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Abstract

New ways of doing things often get started through the actions of a few

innovators, then diffuse rapidly as more and more people come into contact

with prior adopters in their social network. Much of the literature focuses on

the speed of diffusion as a function of the network topology. In practice the

topology may not be known with any precision, and it is constantly in flux

as links are formed and severed. Here we establish an upper bound on the

expected waiting time until a given proportion of the population has adopted

that holds independently of the network structure. Kreindler and Young [38,

2014] demonstrated such a bound for regular networks when agents choose

between two options: the innovation and the status quo. Our bound holds

for directed and undirected networks of arbitrary size and degree distribution,

and for multiple competing innovations with different payoffs.
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1 Introduction

Social and technological advances are essential to economic development, but the

mere existence of new and better ways of doing things does not guarantee that they

will be widely used. The time it takes to dislodge inferior practices is another crucial

factor in explaining how rapidly development can occur. This lag time depends on

several crucial factors. One is lack of information: it may not be immediately evident

that the innovation is in fact superior to the status quo. A second factor is network

externalities: the desirability of an innovation depends not only on its inherent

payoff but on how many others in one’s social network have also adopted. Dislodging

an inferior practice or technology requires a coordinated shift in expectations and

behaviors among members of the group, which may take a long time even if it is

already evident that everyone would be better off if they were to do so.

There is a substantial theoretical and empirical literature on these issues that we

shall discuss below. In contrast to much of this literature, which is concerned with

learning about payoffs from the actions of prior adopters, our focus here will be on

the time it takes to dislodge an inferior practice when there are increasing returns

from adoption and the payoffs are already known. This allows us to separate the

effects of pure network externalities from the problem of learning about the payoffs

by observing the behavior of others. Moreover, unlike much of the literature, we

shall focus on the question of how long it takes to dislodge an inferior practice or

technology when little or nothing is known about the topology of social interactions.

Although this would appear to omit the main variable of interest, this is not the

case. In particular, Kreindler and Young [38, 2014] demonstrate that the expected

waiting time to overturn an inferior equilibrium can be usefully bounded from above

for all undirected regular networks.

The theoretical contributions of this paper are three-fold. First we establish an

upper bound on the expected waiting time that holds for networks of any size and

degree distribution, whether directed or undirected. Second, we show how to extend

the analysis to multiple competing innovations, instead of a single innovation versus

the status quo, which is the usual assumption in the literature. Third, we show how
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the network topology affects the results by deriving waiting time bounds that hold

for specific classes of networks, including regular networks and star networks. The

mathematical techniques are novel and rely on results characterizing the distribution

of arbitrarily large sums of independent random variables.

1.1 Related Literature

The importance of social interactions in spreading new ideas and practices has been

documented in a wide variety of situations. Ryan and Gross [54, 1943] demon-

strated that farmers’ decisions to adopt an agricultural innovation — hybrid corn –

were strongly influenced by the adoption decisions of their neighbors. Subsequently

Griliches [31, 1957] showed that the decision to adopt also depended on the expected

gains in payoff from the innovation relative to the status quo. At about the same

time sociologists Coleman, Katz, and Menzel [17, 1957] analyzed the role of social

networks among doctors in the adoption of a new medical treatment (in this case

tetracycline), and showed that adoption was driven to a significant extent by peer

effects.1

Since then a substantial theoretical literature has developed on the rate of in-

novation diffusion as a function of the network topology. A recurrent theme is that

interaction among small close-knit groups can speed up the adoption process. The

logic is that the innovation can gain a local foothold relatively quickly, and from

different local footholds it then spreads throughout the network (Ellison [19, 1993];

Young [63, 1998]; and [64, 2009]; Montanari and Saberi [43, 2010]). Experimental

studies of games played on networks are consistent with these predictions (Centola

et al. [15, 2015]).2

A related line of work is concerned with the time it takes for a new idea to

spread when it is seeded at one or more locations. Here the key features are the

1For subsequent empirical work on innovation diffusion in networks, see Valente [58, 1995];

Foster and Rosenzweig [23, 1995]; Foster and Rosenzweig [24, 2010] Kohler [35, 1997]; Kohler et

al. [36, 2001]; Udry and Conley [57, 2001]; Rogers [52, 2003]; Munshi [48, 2004].
2There is also a recent literature on the speed of convergence in games where agents interact

globally instead of with a fixed set of neighbors; see in particular Ellison, Fudenberg, and Imhof

[21, 2016] and Arieli and Young [2, 2016].
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centrality of the nodes where the new idea is seeded, and the degree of connectivity

of the network (Morris [42, 2000]; Banerjee et al. [6, 2013]). These are instances of

“threshold” models, in which a given individual adopts once a sufficient number of

his neighbors have adopted (Watts [61, 2002]). In this literature adoption decisions

are typically treated as irreversible, whereas in the present paper we treat adoption

(and disadoption) as random variables that depend on the distribution of choices

by one’s neighbors and stochastic shocks to their perceived payoffs; they are not

deterministic.

Yet another branch of the literature investigates how network structure affects

the rate at which agents update their priors about the desirability of the innovation,

based on observation of their neighbors’ choices. A key issue here is the identification

of conditions on the network topology and updating rules under which the process

converges to correct beliefs and optimal actions.3 The actual learning behaviour

of subjects who are embedded in different types of networks has been investigated

experimentally by Gale and Kariv [26, 2003] and Mäs and Nax [40, 2016].

In this paper we focus instead on the situation where the payoffs are known

in advance or have already been learned. In particular we assume that people

know that the new practice or technology would be inherently better than current

practice provided that a sufficient number of people in one’s network adopted it. The

source of such network externalities depends very much on the situation. A social

website is more valuable the more people who use it. A market is more valuable

the more traders it attracts. A similar logic holds for communication technologies,

technological standards, and many other innovations with increasing returns.4

A different type of network externality arises when people are sanctioned for not

conforming to a current norm or practice. Demographers have found, for example,

that social norms are a significant factor in explaining the pace and pattern of

3See Banerjee [5, 1992]; Bikchandani et al. [9, 1992]; Ellison and Fudenberg [20, 1993]; Bala

and Goyal [4, 1998]; Jackson [34, 2008]; Solan et al. [56, 2009]; Golub and Jackson [28, 2010]

[29, 2012]; Acemoglu et al. [1, 2011]; Mueller-Frank [46, 2013]; Mueller-Frank and Pai [47, 2016];

Mossel et al. [44, 2015].
4David [18, 1993] and Arthur [3, 1994].
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contraceptive use in developing countries.5 In the United States, norms of medical

treatment for a given medical condition differ widely among states and even among

counties within the same state. These differences appear to be the product of two

types of network externality: peer effects and information sharing. Physicians tend

to conform to the choices of local opinion leaders, and once a given practice becomes

established its benefits are enhanced by local knowledge sharing within the group.6

These and other sources of network externalities can be modelled as a network

game in which individuals repeatedly play a coordination game against their neigh-

bors. Individuals periodically update their choices according to a random arrivals

process. When individuals update they choose an optimal response given the inher-

ent payoff from the choice as modified by the current choices of their neighbors (the

coordination payoff) plus an idiosyncratic utility shock.7

The contribution of the current paper is to establish an upper bound on the

expected waiting time until a given proportion of the population has adopted, where

the bound is independent of the size and topology of the network itself. This result is

similar in spirit to the framework of Kreindler and Young [37, 2013], [38, 2014], who

establish an upper bound on the waiting time for all regular undirected networks and

a logit model of errors. Here we employ different mathematical methods to establish

a more general bound on the waiting time that holds for all directed and undirected

networks of arbitrary size, and for a very broad class of error distributions. These

bounds are especially useful when the network is difficult to observe and is constantly

changing as agents form and sever links with one another.8 The mathematical

techniques rely on recent advances in estimating the distribution of arbitrarily large

sums of independent random variables [22, 2006], [27, 2020].

