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Abstract

Least Trimmed Squares (LTS) regression is known to be robust to ‘outliers’
and in particular to bad leverage points. However, the current asymptotic theory
for LTS is of limited use as its assumptions rule out leverage and the asymptotic
distribution depends on the unknown contamination. We use a new model, where
‘outlier’ errors are extreme relative to the ‘good’ errors and where leverage effects
are possible. We show that in this model the LTS estimator has an asymptotic dis-
tribution that is free of nuisance parameters. Thus, with the new model standard
inference procedures apply while allowing a broad range of contamination.

1 Introduction

Least squares procedures are known to be highly sensitive to atypical observations.
It is particularly so in the presence of leverage points, which attract the regression
line towards them. In fact, leverage points can also affect other popular estimation
procedures such as quantile regression (He et al., 1990). The influence of the leverage
points can be bounded by using robust regression estimators such as the least trimmed
of squares (LTS) estimator (Rousseeuw, 1984). However, a discussion of the asymptotic
properties of such robust estimators in the presence of leverage points is largely absent in
the literature. We derive asymptotic inference for LTS that is free of nuisance parameters
and allows leverage, heteroscedasticity and temporal dependence.

Figure 1 illustrates the leverage effect for the ordinary least squares (OLS) and least
absolute deviations (LAD) estimators. The data, from Rousseeuw and Leroy (1987),
records log light intensity against log temperatures for n = 47 stars in a Hertzsprung-
Russell diagram. The stars marked with bullet points are known as the main sequence
while the four stars in the top right corner are red giants. The OLS and LAD regression
lines are attracted by the giants. In contrast, the LTS line goes through the main
sequence. The largest OLS or LAD residuals are associated with observations in the
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Figure 1: Leverage points. OLS, LAD, and LTS

main sequence rather than the giants. Thus, the data-analytic strategy of first estimating
by OLS, removing observations with large residuals, and then re-estimating by OLS may
not reveal that the giants are unusual (Welsh and Ronchetti, 2002).

While there are a number of approaches in the literature to deal with the presence
of ‘outliers’, we will focus on the LTS estimator, which is commonly used. For instance,
the MM estimator (Yohai, 1987) and the Forward Search algorithm (Atkinson et al.,
2010) are often initialized by LTS. Variants include sparse LTS regression (Alfons et al.,
2013) and a fraud detection algorithm (Rousseeuw et al., 2019). The LTS estimator is
known to be very robust to leverage points with a high breakdown point (Rousseeuw
and Leroy, 1987, Section 3.4). That is, the estimator remains bounded if, for a given
sample, we distort nearly half of the observations in an arbitrary way.

The LTS estimator is computed as follows. The user specifies that a sample with n
observations has h ‘good’ observations and n − h ‘outliers’. The LTS estimator is the
least squares estimator for the h sub-sample with the smallest residual sum of squares.
In a location-scale model this search is of linear order, while in regression it is of binomial
order, hence, making analysis harder in the regression context both from computational
and theoretical viewpoints.

Figure 1 includes the LTS regression line for h = 43. LTS finds, precisely, the four
giants as ‘outliers’. In contrast to OLS and LAD, the LTS line passes through the main
sequence. In this example, with only two variables and four clear leverage points, the
leverage points can be detected, or at least suspected, by graphical methods. However,
in higher dimensions or with less evident atypical observations, LTS can be of great use
in identifying ‘outliers’ and robustly estimating the regression line.

Our concern is how to conduct inference. The traditional statistical model in robust
statistics is that of ε-contamination. In a regression context, the regression errors are
assumed independent of the regressors and to be independent draws from a common
ε-contaminated distribution, which mixes a normal distribution with a contamination
distribution as popularized by Huber (1964). Such a model, with its independence
of regression errors and regressors, cannot generate bad leverage points. Rather, bad
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leverage arises when ‘outliers’ are concentrated in a single point just as in Figure 1 where
the giants essentially have a common regressor and large deviation from the LTS line.

The LTS estimator has been analyzed under ε-contamination assumptions by But-
ler (1982) for the location-scale case and by Rousseeuw (1985), Croux and Rousseeuw
(1992), Č́ıžek (2005), Vı́̌sek (2006), Johansen and Nielsen (2016) and Zuo (2022) for the
regression case. Although normal, the asymptotic distribution depends on the contam-
ination. This leaves the user with a serious nuisance parameter problem. Interestingly,
the OLS procedure delivers consistent, efficient and nuisance parameter free inference
for the slope estimators in the ε-contamination model. Finally, as a technical point,
the current asymptotic theory for LTS assumes a compact parameter space, which goes
against the tenet in robust statistics of seeking protection against arbitrary influence
from ‘outliers’. For later reference, we term this approach as standard LTS, or in short
SLTS.

