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1. Introduction

This paper shows that, when goods are indivisible and there are income effects, the exis-
tence of competitive equilibrium fundamentally depends on agents’ substitution effects—
i.e., the effects of compensated price changes on agents’ demands. We provide general
existence results that do not depend on income effects.

In contrast to the case of divisible goods, competitive equilibrium does not generally ex-
ist in settings with indivisible goods (Henry, 1970). Moreover, most previous results about
when equilibrium does exist with indivisible goods assume that utility is transferable—
ruling out income effects but allowing tractable characterizations of (Pareto-)efficient
allocations and aggregate demand that can be exploited to analyze competitive equilib-
rium.1 But understanding the role of income effects is important for economies with
indivisible goods, as these goods may comprise large fractions of agents’ budgets. Fur-
thermore, in the presence of income effects, the distribution of wealth among agents
affects both Pareto efficiency and aggregate demand, making it necessary to develop new
methods to analyze competitive equilibrium with indivisible goods.

The cornerstone of our analysis is an application of the relationship between Marshal-
lian and Hicksian demand. As in classical demand theory, Hicksian demand is defined
by fixing a utility level and minimizing the expenditure of obtaining it. We combine
Hicksian demands to construct a family of “Hicksian economies” in which prices vary,
but agents’ utilities—rather than their endowments—are held constant. Our key result,
which we call the Equilibrium Existence Duality, states that competitive equilibria exist
for all endowment allocations if and only if competitive equilibria exist in the Hicksian
economies for all utility levels.

Preferences in each Hicksian economy reflect agents’ substitution effects. Therefore,
by the Equilibrium Existence Duality, the existence of competitive equilibrium funda-
mentally depends on substitution effects. Moreover, as fixing a utility level precludes
income effects, agents’ preferences are quasilinear in each Hicksian economy. Hence, the
Equilibrium Existence Duality allows us to transport (and so generalize) any necessary
or sufficient condition for equilibrium existence from settings with transferable utility to
settings with income effects.2 In particular, our most general existence result gives a nec-
essary and sufficient condition for a pattern of agents’ substitution effects to guarantee
the existence of competitive equilibrium in the presence of income effects.

1For example, methods based on integer programming (see, e.g., Koopmans and Beckmann (1957),
Bikhchandani and Mamer (1997), Ma (1998), Candogan et al. (2015), and Tran and Yu (2019)) rely
on characterizations of the set of Pareto-efficient allocations as the solutions to a welfare maximization
problem, while methods based on convex programming (see, e.g., Murota (2003), Ikebe et al. (2015), and
Candogan, Epitropou, and Vohra (2020)) and tropical geometry (Baldwin and Klemperer, 2014, 2019)
rely on representing aggregate demand as the demand of a representative agent.
2Outside the case of substitutes (which we describe in detail), Bikhchandani and Mamer (1997) and
Ma (1998) gave necessary and sufficient conditions on profiles of valuations, and Candogan et al. (2015)
gave sufficient conditions on agents’ individual valuations, for the existence of competitive equilibrium
in transferable utility economies.



THE EQUILIBRIUM EXISTENCE DUALITY 3

Consider, for example, the case of substitutable goods in which each agent demands at
most one unit of each good. With transferable utility, substitutability is sufficient for the
existence of competitive equilibrium (Kelso and Crawford, 1982) and defines a maximal
domain for existence (Gul and Stacchetti, 1999). With income effects, Fleiner et al. (2019)
showed that competitive equilibrium exists under gross substitutability. The Equilibrium
Existence Duality tells us that, with income effects, competitive equilibrium in fact exists
under net substitutability and that net substitutability defines a maximal domain for
existence. Moreover, we show that gross substitutability implies net substitutability; the
reverse direction is not true in the presence of income effects.

An implication of our results is that it is unfortunate that Kelso and Crawford (1982),
and much of the subsequent literature, used the term “gross substitutes” to refer to a
condition on quasilinear preferences. Indeed, gross and net substitutability are equivalent
without income effects, and our work shows that it is net substitutability, not gross sub-
stitutability, that is critical to the existence of competitive equilibrium with substitutes.3

To appreciate the distinction between gross and net substitutability, suppose that Mar-
tine owns a house and is thinking about selling her house and buying one of two different
other houses: a spartan one and a luxurious one (Quinzii, 1984). If the price of her
own house increases, she may wish to buy the luxurious house instead of the spartan
one—exposing a gross complementarity between her existing house and the spartan one.
However, Martine regards the houses as net substitutes: the complementarity emerges
entirely due an income effect. Competitive equilibrium is therefore guaranteed to exist
in economies with Martine if all other agents see the goods as net substitutes, despite the
presence of gross complementarities.

Our most general equilibrium existence theorem characterizes the combinations of sub-
stitution effects that guarantee the existence of competitive equilibrium. It is based on
Baldwin and Klemperer’s (2019) classification of valuations into “demand types.” A de-
mand type is defined by the set of vectors that summarize the possible ways in which
demand can change in response to a small generic price change. For example, the set
of all substitutes valuations forms a demand type, as does the set of all complements
valuations, etc.

Applying Baldwin and Klemperer’s taxonomy to changes in Hicksian demands, we see
that their definition easily extends to general utility functions, capturing agents’ substi-
tution effects. Examples of demand types in our setting with income effects, therefore,
include the set of all net substitutes preferences, the set of all net complements prefer-
ences, etc. The Equilibrium Existence Duality then makes it straightforward that the
Unimodularity Theorem4—which encompasses many standard results on the existence of

3Kelso and Crawford (1982) were aware of the equivalence between gross and net substitutability in their
setting (see their Footnote 1) but used the term “gross substitutes” due to an analogy of their arguments
for existence with tâtonnement from general equilibrium theory.
4See Theorem 4.3 of Baldwin and Klemperer (2019); an earlier version was given by Danilov et al. (2001).
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competitive equilibrium as special cases5—is unaffected by income effects. Therefore, as
with the case of substitutes, conditions on complementarities and substitutabilities that
guarantee the existence of competitive equilibrium in settings with transferable utility
translate to conditions on net complementarities and substitutabilities that guarantee
the existence of competitive equilibrium in settings with income effects. In particular,
there are patterns of net complementarities that are compatible with the existence of
competitive equilibrium.

Our results may have significant implications for the design of auctions that seek com-
petitive equilibrium outcomes, and in which bidders face financing constraints. For ex-
ample, they suggest that versions of the Product-Mix Auction (Klemperer, 2008), used
by the Bank of England since the Global Financial Crisis, may work well in this context.

Several other papers have considered the existence of competitive equilibrium in the
presence of indivisibilities and income effects. Quinzii (1984), Gale (1984), and Svensson
(1984) showed the existence of competitive equilibrium in a housing market economy in
which agents have unit demand and endowments. Building on those results, Kaneko and
Yamamoto (1986), van der Laan et al. (1997, 2002), and Yang (2000) analyzed settings
with multiple goods, but restricted attention to separable preferences. By contrast, our
results—even for the case of substitutes—allow for interactions between the demand
for different goods. We also clarify the role of net substitutability for the existence of
competitive equilibrium.

In a different direction, Danilov et al. (2001) proved a version of the sufficiency direction
of the Unimodularity Theorem for settings with income effects. Danilov et al. (2001)
also defined domains of preferences using an optimization problem that turns out to
be equivalent to the expenditure minimization problem. However, they did not note
the connection to the expenditure minimization problem or Hicksian demand, and, as
a result, did not interpret their sufficient conditions in terms of substitution effects or
establish the role of substitution effects in determining the existence of equilibrium.

We proceed as follows. Section 2 describes our setting—an exchange economy with
indivisible goods and money. Section 3 develops the Equilibrium Existence Duality.
Since the existing literature has focused mostly on the case in which indivisible goods
are substitutes, we consider that case in Section 4. Section 5 develops demand types for
settings with income effects and states our Unimodularity Theorem with Income Effects.
Section 6 remarks on implications for auction design, and Section 7 is a conclusion.
Appendix A proves the Equilibrium Existence Duality. Appendix B proves the connection
between gross and net substitutability. Appendices C and D adapt the proofs of results
from the literature to our setting.

5It generalizes the quasilinear case of Kelso and Crawford (1982), and results of Sun and Yang (2006),
Milgrom and Strulovici (2009), Hatfield et al. (2013), and Teytelboym (2014).
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2. The Setting

We work with a model of exchange economies with indivisibilities—adapted to allow
for income effects. There is a finite set J of agents, a finite set I of indivisible goods, and
a divisible numéraire that we call “money.” We allow goods to be undesirable, i.e., to be
“bads.” We fix a total endowment yI ∈ ZI of goods in the economy.6

2.1. Preferences and Marshallian Demand. Each agent j ∈ J has a finite set Xj
I ⊆

ZI of feasible bundles of indivisible goods and a lower bound xj
0 ≥ −∞ on her consumption

of money. As bundles that specify negative consumption of some goods can be feasible,
our setting implicitly allows for production.7 The principal cases of xj

0 are xj
0 = −∞, in

which case all levels of consumption of money are feasible, and xj
0 = 0, in which case the

consumption of money must be positive. Hence, the set of feasible consumption bundles
for agent j is Xj = (xj

0,∞)×Xj
I . Given a bundle x ∈ Xj, we let x0 denote the amount

of money in x and xI denote the bundle of goods specified by x, so x = (x0,xI).
The utility levels of agent j lie in the range (uj, uj), where −∞ ≤ uj < uj ≤ ∞.

Furthermore, each agent j has a utility function U j : Xj → (uj, uj) that we assume to be
continuous and strictly increasing in x0, and to satisfy

(1) lim
x0→(xj

0)
+

U j (x0,xI) = uj and lim
x0→∞

U j (x0,xI) = uj

for all xI ∈ Xj
I . Condition (1) requires that some consumption of money above the

minimum level xj
0 be essential to agent j.8 We let p0 = 1.

Given an endowment w = (w0,wI) ∈ Xj of a feasible consumption bundle and a price
vector pI ∈ RI , agent j’s Marshallian demand for goods is

Dj
M (pI ,w) =

{
x∗
I

∣∣∣∣∣x∗ ∈ argmax
x∈Xj |p·x≤p·w

U j (x)

}
.

As usual, Marshallian demand is given by the set of bundles of goods that maximize an
agent’s utility, subject to a budget constraint, given a price vector and an endowment.
An income effect is a change in an agent’s Marshallian demand induced by a change in
her money endowment, holding prices fixed.9

6In particular, we allow for multiple units of some goods to be present in the aggregate, unlike Gul and
Stacchetti (1999) and Candogan et al. (2015).
7Technological constraints on production (in the sense of Hatfield et al. (2013) and Fleiner et al. (2019))
can be represented by the possibility that some bundles of goods are infeasible for an agent to consume
(see Example 2.15 in Baldwin and Klemperer (2014)).
8Henry (1970, pages 543–544), Mas-Colell (1977, Theorem 1(i)), and Demange and Gale (1985, Equation
(3.1)) made similar assumptions. If consuming money is inessential but consumption of money must be
nonnegative, then it is known that competitive equilibrium may not exist (Mas-Colell, 1977)—even in
settings in which agents have unit demand for goods (see, e.g., Herings and Zhou (2019)). However, the
existence of competitive equilibrium can be guaranteed when the agents trade lotteries over goods (Gul
et al., 2020).
9Note that income effects also correspond to changes in an agent’s Marshallian demand induced by
changes in the value of her endowment, holding prices fixed.
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Our setup is flexible enough to capture a wide range of preferences with and without
income effects, as the following two examples illustrate.

Example 1 (Quasilinear Utility). Given a valuation V j : Xj
I → R, letting xj

0 = uj = −∞
and uj = ∞, one obtains a quasilinear utility function given by

U j (x0,xI) = x0 + V j (xI) .

When agents utility functions are quasilinear, they do not experience income effects.
When all agents have quasilinear utility functions, we say that utility is transferable.

Example 2 (Quasilogarithmic Utility). Given a function V j
Q : Xj

I → (−∞, 0), which
we call a quasivaluation,10 and letting uj = −∞, uj = ∞, and xj

0 = 0, there is a
quasilogarithmic utility function given by

U j (x) = log x0 − log(−V j
Q (xI)).

Unlike with quasilinear utility functions, agents with quasilogarithmic utility functions
exhibit income effects.

2.2. Hicksian Demand, Hicksian Valuations, and the Hicksian Economies. The
concept of Hicksian demand from consumer theory plays a key role in our analysis. Given
a utility level u ∈ (uj, uj) and a price vector pI , agent j’s Hicksian demand for goods is

(2) Dj
H (pI ;u) =

{
x∗
I

∣∣∣∣∣x∗ ∈ argmin
x∈Xj |Uj(x)≥u

p · x

}
.

As in the standard case with divisible goods, Hicksian demand is given by the set of
bundles of goods that minimize the expenditure of obtaining a utility level given a price
vector. A substitution effect is a change in an agent’s Hicksian demand induced by a
change in prices, holding her utility level fixed.

As in classical demand theory, Marshallian and Hicksian demand are related by the
duality between the utility maximization and expenditure minimization problems. Specif-
ically, a bundle of goods is expenditure-minimizing if and only if it is utility-maximizing.11

Fact 1 (Relationship between Marshallian and Hicksian Demand). Let pI be a price
vector.

(a) For all endowments w, we have that Dj
M (pI ,w) = Dj

H (pI ;u) , where

u = max
x∈Xj |p·x≤p·w

U j (x) .

10Here, we call V j
Q a quasivaluation, and denote it by V j

Q instead of V j , to distinguish it from the
valuation of an agent with quasilinear preferences.
11Although Fact 1 is usually stated with divisible goods (see, e.g., Proposition 3.E.1 and Equation (3.E.4)
in Mas-Colell et al. (1995)), the standard proof applies with multiple indivisible goods and money under
Condition (1). For sake of completeness, we give a proof of Fact 1 in Appendix C.
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(b) For all utility levels u and endowments w with

p ·w = min
x∈Xj |Uj(x)≥u

p · x,

we have that Dj
H (pI ;u) = Dj

M (pI ,w) .

If an agent has a quasilinear utility function, then, as she experiences no income effects,
her Marshallian and Hicksian demands coincide and do not depend on endowments or
utility levels. Under quasilinearity, we therefore refer to both Marshallian and Hicksian
demand simply as demand, which we denote by Dj (pI). Formally, if j has quasilinear
utility with valuation V j, defining Dj (pI) as the solution to the quasilinear maximization
problem

(3) Dj (pI) = argmax
xI∈Xj

I

{V j (xI)− pI · xI},

we have that Dj
M (pI ,w) = Dj (pI) for all endowments w and that Dj

H (pI ;u) = Dj (pI)

for all utility levels u.
We next show that the interpretation of the expenditure minimization problem as a

quasilinear maximization problem persists in the presence of income effects. Specifically,
we can rewrite the expenditure minimization problem of Equation (2) as a quasilinear
optimization problem by using the constraint to solve for x0 as a function of xI . Formally,
for a bundle xI ∈ Xj

I of goods and a utility level u ∈ (uj, uj), we let Sj (xI ;u) =

U j (·,xI)
−1 (u) denote the level of consumption of money (or savings) needed to obtain

utility level u given xI .
12 By construction, we have that

Dj
H (pI ;u) = argmin

xI∈Xj
I

{
Sj (xI ;u) + pI · xI

}
.

It follows that agent j’s expenditure minimization problem at utility level u can be written
as a quasilinear maximization problem for the valuation −Sj (·;u), which we therefore
call the Hicksian valuation.

Definition 1. The Hicksian valuation of agent j at utility level u is V j
H (·;u) = −Sj (·;u).