5See Bongaarts and Watkins [12, 1996]; Montgomery and Casterline [41, 1996]; Kohler [35,

1997]; Kohler et al. [36, 2001]; Munshi and Myaux [48, 2006].
6See Wennberg and Gittelsohn [62, 1973]; Phelps and Mooney [51, 1993]; Chandra and Staiger

[16, 2007]; Burke et al. [13, 2007], [14, 2010].
7See among others Blume [11, 1993]; Jackson and Yariv [33, 2007]; Jackson [34, 2008]; Vega-

Redondo [60, 2007]; Golub and Jackson [28, 2008]; [28, 2010]
8There is a large literature on the dynamics of link formation in social networks. See among

others Skyrms and Pemantle [55, 2000]; Jackson and Watts [32, 2002]; Goyal and Vega-Redondo

[60, 2007]; Jackson [32, 2008].
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The plan of the paper is as follows. In the next section we formulate the stochastic

updating model. In sections 3-4 we establish a general bound on the expected waiting

time until a target proportion of the population has adopted, starting from the state

where everyone is playing the status quo. The bound depends on the shape of the

error distribution, on the payoff gap between the innovation and the status quo,

and on the magnitude of the coordination payoffs relative to the inherent payoffs

from different choices, but it does not depend on the topology of the network per se.

Section 5 extends the analysis to multiple competing innovations. In Section 6 we

show how the waiting time depends on the topology of the network by considering

two contrasting cases: regular networks and star networks. In particular we show

that the bound established by Kreindler and Young [38, 2014] for large regular

networks can be substentially improved.

2 Model

A weighted directed network with m nodes can be represented by an m �m row-

stochastic matrix P �t� � �Pij�t��. We interpret Pij�t� as the probability that agent

i interacts with j during the current period.9 Alternatively we can view Pij�t� as

the relative weight that i attaches to interactions with j in the current period. For

expositional simplicity we shall begin by considering the situation where each agent

chooses one of two actions: the innovation (action 1) or the status quo (action 0). In

Section 5 we shall extend the analysis to multiple innovations with different payoffs.

The payoff from choosing an action consists of two parts: i) an inherent payoff

that is independent of how many others choose it, and ii) a coordination payoff that

results from coordinating with others. For an interaction with a single neighbour,

9We allow for the possibility that Pii�t� A 0, that is, i’s own action in the previous period

increases the probability that he chooses it again next period. This can be interpreted as a form

of inertia.
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we represent the payoffs by the following 2 � 2 matrix

0 1

0 c 0

1 a a � c

Here a A 0 is the payoff difference between the innovation 1 and the status quo

0, and c A 0 is the coordination payoff that results from making the same choice

as someone with whom one interacts. Note that when c @ a the innovation is a

dominant strategy and there is a unique equilibrium whereas if c A a there are three

equilibria: two pure and one mixed. The subsequent analysis holds in either case

but we shall typically assume that there are multiple equilibria.

The state of the process at the end of each period t is an m-vector s�t� > �0,1�m,
where si�t� � 1 if agent i chooses the innovation at t, and si�t� � 0 otherwise.

The updating process works as follows. Time is continuous and the initial state

is s�0� � �0, . . . ,0�. We suppose that every agent receives updating opportunities

according to a Poisson arrival process with rate one per time period, where these

processes are independent among the individuals. Suppose that i receives such an

opportunity at time t. Given the current network structure P � P �t� and the current

state s�t�, let

xi�t� � Q
j>�m�

Pijsj�t�.
Thus i’s expected payoff from interacting with a randomly drawn neighbor (drawn

according the distribution P �t�) is ui�1� � a � cxi�t� if he chooses action 1, and

ui�0� � c�1 � xi�t�� if he chooses action 0.

Let us assume that the difference between the payoff from 1 and the payoff

from 0 is perturbed by a random payoff shock εi�t� with c.d.f. F �ε�. For ease of

interpretation we shall assume that F has a density f�ε� and that all shocks are i.i.d.

among agents and among time periods. If the perturbed payoff difference is positive

agent i chooses action 1; otherwise he chooses action 0. This class of perturbed best

reply dynamics is very general and includes such standard dynamics as the logit

response, where the payoff shocks are extreme-valued distributed. Experimental

evidence on learning in networks shows that subjects do deviate from best reply
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with a probability that is decreasing in the resulting payoff loss, which is consistent

with this class of models (Maes and Nax [40, 2016]).

Conditional on receiving an updating opportunity at time t, the probability that

i chooses 1 is

P�si�t� � 1Sxi�t�� � P�a � εi�t� � cxi�t� A c�1 � xi�t��� (1)

� P�εi�t� A c � a � 2cxi�t�� � 1 � F �c � a � 2cxi�t��.
We shall call this the response function and write

r�xi�t�� � 1 � F �c � a � 2cxi�t��. (2)

Note that r��� is monotone, nondecreasing, continuous, and 0 B r�0� B r�1� B 1.

(Continuity follows from our assumption that F has a density.) In what follows we

shall assume that r�0� A 0, that is, F �c � a� @ 1. This amounts to saying that even

when none of i’s neighbors has adopted the innovation, there is a positive probability

that i will switch from 0 to 1 due to receiving a sufficiently large payoff shock.

Figure 1 shows an example of a response function based on the normal distribu-

tion.

x
10

1

r�x�

Figure 1: A response function based on the normal distribution.

Although we have derived the response function from a specific shock distribution

F, in what follows we can view the response function as a primitive of the model:

r�x� specifies the probability that an agent chooses action 1 whenever a (weighted)
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x

1

10

L�0�
x � p

Figure 2: Supporting line L�x� (dashed) and response function r�x� (solid).

proportion x of the agent’s neighbors choose action 1. Note that the same response

function holds for all agents and is independent of the particular network through

which they interact.

Given a response function r�x� define the supporting line L�x� to be the unique

line that solves the following maximization problem:

max L�0�
subject to L�1� � r�1� and L�x� B r�x� for x > �0,1�.

The slope of L will be denoted by 1 � α �� L�1� � L�0� @ 1, and its fixed point will

be denoted by p � L�0�
α , as shown in Figure 2.