Our analysis departs from this traditional approach and takes its starting point in the
LTS model of Berenguer-Rico et al. (2023). The LTS model can generate a wide range
of ‘outliers’ and in particular bad leverage points as those in Figure 1. The figure depicts
data falling in two groups. The data closest to the LTS line appear to have a normal
variation around that line. In contrast, the giant stars in the top right not only have a
common regressor value, but their distance to the LTS line is also rather extreme relative
to the more normal looking data closest to the LTS line. Thus, we need a model where
the ‘outlier’ errors have regressor dependence and an extreme distributional behaviour.
This cannot be captured by ε-contamination.

The LTS model has h ‘good’ regression errors which are normal and independent
of the regressors, while the n− h ‘outlier’ errors have support outside the range of the
realized ‘good’ errors, but are otherwise unrestricted. The ‘outliers’ are therefore driven
by the tail behaviour of the ‘good’ errors. Bad leverage is now possible. Berenguer-Rico
et al. (2023) show that the LTS estimator maximizes the semi-parametric ε-likelihood
of the LTS model in the sense of Scholz (1980). Moreover, they provide an asymptotic
analysis of the LTS estimator in the location-scale case. Their proof relies on the fact
that the LTS estimator is found by a linear search in the location-scale case and that the
leverage feature is absent. Although informative, the location-scale model is of limited
applicability. An asymptotic theory for the regression case that allows for leverage is
central to the objective of robust statistics and highly relevant for practitioners but
entirely missing in the literature. We present such a theory.

Specifically, we start by showing that the LTS estimator is bounded in probability.
To the best of our knowledge, this result is new in the literature. Boundedness is de-
rived under mild assumptions to the ‘good’ errors and the regressors. The proof adapts
a recent argument for M-estimators with non-convex criterion functions (Johansen and
Nielsen, 2019). The boundedness result resonates with the high breakdown point prop-
erty of the LTS estimator and avoids a compact parameter space assumption.

Next, we show that the proportion of ‘good’ observations is consistently selected and
derive the rate at which this consistent selection occurs. In doing so, we require mild
tail conditions on the ‘good’ errors and the regressors. This allows normal and t errors,
many forms of leverage, heteroscedasticity and non-stationary temporal dependence of
the regressors.
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The final result is an asymptotic expansion of the LTS estimator in terms of the
infeasible OLS estimator for the ‘good’ observations. This oracle result is shown for
both the regression parameters and the scale estimators. In contrast to the traditional
approach to LTS, no nuisance correction and consistency factors are required, under
the present assumptions. The usual asymptotic distribution theory for OLS estimators
then applies under different assumptions to the ‘good’ observations such as i.i.d. or
heteroscedastic structures and stationary or non-stationary time series.

In simulations, we consider OLS, LTS and SLTS inference for various contamined
samples. The simulations confirm the asymptotic theory and the fact that the underlying
model is of primary importance when conducting inferences with the LTS estimator. As
an illustration, we revisit the stars data.

In practice, the user has to choose the number h of ‘good’ observations. Some
estimators are implemented in software, but, again, asymptotic theory is largely absent
in the literature. We hope to return to this in future research.

The asymptotic techniques presented here could be used for other robust regression
estimators. For instance, the Least Trimmed sum of Absolute deviations (LTA) estima-
tor is a robust version of the LAD estimator (Hössjer, 1994) that would be maximum
likelihood in an LTS-type model with Laplace errors.

The paper is organized as follows. Section 2 describes the LTS estimator and the
LTS model. Section 3 contains the asymptotic results: boundedness, consistent selection
and asymptotic expansion. Section 4 gives examples of the wide range of regressors
allowed by the theory. Section 5 illustrates the theory via simulations. Section 6 has
an empirical illustration. Section 7 concludes. Proofs and technical derivations can be
found in Appendices.

2 The LTS estimator and the LTS model

We consider the linear regression for a scalar yi and a vector xin of regressors given by

yi = x′inβ + σεi for i = 1, . . . , n, (2.1)

where xin would usually include an intercept, but it does not have to. With this for-
mulation of the model equation (2.1), all normalizations are built into the regressors
xin so that estimators for β will be n1/2 consistent. For example, xin could be an i.i.d.
regressor, a level shift after a fraction of the sample 0 < τ < 1 so that xin = 1(i≤τn), or a

normalized random walk, xin = n−1/2
∑i

`=1 ψ` with i.i.d. increments ψ`. In the notation
for yi, we suppress the dependence on n noting that in the asymptotic analysis yi is
always replaced by the right hand side of (2.1).