Note that Sj (·;u) is continuous and strictly increasing in u, and hence V j
H (·;u) is

continuous and strictly decreasing in u. The following lemma formally states that agent
j’s Hicksian demand at utility level u is the demand correspondence of an agent with
valuation V j

H (·;u).

Lemma 1. For all price vectors pI and utility levels u, we have that

Dj
H (pI ;u) = argmin

xI∈Xj
I

{
Sj (xI ;u) + pI · xI

}
= argmax

xI∈Xj
I

{
V j
H (xI ;u)− pI · xI

}
.

12The function Sj is the compensation function of Demange and Gale (1985) (see also Danilov et al.
(2001)).
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Proof. As U j(x) is strictly increasing in x0, we have that

Dj
H (pI ;u) =

{
x∗
I

∣∣∣∣∣x∗ ∈ argmin
x∈Xj |Uj(x)=u

p · x

}
.

Applying the substitution x0 = Sj (xI ;u) = −V j
H (xI ;u) to remove the constraint from

the minimization problem yields the lemma. □

It follows from Lemma 1 that an agent’s Hicksian valuation at a utility level gives
rise to a quasilinear utility function that reflects the agent’s substitution effects at that
utility level. Lemma 1 also yields a relationship between the family of Hicksian valuations
and income effects. Indeed, by Fact 1, an agent’s income effects correspond to changes
in her Hicksian demand induced by changes in her utility level, holding prices fixed. By
Lemma 1, these changes in Hicksian demand reflect the changes in the Hicksian valuation
that are induced by the changes in utility levels. Hence, the Hicksian valuations at each
utility level determine an agent’s substitution effects, while the variation of the Hicksian
valuations with the utility level captures her income effects.

To illustrate how an agent’s family of Hicksian valuations reflects her income effects,
we consider the cases of quasilinear and quasilogarithmic utility.

Example 3 (Example 1 continued). With quasilinear utility, the Hicksian valuation
at utility level u is V j

H (xI ;u) = V j (xI) − u. Changes in u do not affect the relative
values of bundles under V j

H (·;u), so changes in the utility level do not affect Hicksian
demand. Indeed, there are no income effects. By construction, a utility function U j (x)

is quasilinear in x0 if and only if Sj (xI ;u) is quasilinear in u—or, equivalently, V j
H (xI ;u)

is quasilinear in −u.

In general, it follows from Fact 1 and Lemma 1 that agent j’s preferences exhibit income
effects if and only if Sj (xI ;u)—or, equivalently, V j

H (xI ;u)—is not additively separable
between xI and u.

Example 4 (Example 2 continued). With quasilogarithmic utility, the Hicksian valu-
ation at utility level u is V j

H (xI ;u) = euV j
Q (xI) . In this case, each Hicksian valuation

is a positive linear transformation of V j
Q. Income effects are reflected by the fact that

V j
H (xI ;u) is not additively separable between xI and u.

We use Lemma 1 to convert preferences with income effects into families of valuations.
It turns out that each continuously decreasing family of valuations is the family of Hick-
sian valuations of a utility function, so a utility function can be represented equivalently
by a family of Hicksian valuations.

Fact 2 (Duality for Preferences). Let F : Xj
I × (uj, uj) → (−∞,−xj

0) be a function.
There exists a utility function U j : Xj → (uj, uj) whose Hicksian valuation at each utility
level u is F (·, u) if and only if for each xI ∈ Xj

I , the function F (xI , ·) is continuous,



THE EQUILIBRIUM EXISTENCE DUALITY 9

strictly decreasing, and satisfies13,14

(4) lim
u→(uj)+

F (xI , u) = −xj
0 and lim

u→(uj)−
F (xI , u) = −∞.

Finally, we combine the families of Hicksian valuations to form a family of Hicksian
economies, in each of which utility is transferable and agents choose consumption bundles
to minimize the expenditure of obtaining given utility levels.

Definition 2. The Hicksian economy for a profile of utility levels (uj)j∈J is the transfer-
able utility economy in which agent j’s valuation is V j

H (·;uj).

The family of Hicksian economies consists of the “duals” of the original economy in
which income effects have been removed and price effects are given by substitution ef-
fects. Like the construction of Hicksian valuations, the construction of the Hicksian
economies allows us to convert economies with income effects to families of economies
with transferable utility and is a key step of our analysis.

3. The Equilibrium Existence Duality

We now turn to the analysis of competitive equilibrium in exchange economies. An
endowment allocation consists of an endowment wj ∈ Xj for each agent j such that∑

j∈J w
j
I = yI , where yI is the total endowment. Given an endowment allocation, a

competitive equilibrium specifies a price vector such that markets for goods clear when
agents maximize utility. By Walras’s Law, it follows that the market for money clears as
well.

Definition 3. Given an endowment allocation (wj)j∈J , a competitive equilibrium consists
of a price vector pI and a bundle xj

I ∈ Dj
M (pI ,w

j) for each agent such that
∑

j∈J x
j
I = yI .

In transferable utility economies, a competitive equilibrium consists of a price vector
pI and a bundle xj

I ∈ Dj (pI) for each agent such that
∑

j∈J x
j
I = yI . In this case,

the endowment allocation does not affect competitive equilibrium because endowments
do not affect (Marshallian) demand. We therefore omit the endowment allocation when
considering competitive equilibrium in transferable utility economies in which an endow-
ment allocation exists—i.e., yI ∈

∑
j∈J X

j
I . On the other hand, the total endowment yI

affects competitive equilibrium even when utility is transferable.
Recall that utility is transferable in the Hicksian economies. Furthermore, by Lemma 1,

a competitive equilibrium in the Hicksian economy for a profile (uj)j∈J of utility levels
13A version of Fact 2 for the function Sj in a setting in which utility is increasing in goods is proved in
Lemma 1 in Danilov et al. (2001). For sake of completeness, we give a proof of Fact 2 in Appendix C.
Fact 2 is also similar in spirit to the duality between utility functions and expenditure functions (see, e.g.,
Propositions 3.E.2 and 3.H.1 in Mas-Colell et al. (1995)). However, the arguments of the expenditure
function (at each utility level) are prices, while the arguments of the Hicksian valuation (at each utility
level) are quantities.
14Condition (4) is analogous to Condition (1) and ensures that the corresponding utility function is
defined everywhere on Xj . Note that Condition (4) is essentially automatic in the context of Danilov
et al. (2001) and therefore does not appear explicitly in their result (Lemma 1 in Danilov et al. (2001)).
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consists of a price vector pI and a bundle xj
I ∈ Dj

H (pI ;u
j) for each agent such that∑

j∈J x
j
I = yI . Thus, agents act as if they minimize expenditure in competitive equilib-

rium in the Hicksian economies.15

Building on Fact 1 and Lemma 1, our Equilibrium Existence Duality connects the
equilibrium existence problems in the original economy (which can feature income effects)
and the Hicksian economy (in which utility is transferable). Specifically, we show that
competitive equilibrium always exists in the original economy if and only if it always exists
in the Hicksian economies. Here, we hold agents’ preferences and the total endowment
(of goods) fixed but allow the endowment allocation to vary.

Theorem 1 (Equilibrium Existence Duality). Suppose that the total endowment and
the sets of feasible bundles are such that an endowment allocation exists. Competitive
equilibria exist for all endowment allocations if and only if competitive equilibria exist in
the Hicksian economies for all profiles of utility levels.

By Lemma 1, agents’ substitution effects determine their preferences in each Hicksian
economy. Therefore, Theorem 1 tells us that any condition that ensures the existence of
competitive equilibria can be written as a condition on substitution effects alone. That
is, substitution effects fundamentally determine whether competitive equilibrium exists.

Both directions of Theorem 1 also have novel implications for the analysis of competi-
tive equilibrium in economies with indivisibilities. As demands in the Hicksian economies
are given by Hicksian demand in the original economy (Lemma 1), the “if” direction of
Theorem 1 implies that every condition on demand Dj that guarantees the existence of
competitive equilibrium in settings with transferable utility translates into a condition
on Hicksian demand Dj

H that guarantees the existence of competitive equilibrium in set-
tings with income effects. In Sections 4 and 5, we use the “if” direction of Theorem 1 to
obtain new domains for the existence of competitive equilibrium with income effects from
previous results on the existence of competitive equilibrium in settings with transferable
utility (Kelso and Crawford, 1982; Baldwin and Klemperer, 2019). Conversely, the “only
if” direction of Theorem 1 shows that if a condition on demand defines a maximal domain
for the existence of competitive equilibrium in settings with transferable utility, then the
translated condition on Hicksian demand defines a maximal domain for the existence of
competitive equilibrium in settings with income effects. In Sections 4 and 5, we also use
this implication to derive new maximal domain results for settings with income effects.

15As a result, competitive equilibria in the Hicksian economies coincide with quasiequilibria with trans-
fers from the modern treatment of the Second Fundamental Theorem of Welfare Economics (see, e.g.,
Definition 16.D.1 in Mas-Colell et al. (1995)). As the set of feasible levels of money consumption is
open, agents always can always reduce their money consumption slightly from a feasible bundle to ob-
tain a strictly cheaper feasible bundle. Hence, quasiequilibria with transfers coincide with equilibria
with transfers in the original economy (see, e.g., Proposition 16.D.2 in Mas-Colell et al. (1995) for the
case of divisible goods). If the endowments of money were fixed in the Hicksian economies, this concept
would coincide with the concept of compensated equilibrium of Arrow and Hahn (1971) and the concept
of quasiequilibrium introduced by Debreu (1962).
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To prove the “only if” direction of Theorem 1, we exploit a version of the Second Fun-
damental Theorem of Welfare Economics for settings with indivisibilities. To understand
connection to the existence problem for the Hicksian economies, note that the existence
of competitive equilibrium in the Hicksian economies is equivalent to the conclusion of
the Second Welfare Theorem—i.e., that each Pareto-efficient allocation can be supported
in an equilibrium with endowment transfers—as the following lemma shows.16

Lemma 2. Suppose that the total endowment and the sets of feasible bundles are such that
an endowment allocation exists. Competitive equilibria exist in the Hicksian economies
for all profiles of utility levels if and only if, for each Pareto-efficient allocation (xj)j∈J

with
∑

j∈J x
j
I = yI , there exists a price vector pI such that xj ∈ Dj

M (pI ,x
j) for all agents

j.

We prove Lemma 2 in Appendix A. Intuitively, as utility is transferable in the Hicksian
economies, variation in utility levels between Hicksian economies plays that same role as
endowment transfers in the Second Welfare Theorem. It is well-known that the conclu-
sion of the Second Welfare Theorem holds whenever competitive equilibria exist for all
endowment allocations (Maskin and Roberts, 2008).17 It follows that competitive equi-
librium always exists in the Hicksian economies whenever it always exists in the original
economy, which is the “only if” direction of Theorem 1.

We use a different argument to prove the “if” direction. Our strategy is to show that
there exists a profile of utility levels and a competitive equilibrium in the corresponding
Hicksian economy in which all agents’ expenditures equal their budgets in the original
economy. To do so, we apply a topological fixed-point argument that is similar in spirit
to standard proofs of the existence of competitive equilibrium. Specifically, we consider
an auctioneer who, for a given profile of candidate equilibrium utility levels, evaluates
agents’ expenditures over all competitive equilibria in the Hicksian economy and adjusts
candidate equilibrium utility levels upwards (resp. downwards) for agents who under-
(resp. over-) spend their budgets.18 The existence of competitive equilibrium in the
Hicksian economies ensures that the process is nonempty-valued, and the transferability
of utility in the Hicksian economies ensures that the process is convex-valued. Kakutani’s
Fixed Point Theorem implies the existence of a fixed-point utility profile. By construction,
there exists a competitive equilibrium in the corresponding Hicksian economy at which
16Recall that an allocation (xj)j∈J ∈×j∈J

Xj is Pareto-efficient if there does not exist an allocation
(x̂j)j∈J ∈×j∈J

Xj such that ∑
j∈J

x̂j =
∑
j∈J

xj ,

and U j
(
x̂j
)
≥ U j

(
xj
)

for all agents j with strict inequality for some agent.
17While Maskin and Roberts (2008) assumed that goods are divisible, their arguments apply even in the
presence of indivisibilities—as we show in Appendix A.
18This approach is similar in spirit to Negishi’s (1960) proof of the existence of competitive equilibrium
with divisible goods. Negishi (1960) instead applied an adjustment process to the inverses of agents’
marginal utilities of money. However, Negishi’s (1960) approach does not generally yield a convex-valued
adjustment process in the presence of indivisibilities.
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agents’ expenditures equal the values of their endowments. By Lemma 1, agents must be
maximizing utility given their endowments at this equilibrium, and hence once obtains
a competitive equilibrium in the original economy. The details of the argument are in
Appendix A.

3.1. Examples. We next illustrate the power of Theorem 1 using the two examples.
Our first example is a “housing market” in which agents have unit-demand preferences,

may be endowed with a house, and can experience arbitrary income effects. We can use
Theorem 1 to reduce the existence problem to the assignment game of Koopmans and
Beckmann (1957)—reproving a result originally due to Quinzii (1984).

Example 5 (A Housing Market—Quinzii, 1984; Gale, 1984; Svensson, 1984). For each
agent j, let Xj

I ⊆ {0} ∪ {ei | i ∈ I} be nonempty. In this case, in Hicksian economy,
utility is transferable and agents have unit demand for the goods. As the endowment
allocation does not affect competitive equilibrium when utility is transferable, the results
of Koopmans and Beckmann (1957) imply that competitive equilibria exist in the Hick-
sian economies for all profiles of utility levels (provided that an endowment allocation
exists). Hence, Theorem 1 implies that competitive equilibria exist for all endowment
allocations—even in the presence of income effects.

In the second example, we revisit the quasilogarithmic utility functions from Example 2.
We provide sufficient conditions on agents’ quasivaluations for competitive equilibrium
to exist. These conditions are related to, but not in general implied by, the conditions
developed in Sections 4 and 5.

Example 6 (Existence of Competitive Equilibrium with Quasilogarithmic Preferences).
For each agent j, let V j

Q : Xj
I → (−∞, 0) be a quasivaluation. Let agent j’s utility

function be quasilogarithmic for the quasivaluation V j
Q, as in Example 2. In this case,

agent j’s Hicksian valuation at each utility level is a positive linear transformation of
V j
Q (Example 4). Hence, by Theorem 1, competitive equilibria exist for all endowment

allocations as long as competitive equilibrium exists when utility is transferable and each
agent j’s valuation is an (agent-dependent) positive linear transformation of V j

Q—e.g.,
if the quasivaluations V j

Q are all strong substitutes valuations (Milgrom and Strulovici,
2009), or all valuations of a unimodular demand type (Baldwin and Klemperer, 2019).
Additionally, in the case in which one unit of each good is available in total (i.e., yi = 1

for all goods i), Candogan et al. (2015) showed that competitive equilibrium exists when
utility is transferable and all agents have sign-consistent tree valuations. Hence, if one unit
of each good is available in total, then Theorem 1 implies that competitive equilibria exist
with quasilogarithmic utility for all endowment allocations if all agents’ quasivaluations
are sign-consistent tree valuations.

In the remainder of the paper, we use Theorem 1 to develop novel conditions on pref-
erences that ensure the existence of competitive equilibrium.
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4. The Case of Substitutes

In this section, we apply the Equilibrium Existence Duality (Theorem 1) to prove a new
result regarding the existence of competitive equilibrium with substitutable indivisible
goods and income effects: we show that a form of net substitutability is sufficient for,
and in fact defines a maximal domain for, the existence of competitive equilibrium. We
begin by reviewing previous results on the existence of competitive equilibrium under
(gross) substitutability. We then derive our existence theorem for net substitutability
and relate it to the previous results.