In what follows we shall focus on the case L�0� A 0. The conditions under which

this assumption holds are discussed in Section 3.1. In particular, it fails to hold if

the response function is too “bowed,” and crosses the 45X line at a low value of x

as shown in Figure 3. In this case the adoption process can become trapped in a

low-level equilibrium for a very long time; indeed the expected waiting time until a

low proportion q of the agents have adopted is unbounded in the network size for

some classes of networks, as we show in Section 6.3.
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x

1

r

1
L�0�0 q

r�x�

Figure 3: Response function with L�0� @ 0, and a low value q such that r�q� @ q.
3 A General Result on Waiting Times

The question we wish to address is the following: starting from the state s�0� and

given a target proportion q > �0,1�, how long does it take in expectation to reach a

state in which at least qm agents have adopted the innovation? More precisely, we

wish to find an upper bound on the expected waiting time defined as follows

Tq�F,P �t�� � E�min�t �
1

m
Q
i>�m�

si�t� C q, s�0� � �0, . . . ,0���.
We can now state our main result:

Theorem 3.1. Let F be an error distribution function with density f . Suppose that

the supporting line L�x� satisfies L�0� A 0, has slope 1 � α, fixed point p, and q @ p.

Then for every dynamic network P �t� we have

Tq�F,P �t�� B 7.2

pα
�1 � ln� p

p � q
�� � 7.2

L�0� �1 � ln� p

p � q
�� . (3)

The crucial point is that the right-hand side does not depend on the network

structure or on how rapidly it is evolving.

As we mentioned earlier, the closest result in the literature is due to Kreindler

and Young [38, 2014]. Using martingale methods they derive the following upper

bound on the expected waiting time until at least qm agents have adopted and P �t�
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is any regular, undirected network, namely10

Tq�F,P �t�� B 1

α�p � q� . (4)

The same bound holds for irregular networks provided that the target q is ex-

pressed as the degree-weighted proportion of adopting agents. This criterion is

different from insisting that a given proportion of agents adopt. In a star network,

for example, a degree-weighted majority (q � 1
2) is achieved when just the central

node has adopted. A comparison of (3) and (4) shows that the latter is a better

(i.e., lower) bound unless q is very close to p. Indeed (4) is less than (3) provided

that
p

p � q
A 7.2�1 � ln � p

p � q
��,

which holds whenever q @ .969p. However, our bound is much more general because

it holds for directed and undirected networks of any size and degree distribution. In

Section 6.1 we show that for large regular networks the waiting time is 1
α ln� p

p�q�,
which is considerably tighter than the Kreindler-Young bound.

3.1 Discussion of the condition L�0� A 0

A key assumption underlying Theorem 1 is that the tangent line L�x� must have a

strictly positive intercept L�0�. If this is not the case the theorem does not apply.

When will L�0� be negative? The answer is when the payoff advantage a is small

relative to the coordination payoff c, and/or the variance of the distribution F is

small. Recall that r�0� � 1�F �c�a� and r�1� � 1�F ��a�c�. For ease of exposition

suppose also that f is symmetric about 0, so that the reflection point of F occurs

at 0. Then r�0� � F �a� c� and r�1� � F �a� b�. Increasing a to a� b shifts the origin

as shown in Figure 4. When b is large enough, the intercept of the supporting line

become positive (see Figure 4, bottom panel).

10To illustrate their approach, let G be a complete undirected network. Given q @ p let µ �

L�q� � q. Assuming that L�0� A 0, we have L�x� � x A µ C 0, for all x > �0, q�. Given a proportion

x�t� B q the expected increase next period is E�x�t � 1� � x�t�Sx�t�� C µ A 0. It follows that the

expected waiting time until x�t� C q is at most 1
µ

. Since L�x� � �1 � α�x � αp, µ � α�p � q�, and

hence T B
1

α�p�q�
. In fact, the same bound holds for all regular networks; moreover if q � 1

2
the

bound can be improved to T B
0.42
α�p�q�

(Kreindler and Young [38, 2014], Lemma 2).
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The second case is illustrated in Figure 5. Rescaling the standard deviation by

an amount σ is equivalent to rescaling the horizontal axis by 1
σ , which leads to a

positive intercept if σ is large enough, as shown in the bottom panel of Figure 5.

More generally, given a response function r�x� we have:

L�0� � inf
x>�0,1�

r�x� � xr�1�
1 � x

. (5)

Therefore, L�0� A 0 iff r�x� A xr�1� for every x > �0,1�. If r is induced by

a c.d.f. F , then r�x� � 1 � F �c � a � 2cx�. In this case, the condition becomes

1 � F �c � a � 2cx� A x�1 � F ��a � c�� for every x > �0,1�.11

ε

1

ε � a � c

ε � a � c

L���

r���

L�0� @ 0

ε

1

L�0� A 0

ε � a � b � c ε � a � b � c

L���

r���

Figure 4: For a given c.d.f. F �ε�, increasing the payoff advantage of the innovation

by an amount b increases the intercept L�0�. Here F �a�b�c� � r�0� and F �a�b�c� �
r�1�.

11In case a C c and the c.d.f. F is symmetric and unimodal, the response function is concave

and hence L�0� A 0.
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ε

1

ε � a � c

ε � a � c

L�0�

L���

r���

ε

1

ε � a�c
σ ε � a�c

σ

L�0�
L���
r���

Figure 5: Increasing the standard deviation of the error distribution by a factor σ

increases the intercept L�0�. Here F�a�cσ � � r�0� and F�a�cσ � � r�1�.

3.2 Proof Sketch of Theorem 3.1

Conditional on receiving a revision opportunity, an agent chooses action 1 with

probability r�x�, where x is the weighted average proportion of his neighbors who

are currently choosing 1. The idea is to analyse the linear dynamic where an agent

that faces the proportion x updates his action to 1 with probability L�x� instead of

r�x�. Since L�x� B r�x�, for every time t we have

r�xi�t�� C pα � �1 � α�Q
j

Pij�t�sj�t�.
In particular, the expected time it takes for the linear dynamic to reach the threshold

q is at least as long as the expected time under the actual dynamic.

An advantage of analysing the linear dynamic is that it can be viewed as an

imitation dynamic. Namely, at every revision opportunity, the revising agent i acts

as follows: with probability α he chooses his action according to a coin toss with

probability of success p. With probability �1 � α� he imitates a neighbor that is
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drawn according to the distribution Pi�t�.12 Thus the probability that i chooses 1

is

αp � �1 � α�xi�t� � L�xi�t��. (6)

0 1 2 3 4 5 6 7

1

2

3

4

5

time

Agents
Origin agents

Coin-toss agents

Figure 6: The imitation forest of the following history. At time t � 1, agent 3

imitates agent 2. At time t � 2, agent 4 tosses a coin. At time t � 3, agent 2 imitates

agent 4. At time t � 4, agent 2 imitates agent 1. At time t � 5, agent 3 imitates

agent 2. At time t � 6, agent 1 tosses a coin. At time t � 7, agent 5 imitates agent

4. Square nodes are points where an agent tossed a coin.

In what follows it will be notationally convenient to analyze the corresponding

discrete time linear dynamic such that at each time t one agent is chosen uniformly

at random to update his action. (This discrete time dynamic is m times slower than

the corresponding continuous time dynamic, where m is the number of agents.)

