time t = 5,

agent 3 imitates agent 2. At time t = 6, agent 1 tosses a coin. At time t = 7,

agent 5 imitates agent 4.

A history of the imitation dynamic up to time T induces an imitation

forest, which is defined as follows. Each vertex of the imitation forest is a

pair (i, t) ∈ [m] × [T ]. There is an edge from (i, t) to (j, t − 1) if at time t

agent i copied agent’s j action at time t−1. In addition, there is an edge from

(i, t) to (i, t − 1) if i was not chosen to update at time t. This construction

is illustrated in Figure 5.

The imitation forest admits two types of roots. A coin-toss root is a

vertex (i, t) such that i tossed a coin at time t. An origin root is a vertex

(i,0) for i ∈ [m]. This induces a partition of the population at time t into

two groups. A coin-toss agent is one that belongs to a tree with a coin-toss
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root. Similarly, an origin agent it is one that belongs to a tree with a origin

root.

This set-up bears some resemblance to the “voter model” (see for example

Liggett [34]), but there is a crucial difference. In the voter model a randomly

drawn agent imitates a randomly drawn neighbor. In our model, by contrast,

imitation only occurs with probability 1 − α, otherwise the agent chooses

action 1 with probability p. This leads to a fully ergodic process whereas the

voter model eventually absorbs into the all-0 or all-1 state.

The proof consists of two key steps.

Step 1 First we show that the proportion of coin-toss players increases at

a rate that is bounded below by a simple formula that is independent of

the network. This provides an explicit formula for the expected number of

coin toss players at each time t. We then apply Markov’s inequality to show

that with high probability the proportion of coin-toss players is large at all

sufficiently large times t.

Step 2 At each point in time the proportion of players that play 1 is a

weighted average of a sequence of 0 − 1 random variables that correspond to

prior coin tosses. Since we allow the network to evolve over time, analyzing

these weights is extremely difficult. Nevertheless, we are able to overcome this

hurdle by the following lemma, which follows readily from Feige’s inequality

[19] and its subsequent improvement by Garnett [22].

Lemma 1. Let c1, . . . , ck be i.i.d. Bernoulli(p) random variables. For all k

and all sequence of weights β1, ..., βk ≥ 0

P(
k

∑
i=1

βici ≥ [∑
i

βi]p) ≥ 0.14p.
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This corollary allows us to place a nonzero lower bound on the probability

that a given proportion are choosing 1 by time t, which leads to an upper

bound on the expected waiting time to reach a given target proportion q for

any interaction structure.

4 Proof of Theorem 3.1

As was mentioned in the proof sketch (Section 3.2) we shall analyze the

discrete imitation dynamic. Since the Poisson clock has a rate of 1, the

discrete process is m times slower then the actual continuous process. We

shall prove that for the discrete imitation dynamic we have

Tq(F,P (t)) ≤ 7.2m

pα
(1 + ln( p

p − q
)) .

First we analyze the diffusion of coin-toss agents. We define the process

as follows. The initial state is y(0) = (yi(0))i∈[m] = (0, ...,0). In each period

we choose player i ∈ [m] at random. With probability α we set yi(t) = 1.

With probability 1 −α we set yi(t) = yj(t − 1) where j is drawn according to

Pi(t).

Lemma 2. The probability of an agent to be coin-toss at time t is independent

of the network structure and is equal to p(t) = P(yi(t) = 1) = 1 − (1 − α
m)t.

Proof. This claim is established by induction on t. For t = 0 the claim

is trivial. Assume that the equality holds for t. It holds for t + 1 by the
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following equation:

P(yi(t + 1) = 1) = 1

m
(α + (1 − α)p(t)) + (1 − 1

m
)p(t)

= α

m
+ (1 − α

m
)p(t)

= α

m
+ (1 − α

m
)(1 − (1 − α

m
)
t

)

= 1 − (1 − α

m
)
t+1

= p(t + 1).

Proof of Theorem 3.1. From Lemma 2 we get that the expected number

of coin-toss agents at time t is given by E[∑i yi(t)] =m −m(1 − α
m)t. We set

a threshold of q
pm for the diffusion of the coin-toss players. We use Markov

inequality to bound the probability of small fraction (smaller than q
p) of

coin-toss agents.

P [∑
i

yi(t) ≤
q

p
m] = P [∑

i

(1 − yi(t)) ≥ (1 − q
p
)m]

≤ E[∑i(1 − yi(t))]
(1 − q

p)m
=

(1 − α
m)t

1 − q
p

(5)

At each point in time t, let R(t) = {r1(t), ..., rk(t)} ⊂ [m] × [t], k = k(t),

be the relevant coin-toss roots, and denote by c1(t), ..., ck(t) ∈ {0,1} their

realized actions (that have been realized in the corresponding stages). Note

that for any fixed t, c1(t), ..., ck(t) are i.i.d. Bernoulli(p) random variables.