In this section, we focus on the case in which each agent demands at most one unit of
each good. Formally, we say that an agent j demands at most one unit of each good if
Xj

I ⊆ {0, 1}I . We extend to the case in which agents can demand multiple units of some
goods in Section 5.3.

4.1. Gross Substitutability and the Existence of Competitive Equilibrium. We
recall a notion of gross substitutability for preferences over indivisible goods from Fleiner
et al. (2019), which extends the gross substitutability condition from classical demand the-
ory. It requires that uncompensated increases in the price of a good weakly raise demand
for all other goods. With quasilinear utility, the modifier “gross” can be dropped—as in
classical demand theory (see also Footnote 1 in Kelso and Crawford (1982)).

Definition 4 (Gross Substitutability). Suppose that agent j demands at most one unit
of each good.

(a) A utility function U j is a gross substitutes utility function at endowment wI ∈ Xj
I

of goods if for all money endowments w0 > xj
0, price vectors pI , and λ > 0,

whenever Dj
M (pI ,w) = {xI} and Dj

M (pI + λei,w) = {x′
I}, we have that x′

k ≥ xk

for all goods k ̸= i.19

(b) A substitutes valuation is a valuation for which the corresponding quasilinear
utility function is a gross substitutes utility function.20

Technically, Definition 4 imposes a substitutability condition on the locus of prices
at which Marshallian demand is single-valued—following Ausubel and Milgrom (2002),
Hatfield et al. (2013), Baldwin and Klemperer (2019), and Fleiner et al. (2019).21

It is well-known that when utility is transferable, competitive equilibrium exists under
substitutability.
19Our definition of gross substitutability holds the endowment of goods fixed, but, unlike Fleiner et al.
(2019), imposes a condition at every feasible endowment of money. Imposing the “full substitutability in
demand language” condition from Assumption D.1 in Supplemental Appendix D of Fleiner et al. (2019)
at every money endowment is equivalent to our gross substitutability condition.
20Note that substitutability is independent of the endowment of goods as endowments do not affect the
demands of agents with quasilinear utility functions. Our definition of substitutability coincides with
Kelso and Crawford’s (1982) definition (Danilov, Koshevoy, and Lang, 2003).
21By contrast, Kelso and Crawford (1982) imposed a gross substitutability condition at all price vectors.
Imposing Kelso and Crawford’s (1982) condition at every money endowment leads to a strictly stronger
condition than Definition 4(a) in the presence of income effects (Schlegel, 2020).
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Fact 3. Suppose that utility is transferable and that an endowment allocation exists. If
each agent demands at most one unit of each good and has a substitutes valuation, then
competitive equilibrium exists.22

Moreover, the class of substitutes valuations forms a maximal domain for the existence
of competitive equilibrium in transferable utility economies. Specifically, if an agent has
a non-substitutes valuation, then competitive equilibrium may not exist when the other
agents have substitutes valuations. Technically, we require that one unit of each good be
present among agents’ endowments (i.e., that yi = 1 for all goods i) as complementar-
ities between goods that are not present are irrelevant for the existence of competitive
equilibrium.

Fact 4. Suppose that yi = 1 for all goods i. If |J | ≥ 2, agent j demands at most one unit
of each good, and V j is not a substitutes valuation, then there exist sets Xk

I ⊆ {0, 1}I of
feasible bundles and substitutes valuations V k : Xk

I → R for agents k ̸= j, for which there
exists an endowment allocation but no competitive equilibrium.23

While Fact 4 shows that there is no domain strictly containing the domain of substi-
tutes valuations for which the existence of competitive equilibrium can be guaranteed
in transferable utility economies, it does not rule out the existence of other domains for
which the existence of competitive equilibrium can be guaranteed. For example, Sun and
Yang (2006), Candogan et al. (2015), and Baldwin and Klemperer (2019) gave examples
of domains other than substitutability for which the existence of competitive equilibrium
is guaranteed.

Generalizing Fact 3 to settings with income effects, Fleiner et al. (2019) showed that
competitive equilibrium exists for an endowment allocation (wj)j∈J if each agent j’s
utility function is a gross substitutes utility function at her endowment wj

I of goods.24

However, Fleiner et al. (2019) did not offer a maximal domain result for gross substi-
tutability. In the next section, we show that gross substitutability does not actually
drive existence of competitive equilibrium with substitutable indivisible goods.

22Fact 3 is a version of Theorem 1 in Hatfield et al. (2013) for exchange economies and follows from
Proposition 4.6 in Baldwin and Klemperer (2019). See Kelso and Crawford (1982) and Gul and Stacchetti
(1999) for earlier versions that assume that valuations are monotone.
23Fact 4 is a version of Theorem 2 in Gul and Stacchetti (1999) and Theorem 4 in Yang (2017) that
applies when Xk

I can be strictly contained in {0, 1}I , as well as a version of Theorem 7 in Hatfield et al.
(2013) for exchange economies. For sake of completeness, we give a proof of Fact 4 in Appendix D. The
proof shows that the statement would hold if |J | ≥ |I| and agents k ̸= i were restricted to unit-demand
valuations—as in Theorem 2 in Gul and Stacchetti (1999).
24Fleiner et al. (2019) worked with a matching model and considered equilibrium with personalized
pricing, but their arguments also apply in exchange economies without personalized pricing. However,
Fleiner et al. (2019) only required that each agent sees goods as gross substitutes for a fixed endowment
of goods and money. Our notion of gross substitutability considers a fixed endowment of goods but a
variable endowment of money, and therefore the existence result of Fleiner et al. (2019) is not strictly a
special case of Theorem 2. Moreover, Fleiner et al. (2019) also allowed for frictions such as transaction
taxes and commissions in their existence result.
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4.2. Net Substitutability and the Existence of Competitive Equilibrium. In
light of Theorem 1 and Fact 3, competitive equilibrium exists if agents’ Hicksian demands
satisfy an appropriate substitutability condition—i.e., if preferences satisfy a net analogue
of substitutability.

We build on Definition 4 to define a concept of net substitutability for settings with
indivisibilities. Net substitutability is a version of the net substitutability condition from
classical consumer theory. It requires that compensated increases in the price of a good
(i.e., price increases that are offset by compensating transfers) weakly raise demand for
all other goods.

Definition 5 (Net Substitutability). Suppose that agent j demands at most one unit of
each good. A utility function U j is a net substitutes utility function if for all utility levels
u, price vectors pI , and λ > 0, whenever Dj

H (pI ;u) = {xI} and Dj
H (pI + λei;u) = {x′

I},
we have that x′

k ≥ xk for all goods k ̸= i.

For quasilinear utility functions, net substitutability coincides with (gross) substi-
tutability. More generally, net substitutability can be expressed as a condition on Hick-
sian valuations.

Remark 1. By Lemma 1, if an agent demands at most one unit of each good, then she
has a net substitutes utility function if and only if her Hicksian valuations at all utility
levels are substitutes valuations.

We can apply Fact 2 and Remark 1 to construct large classes of net substitutes prefer-
ences with income effects from families of substitutes valuations. There are several rich
families of substitutes valuations, including endowed assignment valuations (Hatfield and
Milgrom, 2005) and matroid-based valuations (Ostrovsky and Paes Leme, 2015). This
leads to a large class of quasilogarithmic net substitutes utility functions.

Example 7 (Example 2 continued). A quasilogarithmic utility function U j is a net
substitutes utility function if and only if the quasivaluation V j

Q is a substitutes valuation.25

More generally, in light of Fact 2 and Remark 1, each family of substitutes valuations
leads to a class of net substitutes utility functions with income effects consisting of the
utility functions whose Hicksian valuations all belong to the family. These classes are de-
fined by conditions on substitution effects and do not restrict income effects. By contrast,
gross substitutability places substantial restrictions on the form of income effects.26

To understand the difference between gross and net substitutability, we compare the
conditions in a setting in which agents have unit demand for goods.

Example 8 (Example 5 continued). Consider an agent, Martine, who owns a house i1

and is considering selling it to purchase (at most) one of houses i2 and i3. If Martine
25Indeed, recall that Example 4 tells us that agent j’s Hicksian valuation at each utility level is a positive
linear transformation of V j

Q. The conclusion follows by Remark 1.
26See Remark E.1 in the Supplemental Material of Fleiner et al. (2019)).
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experiences income effects, then her choice between i2 and i3 generally depends on the
price she is able to procure for her house i1. For example, if i3 is a more luxurious house
than i2, then Martine may only demand i3 if the value of her endowment is sufficiently
large—i.e., if the price of her house i1 is sufficiently high. As a result, when Martine is
endowed with i1, she does not generally have gross substitutes preferences: increases in
the price of i1 can lower Martine’s demand for i2. That is, Martine can regard i2 as a gross
complement for i1. In contrast, Martine has net substitutes preferences—no compensated
increase in the price of i1 could make Martine stop demanding i2—a condition that holds
generally in the housing market economy.27 Note also that, unlike net substitutability,
gross substitutability generally depends on endowments: if Martine were not endowed a
house, she would have gross substitutes preferences (Kaneko, 1982, 1983; Demange and
Gale, 1985).

While Example 8 shows that net substitutability does not imply gross substitutability,
it turns out that gross substitutability implies net substitutability.

Proposition 1. If agent j demands at most one unit of each good and there exists an
endowment wI of goods at which U j is a gross substitutes utility function, then U j is net
substitutes utility function.

Proposition 1 and Example 8 show that gross substitutability (at any one endowment
of goods) implies net substitutability but places additional restrictions on income effects.
Nevertheless, the restrictions on substitution effects alone, entailed by net substitutability,
are sufficient for the existence of competitive equilibrium.

Theorem 2. If all agents demand at most one unit of each good and have net substitutes
utility functions, then competitive equilibria exist for all endowment allocations.

Theorem 2 is an immediate consequence of the Equilibrium Existence Duality and the
existence of competitive equilibria in transferable utility economies under substitutability.

Proof. Remark 1 implies that the agents’ Hicksian valuations at all utility levels are
substitutes valuations. Hence, Fact 3 implies that competitive equilibria exist in the
Hicksian economies for all profiles of utility levels if an endowment allocation exists. The
theorem follows by the “if” direction of Theorem 1. □

As gross substitutability implies net substitutability (Proposition 1), the existence
of competitive equilibrium under gross substitutability is a special case of Theorem 2.
But Theorem 2 is more general: as Example 8 shows, net substitutability allows for
forms of gross complementarities between goods, in addition to gross substitutability.
The following example illustrates how the distinction between gross substitutability and
27Danilov et al. (2001, Example 2) also showed the connection between Quinzii’s (1984) housing market
economy and a substitutability condition, but formulated their discussion in terms of the shape of the
convex hull at domains at which demand is multi-valued instead of net substitutability. Their discussion
is equivalent to ours by Corollary 5 in Danilov, Koshevoy, and Lang (2003) and Remark 1.
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net substitutability relates to the existence of competitive equilibrium when agents caan
demand multiple goods.

Example 9 (Gross Substitutability versus Net Substitutability and the Existence of
Competitive Equilibrium). There are two goods and the total endowment is yI = (1, 1).
There are two agents, which we call j and k, and j’s feasible set of consumption bundles
of goods is Xj

I = {0, 1}2.
We consider the price vectors pI = (2, 2) and p′

I = (4, 2) and consider two examples in
which agent j’s Marshallian demand changes from (1, 1) to (0, 0) as prices change from pI

to p′
I—a gross complementarity. But the consequences for the existence of competitive

equilibrium are different across the two cases. In Case (a), the gross complementarity
reflects a net complementarity for j, and competitive equilibrium may not exist if k sees
goods as net substitutes. In Case (b), the gross complementarity reflects only an income
effect for j, as in Example 8, so competitive equilibrium is guaranteed to exist if k sees
goods as net substitutes.

(a) Suppose that j has a quasilinear utility function with valuation given by

V j (xI) =

0 if xI = (0, 0), (0, 1), (1, 0)

5 if xI = (1, 1).

Here, V j is not a substitutes valuation because Dj (pI) = {(1, 1)} while Dj (p′
I) =

{(0, 0)}: i.e., increasing the price of the first good can lower j’s demand for the sec-
ond good. If Xk

I = {(0, 0), (0, 1), (1, 0)} and agent k has a quasilinear utility function
with a substitutes valuation given by

(5) V k (xI) =


0 if xI = (0, 0)

4 if xI = (1, 0)

3 if xI = (0, 1),

then no competitive equilibrium exists.28

(b) Suppose instead that U j is quasilogarithmic (as defined in Example 2) with quasi-
valuation given by

V j
Q (xI) =


−11 if xI = (0, 0)

−7 if xI = (0, 1)

−4 if xI = (1, 0)

−1 if xI = (1, 1).

28The existence of a feasible set of bundles of goods and a substitutes valuation for k for which no
competitive equilibrium exists follows from Fact 4. To check that V k is an example of such a valuation,
suppose, for sake of deriving a contradiction, that (xj

I ,x
k
I ) is the allocation of goods in a competitive

equilibrium. The First Welfare Theorem implies that xj
I = (1, 1) and that xk

I = (0, 0). But for agent j
to demand (1, 1), the equilibrium prices would have to sum to at most 5, while for agent k to demand
(0, 0), the equilibrium prices would both have to be at least 3—a contradiction. Hence, we can conclude
that no competitive equilibrium exists.
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At the endowment wj
I = (0, 1) of goods, U j is not a gross substitutes utility function

as, letting wj
0 = 3, we have that Dj

M (pI ,w
j) = {(1, 1)} while Dj

M (p′
I ,w

j) = {(0, 0)}.29

That is, increasing the price of the first good can lower j’s Marshallian demand for the
second good. By contrast, as V j

Q is a substitutes valuation, Example 7 implies that U j is
a net substitutes utility function: the gross complementarity is entirely due to an income
effect. For example, at the utility level

u = max
x∈Xj |p′·x≤p′·wj

U j (x) = log
5

11
,

we have that Dj
H (pI ;u) = {(1, 0)} and that Dj

H (p′
I ;u) = {(0, 0)},30 so the decrease in the

Marshallian demand for the second good as prices change from pI to p′
I at the endowment

wj reflects an income effect. By Theorem 2, competitive equilibrium exists whenever k

has a net substitutes utility function. For example, if k has a quasilinear utility function
with a substitutes valuation given by Equation (5), then for the endowment allocation
defined by wj

I = (0, 1), wk
I = (1, 0), and wj

0 = wk
0 = 3, the price vector (3, 2) and

the allocation of goods defined by xj
I = (1, 0) and xk

I = (0, 1) comprise a competitive
equilibrium.31

In Case (b), agent j has net substitutes preferences—leading to the guaranteed ex-
istence of competitive equilibrium when agent k has net substitutes preferences. By
contrast, in Case (a), agent j does not have net substitutes preferences—and competitive
equilibrium may not exist when k has net substitutes preferences.

In general, net substitutability forms a maximal domain for the existence of competitive
equilibrium. Specifically, if an agent does not have net substitutes preferences, then
competitive equilibrium may not exist when the other agents have substitutes quasilinear
preferences.

Proposition 2. Suppose that yi = 1 for all goods i. If |J | ≥ 2, agent j demands at most
one unit of each good, and U j is not a net substitutes utility function, then there exist
29To show this, note that wj

0−p′
I ·((1, 1)−wj

I) = −1, so it would violate j’s budget constraint to demand
(1, 1) at the price vector p′

I . For the other bundles, note that
xI (0, 0) (0, 1) (1, 0) (1, 1)

U j
(
wj

0 − pI · (xI −wj
I),xI

)
log 5

11 log 3
7 log 3

4 log 1

U j
(
wj

0 − p′
I · (xI −wj

I),xI

)
log 5

11 log 3
7 log 1

4 undef.,

so Dj
M

(
pI ,w

j
)
= {(1, 1)} and Dj

M

(
p′
I ,w

j
)
= {(0, 0)}.