A history of the imitation dynamic up to time T induces an imitation forest,

which is defined as follows. Each vertex of the imitation forest is a pair �i, t� >

�m�� �T �. There is an edge from �i, t� to �j, t� 1� if at time t agent i copied agent’s

j action at time t � 1. In addition, there is an edge from �i, t� to �i, t � 1� if i was

not chosen to update at time t. This construction is illustrated in Figure 6.

12This set-up bears some resemblance to the “voter model” in which a randomly drawn agent

imitates a randomly drawn neighbor Liggett [39, 1999]. In our model, by contrast, imitation only

occurs with probability 1 � α; otherwise the agent chooses action 1 with probability p. This leads

to a fully ergodic process whereas the voter model eventually absorbs into the all-0 or all-1 state.
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The imitation forest admits two types of roots. A coin-toss root is a vertex �i, t�
such that i tossed a coin at time t. An origin root is a vertex �i,0� for i > �m�. This

induces a partition of the population at time t into two groups. A coin-toss agent

is one that belongs to a tree with a coin-toss root. Similarly, an origin agent is one

that belongs to a tree with an origin root.

The proof of Theorem 3.1 consists of two key steps.

Step 1 First we show that the proportion of coin-toss agents increases at a rate

that is bounded below by a simple formula that is independent of the network. This

provides an explicit formula for the expected number of coin toss agents at each

time t. We then apply Markov’s inequality to show that with high probability the

proportion of coin-toss agents is large at all sufficiently large times t.

Step 2 At each point in time the proportion of agents that play 1 is a weighted

average of a sequence of 0�1 random variables that correspond to prior coin tosses.

Since we allow the network to evolve over time, analyzing these weights is extremely

difficult. Nevertheless, we are able to overcome this hurdle by the following lemma,

which follows readily from Feige’s inequality [22] and its subsequent improvement

by Garnett [27]. (See the Appendix for further details).13

Lemma 1. Let c1, . . . , ck be i.i.d. Bernoulli�p� random variables. For all k and

every sequence of weights β1, ..., βk C 0

P� k

Q
i�1

βici C �Q
i

βi	p� C 0.14p.

This corollary allows us to place a nonzero lower bound on the probability that

a given proportion of the agents are choosing action 1 by time t, which leads to an

upper bound on the expected waiting time to reach a given target proportion q for

any interaction structure.

13Billingsley ([10, 2008], Theorem 9.2) has a different bound that depends on higher moments

of the Bernoulli random variable, but the bound is not as good for values of p close to 1. See

Appendix A for further details.
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4 Proof of Theorem 3.1

As was mentioned in the proof sketch (Section 3.2) we shall analyze the discrete-

time imitation dynamic in which one randomly drawn agent updates per period.

Since each agent’s Poisson clock has rate 1, the discrete process is m times slower

then the actual continuous process. We shall prove that for the discrete dynamic

the expected waiting time satisfies the bound

Tq�F,P �t�� B 7.2m

pα
�1 � ln� p

p � q
�� .

First we analyze the diffusion of coin-toss agents. Consider the following process:

the initial state is y�0� � �yi�0��i>�m� � �0, ...,0�, and in each period one player i > �m�
is drawn at random to update. With probability α, yi�t� � 1, and with probability

1 � α, yi�t� � yj�t � 1�, where j is drawn according to Pi�t�.
Lemma 2. The probability that an agent is coin-toss at time t is independent of the

network structure and is equal to p�t� � P�yi�t� � 1� � 1 � �1 �
α
m�t.

Proof. This claim is established by induction on t. For t � 0 the claim is trivial.

Assume that the equality holds for t. Than it holds for t � 1, because

P�yi�t � 1� � 1� � 1

m
�α � �1 � α�p�t�� � �1 �

1

m
�p�t�

�
α

m
� �1 �

α

m
�p�t�

�
α

m
� �1 �

α

m
��1 � �1 �

α

m
�t�

� 1 � �1 �
α

m
�t�1

� p�t � 1�.

Proof of Theorem 3.1. Let T̃q be the first time at which at least qm agents have

adopted. We seek to bound E�T̃q� � Tq�F,P �t�� from above independently of P �t�.
Lemma 2 shows that the expected number of coin-toss agents at time t is given by

E�Pi yi�t�� �m�m�1� α
m�t. Let us set a threshold of q

pm for the number of coin-toss

agents. We use Markov’s inequality to bound the probability that the number of
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coin-toss agents is less than q
pm, namely,

P �Q
i

yi�t� @ q
p
m	 � P �Q

i

�1 � yi�t�� A �1 �
q

p
�m	

B
E�Pi�1 � yi�t����1 �

q
p�m �

�1 �
α
m�t

1 �
q
p

.

(7)

At each point in time t, let R�t� � �r1�t�, ..., rk�t��t��, be the relevant coin-toss

roots at t, and denote by c1�t�, ..., ck�t��t� > �0,1� their realized actions. Note that for

any fixed t, c1�t�, ..., ck�t��t� are i.i.d. Bernoulli�p� random variables. For notational

convenience we let c0 � 0. Let ϕ�i, t� be the function that associates each coin-toss

agent with the corresponding root. Formally, if i is a coin-toss agent at time t and

�i, t� belongs to a tree with root rj�t� then ϕ�i, t� � j. If i is an origin agent at time

t we let ϕ�i, t� � 0. Finally, for every j > �k�t�� we let βj�t� � S�i � ϕ�i, t� � j�S be the

number of appearances of the coin-toss root j, with the corresponding action cj�t�.
Note that Pi>�m� yi�t� � Pj>�k�t�� βj�t�. The state of the imitation dynamic s�t� can

be expressed as si�t� � cg�i�, hence Pi si�t� � Pj>�k�t�� βj�t�cj�t�.
In order to bound T̃q from above, we define the stopping time

τ �� min�t �Q
i

yi�t� A q
pm�,

and the event

E �� �ω �Q
j

βj�τ�ω��cj�τ�ω�� CQ
j

βj�τ�ω��p�.
Note that ω > E implies that T̃q�ω� B τ�ω�. Since τ is measurable with respect to the

imitation process and �c1�τ�, . . . , ck�τ��τ�� are i.i.d. Bernoulli�p� random variables

conditioned on the imitation process, Lemma 1 implies that

P�E Sτ� C 0.14p. (8)

We next show that

E�τ� B m
α

�1 � ln� p

p � q
�� . (9)

Indeed,

E�τ� � ª

Q
t�0

P�τ A t� B ª

Q
t�0

min�1,
�1 �

α
m�t

1 �
q
p

¡ B

ln �1 �
q
p�

ln �1 �
α
m
� �

ª

Q
t�0

�1 �
α

m
�t

� �

ln � p
p�q�

ln �1 �
α
m
� �

m

α
B
m

α
ln� p

p � q
� � m

α
.
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The first inequality follows from (7), and the last inequality from the inequality

ln�1 � x� B x.