The LTS estimator can be defined as follows (Rousseeuw and van Driessen, 2000).
Let ζ denote an h-subset of (1, . . . , n) with associated least squares estimators

β̂ζ = (
∑
i∈ζ

xinx
′
in)−1

∑
i∈ζ

xinyi and σ̂2
ζ = h−1

∑
i∈ζ

(yi − x′inβ̂ζ)2, (2.2)

where
∑

i∈ζ xinx
′
in is assumed invertible for any ζ. Then, the LTS estimator and the

associated scale estimator are given by

β̂ = β̂ζ̂ and σ̂2 = σ̂2
ζ̂

where ζ̂ = arg min
ζ

σ̂2
ζ . (2.3)
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That is, for a given number of ‘good’ observations h, the LTS estimator finds the h-
subsample with the smallest residual sum of squares. The LTS estimator is maximum
likelihood in the following model (Berenguer-Rico et al., 2023).

Model 1. (The LTS model). Let h ≤ n be given. We condition on the random regressors
x1n, . . . , xnn. Let ζ be a set with h elements from 1, . . . , n.
For i ∈ ζ, let εi be i.i.d. N(0, 1) distributed.
For j 6∈ ζ, let ξj be independent with distribution functions Gj(z) for z ∈ R, where Gj is
continuous at 0, but may depend on xjn. The ‘outlier’ errors are defined, for j 6∈ ζ, by

εj = (max
i∈ζ

εi + ξj)1(ξj>0) + (min
i∈ζ

εi + ξj)1(ξj<0). (2.4)

The parameters are β ∈ Rdimx, σ > 0, ζ which is any h-subset of i = 1, . . . , n and Gj
which are any n− h arbitrary conditional distributions on R, that are continuous at 0.

The LTS Model allows for ‘outliers’ in both the error term and the regressors. In
particular, the ‘outlier’ errors are outside of the realized range of the ‘good’ errors and
are characterized by an un-specified distribution Gj(z). We note that leverage can arise
in the model. The model allows different distributions for the regressors for the good
observations, xin for i ∈ ζ, and for the ‘outlier’ observations, xjn for j 6∈ ζ. Leverage can
therefore arise in this model when the ‘outlier’ regressors are more concentrated than
the ‘good’ regressors and the ‘outlier’ errors εj for j 6∈ ζ all have the same sign. Gallegos
and Ritter (2009) present a related model, albeit without asymptotic analysis.

The asymptotic results in this paper use a series of assumptions that relax the
structure of the LTS Model. Neither normality, i.i.d.ness nor full separation between
‘outliers’ and ‘good’ observations is needed in the asymptotic theory.

3 LTS Asymptotics

We present an asymptotic theory of the LTS estimator with h ‘good’ observations in
the regression model yi = x′inβ + σεi for i = 1, . . . , n and increasing values of h, n. The
unknown parameters of the data generating process are denoted β, σ and ζn. Assump-
tions are given for the marginal distributions of the errors εi and the regressors xin as
we progress. Examples of permitted regressors are discussed in Section 4. We let #ζ
denote the count of elements in the set ζ.

3.1 Boundedness

A boundedness result is presented for the LTS estimator under assumptions to the
second sample moment for the ‘good’ errors and to the frequency of small regressors.

Assumption 3.1. Suppose
(i) Frequency of ‘good’ observations: h/n→ λ where λ > 1/2;
(ii) ‘Good’ errors: h−1

∑
i∈ζn ε

2
i = OP(1).

(iii) Frequency of small regressors: Define

Fnh(a) = max
ζ:#ζ=h

sup
δ:|δ|=1

h−1
∑
i∈ζ

1(|x′inδ|≤a). (3.1)
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Let ξ satisfy 0 < ξ < 2− λ−1 and suppose

lim
(a,n)→(0,∞)

P{Fnh(a) > ξ} = 0, (3.2)

that is ∀ε > 0, ∃(a0, n0) > 0: ∀a ≤ a0, n ≥ n0 then P{Fnh(a) > ξ} < ε.

The first result bounds the difference of the LTS estimator and the infeasible OLS
estimator β̂ζn on the unknown set of ‘good’ observations ζn. The asymptotic theory of

the OLS estimator β̂ζn is of course widely studied. We note that the LTS estimator may
not be unique, so we establish a uniform bound over the setsMn of minimizers ζ of σ̂2

ζ .

Theorem 3.1. Suppose Assumption 3.1. Let Mn denote the set of minimizers ζ of σ̂2
ζ .

Then, maxζ∈Mn |β̂ζ − β̂ζn| = OP(1).

The boundedness result in Theorem 3.1, its condition for the frequency of small
regressors and its proof are inspired by the analysis of M-estimators in Johansen and
Nielsen (2019). Two major differences are that, here, the criterion function has an
explicit structure and we are searching for a set of ‘good’ observations of a known size
h. This results in weaker assumptions to the errors and in a measure of the frequency
of small observations Fnh(a) that reflects the search for the ‘good’ observations. When
h = n, then Fnn(a) is the quantity Fn(a) in Johansen and Nielsen (2019) and it is related
to quantities used for M- and S-estimators (Chen and Wu, 1988; Davies, 1990).