For convenience of notations we also set c0 = 0. Namely, r1, ..., rk are the

coin toss roots of {(i, t) ∶ i ∈ [m]} in the imitation forest (see Figure 5). Let

f = f(t) ∶ [m] → {0,1, ..., k} be the function that associates each agent with

its relevant root. Formally, if i is a coin-toss agent at time t and (i, t) belongs

to a tree with root rj(t) then f(i) = j. If i is an origin agent at time t we
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set f(i) = 0. Finally, for j ∈ [k] we let βj(t) = ∣{i ∶ f(i) = j}∣ be the number

of appearances of the coin-toss j, with the corresponding action cj(t). Note

that ∑i∈[m]
yi(t) = ∑j∈[k] βj(t).

The original imitation dynamic s(t) can be written as si(t) = cf(i), and

therefore ∑i si(t) = ∑j∈[k] βj(t)cj(t). In order to bound Tq from above, we

define a stopping time

τ ∶= min{t ∶ ∑
i

yi(t) > q
pm},

and an event

E = {∑
j

βj(τ)cj(τ) ≥ ∑
j

βj(τ)p}.

Note that E implies that τ ≥ Tq. Since τ is measurable w.r.t. the imitation

process and {c1(τ), . . . , ck(τ)(τ)} are i.i.d. Bernoulli(p) conditioned on the

imitation process, and by Lemma 1, we have

P(E∣τ) ≥ 0.14p. (6)

We next show that

E[τ] ≤ m
α

(1 + ln( p

p − q
)) . (7)

Indeed,

E[τ] =
∞

∑
t=0

P(τ > t) ≤
∞

∑
t=0

min{1,
(1 − α

m)t

1 − q
p

} =
ln (1 − q

p)

ln (1 − α
m
)
+

∞

∑
t=0

(1 − α

m
)t

= −
ln ( p

p−q)

ln (1 − α
m
)
+ m
α

≤ m
α

ln( p

p − q
) + m

α
.

Where, the first inequality follows from (5), and the last inequality from the

inequality ln(1 + x) ≤ x.

By restarting a new imitation process after τ , we can define a sequence

of stopping times τ = τ1 < τ2 < ⋯, and corresponding events E1,E2,⋯ in the
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above fashion. Namely, τi+1 is the first time at which there are more than

q
pm coin-toss agents in the imitation process that starts at time τi, and Ei+1

is the event that the corresponding weighted sum of coin toss realizations

reaches or exceeds its expectation. Letting i∗ be the first success of one of

the events Ei, we have Tq ≤ τi∗ . Since the law of (τi+1 − τi,Ei+1) (conditioned

on the history up to time τi) obeys the same conditions as those of (τ,E), the

uniform bounds (6) and (7) apply also to the pairs (τi+1−τi,Ei+1), i = 1,2, . . .,

conditioned on the history up to time τi. Therefore,

E[Tq] ≤ E[τi∗] ≤
1

0.14p

m

α
(1 + ln( p

p − q
)) = 7.2m

pα
(1 + ln( p

p − q
)) .

5 Multiple Technologies

So far we have analyzed the case where there are two competing technologies:

the status quo and the innovation. In practice, however, multiple innovations

may be competing for acceptance at any given point in time. In this section

we explain how our results can be extended to this more general case.

Consider the case where the action set A = {1, . . . , k} consists of k alter-

natives, including the status quo. We shall assume that the payoff matrix U

has the following form:

U =

1 2 ⋯ k

1 a1 + c a1 ⋯ a1

2 a2 a2 + c ⋯ a2

⋮

k ak ak ⋯ ak + c

Here ai is the utility from choosing technology i and c is the utility from

coordination, which for simplicity we assume is the same for all technologies.
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(The model can also accommodate heterogeneous coordination payoffs but

the notation is more cumbersome.) We shall assume, without loss of gener-

ality, that a1 > a2 > ⋯ > ak. Let ej be the idiosyncratic payoff shock from

playing alternative j. We assume that the shocks (ej)j=1,...,k are nonatomic,

i.i.d., and have mean zero.

Given a distribution x⃗ = (x1, . . . , xk) ∈ ∆(A) let ri(x⃗) be the probability

that technology i is the best-reply alternative that is,

ri(x⃗) = P((Ux⃗)i ≥ (Ux⃗)j for all j ∈ A).

Let r⃗(x⃗) = (r1(x⃗), . . . , rk(x⃗)) denote the multidimensional response function.

For every value x ∈ [0,1] of adopters of the superior technology let

ρ(x) = min
x⃗∈∆k s.t. x1=x

r1(x⃗). (8)

Thus we have replaced the function r of the two technologies case with the

function ρ which bounds the probability of adopting technology 1 as a func-

tion of the proportion of adopters of 1. We can now approximate ρ using

a linear function L as described above. We note that for every vector of

proportions x⃗,

r1(x⃗) ≥ ρ(x1) ≥ L(x1),

hence we can use Theorem 3.1 to approximate the waiting time for a propor-

tion of q < p adopters of the superior technology 1.

Deriving the function ρ explicitly from the multidimensional response

function r⃗ is not always straightforward. In many applications, however, as

we shall next show, ρ can be easily derived from r⃗.