By restarting a new imitation process after τ , we can define a sequence of stop-

ping times τ � τ1 @ τ2 @ �, and corresponding sequence of events E1,E2,� in the

above fashion. Namely, τi�1 is the first time at which there are at least q
pm coin-toss

agents in the imitation process that starts at time τi, and Ei�1 is the event that the

corresponding weighted sum of coin-toss realizations reaches or exceeds its expecta-

tion. Letting i� be the first success of one of the events Ei, we have T̃q B τi� . Since

the law of �τi�1 � τi,Ei�1� (conditioned on the history up to time τi) obeys the same

conditions as those of �τ,E�, the uniform bounds (8) and (9) apply also to the pairs

�τi�1 � τi,Ei�1�, i � 1,2, . . ., conditioned on the history up to time τi. Therefore,

Tq�F,P �t�� � E�T̃q� B E�τi�� B 1

0.14p

m

α
�1 � ln� p

p � q
�� � 7.2m

pα
�1 � ln� p

p � q
�� .

Recalling that the actual adoption dynamic with i.i.d. Poisson updating is m times

faster than the discrete time dynamic, the statement of Theorem 3.1 follows.

5 Multiple Technologies

So far we have analyzed the case where there are two competing technologies: the

status quo and the innovation. In practice multiple innovations may be competing

for acceptance at any given point in time. In this section we explain how our results

can be extended to this more general case.

Consider the case where the action set A � �1, . . . , k� consists of k alternatives,

including the status quo. We shall assume that the payoff matrix U has the following

form:

U �

1 2 � k

1 a1 � c a1 � a1

2 a2 a2 � c � a2

�

k ak ak � ak � c

Here ai is the utility from choosing technology i and c is the utility from coordina-

tion, which for simplicity we assume is the same for all technologies. (The model
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can also accommodate heterogeneous coordination payoffs but the notation is more

cumbersome.) We shall assume, without loss of generality, that a1 A a2 A � A ak.

Let εj be the idiosyncratic payoff shock from playing alternative j. We assume that

the shocks �εj�j�1,...,k are nonatomic, i.i.d., and have mean zero.

Given a distribution Ñx � �x1, . . . , xk� > ∆�A�, let ri�Ñx� be the probability that

technology i is the best-reply alternative for an agent facing this distribution:

ri�Ñx� � P��U Ñx�i C �U Ñx�j for all j > A�.
Let Ñr�Ñx� � �r1�Ñx�, . . . , rk�Ñx�� denote the multidimensional response function.

For every value x > �0,1� let ρ�x� be the minimum probability that an agent

adopts technology 1 when the proportion x of his neighbors have adopted technology

1:

ρ�x� � min
Ñx>∆k s.t. x1�x

r1�Ñx�. (10)

We replace the function r of the two technologies case with the function ρ. We now

approximate ρ using a linear function L as described above. Note that for every

vector of proportions Ñx,

r1�Ñx� C ρ�x1� C L�x1�.
We can therefore use Theorem 3.1 to approximate the expected waiting time until

a proportion q @ p have adopted the superior technology 1.

Deriving the function ρ explicitly from the multidimensional response function

Ñr is not always straightforward. However, for a wide class of shock distributions

used in empirical applications, ρ can easily be derived from Ñr, as the following result

shows.

Lemma 3. If the payoff shock distribution F is log concave, then for every x > �0,1�,
ρ�x� � r1�x,1 � x,0, . . . ,0�.

In other words, if F is log concave, then the technology distribution that mini-

mizes the switching probability to technology 1 across all distributions with x1 � x

occurs when the proportion playing technology 2 equals 1 � x.14

14For example, the extreme value distribution, which generates the logit response, is log concave,

and so is the normal distribution, which generates the probit response. In contrast, the Cauchy

and the Pareto distributions are not log concave.
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Before providing the proof note that

U Ñx � �a1 � cx1, a2 � cx2, . . . , an � cxn�.
Proof. Consider the case where the realized payoff shock for technology 1 equals ε1.

In this case the payoff from using technology 1 is u1 � a1 � cx � ε1. It is sufficient to

show that across all Ñx > ∆k with x1 � x, the vector �x,1 � x,0, . . . ,0� minimizes the

probability

P��U Ñx�j � εj B u1 for j � 2, . . . , k, � (11)

Note that the probability in (11) equals

F �u1 � a2 � cx2��F �u1 � ak � cxk�. (12)

We wish to find Ñx > ∆k that minimizes (12) subject to x1 � x. It follows from the

log concavity of F that the product in (12) is also log concave. Since the domain,

�Ñx > ∆k � x1 � x�, is convex and compact it follows that the minimum is attained at

an extreme point.

It remains to show that the extreme point at which the minimum is attained is

�x,1 � x,0, . . . ,0�. We contend that the log concavity of F implies that for every

j > A � �1,2� the function

g�z� � ln�F �u1 � aj � z�� � ln�F �u1 � a2 � z��,
is decreasing in z. To see this, note that u1 � aj A u1 � a2 for all j C 3. Since the

function h�z� � ln�F �z�� is concave, the slope

ln�F �u1 � aj � z�� � ln�F �u1 � a2 � z��
a2 � aj

is decreasing in z. In particular, g�0� B g���1 � x�c�. This implies that for every

j > A � �1,2�,
F �u1 � a2 � �1 � x�c�F �u1 � aj� B F �u1 � a2�F �u1 � aj � �1 � x�c�.

Therefore, for every j > A � �1,2�
F �u1�a2��1�x�c�F �u1�a3��F �u1�ak� B F �u1�a2��F �u1�aj��1�x�c��F �u1�ak�.
This concludes the proof of the lemma.
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6 The Role of the Network

Our main result shows that, under certain conditions on the payoff shock distribu-

tion, the expected waiting time until the innovation is adopted by a large fraction

of the population is uniformly bounded for all networks of arbitrary size. Moreover,

the bound remains valid even when the network varies over time. In this section

we discuss the role that the network topology plays in the diffusion process when

the network remains fixed. We focus on simple classes of networks such as regular

networks and star networks and demonstrate network-dependent behaviour in these

cases.

We address three closely related questions. First, for regular networks and star

networks, we derive bounds on the speed of convergence that improve on the bound

in Theorem 3.1. Furthermore, we show that for star networks, rapid convergence

holds even for values of q that are greater than the fixed point p.