The boundedness of the LTS estimator derived in Theorem 3.1, holds under very
mild assumptions on the good errors and the frequency of small regressors. We note
that no other structure is imposed. In particular, the defining feature of the LTS Model
1 of placing ‘outlier’ errors outside the range of ‘good’ errors is not needed.

Remark 3.1. Assumption 3.1(ii) implies that σ̂ is bounded. Indeed, since σ̂ is a mini-
mizer then σ̂2 ≤ σ̂2

ζn
where σ̂2

ζn
/σ2 ≤ h−1

∑
i∈ζn ε

2
i by the model equation.

Remark 3.2. Assumption 3.1(iii) covers a wide range of regressors including leverage
points – examples are given in Section 4. It implies that Σ̂ζ = h−1

∑
i∈ζ xinx

′
in is positive

definite in large samples for all ζ as required in (2.2).

3.2 Consistent selection of ‘good’ observations

We start by showing that the proportion of wrongly classified observations vanishes.
The convergence rate is improved subsequently. We note that #(ζ ∩ ζn) is the number
of ‘good’ observations in ζ. The numbers of wrongly classified ‘good’ observations and
wrongly classified ‘outliers’ satisfy #(ζc∩ζn) = #(ζ∩ζcn), since h = #(ζc∩ζn)+#(ζ∩ζn)
and h = #(ζ∩ζcn)+#(ζ∩ζn). The proportion of wrong classifications is then #(ζ∩ζcn)/h.
Let ‖m‖ denote the spectral norm of a matrix m.

Assumption 3.2. Let m2
n = min{(mini∈ζn εi)

2, (maxi∈ζn εi)
2}. Suppose

(i) ‘Outlier’ errors: minj 6∈ζn ε
2
j ≥ m2

n{1 + oP(1)}.
(ii) Regressors: ‖

∑n
i=1 xinx

′
in‖ = OP(n).

(iii) Infeasible OLS estimator: β̂ζn = OP(1).

6



Theorem 3.2. Suppose Assumptions 3.1, 3.2. Let Mn denote the set of minimizers ζ
of σ̂2

ζ . Then, maxζ∈Mn #(ζ ∩ ζcn)/h = OP(1/m2
n).

In Assumption 3.2, part (i) is a relaxed version of the defining feature of the LTS
model that ‘outlier’ errors are more extreme than ‘good’ errors. Specifically, it does not
impose complete separation but allows for some overlap between ‘good’ and ‘outlier’
errors. The key feature in this assumptions is that the ‘outlier’ errors are driven by
the extreme ‘good’ errors. Part (ii) is a mild assumption to the regressors but excludes
diverging ‘outliers’ among the regressors. This is consistent with the recommendation of
Rousseeuw (1994) to start an LTS analysis by detecting ‘outliers’ among the regressors.
Part (ii) allows standard regressors, see Section 4.

Theorem 3.2 provides a consistency result whenever m2
n diverges, that is, whenever

the ‘good’ errors have unbounded support. In that case, the Theorem shows that the
proportion of wrong classifications vanishes in that #(ζ ∩ ζcn)/h = OP(1/m2

n) = oP(1).
Since #(ζ ∩ ζn) + #(ζ ∩ ζcn) = h, we also get that the proportion of correctly classified
‘good’ observations goes to unity, that is #(ζ ∩ ζn)/h = 1 + oP(1).

3.3 Improving the rate of consistency

Theorem 3.2 gave conditions under which #(ζ ∩ ζcn)/h = OP(1/m2
n), which typically has

a slow rate. Here, we improve the consistency rate. This requires assumptions to the
intermediate extreme values of the ‘good’ errors and regressors.

Let b.c denote the floor function. We define the square root of a symmetric, positive
definite matrix m as follows. Decompose m = vwv′, where v′ = v−1 and w is diagonal
and define mp = vwpv′ for any p ∈ R.

Assumption 3.3. Let m2
n = min{(mini∈ζn εi)

2, (maxi∈ζn εi)
2}. Suppose

(i) ‘Good’ errors: εi for i ∈ ζn satisfy
(a) 1/m2

n = oP(1);
(b) maxi∈ζn ε

2
i /m

2
n = OP(1);

(c) Let ε2i for i ∈ ζn have order statistics ψ1 ≤ · · · ≤ ψh. Then the intermediate
extreme values satify ∀0 < ρ < 1, ∃Cρ < 1: ψh−bhρc/m

2
n ≤ Cρ + oP(1);

(d) Extremes are, at most, of polynomial order: m2
n = oP(nη) for some 0 < η < 1/2.

(ii) Regressors: Let x′jn(
∑

i∈ζn xinx
′
in)−1xjn for j = 1, . . . , n have order statistics

φ1 ≤ · · · ≤ φn satisfying
(a) ∀δ > 0, ∃0 < r < 1− η so that φn−bnrc/φn ≤ δ + oP(1);
(b) φn = OP(m2

n/h).
(iii) Infeasible OLS estimator: (

∑
i∈ζn xinx

′
in)1/2(β̂ζn − β) = OP(1).