Lemma 3. If the payoff shock CDF F is log concave, then for every x ∈ [0,1],

ρ(x) = r⃗(x,1 − x,0, . . . ,0).
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In other words, if F is log concave, then the technology distribution that

minimizes the switching probability to technology 1 across all distributions

with x1 = x occurs when the proportion playing technology 2 equals 1 − x.

Before providing the proof note that

Ux⃗ = (a1 + cx1, a2 + cx2, . . . , an + cxn).

Proof. Consider the case where the realized payoff shock for technology 1

equals e1. In this case the payoff from using technology 1 is u1 = a1 + cx+ e1.

It is sufficient to show that across all x⃗ ∈ ∆k with x1 = x the vector that

minimizes the probability

P((Ux⃗)j + ej ≤ u1 for j = 2, . . . , k, ). (9)

is (x,1 − x,0, . . . ,0). Note that the probability in (9) equals

F (u1 − a2 − cx2)⋯F (u1 − ak − cxk). (10)

We wish to find x⃗ ∈ ∆k that minimizes (10) subject to x1 = x. It follows from

the log concavity of F that the product in (10) is also log concave. Since

the domain, {x⃗ ∈ ∆k ∶ x1 = x}, is convex and compact it follows that the

minimum is attained at an extreme point.

It remains to show that the extreme point at which the minimum is

attained is (x,1−x,0, . . . ,0). We contend that the log concavity of F implies

that for every j ∈ A ∖ {1,2} the function

g(z) = ln(F (u1 − aj + z)) − ln(F (u1 − a2 + z)),

is decreasing in z. To see this, note that since aj < a2 we have u1−aj > u1−a2.

Since the function h(z) = ln(F (z)) is concave, the slope

ln(F (u1 − aj + z)) − ln(F (u1 − a2 + z))
a2 − aj
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is decreasing in z. In particular, g(0) ≤ g(−(1 − x)c). This implies that for

every j ∈ A ∖ {1,2},

F (u1 − a2 − (1 − x)c)F (u1 − aj) ≤ F (u1 − a2)F (u1 − aj − (1 − x)c).

Therefore, for every j ∈ A ∖ {1,2}

F (u1−a2−(1−x)c)F (u1−a3)⋯F (u1−ak) ≤ F (u1−a2)⋯F (u1−aj−(1−x)c)⋯F (u1−ak).

This concludes the proof of the lemma.

6 Conclusion

In this paper we have established an upper bound on the expected waiting

time until an innovation is adopted by a large fraction of a given popula-

tion. The formula for the bound is universal in the sense that it holds for

all directed and undirected networks of arbitrary size and degree distribu-

tion. Moreover the bound holds when the network itself is evolving over

time. Previous results on this topic rely on the existence of a potential (or

Lyapunov) function and hold only for regular networks with symmetric in-

teractions, as in Kreindler and Young [33, 2014]. We have also established

waiting time bounds for the diffusion of multiple innovations instead of just

a single innovation, which is the usual assumption in the literature.

Our bound holds for a wide variety of perturbed best response processes

where agents choose optimal responses under random payoff shocks; partic-

ular cases include errors that are normally or extreme-value distributed for

example. These models are consistent with empirical evidence on subjects

learning behavior in network games (Maes and Nax [36, 2016]). The formula

for the bound is expressed in terms of the slope and intercept of a suitably

chosen linearization of the perturbed response process. In particular, the

23



waiting time to reach a given proportion of adopters is inversely propor-

tional to the initial amount of noise in the linear process when no one has

yet adopted (L(0) in expression (3)).

We do not claim that the constant of proportionality in (3) is best pos-

sible, nor do we claim that the topology of the network does not affect the

waiting time. Indeed it seems reasonable to suppose that some types of net-

works converge more quickly than others. The usefulness of the result arises

from the fact that in practice it is very difficult to observe the topology of

interactions and the degree of influence that different actors exert on one

another. By contrast, it may be possible to estimate the response probabili-

ties of agents conditional on the choices of their neighbors using longitudinal

data. From this one can derive the linearized process and the upper bound

on the expected waiting time to reach a given adoption threshold.

A Feige’s Inequality and Lemma 1

The following theorem is due to [19].

Theorem A.1. Let X1, . . . ,Xn be nonnegative independent random vari-

ables, with E[Xi] ≤ 1∀i, and let X = ∑ni=1Xi. Then for any n,

Pr[X < E[X] + 1] ≥ α > 0,

for some α ≥ 1/13.

Garnett [22] improved upon the constant α and show that α ≥ 0.14. We

next prove Lemma 1 from the above theorem.

Proof of Lemma 1. Let c1, . . . , ck be i.i.d. Bernoulli(p), and let β1, . . . , βk be

positive real numbers. We can assume without loss that βi ≤ 1
1−p ∀i ∈ [k] and
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that β1 = 1/(1 − p). Let Xi = βi(1 − ci), mi = ci(1 − p), X =X2 + ... =Xk, and

m =m2+...+mk. We must show that Pr(∑i∈[k] βici ≥ ∑i∈[k] βip) = P (X1+X ≤

m + 1) ≥ ap. Indeed, by the above theorem,

P (X1 +X ≤m + 1) ≥ P (X1 = 0)P (X <m + 1) ≥ ap.
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