Second, we study the question of persistence. Once the adoption process reaches

a high proportion q of adopters, how likely is it that the proportion remains high

for an extended period of time? As we shall see, the answer depends on both the

size of the network and its topological structure. When the network is small, it only

takes a handful of agents to revert to playing action 0 for the proportion to drop

substantially below q. Indeed, reversion for any particular agent will occur with

probability at least 1 � r�1�, which will typically be positive. Therefore for small

networks we cannot expect that a high proportion of adopters will be maintained

for very long. Even if the network is large, the degree of persistence is sensitive to

the network topology. We shall show in particular that for large regular networks

persistence is high, whereas for large star networks persistence is low (see Section

6.2).

Finally we ask, given a response function r, for which values of q is the expected

waiting time unbounded? The answer depends on the topology of the network. In

star networks the expected waiting time to reach a target q @ r�1� is bounded above

for all monotone increasing response functions (Proposition 6.2). In contrast, for

regular networks, the expected waiting time to reach a target q @ r�q� increases
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exponentially in the degree of the network (Proposition 6.5).

6.1 Convergence Rates for Specific Networks

We begin by providing an exact formula for the convergence time of the linear

dynamic in large regular networks. An undirected network G is regular if all agents

have the same degree d C 0. As before, for every q > �0,1�, we let Tq�G� be the

expected waiting time until at least the proportion q of the agents have adopted.

Proposition 6.1. Let r�x� � L�x� � �1 � α�x � αp be a linear dynamic and let

q > �0, p�. For every m C 1 let Rm be an undirected, regular network with m nodes.

Then limm�ª Tq�Rm� � 1
α ln� p

p�q�.

Proof. We rely on stochastic approximation results due to Benaim [7, 1988] and

Roth and Sandholm [53, 2013]. Let �xm,t� be the discrete time process representing

the proportion of adopters in Rm at time t. Let Ft be the sigma algebra that is

generated by the sequence of actions of the agents in Rm up to and including time

t. For any proportion x > �0,1�, let V �x� � α�p � x�. We contend that

E�xm,t�1 � xm,tSFt� � V �xm,t�
m

.

In particular, the expected change in next period’s proportion depends only on the

current proportion and not on the network configuration.

To see this, consider the case where the current proportion xm,t � x and an agent

is selected uniformly at random to revise his strategy choice. With probability α the

selected agent chooses action 1 with conditional probability p, and chooses action

0 with conditional probability 1 � p. With probability 1 � α the agent imitates the

action of a randomly chosen neighbor. Let d�t� be the number of edges i, j where

the actions of agents i and j are distinct. We can write

P�xm,t�1 � xm,t �
1

m
SFt� � �1 � xm,t�αp � �1 � α�d�t�

2SES . (13)

Similarly,

P�xm,t�1 � xm,t � �
1

m
SFt� � αxm,t�1 � p� � �1 � α�d�t�

2SES . (14)
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It follows from (13) and (14) that

E�xm,t�1 � xm,tSFt� � P�xm,t�1 � xm,t �
1
m SFt� �P�xm,t�1 � xm,t � �

1
m SFt�

m
�
V �xm,t�
m

.

(15)

Hence for any m and t we can write

xm,t�1 � xm,t �
Um,t�1

m
�
V �xm,t�
m

, (16)

where Um,t�1 �m�xm,t�1�xm,t��V �xm,t� is a bounded Ft�1-measurable random vari-

able. Furthermore, equations (15) and (16) imply that E�Um,t�1SFt� � 0. Therefore,

the process ��Um,t�t�m satisfies the conditions of Proposition 2.3 in [53, 2013] and we

can use Theorem 3.2 in Roth and Sandholm [53, 2013] to approximate our process

��xm,t�t�m by a differential equation as illustrated below.

Let �xm�s��sC0 be the continuous-time process defined by

xm�s� � xm,
ms�.
For any x > �0,1� let zx be the solution of the following differential equation

ż � L�z� � z � V �z�, z�0� � x.
Theorem 3.2 in Roth and Sandholm [53] implies that, for every δ A 0, x > �0,1� and

T A 0,

lim
m�ª

P� sup
s>�0,T �

Sxm�s � t� � zx�s�S C δSxm�t� � x� � 0,

where the limit holds uniformly in x. Note that z0�s� � p�1 � exp��αs�� and for

s� � 1
α ln� p

p�q� we have z0�s�� � q. In addition, for every x > �0,1� and every ε A 0 we

have zx�s� � ε� A q. Therefore, for every ε A 0, x > �0,1� and t A 0, limm�ª P�xm�s� �
t � ε� @ qSxm�t� � x� � 0 and hence

lim
m�ª

Tq�Rm� � 1

α
ln� p

p � q
�,

as was to be shown.

Next we turn to estimating the expected convergence time for large star networks.

Let Sm consist of m vertices with central vertex 1 and edges �1, j� for all j > �m�
23



such that j A 1. We shall show that for every monotone increasing response function,

rapid convergence can hold for values q A p beyond the fixed point.

Let Tq�Sm� be the expected waiting time to reach at least qm adopters in the

star network with m agents.

Proposition 6.2. Consider any star network Sm and an adoption dynamic that is

governed by a monotone increasing response function r � �0,1� � �0,1�. For every

q @ r�1�,

lim sup
m�ª

Tq�Sm� B r�1�
�r�1� � q��

1

r�0� � ln � r�1�
r�1� � q��.

Proof. Consider the following event: agent 1 updates his action to 1 and thereafter

q
r�1�m agents receive a revision opportunity. We claim that the expected waiting

time for this event is bounded above by

1

r�0� � ln � r�1�
r�1� � q�.

Indeed, 1
r�0� bounds the expected waiting time for agent 1 to switch to action 1,

and ln � r�1�
r�1��q

� bounds the expected waiting time for at least mq
r�1� agents to have a

revision opportunity (This is an instance of the coupon collector problem see for

example Section 3.6 in [45]). Note that with probability r�1��q
r�1� agent 1 is not part of

the fraction q
r�1� of agents who receive a revision opportunity.

Now consider the following event: agent 1 updates his action to 1 and thereafter

at least qm
r�1� of the agents, not including 1, receive a revision opportunity. By the

preceding, the expected waiting time for this event is at most

r�1�
�r�1� � q��

1

r�0� � ln � r�1�
r�1� � q��.

Each of the qm
r�1� agents who receives an updating opportunity chooses action 1

with probability r�1� because during their revision time agent 1 is playing action

1. Therefore, conditional on this event, the probability of reaching a threshold of

q � ε adopters approaches one as m goes to infinity, for every ε A 0. This establishes

Proposition 6.2.

We note, in particular, that for a linear dynamic on star networks, the determi-

nant of the fast adoption regime is L�1� and not the fixed point p @ L�1�. Hence
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even when q is close to p, the expected waiting time to reach at least qm adopters

is much faster in large star networks than in large regular networks.

6.2 The Persistence of Innovation

In this section we show that innovation is persistent for large regular networks,

whereas it is not persistent for star networks.

Recall that p denotes the fixed point of the linear dynamic. Fix q�, q > �0, p�
with q� @ q and consider the expected waiting time for the population to reach a

state with at most q�m adopters from a state with at least qm adopters. Say that

innovation is persistent for a class of networks if this expected waiting time grows

to infinity with the population size m for any such pair q, q�.