Theorem 3.3. Suppose Assumptions 3.1, 3.2, 3.3. LetMn denote the set of minimizers
ζ of σ̂2

ζ . Then, for all 0 < θ < 1, it holds maxζ∈Mn #(ζ ∩ ζcn)/h = OP(hθ−1).

Assumption 3.3(i) concerns the tail behaviour of the ‘good’ errors. Extreme tails
can be assessed using the multiplicative strong law of large numbers (Galambos, 1978,
Theorem 4.4.4). Intermediate tails can be assessed by modifying Chibisov (1964, Lemma
1). Details are given in Appendix B.
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Example 3.1. Assumption 3.3(i) holds in the following cases, see Appendix B for de-
tails.
(i) Normal distribution with m2

n/2 log h→ 1 a.s. and Cρ = 1− ρ;
(ii) Laplace distribution with mn/ log h→ 1 a.s. and Cρ = (1− ρ)2;
(iii) Double geometric distribution with mn/ log h→ 1 a.s., Cρ = (1− ρ)2;
(iv) td distribution with d > η−1 > 2 degrees of freedom. In this case, mn/h

1/d converges
in distribution and any choice of Cρ function suffices.

Assumption 3.3(ii) restricts the regressors’ tails. Even so, it allows a variety of
regressors and leverage effects. Examples follow in Section 4.

3.4 Main result

Next, we show that the asymptotic distribution of the normalized LTS estimator coin-
cides with that of the normalized infeasible OLS estimator on the ‘good’ observations.

Theorem 3.4. Suppose Assumptions 3.1, 3.2, 3.3. LetMn denote the set of minimizers
ζ of σ̂2

ζ . Then

(a) maxζ∈Mn h
1/2|σ̂2

ζ − σ̂2
ζn
| = oP(1).

(b) maxζ∈Mn |(
∑

i∈ζ xinx
′
in)1/2(β̂ζ − β)− (

∑
i∈ζn xinx

′
in)1/2(β̂ζn − β)| = oP(1).

Theorem 3.4 generalizes the asymptotic theory for the location-scale case (Berenguer-
Rico et al., 2023). The present assumptions are slightly different and allow td distribu-
tions with their polynomial tails.

The asymptotic distribution for the LTS estimator can be derived from standard
OLS results applied to the infeasible OLS estimator on the ‘good’ observations. Under
standard OLS assumptions to the ‘good’ observations, so that for i ∈ ζn, suppose (x′in, εi)
are i.i.d. with finite fourth moments while E(εi|xin) = 0 and E(ε2i |xin) = σ2, then we get
that h−1

∑
i∈ζn xinx

′
in → Σx in probability and

σ̂
P→ σ and

(∑
i∈ζ̂

xinx
′
in

)1/2
(β̂ − β)/σ̂

D→ N(0, Idimx). (3.3)

The ‘good’ errors can be heteroscedastic as long as Assumptions 3.1, 3.2, 3.3 are
satisfied. For instance, suppose that yi = α+ βxi + σεi with εi|xi ∼ N(0, xωi ) and ω > 2
for i ∈ ζn. Suppose, x−ωi is i.i.d. gamma with shape and inverse scale of p/2. Then,
for i ∈ ζn, εi ∼ i.i.d. tp. If p > 4, then Assumptions 3.1, 3.2, 3.3 are satisfied, see
Appendix C for details. Theorem 3.4 says that in this case the LTS estimator has the
same asymptotic distribution as the OLS estimator on the ‘good’ observations. Since
these present heteroscedasticity, valid inference requires Eicker-Huber-White standard
errors for LTS in this case. In turn, these will be asymptotically equivalent to corrected
standard errors for the infeasible OLS estimator.

4 Examples of regressors

We illustrate the regressor conditions.
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4.1 Assumption to small regressors: General remarks

Recall the frequency of small regressors Fnh(a) in (3.1). Assumption 3.1(iii) implies
that Σ̂ζ = h−1

∑
i∈ζ xinx

′
in is positive definite in large samples for all ζ (Johansen and

Nielsen, 2019). Indeed, for all δ 6= 0,

δ′Σ̂ζδ ≥ min
ζ
h−1

∑
i∈ζ

δ′xinx
′
inδ1(|x′inδ|>a) ≥ a2 min

ζ
h−1

∑
i∈ζ

1(|x′inδ|>a).