30The expressions for Dj
H (pI ;u) and Dj

H (p′
I ;u) hold because agent j’s Hicksian valuation at utility level

u is 5
11 times the quasivaluation V j

Q (by Example 4).
31To show this, let p̂I = (3, 2). It is clear that (0, 1) ∈ Dk (p̂I). It remains to show that (1, 0) ∈
Dj

M

(
p̂I ,w

j
)
. Note that wj

0 − p̂I · ((1, 1)−wj
I) = 0, so it would violate j’s budget constraint to demand

(1, 1) at the price vector p̂I . For the other bundles, note that

U j
(
wj

0 − p̂I · (xI −wj
I),xI

)
=


log 5

11 if xI = (0, 0)

log 3
7 if xI = (0, 1)

log 1
2 if xI = (1, 0),

so Dj
M

(
p̂I ,w

j
)
= {(1, 0)}.
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sets Xk
I ⊆ {0, 1}I of feasible bundles and substitutes valuations V k : Xk

I → R for agents
k ̸= j, and an endowment allocation for which no competitive equilibrium exists.

Proposition 2 is an immediate consequence of the Equilibrium Existence Duality and
the fact that substitutability defines a maximal domain for the existence of competitive
equilibrium with transferable utility.

Proof. By Remark 1, there exists a utility level u at which agent j’s Hicksian valuation
V j
H (·;u) is not a substitutes valuation. Fact 4 implies that there exist feasible sets Xk

I ⊆
{0, 1}I and substitutes valuations V k for agents k ̸= j, for which an endowment allocation
exists but no competitive equilibrium would exist with transferable utility if agent j’s
valuation were V j

H (·;u). With those sets Xk
I of feasible bundles and valuations V k for

agents k ̸= j, the “only if” direction of Theorem 1 implies that there exists an endowment
allocation for which no competitive equilibrium exists. □

Proposition 2 entails that any domain of preferences that contains all substitutes quasi-
linear preferences and guarantees the existence of competitive equilibrium must lie within
the domain of net substitutes preferences. Therefore, Proposition 2 and Theorem 2 sug-
gest that net substitutability is the most general way to incorporate income effects into
a substitutability condition to ensure the existence of competitive equilibrium.

By contrast, the relationship between the nonexistence of competitive equilibrium and
failures of gross substitutability depends on why gross substitutability fails. Gross sub-
stitutability can fail due to substitution effects that reflect net complementarities, as in
Example 9(a), or due to income effects, as in Example 9(b). If the failure of gross sub-
stitutability reflects a net complementarity, then Proposition 2 tells us that competitive
equilibrium may not exist if the other agents have substitutes quasilinear preferences, as
in Example 9(a). On the other hand, the failure of gross substitutability is only due to
income effects, then Theorem 2 tells us that competitive equilibrium exists if the other
agents have net substitutes preferences (e.g., substitutes quasilinear preferences), as in
Example 9(b).

5. Demand Types and the Unimodularity Theorem

In this section, we characterize exactly what conditions on patterns of substitution ef-
fects guarantee the existence of competitive equilibrium. Specifically, we consider Bald-
win and Klemperer’s (2019) classification of valuations into “demand types” based on sets
of vectors that summarize the possible ways in which demand can change in response to a
small generic price change. We first review the definition of demand types from Baldwin
and Klemperer (2019). We then extend the concept of demand types to settings with
income effects, and develop a version of the Baldwin and Klemperer’s (2019) Unimod-
ularity Theorem that allows for income effects and characterizes which demand types
guarantee the existence of competitive equilibrium (see also Danilov et al. (2001)). A
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Figure 1. Depiction of Agent j’s Demand in Example 10. The labels
indicate demand in the regions of price vectors at which demand is single-
valued.

special case of the Unimodularity Theorem with Income Effects extends Theorem 2 to
settings in which agents can demand multiple units of some goods.

5.1. Demand Types and the Unimodularity Theorem with Transferable Util-
ity. We first review the concept of demand types for quasilinear settings, as developed
by Baldwin and Klemperer (2019).

An integer vector is primitive if the greatest common divisor of its components is 1.
By focusing on the directions of demand changes, we can restrict to primitive demand
change vectors. A demand type vector set is a set D ⊆ ZI of primitive integer vectors
such that if d ∈ D then −d ∈ D.

Definition 6 (Demand Types for Valuations). Let V j be a valuation.
(a) A bundle xI is uniquely demanded by agent j if there exists a price vector pI such

that Dj (pI) = {xI}.
(b) A pair {xI ,x

′
I} of uniquely demanded bundles are adjacently demanded by agent

j if there exists a price vector pI such that Dj (pI) contains xI and x′
I but no

other bundle that is uniquely demanded by agent j.
(c) If D is a demand type vector set, then V j is of demand type D if for all pairs

{xI ,x
′
I} that are adjacently demanded by agent j, the difference x′

I − xI is a
multiple of an element of D.32

For intuition, suppose that a small price change causes a change in demand. Then,
generically, demand changes between adjacently demanded bundles. Thus, the demand
type vectors represent the possible directions of changes in demand in response to small
generic price changes (see Proposition 3.3 in Baldwin and Klemperer (2019) for a formal
statement). To illustrate Definition 6, we consider an example.
32Definition 6(c) coincides with Definition 3.1 in Baldwin and Klemperer (2019) by Proposition 2.20 in
Baldwin and Klemperer (2019).
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Example 10. Suppose that there are two goods and let

Xj
I = {0, 1, 2, 3}2 ∖ {(2, 3), (3, 2), (3, 3)}.

Consider the valuation defined by V j (xI) = x1+x2. As Figure 1 illustrates, the uniquely
demanded bundles are (0, 0), (0, 3), (1, 3), (3, 0), and (3, 1).

When 1 = p1 < p2, agent j’s demand is Dj (pI) = {(0, 0), (1, 0), (2, 0), (3, 0)}. Hence, as
the bundles (1, 0) and (2, 0) are not uniquely demanded, the bundles (0, 0) and (3, 0) are
adjacently demanded. As a result, for V j to be of demand type D, the set D must contain
the vector (1, 0), which is the primitive integer vector proportional to the demand change
(3, 0) − (0, 0) = (3, 0). Similarly, the bundles (0, 0) and (0, 3) are adjacently demanded,
and any demand type vector set D such that V j is of demand type D must contain the
vector (0, 1).

When p1 < p2 = 1, demand is Dj (pI) = {(3, 0), (3, 1)}. Hence, the bundles (3, 0) and
(3, 1) are adjacently demanded. Similarly, the bundles (0, 3) and (1, 3) are adjacently
demanded. These facts respectively imply, again, that (0, 1) and (1, 0) are in any demand
type vector set D such that V j is of demand type D.

Last, when p1 = p2 < 1, agent j’s demand is Dj (pI) = {(1, 3), (2, 2), (3, 1)}. Hence, as
the bundle (2, 2) is not uniquely demanded, the bundles (1, 3) and (3, 1) are adjacently
demanded. As a result, for V j to be of demand type D, the set D must contain the
vector (1,−1), which is the primitive integer vector proportional to the demand change
(3, 1)− (1, 3) = (2,−2).

By contrast, the bundles (0, 0) and (3, 1) are not adjacently demanded: the only price
vector at which agent j demands them both is pI = (1, 1), but Dj (1, 1) also contains
the uniquely demanded bundles (0, 3), (1, 3), and (3, 0). Similarly, the bundles (0, 0) and
(1, 3) are not adjacently demanded. Hence,

D = ±

{[
1

0

]
,

[
0

1

]
,

[
1

−1

]}
is the minimal demand type vector set D such that V j is of demand type D.

Consider any valuation of the same demand type D as in Example 10, and a change
in price from pI to p′

I = pI + λe1 for some λ > 0. For generic choices of pI and λ, the
demand at any price on the straight line from pI to p′

I either is unique, or demonstrates
the adjacency of two bundles uniquely demanded at prices on this line. The change
in demand between such bundles must therefore be a multiple of an element of D (by
Definition 6). Moreover, since only the price of good 1 is changing and that price is
increasing, the law of demand entails that demand for good 1 must strictly decrease
upon any change in demand.33 Thus, the change in demand between the two consecutive
uniquely demanded bundles must be a positive multiple of either (−1, 0) or (−1, 1).

33As there are no income effects here, the compensated law of demand (see, e.g., Proposition 3.E.4 in
Mas-Colell et al. (1995)) reduces to the law of demand.
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Therefore, demand for good 2 must (weakly) increase, reflecting substitutability between
the goods. This two-good example is a special case of an important class of demand
types.

Example 11 (The Strong Substitutes Demand Type). The strong substitutes demand
type vector set consists of all vectors in ZI with at most one +1 component, at most one
−1 component, and no other nonzero components. As illustrated in Example 10, this
demand type vector set captures one-to-one substitution between goods through demand
type vectors with one component of 1 and one component of −1. Furthermore, if an
agent k demands at most one unit of each good, then V k is a substitutes valuation if and
only if it is of the strong substitutes demand type (see Theorems 2.1 and 2.4 in Fujishige
and Yang (2003)).

In settings in which agents can demand multiple units of each good, a form of concavity
is needed to ensure the existence of competitive equilibrium. A valuation is concave if,
under that valuation, each bundle of goods that is a convex combination of feasible
bundles of goods is demanded at some price vector. For the formal definition, we let
Conv(T ) denote the convex hull of a set T ⊆ RI .

Definition 7 (Concavity). A valuation V j is concave if for each bundle xI ∈ Conv(Xj
I )∩

Zn, there exists a price vector pI such that xI ∈ Dj (pI).

In Section 4.1, we discussed that substitutability guarantees the existence of competi-
tive equilibrium in transferable utility economies when agents demand at most one unit
of each good. Generalizing that result, Baldwin and Klemperer (2019) identified a nec-
essary and sufficient condition for the concave valuations of a demand type to form a
domain for the guaranteed existence of competitive equilibrium.

Definition 8 (Unimodularity). A set of vectors in ZI is unimodular if every linearly
independent subset can be extended to be a basis for RI , of integer vectors, such that
any square matrix whose columns are these vectors has determinant ±1.

For example, the demand type vector set in Example 10 is unimodular, while the
demand type vector set

(6) ±

{[
1

−1

]
,

[
1

1

]}
is not unimodular, because ∣∣∣∣∣ 1 1

−1 1

∣∣∣∣∣ = 2.

The demand type vector set in (6) represents that the two goods can be substitutable or
complementary for agents—a possibility that can cause competitive equilibrium to fail to
exist, as in Example 9(a). Baldwin and Klemperer (2019) showed that the unimodularity
of a demand type vector set is precisely the condition for the corresponding demand type
to guarantee the existence of competitive equilibrium.
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Fact 5 (Unimodularity Theorem with Transferable Utility). Let D be a demand type vec-
tor set. Competitive equilibria exist for all finite sets J of agents with concave valuations
of demand type D and for all total endowments for which endowment allocations exist if
and only if D is unimodular.34

Danilov et al. (2001) used conditions on the ranges of agents’ demand correspondences
to describe classes of concave valuations, which correspond to the concave valuations of
Baldwin and Klemperer’s (2019) unimodular demand types;35 they formulated a version
of the “if” direction of Fact 5 with those conditions.36

As Poincaré (1900) showed, the strong substitutes demand type vector set is unimod-
ular. Therefore, in light of Example 11, the existence of competitive equilibrium in
transferable utility economies in which agents demand at most one unit of each good and
have substitutes valuations (Fact 3) is a special case of Fact 5. Moreover, Fact 5 is strictly
more general: as Baldwin and Klemperer (2019) showed, there are unimodular demand
type vector sets for which the existence of competitive equilibrium cannot be deduced
from the corresponding result for strong substitutes by applying a change of basis to the
space of bundles of goods.37 To illustrate the additional generality, we discuss an example
of such a demand type.38

Example 12. There are five goods. Consider the demand type vector set

D = ±




1

0

0

0

0

 ,


0

1

0

0

0

 ,


0

0

1

0

0

 ,


0

0

0

1

0

 ,


0

0

0

0

1

 ,


1

−1

1

0

0

 ,


0

1

−1

1

0

 ,


0

0

1

−1

1

 ,


1

0

0

1

−1

 ,


−1

1

0

0

1




.

Intuitively, this demand type vector set allows for independent changes in the demand for
each good (through the first five vectors), as well as for substitution from a good to the
bundle consisting of its two neighbors if the goods are arranged in a circle (through the
last five vectors). This demand type vector set is unimodular, and cannot be obtained
from the strong substitutes demand type vector set by a change of basis of the space of
integer bundles of goods (see, e.g., Section 19.4 of Schrijver (1998)).
34The “if” direction of Fact 5 is a case of the “if” direction of Theorem 4.3 in Baldwin and Klemperer
(2019). The “only if” direction of Fact 5, which we prove in Appendix D, is a mild strengthening of the
“only if” direction of Theorem 4.3 in Baldwin and Klemperer (2019) that applies in exchange economies.
35To understand the correspondence, let D be a unimodular demand type vector set. In the terminology
of Danilov et al. (2001), a valuation V j is D(Pt(D,Z))-concave if, for each price vector pI , we have
that Dj (pI) = Conv(Dj (pI)) ∩ ZI and each edge of Conv(Dj (pI)) is parallel to an element of D (see
Definition 4 and pages 264–265 in Danilov et al. (2001)). It follows from Lemma 2.11 and Proposition
2.16 in Baldwin and Klemperer (2019) that a valuation is D(Pt(D,Z))-concave if and only if it is concave
and of demand type D.
36See Definition 4, Theorem 3, and pages 264–265 in Danilov et al. (2001).
37By contrast, the existence results of Sun and Yang (2006) and Teytelboym (2014) can be deduced from
Fact 3 applying an appropriate change of basis. Those results are also special cases of Fact 5.
38Section 6.1 in Baldwin and Klemperer (2019) provides another example that includes only complements
valuations.
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Moreover, the demand types defined by maximal, unimodular demand type vector
sets turn out to define maximal domains for the existence of competitive equilibrium in
settings with transferable utility. Here, we say that a unimodular demand type vector
set is maximal if it is not strictly contained in another unimodular demand type vector
set.

Fact 6. Let D be a maximal unimodular demand type vector set. If |J | ≥ 2 and V j

is non-concave or not of demand type D, then there exist sets Xk
I of feasible bundles

and concave valuations V k : Xk
I → R of demand type D for agents k ̸= j, as well as

a total endowment, for which there exists an endowment allocation but no competitive
equilibrium.39

While Fact 5 shows that there exist valuations in each non-unimodular demand type
for which competitive equilibrium does not exist, Fact 6 shows that for every valuation
outside a maximal unimodular demand type, there exist concave valuations within the
demand type that lead to non-existence. Hence, the necessity direction of Fact 5, to-
gether with Fact 6, provide complementary perspectives on the way in which competitive
equilibrium can fail to exist outside the context of unimodular demand types.

5.2. Demand Types and the Unimodularity Theorem with Income Effects. We
now use Fact 2 to extend the demand types framework to settings with income effects.

Definition 9 (Demand Types with Income Effects). An agent’s preferences are of demand
type D if her Hicksian valuations at all utility levels are of demand type D.

Lemma 1 leads to an economic interpretation of Definition 9: a utility function is of
demand type D if D summarizes the possible ways in which Hicksian demand can change
in response to a small generic price change. In particular, Definition 9 extends the concept
of demand types to settings with income effects by placing conditions on substitution
effects. Indeed, Definition 9 considers only the properties of Hicksian valuations at each
utility level (which, by Lemma 1, reflect substitution effects), and not how an agent’s
Hicksian valuations vary with her utility level (which, by Fact 1 and Lemma 1, reflects
income effects).