Formally given a pair q� @ q @ p and a network G, let Iq,q��G� be the minimal

expected waiting time to reach a state in which the proportion of adopters is q� or

less, where the minimum is taken across all initial conditions with proportion at

least q. We next show that innovation is persistent for the class of regular networks.

Proposition 6.3. Let Rm be a regular network with m agents. For every 0 @ q� @ q @

p there exists a constant c � c�q, q�� A 1 (independent of m) such that Iq,q��Rm, � C cm.

It follows that the expected waiting time until the fraction of adopters is lower

than q�, starting from a state where the fraction is at least q A q�, grows exponentially

with the number of agents m. (The proof is contained in the Appendix). In contrast,

for the class of star networks, persistence fails and the adoption dynamic escapes

from any targeted proportion relatively quickly, as the following proposition shows.

Proposition 6.4. Let Sm be a star network with m agents and let r�x� be a response

function with r�1� @ 1 and r�0� @ 1
2 . There exists a constant c A 0 (independent of

m) such that I1, 1
2
�Sm� B c.

Thus, even if we start in the state where all agents have adopted, the expected

waiting time to reach a state with a proportion of adopters below 1
2 is bounded

above.

25



Proof. The proof is similar to the the proof of Proposition 6.2. Let γ �
3�2r�0�

4�1�r�0�� .

Note that since r�0� @ 1~2 we have γ�1~2
γ A r�0� and γ @ 1. Consider the following

event: agent 1 updates his action to 0 and thereafter a fraction γ of agents receive a

revision opportunity. As above the expected waiting time for this event is bounded

above by
1

1 � r�1� � ln � 1

1 � γ
�.

Note that with probability 1 � γ agent 1 is not part of the fraction q
r�1� of agents

who receive a revision opportunity.

Therefore, the expected waiting time of the following event: agent 1 updates his

action to 0 and thereafter a fraction γ of the agents, which does not include agent

1, receive a revision opportunity is

1

�1 � γ��
1

1 � r�1� � ln � 1

1 � γ
��.

Each of the γm agents who receives an updating opportunity chooses action 1 with

probability r�0� because during their revision time agent 1 is playing action 0. By

the choice of γ, there exists a positive probability w A 0 that at most γ�1~2
γ A r�0� of

the γm agents have chosen action 1, independently of m. If this holds the number

of adopters is at most γ γ�1~2
γ � �1 � γ� B 1~2

This shows that

I1, 1
2
B

1

w�1 � γ��
1

1 � r�1� � ln � 1

1 � γ
��,

which establishes Proposition 6.4.

6.3 Slow Convergence

A crucial assumption for our main result (Theorem 3.1) is that the supporting line

L�x� of the response function r�x� must intersect the y-axis at a positive value. If

this is not the case, the corresponding imitation dynamic is not well defined. In this

section we ask, given a monotone increasing response function r���, when does fast

convergence fail to hold for a given target q? A natural candidate would be any value

of q such that r�q� @ q, for then the adoption process gets caught in a bottleneck. In

particular this situation arises when r is convex-concave and is too sharply bowed
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in the convex part (see Figure 3 for an example). Proposition 6.2 shows, however,

that this is not a sufficient condition: star networks exhibit fast convergence for any

value q @ r�1�. In this section we show that the condition r�q� @ q does lead to slow

convergence for large regular networks; in particular, the expected waiting time to

reach such a target q grows exponentially with the degree of the network.

Proposition 6.5. Let Rm be a sequence of undirected dm-regular networks, and let

the response function be monotone increasing with r�q� @ q. There exists a constant

c A 0 (independent of m) such that Tq�Rm� C ecdm

m .

Proof Idea. Instead of considering the first time τ when the fraction of adopting

agents reaches a threshold q, we study the first time τ̃ where there exists an agent

in the network who has a fraction of at least q adopting neighbors. (The regularity

of the network implies that τ̃ B τ .)

We rely on the fact that prior to time τ̃ , all updating agents in all periods revise

their action to 1 with probability at most r�q�. (This follows from the monotonicity

of r.) From the perspective of a single player, his neighbors update their actions

in an i.i.d. manner with probability of success c B r�q�. We can therefore deduce

(using Lemma 1 in Benaim and Weibull [8]) that the expected waiting time ro reach

a fraction q of adopters in a dm-regular network with m agents is bounded by ecdm

m

for some constant c A 0.

Proposition 6.5 does not hold for regular networks of fixed degree d. To see

this, note that for every constant d, the union of m
d�1 cliques of size d � 1 has the

fast-convergence property. Since the mixing time T of a single clique of size d � 1 is

constant, after time T we will obtain a large number of cliques whose configurations

are distributed according to the invariant distribution, and this fraction will be very

close to the expected fraction under the invariant distribution (i.e., a high fraction

of adopters).
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7 Conclusion

In this paper we have established an upper bound on the expected waiting time un-

til an innovation is adopted by a large fraction of a given population. The formula

for the bound is universal in the sense that it holds for all directed and undirected

networks of arbitrary size and degree distribution. Moreover the bound holds when

the network itself is evolving over time. Previous results on this topic rely on the

existence of a potential function and hold only for regular networks with symmet-

ric interactions, as in Kreindler and Young [38, 2014]. We have also established

waiting time bounds for the diffusion of multiple innovations instead of just a single

innovation, which is the usual case treated in the literature.

Our bound holds for a wide variety of perturbed best response processes where

agents choose optimal responses under random payoff shocks. Particular cases in-

clude errors that are normally or extreme-value distributed for example. These

models are consistent with empirical evidence on subjects’ learning behavior in net-

work games (Mäs and Nax [40, 2016]). The formula for the bound is expressed in

terms of the slope and intercept of a suitably chosen ‘linearization’ of the perturbed

response process. In particular, the expected waiting time to reach a given propor-

tion of adopters is inversely proportional to the initial amount of ‘noise’ in the linear

process when no one has yet adopted (L�0� in expression (3)).

Given more information on the topological structure of the network, one can

obtain significantly tighter bounds on the expected waiting time, as we showed in

Section 6. The usefulness of our main result arises from the fact that in practice it is

very difficult to observe the topology of interactions and the degree of influence that

different actors exert on one another. By contrast, it may be possible to estimate the

response probabilities of agents conditional on the choices of their neighbors using

longitudinal data. From this one can derive the linearized process and the upper

bound on the expected waiting time to reach a given adoption threshold.

A Feige’s Inequality and Lemma 1

The following theorem is due to [22, 2006].
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Theorem A.1. Let X1, . . . ,Xn be nonnegative independent random variables, with

E�Xi� B 1¦i, and let X � Pni�1Xi. Then for any n,

P�X @ E�X� � 1� C γ A 0,

for some γ C 1~13.