Since h−1
∑

i∈ζ 1(|x′inδ|>a) = 1− h−1
∑

i∈ζ 1(|x′inδ|≤a) ≥ 1− Fnh(a), we get

δ′Σ̂ζδ ≥ a2{1− Fnh(a)} ≥ a2{1− (ξ + ε)} > 0,

with large probability for large n and for ε < 1− ξ and some a > 0.
The Assumption to Fnh(a) involves a supremum over all h-subsamples. We present

two bounds for Fnh(a) that avoid the supremum over sub-sets. We illustrate their use in
Section 4.2 below. The first bound to Fnh(a) involves the regressors for all observations:

Fnh(a) ≤ (n/h)Fnn(a), (4.1)

noting that
∑

i∈ζ 1(·) ≤
∑n

i=1 1(·). In particular, Assumption 3.1(iii) holds whenever
Fnn(a) = oP(1). See Examples 4.1-4.4 below.

The second bound to Fnh(a) only involves the regressors of the ‘good’ observations:

Fnh(a) ≤ Fhh(a) + (n− h)/h, (4.2)

with the convention Fhh(a) = supδ:|δ|=1 h
−1∑

i∈ζn 1(|x′inδ|≤a). This bound follows through∑
i∈ζ 1(·) =

∑
i∈ζ∩ζn 1(·) +

∑
i∈ζ∩ζcn

1(·) ≤
∑

i∈ζn 1(·) +
∑

i∈ζcn
1. In particular, if Fhh(a) =

oP(1) then the right hand side of (4.2) has limit λ−1 − 1, which is strictly smaller than
2−λ−1 whenever λ > 2/3. This leaves space for choosing a ξ so that Assumption 3.1(iii)
is satisfied. Thus, the LTS estimator will be bounded under a wide range of ‘good’
regressors, see Examples 4.1-4.4 below, while the ‘outlier’ regressors are arbitrary.

4.2 Examples

We analyze regressors with respect to the boundedness Assumption 3.1(iii) and the tail
behavior condition in Assumption 3.3(ii). First, we consider five examples of regressors
without ‘outliers’. For Assumption 3.1(iii), it then suffices to analyze Fnn and then
apply the inequality (4.1).

Example 4.1. Polynomial regressors. Let x′in = {1, (i/n)q} for q > 0 or 0 >
q > −1/2. Then Fnn(a) = oP(1) (Johansen and Nielsen, 2019, Example 3.2, 3.3) and
Assumption 3.1(iii) follows. Since xin is bounded, Assumption 3.3(ii) holds.

Example 4.2. i.i.d. regressors. Let x′in = (1, zin) where zin is i.i.d. with bounded,
continuous density. Then Fnn(a) = oP(1) (Johansen and Nielsen, 2019, Theorem 3.3).
Assumption 3.3(ii) follows if zin has thinner tails than or the same tails as the ‘good’
errors. For instance, zin for 1 ≤ i ≤ n and εi for i ∈ ζn could be normal.
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Example 4.3. Stationary regressors. Let x′in = (1, zin) where zin is a stationary,
normal autoregression. Then Fnn(a) = oP(1) (Johansen and Nielsen, 2019, Example
3.7). Assumption 3.3(ii) follows if the ‘good’ errors are also normal, since the distribu-
tion of the intermediate extreme values for stationary, normal autoregressions is same
as for i.i.d. normal variables (Watts et al., 1982, Theorem 3.3).

Example 4.4. Random walk. Let x′in = (1, zin) so zin = n−1/2
∑i

`=1 ψi where ψi is
i.i.d. multivariate, zero mean normal. Then Fnn(a) = oP(1) (Johansen and Nielsen,
2019, Theorem 3.4) and Assumption 3.1(iii) follows. The maximum of a normalized
random walk converges in distribution so that φn = OP(1/h) and Assumption 3.3(ii)
follows. The normalized estimator h1/2(β̂−β) will have an asymptotic Dickey-Fuller type
distribution. The exact expression depends on how ‘good’ and ‘outlier’ errors alternate
(Johansen and Nielsen, 2009).

Example 4.5. Binary regressors. Let x′in = {1, 1(1≤τn)}. Here, Fnn(a) = max(τ, 1−
τ) for small a > 0 (Johansen and Nielsen, 2019, Example 3.1). Suppose max(τ, 1−τ) <
2λ − 1, which is satified for instance when τ = 1/2 and λ > 3/4. The inequality (4.1)
then shows that Fnh(a) ≤ (n/h)Fnn(a) < 2 − 1/λ − ε + o(1) for small ε > 0. Thus, an
ξ < 2− 1/λ can be found so that Fnh(a) ≤ ξ with large probability. Assumption 3.1(iii)
follows. The regressor is bounded and Assumption 3.3(ii) follows.

If the ‘good’ regressors are regular they can be combined with ‘outlier’ regressors
without much structure. In particular, if Fhh(a) → 0 as (a, n) → (0,∞) then As-
sumption 3.1(iii) is satisfied through the bound (4.2) and it suffices to check that the
‘outlier’ regressors do not drift too fast to satisfy Assumption 3.3(iii). We give a specific
example, which we will consider in the simulation study in Section 5.