Danilov et al. (2001) translated their conditions on the ranges of agents’ demand corre-
spondences from quasilinear settings to settings with income effects by using Fact 2 in an
analogous manner (see Assumption 3′ in Danilov et al. (2001)). However, the economic
interpretation in terms of substitution effects that Lemma 1 leads to was not clear from
Danilov et al.’s (2001) formulation.

As with the case of transferable utility, a concavity condition is needed to ensure the
existence of competitive equilibrium. With income effects, the relevant condition is a

39Fact 6 is related to Proposition 6.10 in Baldwin and Klemperer (2014), which connects failures of
unimodularity to the non-existence of competitive equilibrium in specific economies. We supply a proof
of Fact 6 in Appendix D.
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version of the quasiconcavity condition from classical demand theory for settings with
indivisible goods. We define quasiconcavity based on concavity and duality.40

Definition 10 (Quasiconcavity). An agent’s utility function is quasiconcave if her Hick-
sian valuations at all utility levels are concave.

As with the case of transferable utility, unimodularity is a necessary and sufficient con-
dition for the existence of competitive equilibrium to be guaranteed for all quasiconcave
preferences of a demand type when income effects are present.

Theorem 3 (Unimodularity Theorem with Income Effects). Let D be a demand type
vector set. Competitive equilibria exist for all finite sets J of agents with quasiconcave
utility functions of demand type D, for all total endowments, and for all endowment
allocations if and only if D is unimodular.

The “only if” direction of Theorem 3 is a special case of the Unimodularity Theorem
with Transferable Utility (Fact 5). The “if” direction of Theorem 3 is an immediate
consequence of the Equilibrium Existence Duality and Fact 5.

Proof of the “if” direction of Theorem 3. Consider a finite set J of agents with quasicon-
cave preferences of demand type D and a total endowment for which an endowment
allocation exists. By definition, the agents’ Hicksian valuations at all utility levels are
concave and of demand type D. Hence, competitive equilibria exist in the Hicksian
economies for all profiles of utility levels by the “if” direction of Fact 5. By the “if” di-
rection of Theorem 1, competitive equilibria must therefore exist in the original economy
for all endowment allocations. □

Danilov et al. (2001) proved a version of the “if” direction of Theorem 3 under the
assumptions that utility functions are monotone in goods, that consumption of goods is
nonnegative, and that the total endowment is strictly positive (see Theorems 2 and 4 in
Danilov et al. (2001)).41 Note that they formulated their result in terms of Fact 2 and a
condition on the ranges of demand correspondences (see their Assumption 3′) instead of
in terms of unimodular demand types.

Danilov et al.’s (2001) approach was to show the existence of competitive equilibrium
in a convexified economy and that, under unimodularity, competitive equilibria in the
convexified economy give rise to competitive equilibria in the original economy. In con-
trast, our approach of using the Equilibrium Existence Duality illuminates the role of
substitution effects in ensuring the existence of competitive equilibrium. Moreover, it
yields a maximal domain result for unimodular demand types with income effects.

40It is equivalent to define quasiconcavity in terms of the convexity of the upper contour sets, but
Definition 10 is more immediately applicable for us.
41Danilov et al.’s (2001) existence result is not formally a special case of ours because they allowed for
unbounded sets Xj

I of feasible bundles of goods.
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Proposition 3. Let D be a maximal unimodular demand type vector set. If |J | ≥ 2

and U j is not quasiconcave or not of demand type D, then there exist sets Xk
I of feasible

bundles and concave valuations V k : Xk
I → R of demand type D for agents k ̸= j, as well

as a total endowment and an endowment allocation, for which no competitive equilibrium
exists.

Proposition 3 is an immediate consequence of the Equilibrium Existence Duality and
the maximal domain result for unimodular demand types under the transferability of
utility.

Proof. By definition, there exists a utility level u at which agent j’s Hicksian valuation
V j
H (·;u) is non-concave or not of demand type D. In either case, Fact 6 implies that there

exist sets Xk
I of feasible bundles and concave valuations V k : Xk

I → R of demand type D
for agents k ̸= j, and a total endowment for which an endowment allocation exists but no
competitive equilibrium would exist with transferable utility if agent j’s valuation were
V j
H (·;u). With those sets Xk

I of feasible bundles and valuations V k for agents k ̸= j and
that total endowment, the “only if” direction of Theorem 1 implies that there exists an
endowment allocation for which no competitive equilibrium exists. □

Intuitively, Proposition 3 and Theorem 3 suggest that Definition 9 is the most general
way to incorporate income effects into unimodular demand types from the quasilinear set-
ting and ensure the existence of competitive equilibrium. Indeed, Proposition 3 entails
that any domain of preferences that contains all concave quasilinear preferences of a max-
imal, unimodular demand type and guarantees the existence of competitive equilibrium
must lie within the corresponding demand type constructed in Definition 9.

5.3. The Strong Substitutes Demand Type and Net Substitutability with Mul-
tiple Units. We now use the case of Theorem 3 for the strong substitutes demand type
to extend Theorem 2 to settings in which agents can demand multiple units of some
goods. In such settings, if utility is transferable, the substitutability condition needed to
ensure the existence of competitive equilibrium is strong substitutability—the condition
requiring that agents see units of goods as substitutes (Milgrom and Strulovici, 2009).
As Shioura and Tamura (2015) and Baldwin and Klemperer (2019) showed, there is a
close relationship between strong (net) substitutability and the strong substitutes demand
type.42

Definition 11 (Strong Substitutability). (a) A valuation is a strong substitutes val-
uation if it corresponds to a substitutes valuation when each unit of each good is
regarded as a separate good.

42Requiring that different goods, rather than different units of goods, be substitutes leads to a condition
called ordinary substitutability. However, ordinary substitutability does not ensure the existence of
competitive equilibrium when agents can demand multiple units of some goods (Danilov, Koshevoy, and
Lang, 2003; Milgrom and Strulovici, 2009; Baldwin and Klemperer, 2019). Ordinary substitutability in
turn corresponds to an “ordinary substitutes” demand type (see Definitions 3.4 and 3.5 and Proposition
3.6 in Baldwin and Klemperer (2019)).
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(b) A utility function is a strong net substitutes utility function if it corresponds to
a net substitutes utility function when each unit of each good is regarded as a
separate good.

Fact 7. A valuation (resp. utility function) is a strong (net) substitutes valuation (resp.
utility function) if and only if it is concave (resp. quasiconcave) and of the strong substi-
tutes demand type.43,44

As the strong substitutes demand type vector set is unimodular (Poincaré, 1900), the
existence of competitive equilibrium under strong net substitutability is therefore a special
case of the Unimodularity Theorem with Income Effects.

Corollary 1. If all agents have strong net substitutes utility functions, then competitive
equilibria exist for all endowment allocations.

Corollary 1 can also be proven directly using the Equilibrium Existence Duality and the
existence of competitive equilibrium under strong substitutability in transferable utility
economies (Milgrom and Strulovici, 2009; Ikebe et al., 2015). Theorem 2 is the special
case of Corollary 1 for settings in which agents demand at most one unit of each good.
As there are unimodular demand type vector sets unrelated to the strong substitutes
demand type vector set (such as the one in Example 12), Theorem 3 is strictly more
general than Corollary 1 (and hence Theorem 2). In particular, Theorem 3 also illustrates
that certain patterns of net complementarities can also be compatible with the existence
of competitive equilibrium.

As the strong substitutes demand type vector set is maximal as a unimodular demand
type vector set (see, e.g., Example 9 in Danilov and Koshevoy (2004)), Proposition 3
yields a maximal domain result for strong net substitutability.

Corollary 2. If |J | ≥ 2 and U j is not a strong net substitutes utility function, then there
exist strong substitutes valuations V k for agents k ̸= j, as well as a total endowment and
an endowment allocation, for which no competitive equilibrium exists.

6. Auction Design

Our work has several implications for auction design. First, our perspective of analyzing
preferences by using the expenditure-minimization problem may yield new approaches for
extending auction bidding languages to allow for income effects.

Second, our equilibrium existence results suggest that some auctions with competitive
equilibrium pricing may work well for indivisible goods even in the presence of financing
constraints. One set of examples are Product-Mix Auctions, such as the one implemented
43The quasilinear case of this fact is part of Theorem 4.1(i) in Shioura and Tamura (2015) (see also
Proposition 3.10 in Baldwin and Klemperer (2019)). The general case follows from the quasilinear case
by Lemma 1 and Remark 1.
44In particular, if agent j demands at most one unit of each good, then U j is a net substitutes utility
function if and only if it is of the strong substitutes demand type.
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by the Bank of England45—these implement competitive equilibrium allocations assuming
that the submitted sealed bids represent bidders’ actual preferences, since truth-telling is
a reasonable approximation in these auctions when there are sufficiently many bidders.

However, while we have shown that gross complementarities do not lead to the nonex-
istence of competitive equilibrium, they do create problems for dynamic auctions. When
agents see goods as gross substitutes, iteratively increasing the prices of over-demanded
goods leads to a competitive equilibrium (Kelso and Crawford, 1982; Fleiner et al., 2019).
In contrast, when there are gross complementarities between goods, increases in the price
of an over-demanded good can lead to other goods being under-demanded due to an in-
come effect. So, even though competitive equilibrium always exists when agents see goods
as (strong) net substitutes, it may not be possible to find a competitive equilibrium using
a monotone, dynamic auction. In particular, simple “activity rules” that require bid-
ders to bid on a smaller total number of units of goods as prices increase may result
in inefficient outcomes. So, the Product-Mix Auction approach of finding competitive
equilibrium based on a single round of sealed bids seems especially useful in the presence
of income effects.

7. Conclusion

The Equilibrium Existence Duality is a useful tool for analyzing economies with indi-
visible goods. It is based on the relationship between Marshallian and Hicksian demands,
and on an interpretation of Hicksian demand in terms of a quasilinear maximization
problem. The Equilibrium Existence Duality shows that competitive equilibrium exists
(for all endowment allocations) if and only if competitive equilibrium exists in each of
a family of Hicksian economies. An application is that it is net substitutability, not
gross substitutability, that is relevant to the existence of equilibrium. And extending
the demand types classification of valuations (Baldwin and Klemperer, 2019) allows us
to state a Unimodularity Theorem with Income Effects that gives conditions on the pat-
terns of substitution effects that guarantee the existence of competitive equilibrium. In
short, with income effects, just as without them, existence does not depend on agents
seeing goods as substitutes; rather, substitution effects are fundamental to the existence
of competitive equilibrium.

Our results point to a number of potential directions for future work. First, it would be
interesting to investigate applications of the Equilibrium Existence Duality to other re-
sults on the existence of equilibrium with transferable utility—such as those of Bikhchan-
dani and Mamer (1997), Ma (1998), and Candogan et al. (2015). Second, our results
could be used to further develop auction designs that find competitive equilibrium out-
comes given the submitted bids, such as Klemperer’s (2008) Product-Mix Auction. More

45See Klemperer (2008, 2010, 2018) and Baldwin and Klemperer (in preparation). Iceland planned a
Product-Mix Auction for bidders with budget constraints (Klemperer, 2018), but that auction was for a
setting with divisible goods.
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broadly, our approach may lead to new results about the properties of economies with
indivisibilities and income effects.

Appendix A. Proof of Theorem 1 and Lemma 2

We prove the following result, which combines Theorem 1 and Lemma 2.

Theorem A.1. Suppose that the total endowment and the sets of feasible bundles are
such that an endowment allocation exists. The following are equivalent.

(I) Competitive equilibria exist for all endowment allocations.
(II) For each Pareto-efficient allocation (xj)j∈J with

∑
j∈J x

j
I = yI , there exists a price

vector pI such that xj ∈ Dj
M (pI ,x

j) for all agents j.
(III) Competitive equilibria exist in the Hicksian economies for all profiles of utility

levels.

The remainder of this appendix is devoted to the proof of Theorem A.1.

A.1. Proof of the (I) =⇒ (II) Implication in Theorem A.1. The proof of this
implication is essentially identical to the proof of Theorem 3 in Maskin and Roberts
(2008). Consider a Pareto-efficient allocation (xj)j∈J with

∑
j∈J x

j = yI .

Let agent j’s endowment be wj = xj. By Statement (I) in the theorem, there exists a
competitive equilibrium, say consisting of the price vector pI and the allocation (x̂j

I)j∈J

of goods. By the definition of competitive equilibrium, we have that x̂j
I ∈ Dj

M

(
pI ,x

j
I

)
for

all agents j. In particular, letting x̂j
0 = xj

0 − pI · (x̂j
I − xj

I) for each agent j, we have that∑
j∈J x̂

j =
∑

j∈J x
j and that U j (x̂j) ≥ U j (xj) for all agents j. As the allocation (xj)j∈J

is Pareto-efficient, we must have that U j (x̂j) = U j (xj) for all agents j. It follows that
xj
I ∈ Dj

M (pI ,x
j) for all agents j—as desired.

A.2. Proof of the (II) =⇒ (III) Implication in Theorem A.1. Let (uj)j∈J be
a profile of utility levels. Consider any allocation (xj

I)j∈J ∈×j∈J X
j
I of goods with∑

j∈J x
j
I = yI that minimizes ∑

j∈J

Sj
(
xj
I ;u

j
)

over all allocations (x̂j
I)j∈J ∈×j∈J X

j
I of goods with

∑
j∈J x̂

j
I = yI . Such an allocation

exists because each set Xj
I is finite and an endowment allocation exists. For each agent

j, let xj
0 = Sj

(
xj
I ;u

j
)
—so U j (xj) = uj.

Claim A.2. The allocation (xj)j∈J is Pareto-efficient.

Proof. Consider any allocation (x̂j)j∈J ∈×j∈J X
j with

∑
j∈J x̂

j
I = yI , and U j (x̂j) ≥

U j (xj) = uj for all agents j with strict inequality for some j = j1. As Sj
(
x̂j
I ; ·
)

is strictly
increasing for each agent j, we must have that

x̂j
0 = Sj

(
x̂j
I ;U

j
(
x̂j
))

≥ Sj
(
x̂j
I ;u

j
)
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for all agents j with strict inequality for j = j1. Hence, we must have that∑
j∈J

x̂j
0 >

∑
j∈J

Sj
(
x̂j
I ;u

j
)
≥
∑
j∈J

Sj
(
xj
I ;u

j
)
=
∑
j∈J

xj
0,

where the second inequality follows from the definition of (xj
I)j∈J , so the allocation (xj)j∈J

cannot be Pareto-dominated. □

By Claim A.2 and Statement (II) in the theorem, there exists a price vector pI such
that xj

I ∈ Dj
M (pI ,x

j) for all agents j. Fact 1 implies that xj
I ∈ Dj

H (pI ;u
j) for all agents

j. By Lemma 1, it follows that the price vector pI and the allocation
(
xj
I

)
j∈J of goods

comprise a competitive equilibrium in the Hicksian economy for the profile (uj)j∈J of
utility levels.

A.3. Proof of the (III) =⇒ (I) Implication in Theorem A.1. Let (wj)j∈J be an
endowment allocation. For each agent j, we define a utility level uj

min = U j (wj) and let

Kj = wj
0 − min

xI∈Xj
I

Sj
(
xI ;u

j
min

)
,

which is non-negative by construction. Furthermore, let K = 1 +
∑

j∈J K
j and let

uj
max = max

xI∈Xj
I

U j
(
wj

0 +K,xI

)
.