Garnett [27, 2020] improved upon the constant γ and show that γ C 0.14. We

next prove Lemma 1 from the above theorem.15

Proof of Lemma 1. Let c1, . . . , ck be i.i.d. Bernoulli(p), and let β1, . . . , βk be positive

real numbers. We can assume without loss of generality that βi B
1

1�p for all i > �k�,
and that β1 � 1~�1�p�. Let Xi � βi�1�ci�, mi � βi�1�p�, X �X2� ... �Xk, and m �

m2� ...�mk. We must show that P�Pi>�k� βici C Pi>�k� βip� � P�X1�X Bm�1� C γp.
Indeed, by the above theorem,

P�X1 �X Bm � 1� C P�X1 � 0�P�X @m � 1� C γp.

A related result due to Billingsley ([10, 2008], Theorem 9.2) says the following:

Theorem. If E�Z� � 0, E�Z2� � s2, and E�Z4� � ξ4, then P�Z C 0� C s4

4ξ4 .

To apply this in our setting, let c1, . . . , ck be i.i.d. Bernoulli�p� and let β1, . . . , βk C

0. Let Z � Pki�1 βi�ci � p�. Note that P�Z C 0� � P�Pki�1 βici C �Pki�1 βi�p�. The pre-

ceding theorem shows that

P�Z C 0� C p�1 � p��Pki�1 β
2
i �2

4��1 � 3p � 3p2�Pki�1 β
4
i � p�1 � p�Pi,j�ixj β2

i β
2
j �
.

For values of p that are close to 1
2 Billingsley’s inequality provides a better bound

than the one by Feige and Garnett. However, for p close to 1 the right-hand side is

close to zero whereas the corollary to Feige’s lemma shows that P�Z C 0� C 0.14p.

Thus for our purposes the Feige-Garnett inequality is more useful.

15The proof of Lemma 1 was first communicated to us by Terence Tao (see

https://mathoverflow.net/questions/278117/convex-combination-iid-bernoulli-random-variables).

We thank Yuval Peres for pointing out to us the result by Feige [22, 2006].
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B Proofs of Propositions 6.3 and 6.5

Proposition 6.3. Let Rm be a regular network with m agents. For every 0 @ q� @ q @

p there exists a constant c � c�q, q�� A 1 (independent of m) such that Iq,q��Rm, � C cm.

Proof of Proposition 6.3. As in the proof of Theorem 3.1 we analyze the discrete-

time linear dynamic. Recall that 1 � α � L�1� � L�0�, and that s�t� represents the

imitation dynamic: with probability α the updating agent tosses a coin with success

probability p, and with probability 1 � α he imitates a random neighbour.

If we prove that the expected time to reach the fraction q� under the discrete-

time dynamic is at least ĉm for some ĉ A 1, then the original dynamic satisfies the

exponential bound ĉm~m. (The factor m is a result of changing from discrete to

continuous time.) Note that for all sufficiently small 1 @ c @ ĉ we have ĉm~m C

cm, hence the exponential lower bound on the discrete-time dynamic provides an

exponential lower bound on the original dynamic.

Given s�t� > �0,1�m, let z�t� � Pi si�t� > N be the number of adopters. We denote

by d�t� � S��i, j� > E � si�t� � 0, sj�t� � 1�S~SES > �0,1� the fraction of “disagreement”

edges in the graph, where the agents are playing opposite actions.

The process z�t� is a random walk with z�t � 1� � z�t� > ��1,0,1�. We shall

provide an explicit formula for the probability that z�t� moves to the left, to the

right, or stays put. Given s�t� one agent is drawn at random in period t � 1. The

probability is α that this agent tosses a coin. Conditional on the coin toss, the

agent switches from 0 to 1 with probability �1 � z�t�~m�p. (The first term is the

probability that he was initially choosing 0, and the second term is the probability

that he updates to 1). With probability 1 � α the agent imitates. Let d�t� be the

number of edges �i, j� where the actions of agents i and j are different. Then

P�z�t � 1� � z�t� � 1Ss�t�� � α�1 � z�t�~m�p � �1 � α�d�t�~2. (17)

Similarly we deduce that

P�z�t � 1� � z�t� � �1Ss�t�� � α�z�t�~m��1 � p� � �1 � α�d�t�~2. (18)
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For z�t� > �mq�,mq� the ratio between moving left and right can be bounded by

P�z�t � 1� � z�t� � �1Ss�t��
P�z�t � 1� � z�t� � 1Ss�t�� �

α�z�t�~m��1 � p� � �1 � α�d�t�~2
α�1 � z�t�~m�p � �1 � α�d�t�~2 B

B
αq�1 � p� � �1 � α�d�t�~2
α�1 � q�p � �1 � α�d�t�~2 B

αq � 1

αp � 1
.

We denote this constant by β �
αq�1
αp�1 @ 1. Given s�t� with z�t� � mq � 1 we want

to estimate the probability that the process will reach the low value z � nq� before

it visits z � nq. This question has a precise answer for any biased random walk

with bias β @ 1 (see Feller [25] Chapter XIV.2). Namely, if we let n � �q � q��m,

the probability of reaching z � mq� is βn�1
�βn

1�βn , which is bounded above by βn�1.

Therefore, the expected time until our process reaches z�t� � q�m is at least � 1
β �n�1 C

ĉm for some sufficiently small constant ĉ A 1.

Proposition 6.5. Let Rm be a sequence of undirected dm-regular networks, and let

the response function be monotone increasing with r�q� @ q. There exists a constant

c A 0 (independent of m) such that Tq�Rm� C ecdm

m .

Proof of Proposition 6.5. Consider a dm-regular graph with m agents. Let

τ �� min� 1
m Pi si�t� C q� be the first time such that the fraction of adopters is at

least q. Let τ̃ be the first time such that there exists an agent i with at least dmq

neighbors who have adopted. It follows from the regularity of the network that

τ̃ B τ . We shall bound E�τ� from below by providing a lower bound for E�τ̃�.
It follows from the monotonicity of r that, prior to time τ̃ , any agent that updates

his strategy chooses action 1 with probability at most r�q�. Thus in order to bound

E�τ̃� from below we can assume that, prior to τ̃ , all agents choose action 1 with

probability r�q�. Assume that at time t @ τ̃ the fraction of i’s neighbors that have

adopted lies weakly below r�q��q
2 . Consider the following two events: (a) at time t�1

the fraction of i’s neighbors who have adopted lies above r�q��q
2 ; (b) there exists a

time s > �t, t� 1� where the fraction of i’s neighbors who have adopted exceeds q. It

follows from Lemma 1 in Benaim and Weibull [8] that if all neighbors of i choose

action 1 with probability r�q� at every revision opportunity, then the probability

that either (a) or (b) holds is at most e�cdm for some constant c A 0.

Now assume that the fraction of adopting neighbors of every agent i at time

t @ τ̃ lies below r�q��q
2 . Then the probability that there exists an agent i for which
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either (a) or (b) holds is at most me�cdm . If neither (a) nor (b) holds for every agent

at every time period t � 0, . . . , n, then τ̃ A n � 1. It follows that E�τ̃� C ecdm

m . This

concludes the proof of Proposition 6.5.
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