Example 4.6. Leverage. Let the ‘good’ regressors xi be i.i.d. U[−10, 10], that is uni-
form on [−10, 10], while the ‘outlier’ regressors satisfy xj = 10 + ej + d, where ej are
i.i.d.U[0, 1] while d is to be chosen. Here the ‘outlier’ regressors are spread out a bit to
facilitate estimation by fast LTS (Rousseeuw and van Driessen, 2000).

Assumption 3.1(iii) is satisfied through (4.2) whenever λ > 2/3. To see this, let
xin = xi. The ‘good’ regressors satisfy Fhh(a)→ 0 as (a, n)→ (0,∞) by Example 4.2.

We now turn to Assumption 3.3(ii). First, suppose d is bounded. Apply the Law of
Large Numbers separately to ‘good’ and ‘outlier’ regressors to see that n−1

∑n
i=1 xinx

′
in

converges in probability and Assumption 3.2(ii) follows.
Second, let d =

√
n. Assumption 3.2(ii) fails, as n−1

∑
i∈ζcn

x2in diverges at rate n−h,

when choosing xin = xi. Similarly, Assumption 3.3(ii) fails since Hn = hx2jn/
∑

i∈ζn x
2
in

diverges at order n for j ∈ ζcn, since x2jn = n{1 + oP(1)} and h−1
∑

i∈ζn x
2
in = 100/3 +

oP(1). Thus, Hn exceeds m2
n for any permitted distribution for the ‘good’ errors.

We could force Assumption 3.2(ii) to hold by defining xin = xi/n
1/2. In that case,

Assumption 3.1(iii) would fail in light of Example 4.5 with τ = λ as we would need
max(λ, 1− λ) < 2λ− 1 which is not possible for any 0 ≤ λ ≤ 1.
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5 Simulations

We study the finite sample properties of t-tests for β0 = β1 = 0 in the linear model

yi = β0 + β1zi + σεi. (5.1)

We analyze three statistics and six data generating processes. We consider sample sizes
n = 25, 100, 400, 1600 with h/n = λ = 0.8 and use 104 repetitions. The code was written
in Matlab with LTS estimation done using the mlts.m code by Agullo et al. (2008).

Tests. We consider t-statistics tk,s = (β̂k,s−µ)/sek,s, where k and s denote parameter
and estimation method, respectively. The t-tests rejects for |tk,s| > q, where q is the
normal 97.5% quantile giving a target level of 5%. We study three estimators so that
s ∈ {OLS,LTS, SLTS}.

The OLS estimator is β̂OLS = (
∑n

i=1 xix
′
i)
−1(
∑n

i=1 xiyi) with xi = (1, zi)
′ and se2OLS

is the product of σ̂2
OLS = (n−2)−1

∑n
i=1(yi−x′iβ̂OLS)2 and the relevant diagonal element

of (
∑n

i=1 xix
′
i)
−1.

The LTS estimators β̂LTS and σ̂LTS are given in (2.3). Further, se2LTS is the product
of σ̂2

LTS and the relevant diagonal element of (
∑

i∈ζ̂LTS xix
′
i)
−1.

The SLTS test uses the standard LTS correction factor following common practice
(Croux and Rousseeuw, 1992). Thus, β̂SLTS = β̂LTS. The correction factor assumes the
‘good’ observations are truncated normal so that ς2h/n =

∫ c
−c x

2ϕ(x)dx/
∫ c
−c ϕ(x)dx with c

chosen so that
∫ c
−c ϕ(x)dx = h/n. In particular, ς20.8 = 0.438. Then, σ̂2

SLTS = σ̂2
LTS/ς

2
h/n

and se2SLTS = se2LTS/(ς
4
h/n).

Data Generating Processes (DGPs). All DGPs are of the form (5.1), where β0 =
β1 = 0 and σ = 1. In all cases, the ‘good’ errors are i.i.d. N(0, 1) and the ‘good’ regressors
are i.i.d. uniform on [−10, 10], denoted U[−10, 10].

DGP 1 has no contamination, hence, all errors are i.i.d N(0, 1) and all regressors are
i.i.d U[−10, 10].

DGPs 2–6 have LTS-type contamination in the errors of the form (2.4), where εj =
(maxi∈ζ εi + ξj)1(ξj>0) + (mini∈ζ εi + ξj)1(ξj<0).

DGPs 2–3 have no contamination in the regressors, which are all i.i.d U[−10, 10]. The
‘outlier’ errors are defined so that ξj − ν+1(ξj>0) + ν−1(ξj<0) is i.i.d. normal N(0, 1) and
the constants ν+ and ν− separate ‘good’ and ‘outlying’ errors. DGP 2 has ν+ = ν− = 0
and DGP 3 has ν+ = 3, ν− = 1.