Given a profile u = (uj)j∈J of utility levels, let

T (u) =


(

Sj
(
xj
I ;u

j
)
− wj

0

+pI · (xj
I −wj

I)

)
j∈J

∣∣∣∣∣∣∣
(
pI , (x

j
I)j∈J

)
is a competitive

equilibrium in the Hicksian economy
for the profile (uj)j∈J of utility levels


denote the set of profiles of net expenditures over all competitive equilibria in the Hicksian
economy for the profile (uj)j∈J of utility levels. As discussed in Section 3, the strategy of
the proof is to solve for a profile u = (uj)j∈J of utility levels such that 0 ∈ T (u).

We first show that the correspondence T :×j∈J [u
j
min, u

j
max] ⇒ RJ is upper hemicontin-

uous and has compact, convex values. We then apply a topological fixed point argument
to show that there exists a profile u = (uj)j∈J ∈×j∈J [u

j
min, u

j
max] of utility levels such

that 0 ∈ T (u). We conclude the proof by constructing a competitive equilibrium for the
endowment allocation (wj)j∈J in the original economy from a competitive equilibrium in
the Hicksian economy for the profile (uj)j∈J of utility levels.

Proof of the Regularity Conditions for T . We begin by proving that the correspondence
T :×j∈J [u

j
min, u

j
max] ⇒ RJ is upper hemicontinuous and has compact, convex values. We

actually give explicit bounds for the range of T . Let

M = max
j∈J

{
Sj
(
wj

I ;u
j
max

)
− wj

0

}
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and let

M =
∑
j∈J

(
min
xI∈Xj

I

{
Sj
(
xI ;u

j
min

)}
− wj

0

)
− (|J | − 1)M.

Claim A.3. The correspondence T :×j∈J [u
j
min, u

j
max] ⇒ RJ is upper hemicontinuous

and has compact, convex values and range contained in [M,M ]J .

The proof of Claim A.3 uses the following technical description of T .

Claim A.4. Let u = (uj)j∈J ∈×j∈J [u
j
min, u

j
max] be a profile of utility levels and let

(xj
I)j∈J ∈×j∈J X

j
I be an allocation of goods with

∑
j∈J x

j
I = yI . If (xj

I)j∈J minimizes∑
j∈J

Sj
(
x̂j
I ;u

j
)

over all allocations (x̂j
I)j∈J ∈×j∈J X

j
I of goods with

∑
j∈J x̂

j
I = yI , then we have that

T (u) =
{(

Sj
(
xj
I ;u

j
)
− wj

0 + pI · (xj
I −wj

I)
)
j∈J

∣∣∣ pI ∈ P
}
,

where

P =
{
pI

∣∣Sj
(
xj
I ;u

j
)
+ pI · xj

I ≤ Sj
(
x′
I ;u

j
)
+ pI · x′

I for all j ∈ J and x′
I ∈ Xj

I

}
.

Proof. By construction, we have that

P =

{
pI

∣∣∣∣∣ (pI , (x
j)j∈J) is a competitive equilibrium in the

Hicksian economy for the profile (uj)j∈J of utility levels

}
.

A standard lemma regarding competitive equilibria in transferable utility economies
shows that in the Hicksian economy for the profile (uj)j∈J of utility levels, if (pI , (x̂

j)j∈J)

is a competitive equilibrium, then so is
(
pI , (x

j
I)j∈J

)
.46 In this case, we have that

Sj
(
xj
I ;u

j
)
+ pI · xj

I = Sj
(
x̂j
I ;u

j
)
+ pI · x̂j

I ,

and hence that

Sj
(
xj
I ;u

j
)
− wj

0 + pI · (xj
I −wj

I) = Sj
(
x̂j
I ;u

j
)
− wj

0 + pI · (x̂j
I −wj

I),

for all agents j. The claim follows. □

Proof of Claim A.3. It suffices to show that T has convex values, range contained in
[M,M ]J , and a closed graph.

We first show that T (u) is convex for all u ∈×j∈J [u
j
min, u

j
max]. We use the notation of

Claim A.4 to prove this assertion. Note that P is the set of solutions to a set of linear
inequalities, and is hence convex. Claim A.4 implies that T (u) is the set of values of a
linear function on P—so it follows that T (u) is convex as well.

46The lemma is due to Shapley (1964, page 3); see also Bikhchandani and Mamer (1997) and Hatfield
et al. (2013). Jagadeesan et al. (2020, Lemma 1) proved the lemma in a setting with multiple units that
allows for non-monotone valuations.
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We next show that T (u) ⊆ [M,M ]J holds for all u ∈×j∈J [u
j
min, u

j
max]. We again use

the notation of Claim A.4. Let u ∈×j∈J [u
j
min, u

j
max] and t ∈ T (u) be arbitrary. By

Claim A.4, there exists pI ∈ P such that

tj = Sj
(
xj
I ;u

j
)
− wj

0 + pI · (xj
I −wj

I)

for all agents j. Note that for all agents j, we must have that

tj ≤ Sj
(
wj

I ;u
j
)
− wj

0 ≤ Sj
(
wj

I ;u
j
max

)
− wj

0 ≤ M,

where the first inequality holds due to the definition of P , the second inequality holds
because Sj

(
wj

I ; ·
)

is strictly increasing, and the third inequality holds due to the definition
of M . Furthermore, as

∑
j∈J x

j
I = yI =

∑
j∈J w

j
I , we have that∑

j∈J

tj =
∑
j∈J

(Sj
(
xj
I ;u

j
)
− wj

0).

It follows that

tj =
∑
k∈J

(Sk
(
xk
I ;u

k
)
− wk

0)−
∑

k∈J∖{j}

tk

≥
∑
k∈J

(Sk
(
xk
I ;u

k
min

)
− wk

0)−
∑

k∈J∖{j}

tk

≥
∑
k∈J

(Sk
(
xk
I ;u

k
min

)
− wk

0)− (|J | − 1)M

≥ M

for all agents j, where the first inequality holds because Sk
(
xk
I ; ·
)

is increasing for each
agent k, the second inequality holds because tk ≤ M for all agents k, and the third
inequality holds due to the definition of M .

Last, we show that T has a closed graph. Our argument uses the following version of
Farkas’s Lemma.

Fact A.5 (Page 200 of Rockafellar, 197047). Let L1, L2 be disjoint, finite sets and, for
each ℓ ∈ L1 ∪L2, let vℓ

I ∈ RI be a vector and let αℓ be a scalar. There exist scalars λℓ for
ℓ ∈ L1 ∪ L2 with λℓ ≥ 0 for ℓ ∈ L2 such that∑

ℓ∈L1∪L2

λℓv
ℓ
I = 0 and

∑
ℓ∈L1∪L2

λℓαℓ < 0

if and only if there does not exist a vector pI ∈ RI such vℓ
I · pI ≤ αℓ for all ℓ ∈ L1 ∪ L2

with equality for all ℓ ∈ L1.

Consider a sequence u(1),u(2), . . . ∈×j∈J [u
j
min, u

j
max] of profiles of utility levels. For

each m, let t(m) ∈ T (u(m)). Suppose that u(m) → u and t(m) → t as m → ∞. We need
to show that t ∈ T (u).
47Theorem 22.1 in Rockafellar (1970) states the case of Fact A.5 in which L1 = ∅. The version of
Fact A.5 for L1 ̸= ∅ is left as an exercise on page 200 of Rockafellar (1970).
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As each set Xj
I is finite and an endowment allocation exists, by passing to a subsequence

we can assume that there exists an allocation (xj
I)j∈J ∈×j∈J X

j
I of goods with

∑
j∈J x

j
I =

yI that, for each m, minimizes ∑
j∈J

Sj
(
x̂j
I ;u

j
(m)

)
over all allocations (x̂j

I)j∈J ∈×j∈J X
j
I of goods with

∑
j∈J x̂

j
I = yI . By the continuity of

Sj
(
x̂j
I ;u
)

in u for each agent j, the allocation (xj
I)j∈J minimizes∑

j∈J

Sj
(
x̂j
I ;u

j
)

over all allocations (x̂j
I)j∈J ∈×j∈J X

j
I of goods with

∑
j∈J x̂

j
I = yI .

Suppose for sake of deriving a contradiction that t /∈ T (u). Let L1 = J and let
L2 =

∪
j∈J{j} ×Xj

I . Define vectors vℓ
I ∈ RI for ℓ ∈ L1 ∪ L2 by

vℓ
I =

xj
I −wj

I for ℓ = j ∈ L1

xj
I − x′

I for ℓ = (j,x′
I) ∈ L2

and scalars αℓ for ℓ ∈ L1 ∪ L2 by

αℓ =

Sj
(
xj
I ;u

j
)
− wj

0 − tj for ℓ = j ∈ L1

Sj (x′
I ;u

j)− Sj
(
xj
I ;u

j
)

for ℓ = (j,x′
I) ∈ L2.

By Claim A.4, there does not exist a price vector pI such that vℓ
I ·pI ≤ αℓ for all ℓ ∈ L1∪L2

with equality for all ℓ ∈ L1. The “if” direction of Fact A.5 therefore guarantees that there
exist scalars λℓ for ℓ ∈ L1 ∪ L2 with λℓ ≥ 0 for all ℓ ∈ L2 such that∑

ℓ∈L1∪L2

λℓv
ℓ
I = 0 and

∑
ℓ∈L1∪L2

λℓαℓ < 0.

By the definition of the scalars αℓ, we have that∑
j∈J

λj

(
Sj
(
xj
I ;u

j
)
− wj

0 − tj
)
+
∑
j∈J

∑
x′
I∈X

j
I

λj,x′
I

(
Sj
(
x′
I ;u

j
)
− Sj

(
xj
I ;u

j
))

< 0.

Due the continuity of Sj
(
x̂j
I ;u
)

in u for each agent j and because u(m) → u and t(m) → t

as m → ∞, there must exist m such that∑
j∈J

λj

(
Sj
(
xj
I ;u

j
(m)

)
− wj

0 − tj(m)

)
+
∑
j∈J

∑
x′
I∈X

j
I

λj,x′
I

(
Sj
(
x′
I ;u

j
(m)

)
− Sj

(
xj
I ;u

j
(m)

))
< 0.

Defining scalars α′
ℓ for ℓ ∈ L1 ∪ L2 by

α′
ℓ =

Sj
(
xj
I ;u

j
(m)

)
− wj

0 − tj(m) for ℓ = j ∈ L1

Sj
(
x′
I ;u

j
(m)

)
− Sj

(
xj
I ;u

j
(m)

)
for ℓ = (j,x′

I) ∈ L2,

we have that ∑
ℓ∈L1∪L2

λℓv
ℓ
I = 0 and that

∑
ℓ∈L1∪L2

λℓα
′
ℓ < 0.
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The “only if” implication of Fact A.5 therefore guarantees that there does not exist a
price vector pI such that vℓ

I · pI ≤ α′
ℓ for all ℓ ∈ L1 ∪ L2 with equality for all ℓ ∈ L1. By

Claim A.4, it follows that t(m) /∈ T (u(m))—a contradiction. Hence, we can conclude that
t ∈ T (u)—as desired. □

Completion of the Proof of the (I) =⇒ (II) Implication in Theorem A.1. We first solve
for a profile u = (uj)j∈J of utility levels such that 0 ∈ T (u).

Claim A.6. Under Statement (III) in Theorem A.1, there exists a profile u = (uj)j∈J of
utility levels such that 0 ∈ T (u).

To prove Claim A.6, we apply a topological fixed point argument.

Proof. Consider the compact, convex set

Z = [M,M ]J ××
j∈J

[uj
min, u

j
max].

As T (u) ⊆ [M,M ]J for all u ∈×j∈J [u
j
min, u

j
max], we can define a correspondence Φ : Z ⇒

Z by

Φ(t,u) = T (u)× argmin
û∈×j∈J [u

j
min,u

j
max]

{∑
j∈J

tjûj

}
.

Claim A.3 guarantees that T :×j∈J [u
j
min, u

j
max] ⇒ RJ is upper hemicontinuous and has

compact, convex values. Statement (III) in Theorem A.1 ensures that the correspondence
T has non-empty values. Because×j∈J [u

j
min, u

j
max] is compact and convex, it follows that

the correspondence Φ is upper hemicontinuous and has non-empty, compact, convex
values as well. Hence, Kakutani’s Fixed Point Theorem guarantees that Φ has a fixed
point (t,u).

By construction, we have that t ∈ T (u) and that

(A.1) uj ∈ argmin
ûj∈[uj

min,u
j
max]

tjûj

for all agents j. It suffices to prove that t = 0.
Let (pI , (x

j)j∈J) be a competitive equilibrium in the Hicksian economy for the profile
(uj)j∈J of utility levels with

(A.2) Sj
(
xj
I ;u

j
)
− wj

0 + pI · (xj
I −wj

I) = tj

for all agents j. As uj ≥ uj
min and Sj

(
xj
I ; ·
)

is increasing for each agent j, it follows from
Equation (A.2) and the definition of Kj that

tj = Sj
(
xj
I ;u

j
)
− wj

0 + pI · (xj
I −wj

I)

≥ Sj
(
xj
I ;u

j
min

)
− wj

0 + pI · (xj
I −wj

I)

≥ pI · (xj
I −wj

I)−Kj(A.3)

for all agents j.
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Next, we claim that tj ≤ 0 for all agents j. If tj > 0, then Equation (A.1) would imply
that uj = uj

min. But as t ∈ T (u), it would follow that

tj ≤ Sj
(
wj

I ;u
j
min

)
− wj

0 + pI · (wj
I −wj

I) = Sj
(
wj

I ;u
j
min

)
− wj

0 = 0,

where the last equality holds due to the definitions of Sj and uj
min, so we must have that

tj ≤ 0 for all agents j.
As (xj

I)j∈J is the allocation of goods in a competitive equilibrium, we have that∑
j∈J x

j
I = yI =

∑
j∈J w

j
I and hence that∑

j∈J

pI · (xj
I −wj

I) = 0 ≥
∑
j∈J

tj,

where the inequality holds because tj ≤ 0 for all agents j. It follows that for all agents j,
we have that

tj − pI · (xj
I −wj

I) ≤
∑

k∈J∖{j}

(pI · (xk
I −wk

I )− tk) ≤
∑

k∈J∖{j}

Kk ≤
∑
k∈J

Kk < K,

where the second inequality follows from Equation (A.3), the third inequality holds be-
cause Kj ≥ 0, and the fourth inequality holds due to the definition of K. Hence, by
Equation (A.2), we have that

Sj
(
xj
I ;u

j
)
= wj

0 + tj − pI · (xj
I −wj

I) < wj
0 +K

for all agents j. Since utility is strictly increasing in the consumption of money, it follows
that

uj = U j
(
Sj
(
xj
I ;u

j
)
,xj

I

)
< U j

(
wj

0 +K,xj
I

)
≤ uj

max,

where the equality holds due to the definition of Sj and the second inequality holds due
to the definition of uj

max. Equation (A.1) then implies that tj ≥ 0 for all agents j, so we
must have that tj = 0 for all agents j. □

By Claim A.6, there exists a profile u = (uj)j∈J of utility levels and a competitive
equilibrium (pI , (x

j
I)j∈j) in the corresponding Hicksian economy with

(A.4) wj
0 = Sj

(
xj
I ;u

j
)
+ pI · (xj

I −wj
I)

for all agents j. Lemma 1 implies that xj
I ∈ Dj

H (pI ;u
j) for all agents j, and we have that

U j
(
wj

0 − pI · (xj
I −wj

I),x
j
I

)
= uj for all agents j by Equation (A.4) and the definition

of Sj. It follows from Fact 1 that xj
I ∈ Dj

M (pI ,w
j) for all agents j, so the price vector

pI and the allocation (xj
I)j∈J of goods comprise a competitive equilibrium in the original

economy for the endowment allocation (wj)j∈J .

Appendix B. Proof of Proposition 1

We actually prove a stronger statement.
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Claim B.1. Suppose that agent j demands at most one unit of each good and let wI ∈ Xj
I .

A utility function U j is a net substitutes utility function if for all money endowments
w0 > xj

0, price vectors pI , and 0 < µ < λ, whenever

(i) Dj
M (pI ,w) = {xI},

(ii) Dj
M (pI + λei,w) = {x′

I},
(iii) {xI ,x

′
I} ⊆ Dj

M (pI + µei,w), and
(iv) x′

i < xi,

we have that x′
k ≥ xk for all goods k ̸= i.

To complete the proof of the proposition from Claim B.1, we work in the setting of
Claim B.1. Note that, for the endowment wI of goods, U j is a gross substitutes utility
function when x′

k ≥ xk holds for all goods k ̸= i under Conditions (i) and (ii). This
property clearly implies that x′

k ≥ xk holds for all goods k ̸= i under Conditions (i), (ii),
(iii), and (iv), and hence that U j is net substitutes utility function by Claim B.1. The
proposition therefore follows from Claim B.1.

It remains to prove Claim B.1. In the argument, we use the following characterization
of substitutes valuations.

Fact B.2 (Theorems 2.1 and 2.4 in Fujishige and Yang, 2003; Theorems 3.9 and 4.10(iii)
in Shioura and Tamura, 2015). Suppose that agent j demands at most one unit of each
good. A valuation V j is a substitutes valuation if and only if for all price vectors pI with
|Dj (pI) | = 2, writing Dj (pI) = {xI ,x

′
I}, the difference x′

I − xI is a vector with at most
one positive component and at most one negative component.

Proof of Claim B.1. We prove the contrapositive. Suppose that U j is not a net substi-
tutes utility function. We show that there exists a money endowment w0, a price vector
pI , price increments 0 < µ < λ, and goods i ̸= k such that Conditions (i), (ii), (iii), and
(iv) from the statement hold but x′

k < xk.

By Remark 1, there exists a utility level u such that V j
H (·;u) is not a substitutes

valuation. Hence, by Lemma 1 and the “if” direction of Fact B.2 for V j = V j
H (·;u), there

exists a price vector p̂I such that |Dj
H (p̂I ;u) | = 2, and writing Dj

H (p̂I ;u) = {xI ,x
′
I},

the difference x′
I − xI has at least two positive components or at least two negative

components. Without loss of generality, we can assume that the difference x′
I −xI has at

least two negative components. Suppose that x′
i < xi (so Condition (iv) holds) and that

x′
k < xk, where i, k ∈ I are distinct goods.
Define a money endowment w0 by

w0 = Sj (xI ;u) + p̂I · (xI −wI) = Sj (x′
I ;u) + p̂I · (x′

I −wI);

Fact 1 implies that Dj
M (p̂I ,w) = {xI ,x

′
I}. Let µ be such that

Dj
M

(
p̂I − µei,w

)
, Dj

M

(
p̂I + µei,w

)
⊆ {xI ,x

′
I};
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such a µ exists due to the upper hemicontinuity of Dj
M. Let pI = p̂I − µei, let λ = 2µ,

and let p′
I = pI + λei = p̂I + µei.

By construction, we have that {xI ,x
′
I} ⊆ Dj

M (pI + µei,w) = Dj
M (p̂I ,w), so Condition

(iii) holds. It remains to show that Dj
M (pI ,w) = {xI} and that Dj

M (p′
I ,w) = {x′

I}. As
j demands at most one unit of each good, we must have that xi = 1 and that x′

i = 0. We
divide into cases based on the value of wi to show that

(B.1)
U j (w0 − pI · (xI −wI),xI) > U j (w0 − pI · (x′

I −wI),x
′
I)

U j (w0 − p′
I · (x′

I −wI),x
′
I) > U j (w0 − p′

I · (xI −wI),xI) .

Case 1: wi = 0. In this case, we have that

U j (w0 − pI · (xI −wI),xI) > U j (w0 − p̂I · (xI −wI),xI)

= U j (w0 − p̂I · (x′
I −wI),x

′
I)

= U j (w0 − pI · (x′
I −wI),x

′
I) ,

where the inequality holds because pi < p̂i and xi > wi, the first equality holds because
{xI ,x

′
I} ⊆ Dj

M (p̂I ,wI) , and the second equality holds because x′
i = wi. Similarly, we

have that

U j (w0 − p′
I · (xI −wI),xI) < U j (w0 − p̂I · (xI −wI),xI)

= U j (w0 − p̂I · (x′
I −wI),x

′
I)

= U j (w0 − p′
I · (x′

I −wI),x
′
I) ,

where the inequality holds because p′i > p̂i and xi > wi, the first equality holds because
{xI ,x

′
I} ⊆ Dj

M (p̂I ,wI) , and the second equality holds because x′
i = wi.

Case 2: wi = 1. In this case, we have that

U j (w0 − pI · (x′
I −wI),x

′
I) < U j (w0 − p̂I · (x′

I −wI),x
′
I)

= U j (w0 − p̂I · (xI −wI),xI)

= U j (w0 − pI · (xI −wI),xI)

where the inequality holds because pi < p̂i and x′
i < wi, the first equality holds because

{xI ,x
′
I} ⊆ Dj

M (p̂I ,wI) , and the second equality holds because xi = wi. Similarly, we
have that

U j (w0 − p′
I · (x′

I −wI),x
′
I) > U j (w0 − p̂I · (x′

I −wI),x
′
I)

= U j (w0 − p̂I · (xI −wI),xI)

= U j (w0 − p′
I · (xI −wI),xI) ,

where the inequality holds because p′i > p̂i and x′
i < wi, the first equality holds because

{xI ,x
′
I} ⊆ Dj

M (p̂I ,wI) , and the second equality holds because xi = wi.

As wI ∈ Xj
I ⊆ {0, 1}I , the cases exhaust all possibilities. Hence, we have proven that

Equation (B.1) must hold. As Dj
M (pI ,w) , Dj

M (p′
I ,w) ⊆ {xI ,x

′
I}, we must have that
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Dj
M (pI ,w) = {xI} and that Dj

M (p′
I ,w) = {x′

I}—so Conditions (i) and (ii) hold, as
desired. □
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Appendix C. Proofs of Facts 1 and 2

C.1. Proof of Fact 1. We begin by proving two technical claims.

Claim C.1. Let w ∈ Xj be an endowment and let u be a utility level. If

(C.1) u = max
x∈Xj |p·x≤p·w

U j (x) ,

then we have that
p ·w = min

x∈Xj |Uj(x)≥u
p · x

and that Dj
M (pI ,w) ⊆ Dj

H (pI ;u).

Proof. Letting x′
I ∈ Dj

M (pI ,w) be arbitrary and x′
0 = w0 − pI · (x′

I −wI), we have that
U j (x′) = u and that p · x′ ≤ p ·w by construction. It follows that

p ·w ≥ min
x∈Xj |Uj(x)≥u

p · x.

Suppose for the sake of deriving a contradiction that there exists x′′ ∈ Xj with p · x′′ <

p · w and U j (x′′) ≥ u. Then, we have that x′′
0 < w0 + pI · (x′′

I − wI); write x′′′
0 =

w0 + pI · (x′′
I −wI), so x′′′

0 > x′′
0. Since U j is strictly increasing in consumption of money,

it follows that U j (x′′′
0 ,x

′′
I ) > u—contradicting Equation (C.1) as x′′′

0 + pI · x′′
I = p · w.

Hence, we can conclude that

p ·w = min
x∈Xj |Uj(x)≥u

p · x.

Since U j (x′) = u and p · x′ = p · w, it follows that x′
I ∈ Dj

H (pI ;u). Since x′
I ∈

Dj
M (pI ,w) was arbitrary, we can conclude that Dj

M (pI ,w) ⊆ Dj
H (pI ;u). □

Claim C.2. Let w ∈ Xj be an endowment and let u be a utility level. If

(C.2) p ·w = min
x∈Xj |Uj(x)≥u

p · x,

then we have that
u = max

x∈Xj |p·x≤p·w
U j (x)

and that Dj
H (pI ;u) ⊆ Dj

M (pI ,w).

Proof. Let x′
I ∈ Dj

H (pI ;u) be arbitrary and x′
0 = Sj (x′

I ;u). We have that U j (x′) ≥ u

and that p · x′ = p ·w by construction. It follows that

u ≤ max
x∈Xj |p·x≤p·w

U j (x) .

We next show that
u = max

x∈Xj |p·x≤p·w
U j (x) .

Suppose for sake of deriving a contradiction that there exists x′′ ∈ Xj with p · x′′ ≤
p · w and U j (x′′) > u. By definition of Sj, we know that x′′

0 > Sj (x′′
I ;u). Letting
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x′′′
0 = Sj (x′′

I ;u), we have that x′′′
0 + pI · x′′

I < p ·w, which contradicts Equation (C.2) as
U j (x′′′

0 ,x
′′
I ) = u. Hence, we can conclude that

u = max
x∈Xj |p·x≤p·w

U j (x) .

Since U j (x′
I) = u and p · x′

I = p · w, it follows that x′
I ∈ Dj

M (pI ,w). Since x′
I ∈

Dj
H (pI ;u) was arbitrary, we can conclude that Dj

H (pI ;u) ⊆ Dj
M (pI ,w). □

Let w ∈ Xj be an endowment and let u be a utility level. By Claims C.1 and C.2,
Conditions (C.1) and (C.2), are equivalent, and under these equivalent conditions, we
have that Dj

M (pI ,w) ⊆ Dj
H (pI ;u) and that Dj

H (pI ;u) ⊆ Dj
M (pI ,w). Hence, we must

have that Dj
M (pI ,w) = Dj

H (pI ;u) under the equivalent Conditions (C.1) and (C.2)—as
desired.

C.2. Proof of Fact 2. We prove the “if” and “only if” directions separately.

Proof of the “If” Direction. We define a utility function U j implicitly by

U j (x) = F (xI , ·)−1(−x0),

which is well-defined, continuous, and strictly increasing in x0 by the Inverse Function
Theorem because F (xI , ·) is continuous, strictly decreasing, and satisfies Condition (4).
Condition (1) holds because F is defined over the entirety of Xj

I × (uj, uj).

Proof of the “Only If” Direction. We define F : Xj
I × (uj, uj) → (−∞,−xj

0) implicitly by

F (xI , u) = −U j (·,xI)
−1 (x0),

which is well-defined, continuous, and strictly decreasing in u by the Inverse Function
Theorem because U j (·,xI) is continuous, strictly increasing, and satisfies Condition (1).
Condition (4) holds because U j is defined over the entirety of Xj.

Appendix D. Proofs of the Maximal Domain and Necessity Results for
Settings with Transferable Utility

In this appendix, we supply proofs of Facts 4 and 6, as well as the “only if” direction
of Fact 5. Utility is transferable throughout this appendix.

We use the concept of a pseudo-equilibrium price vector.

Definition D.1 (Milgrom and Strulovici, 2009). Suppose that utility is transferable. A
pseudo-equilibrium price vector is a price vector pI such that

yI ∈ Conv

(∑
j∈J

Dj(pI)

)
.

There is a connection between pseudo-equilibrium price vectors, competitive equilibria,
and the existence problem.
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Fact D.2 (Theorem 18 in Milgrom and Strulovici, 2009; Lemma 2.19 in Baldwin and
Klemperer, 2019). If utility is transferable and the total endowment is such that a com-
petitive equilibrium exists, then, for each pseudo-equilibrium price vector pI , there exists
an allocation (xj

I)j∈J such that pI and (xj
I)j∈J comprise a competitive equilibrium.

The nonexistence of competitive equilibria may therefore be demonstrated by using
the contrapositive of Fact D.2.

Our arguments use valuations that are linear on their domain. That is, let tI ∈ RI ,
let Xj

I ⊆ Zn be finite, and let V j = V j,tI :Xj
I → R be given by V j,tI (xI) = tI · xI for

all xI ∈ Xj
I . Recalling Equation (3) for demand sets in the quasilinear case, we observe

that, for each sI ∈ RI , we have that

(D.1) Dj(tI − sI) = argmax
xI∈Xj

I

(tI · xI − (tI − sI) · xI) = argmax
xI∈Xj

I

sI · xI .

Lemma D.3. If Conv(Xj
I ) ∩ ZI = Xj

I , then V j,tI is concave for all tI ∈ RI .

Proof. Observe by Equation (D.1) that Dj(tI) = argmaxxI∈Xj
I
0 · xI = Xj

I . So, if xI ∈
Conv(Xj

I ) ∩ ZI = Xj
I then xI ∈ Dj(tI). By Definition 7, we know V j,tI is concave. □

We will also make use of an alternative characterization of concavity.

Fact D.4 (Lemma 2.11 in Baldwin and Klemperer, 2019). A valuation V j is concave if
and only if Conv (Dj (pI)) ∩ ZI = Dj (pI) for all price vectors pI .

D.1. Additional Facts regarding Unimodularity and Demand Types. The fol-
lowing results are especially useful in the proof of the “only if” direction of Fact 5, and
the proof of Fact 6.

We seek to construct pseudo-equilibrium price vectors (the total endowment is in the
convex hull of aggregate demand) that are not competitive equilibrium price vectors (the
total endowment is not demanded on aggregate). Failure of unimodularity allows such
constructions because of the following property.

Fact D.5 (See, e.g., Fact 4.9 in Baldwin and Klemperer (2019)). A demand type vector
set D is unimodular if and only if there is no linearly independent subset {d1, . . . ,dr} of
D such that there exists z =

∑r
ℓ=1 αℓd

ℓ ∈ ZI with αℓ ∈ (0, 1) for ℓ = 1, . . . , r.

To see the connection to Fact D.2 and to existence of competitive equilibrium, suppose
that {d1, . . . ,dr} and z are as in Fact D.5. If yI = z and if Dj

M(pI ,w
j) = {0,dj} for

j = 1, . . . , r, then pI is a pseudo-equilibrium price vector but there is no competitive
equilibrium at pI .

Baldwin and Klemperer (2019) generalized Fact B.2 to the general case of transferable
utility.

Fact D.6 (Proposition 2.20 in Baldwin and Klemperer, 2019). Let V j be a valuation of
demand type D. For any price p′

I , if Conv(Dj (p′
I)) has an edge E, then the difference
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between the extreme points of E is proportional to a demand type vector, and there exists
a price pI such that Conv(Dj (pI)) = E.

Moreover if d is in the minimal demand type vector set D, such that V j is of demand
type D, then there exists a price vector pI such that Conv(Dj (pI)) is a line segment, the
difference between whose endpoints is proportional to d.

We also demonstrate now the following useful corollary of Fact D.6.

Corollary D.7. Let V j = V j,tI for some tI ∈ RI , and let D be the minimal demand type
vector set such that V j is of demand type D. Then D consists of the primitive integer
vectors in the directions of the edges of the polytope Conv(Xj

I ).

Proof. Observe that Dj(tI) = Xj
I and so, by Fact D.6, each edge of Conv(Xj

I ) is pro-
portional to a vector in D. Conversely, if d ∈ D then, by Fact D.6, there exists a
price pI such that Conv(Dj(pI)) is a line segment, the difference between whose end-
points is proportional to d. But writing sI = tI − pI , we see from Equation (D.1) that
Dj(pI) = argmaxxI∈Xj

I
sI · xI which tells us (cf. e.g. Grünbaum 1967, Section 2.4) that

E is an edge of Conv(Xj
I ). □

Our proofs of Facts 4 and 6, and the “only if” direction of Fact 5, now follow the same
structure. Within each argument, we address a demand type which is not unimodular.
Observe by Fact D.5 that when unimodularity fails for a set of vectors D, then there exist
polytopes, with integer vertices and whose edge directions are in D, that contain a non-
vertex integer vector, z. We use Corollary D.7 construct valuations of the appropriate
demand type such that, at some price pI , the convex hull of the aggregate demand set
is a polytope with these properties; and such that there exists a feasible endowment
allocation is the total endowment is the non-vertex integer vector z. Thus pI is a pseudo-
equilibrium price. Moreover, we design our individual valuations so that pI is not a
competitive equilibrium. The contrapositive of Fact D.2 can then be applied to show the
non-existence of competitive equilibrium.

D.2. Proof of Fact 4. By Fact B.2, there exists a price vector pI such that Dj (pI) =

{x′
I ,x

′
I + g}, where g has at least two positive components or at least two negative

components. Identify I with {1, . . . , |I|} and without loss of generality assume that
g1, g2 < 0. Because agent j demands at most one unit of each good, we know that
x′
I ,x

′
I + g ∈ {0, 1}|I| and so g ∈ {−1, 0, 1}|I|. We conclude both that g1 = g2 = −1 and

that x′
1 = x′

2 = 1.
Let k ∈ J ∖ {j} be arbitrary. For agents j′ ∈ J ∖ {j, k}, let Xj′

I = {0}, let V j′ be
arbitrary, and let wj′

I = 0.
Let Xk

I = {xI ∈ {0, 1}|I|
∣∣ x1 + x2 ≤ 1} and let tI = pI − e1 − e2. Let V k = V k,tI ,

which is a substitutes valuation by Example 11 and Corollary D.2, because each edge of
Conv(Xk

I ) is proportional to either e1 − e2 or to eℓ for some ℓ ∈ I; or, alternatively, by
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Theorem 4 in Hatfield et al. (2019) because, like Shapley’s (1962) assignment valuations,
it is the supremal convolution of |I| − 1 unit-demand valuations.

Set wj
I = x′

I ∈ Xj
I and set wk

I = yI − x′
I . Since x′

I ∈ {0, 1}|I| it follows that wk
I ∈

{0, 1}|I|, and moreover since x′
1 = x′

2 = 1 we know wk
1 = wk

2 = 0; thus wk
I ∈ Xk

I . Now
(wj′

I )j′∈J is clearly an endowment allocation.
By Equation (D.1) we know that

Dk(pI) = argmax
xI∈Xk

I

(e1 + e2) · xI = {xI ∈ {0, 1}|I||x1 + x2 = 1}.

Observing that e2 ∈ Dk(pI) and considering the vectors from e2 to other elements of the
demand set, we can write Dk(pI) as

Dk(pI) = e2 +

α2(e
1 − e2) +

|I|∑
ℓ=3

αℓe
ℓ

∣∣∣∣∣∣ αℓ ∈ {0, 1} for 2 ≤ ℓ ≤ |I|

 .

Combining this with agent j, and recalling other agents’ demand sets are identically zero,
we conclude that∑
j′∈J

Dj′(pI) = x′
I + e2 +

α1g + α2(e
1 − e2) +

|I|∑
ℓ=3

αℓe
ℓ

∣∣∣∣∣∣ αℓ ∈ {0, 1} for 1 ≤ ℓ ≤ |I|

 .

The convex hull of this set can be expressed very similarly, but the weights αℓ are allowed
to lie in [0, 1].

Since x′
I ,x

′
I + g ∈ {0, 1}|I|, we have that if gi = 1 (resp. gi = −1), then x′

i = 0

(resp. x′
i = 1). Taking

αℓ =


|gℓ|
2

if gℓ ̸= 0

1− x′
ℓ if gℓ = 0

for 1 ≤ ℓ ≤ |I|, we have that

x′
i + α1gi + αi = 1− 1

2
+

1

2
= 1 for all i ∈ I with gi = −1

x′
i + α1gi + αi = x′

i + 0 + (1− x′
i) = 1 for all i ∈ I with gi = 0

x′
i + α1gi + αi = 0 +

1

2
+

1

2
= 1 for all i ∈ I with gi = 1.

As x′
1 = x′

2 = 1 and g1 = g2 = −1, it follows that

x′
I + e2 + α1g + α2(e

1 − e2) +

|I|∑
ℓ=3

αℓe
ℓ = yI .

As αℓ ∈ [0, 1] for all 1 ≤ ℓ ≤ |I|, we therefore have that yI ∈ Conv
(∑

j′∈J D
j′(pI)

)
,

so pI is a pseudo-equilibrium price vector. But as α1 ∈ (0, 1) and the vectors g, e1 −
e2, e3, . . . , e|I| are linearly independent, we have that yI /∈

∑
j′∈J D

j′(pI), so there is
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no competitive equilibrium at pI .48 Therefore, by the contrapositive of Fact D.2, no
competitive equilibrium can exist.

D.3. Proof of the “Only If” Direction of Fact 5. Let D be a demand type vector
set that is not unimodular. We need to show that there exists a finite set J of agents
with concave valuations of demand type D, as well as a total endowment, for which there
exists an endowment allocation but no competitive equilibrium. We will use J = {j, k}.

Let L = {d1, . . . ,dn} ⊆ D be a minimal non-unimodular subset. By construction, L
is linearly independent, and {d1, . . . ,dn−1} is unimodular. Let

P =

{
n∑

ℓ=1

αℓd
ℓ

∣∣∣∣∣ 0 ≤ αℓ ≤ 1 for ℓ = 1, . . . , n

}
denote the parallelepiped spanned by L. By Fact D.5, there exists z =

∑n
ℓ=1 βℓd

ℓ ∈ P∩ZI

with βℓ ∈ (0, 1) for all ℓ = 1, . . . , n.
Let Xj

I = P ∩Zn and let V j = V j,0 be the linear valuation which is identically zero on
its domain. Recall Equation (D.1): we know Dj(0) = Xj

I . Observe that z ∈ Xj
I . Clearly

Conv(Xj
I ) ∩ ZI = Xj

I and so V j is concave by Lemma D.3.
Let sI satisfy sI · dℓ = 0 for ℓ = 1, . . . , n− 1 and sI · dn > 0. (Such an sI exists as L is

linearly independent.) Then, for xI =
∑n

ℓ=1 αℓd
ℓ ∈ Xj

I , we have

sI · xI =
n∑

ℓ=1

αℓsI · dℓ = αnsI · dn.

We assumed that sI · dn > 0, so sI · xI is minimized when αn = 0; equivalently −sI · xI

is maximized when αn = 0. So, by Equation (D.1), we know that

Dj(sI) = argmax
xI∈Xj

I

−sI · xI =

{
n−1∑
ℓ=1

αℓd
ℓ

∣∣∣∣∣ 0 ≤ αℓ ≤ 1 for ℓ = 1, . . . , n− 1

}
∩ ZI .

Now set Xk
I = {0,dn} and let V k = V k,sI . By Equation (D.1) again, we know that

Dk(sI) = Xk
I . As dn ∈ D, which is a demand type vector set, we know that dn is a

primitive integer vector, from which it follows that Conv(Xk
I ) ∩ ZI = Xk

I . Thus, by
Lemma D.3, we know that V k is concave.

Observe that

Dj(sI) +Dk(sI) =

{
n∑

ℓ=1

αℓd
ℓ

∣∣∣∣∣ 0 ≤ αℓ ≤ 1 for ℓ = 1, . . . , n− 1 and αn ∈ {0, 1}

}
∩ ZI .

So Conv(Dj(sI) +Dk(sI)) = P .
Let the total endowment yI be z. Set wj

I = z ∈ Xj
I , and set wk

I = 0 ∈ Xk
I . This

is clearly an endowment allocation. Since yI ∈ P = Conv(Dj(sI) + Dk(sI)), we see
sI is a pseudo-equilibrium price vector. But, since L is linearly independent and since

48The existence of an integer vector that is in Conv
(∑

j′∈J Dj′(pI)
)

but not
∑

j′∈J Dj′(pI) follows
from Fact D.5 as the vectors g, e1 − e2, e3, . . . , e|I| do not comprise a unimodular set.
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0 < βn < 1, we know yI /∈ Dj(sI) +Dk(sI), so there is no competitive equilibrium at sI .
It follows, by the contrapositive of Fact D.2, that no competitive equilibrium can exist.

D.4. Proof of Fact 6. We will use the following claim.

Claim D.8. If D is a maximal unimodular demand type vector set then D spans RI .

Proof. Let L ⊆ D be a maximal, linearly independent set. As D is unimodular, there
exists a set T of integer vectors such that L ∩ T = ∅ and L ∪ T is a basis of RI

with determinant ±1. We claim that D0 = D ∪ T ∪ −T is unimodular. To see why, let
L′ ⊆ D∪T ∪−T be a maximal linearly independent set. As D0 spans RI by construction,
L′ must span RI . Due to the maximality of L, we must have that |L′ ∩ (T ∪−T )| = |T |.
It follows that L′ ∩ D is a basis for the span of D. As D is unimodular, L′ ∩ D must be
the image of L under a unimodular change of basis of the span of D. It follows that L′ is
a basis for RI with determinant ±1—so D0 is unimodular. Due to the maximality of D,

we must have that T = ∅, and hence D must span RI . As D is unimodular, it follows
that D must integrally span ZI . □

We next divide into cases based on whether V j is non-concave and of demand type
D, or not of demand type D, to construct concave valuations V k of demand type D for
agents k ̸= j and a total endowment for which no competitive equilibrium exists.

Case 1: V j is not concave but is of demand type D. By Fact D.4, there exists a price
vector pI such that Dj (pI) ̸= Conv (Dj (pI)) ∩ ZI . Let x′

I ∈ Dj (pI) be an extreme
point of Conv (Dj (pI)), so there exists sI ∈ Rn satisfying

(D.2) {x′
I} = argmax

yI∈Dj(pI)

sI · yI .

Let x′′
I ∈

(
Conv (Dj (pI)) ∩ ZI

)
∖Dj (pI) be arbitrary.

Let k ∈ J ∖ {j} be arbitrary. Let Xk
I = (Conv(Dj(pI))∩ZI) + {−x′

I}. Since V j is
of demand type D, it follows by Fact D.6 that every edge of Conv(Dj(pI)) is a multiple
of a vector in D, and so the same is true of Conv(Xk

I ). Moreover, by definition of Xk
I

it is clear that Conv(Xk
I ) ∩ ZI = Xk

I .
Fix tI = pI+sI and let V k = V tI ,k, which is concave by Lemma D.3 and of demand

type D by Corollary D.7. By Equation (D.1) we know Dk(pI) = argmaxxI∈Xk
I
sI · xI ,

and so by Equation (D.2) and the definition of Xk
I , it follows that Dk(pI) = {x′

I−x′
I} =

{0}.
Let the total endowment yI be x′′

I , let wj
I = x′

I ∈ Xj
I , and let wk

I = x′′
I − x′

I ∈ Xk
I .

For agents j′ ∈ J ∖ {j, k}, let Xj′

I = {0}, let V j′ be arbitrary, and let wj′

I = 0. Thus
(wj′

I )j′∈J is an endowment allocation. Moreover,∑
j′∈J

Dj′(pI) = Dj(pI).
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Thus yI = x′′
I ∈ Conv

(∑
j′∈J D

j′(pI)
)

and so pI is a pseudo-equilibrium price vector.
But yI = x′′

I /∈
∑

j′∈J D
j′(pI) = Dj(pI) by definition of x′′

I , and so there is no compet-
itive equilibrium at pI . Therefore, by the contrapositive of Fact D.2, no competitive
equilibrium can exist.

Case 2: V j is not of demand type D. By Fact D.6 there exists a primitive integer
vector g /∈ D and a price vector pI ∈ Rn such that Dj(pI) ⊆ {x′

I +αg | α = 0, . . . , r}
where r ≥ 1 and x′

I ,x
′
I + rg ∈ Dj(pI).

As D is not strictly contained in any unimodular demand type vector set, and as
g /∈ D, the set D ∪ {g} is not unimodular. Let {d1, . . . ,dm,g} be a minimal non-
unimodular subset of D ∪ {g}. Thus the set {d1, . . . ,dm,g} is linearly independent
and, by Fact D.5, there exists

(D.3) z = β0g +
m∑
ℓ=1

βℓd
ℓ ∈ ∩ZI with 0 < βℓ < 1 for ℓ = 0, . . . ,m.

By Claim D.8, we know that D spans RI . Since D is also unimodular, by Fact
D.5 there exist dm+1, . . . ,dn ∈ D for some n ≥ m such that d1, . . . ,dn are linearly
independent and

z =
n∑

ℓ=1

γℓd
ℓ with γℓ ∈ Z for all ℓ = 1, . . . , n.

Moreover, by replacing dm+1, . . . ,dn with their negations if necessary, we can assume
that γm+1, . . . , γn ≥ 0.

Let k ∈ J ∖ {j} be arbitrary. Let Xk
I = Y k

I + Zk
I , where

Y k
I =

{
m∑
ℓ=1

αℓd
ℓ

∣∣∣∣∣ − |γℓ| ≤ αℓ ≤ |γℓ|+ 1 for ℓ = 1, . . . ,m

}
∩ ZI

Zk
I =

{
n∑

ℓ=m+1

αℓd
ℓ

∣∣∣∣∣ 0 ≤ αℓ ≤ γℓ for ℓ = m+ 1, . . . , n

}
∩ ZI .

Observe that z ∈ Xk
I . Moreover, Conv(Xk

I ) ∩ ZI = Xk
I , as we may see by writing

Xk
I = {

∑n
ℓ=1 αℓd

ℓ|cℓ ≤ αℓ ≤ dl for ℓ = 1, . . . , n} ∩ ZI for suitably chosen cℓ and dℓ.
Choose sI such that sI ·dℓ = 0 for ℓ = 1, . . . ,m and sI ·dℓ < 0 for ℓ = m+1, . . . , n.

(Such an sI exists because d1, . . . ,dn are linearly independent.) Set tI = pI + sI and
set V k = V k,tI . Then V k is concave by Lemma D.3. By Equation (D.1) and the
definition of Xk

I , we deduce that

Dk(pI) = argmax
xI∈Xk

I

sI · xI = Y k
I .

Moreover, the edges of Xk
I are parallel to d1, . . . ,dn and so by Corollary D.7, the

valuation V k is of demand type D.
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For agents j′ ∈ J ∖ {j, k}, let Xj′

I = {0}, let V j′ be arbitrary, and let wj′

I = 0. Let
the total endowment yI be x′

I + z. Set wj
I = x′

I ∈ Xj
I and wk

I = z ∈ Xk
I , so (wj′

I )j′∈J

is an endowment allocation.
Now see that

(D.4)
∑
j′∈J

Dj(pI) ⊆ {x′
I + αg | α = 0, . . . , r}+ Y k

I

while, since x′
I + rg ∈ Dj(pI), we have the equality

Conv

(∑
j′∈J

Dj(pI)

)
= {x′

I + αg | 0 ≤ α ≤ r}+ Conv(Y k
I )

Recalling Equation (D.3), we conclude that yI = x′
I + z ∈ Conv

(∑
j′∈J D

j(pI)
)

, so
pI is a pseudo-equilibrium price vector. But, since 0 < β0 < 1 in Equation (D.3)
and since the set {d1, . . . ,dm,g} is linearly independent, we conclude from Equation
(D.4) that yI = x′

I + z /∈
∑

j′∈J D
j(pI), so there is no competitive equilibrium at pI .

Therefore, by the contrapositive of Fact D.2, no competitive equilibrium can exist.
As the cases exhaust all possibilities, we have proven the fact.
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