DGPs 4–6 have contamination in both errors and regressors following Example 4.6.
‘Outlier’ errors and regressors are positive and given by ξj = uj + c and xj = 10 + ei+d,
where uj and ej are independent and i.i.d.U[0, 1], while DGP 4 has c = d = 0, DGP 5
has c = 10, d = 0, and DGP 6 has c = 10, d = n0.5.

Tables 1,2 report simulated rejection frequencies for nominal 5% tests on the inter-
cept and the slope, respectively. Results are based on 104 repetitions. The Monte Carlo
standard error is 0.2% for correctly sized tests.

DGP 1 has no contamination. Both the OLS and the SLTS statistics perform well
in small samples. The LTS statistic is not using the correct standard error and it is
oversized for all samples sizes. These results are seen both for intercept and slope.

DGPs 2–3 have contamination in the errors, but not in the regressors. The LTS
test has empirical size approaching 5% as the sample size increases for both intercept

11



Table 1: Simulated rejection frequencies for nominal 5% tests on intercepts.
method n DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

OLS 25 0.060 0.083 0.074 0.218 0.378 0.262
100 0.053 0.080 0.128 0.732 0.983 0.628
400 0.050 0.104 0.323 1.000 1.000 0.888

1600 0.055 0.162 0.741 1.000 1.000 0.948
6400 0.049 0.293 0.979 1.000 1.000 0.900

LTS 25 0.377 0.268 0.084 0.581 0.063 0.064
100 0.389 0.177 0.058 0.820 0.053 0.053
400 0.392 0.113 0.052 0.674 0.050 0.050

1600 0.400 0.069 0.048 0.263 0.049 0.067
6400 0.389 0.053 0.050 0.052 0.047 0.918

SLTS 25 0.039 0.017 0.002 0.169 0.000 0.001
100 0.042 0.003 0.000 0.608 0.000 0.000
400 0.051 0.000 0.000 0.654 0.000 0.000

1600 0.050 0.000 0.000 0.220 0.000 0.017
6400 0.048 0.000 0.000 0.002 0.000 0.724

Table 2: Simulated rejection frequencies for nominal 5% tests on slopes.
method n DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

OLS 25 0.064 0.057 0.059 0.754 0.999 1.000
100 0.051 0.052 0.051 1.000 1.000 1.000
400 0.053 0.049 0.048 1.000 1.000 1.000

1600 0.047 0.049 0.049 1.000 1.000 1.000
6400 0.050 0.051 0.050 1.000 1.000 1.000

LTS 25 0.366 0.290 0.092 0.905 0.065 0.066
100 0.374 0.191 0.060 0.877 0.050 0.050
400 0.386 0.135 0.053 0.683 0.052 0.052

1600 0.390 0.098 0.051 0.279 0.054 0.069
6400 0.398 0.084 0.053 0.065 0.049 1.000

SLTS 25 0.035 0.023 0.003 0.628 0.000 0.001
100 0.039 0.003 0.000 0.859 0.000 0.000
400 0.046 0.000 0.000 0.655 0.000 0.000

1600 0.046 0.000 0.000 0.220 0.000 0.018
6400 0.047 0.000 0.000 0.002 0.000 1.000

and slope. The LTS procedure works better in finite samples under DGP 3 than DGP
2, since DGP 3 has more separation of ‘good’ and ‘outlier’ errors. The OLS procedure
performs differently for intercept and slope. Specifically, the empirical size for the in-
tercept increases with sample size; whereas the empirical size for the slope statistic is
approximately 5% for all sample sizes considered. The SLTS tests have empirical size
close to zero for almost all sample sizes considered for both intercept and slope.
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DGPs 4–5 have leverage points with positive contamination in the errors and con-
taminated regressors located around the largest ‘good’ regressors. The LTS test has
empirical size approaching 5% as the sample size increases, for both intercept and slope.
We note that LTS works better in finite samples under DGP 5 than DGP 4, since DGP
5 has more separation of ‘good’ and ‘outlier’ errors. The OLS test has empirical size
approaching one for both intercept and slope. The SLTS test has a more complicated
behaviour. For DGP 4, the size first increases for both intercept and slope and then
decreases to near zero for large samples. For DGP 5, the size is near zero in all cases.

DGP 6 has positive contamination in the errors and positively contaminated regres-
sors which are growing at the order of n1/2 and larger than the largest ‘good’ regressors.
The leverage points therefore become relatively closer to the regression line as n grows
and are designed to violate Assumption 3.2(ii) in the LTS asymptotics. The LTS test
has empirical size around 5% for most sample sizes, but the size jumps to near unity for
the largest sample size. This supports the idea of looking for ‘outliers’ in the regressors
before using the LTS estimator (Rousseeuw, 1994). The OLS test has an empirical size
that is steadily growing with the sample size for the intercept and constantly at unity
for the slope. The SLTS test has empirical size close to 0% for most sample sizes, but
the size jumps to near unity for the largest sample size.

6 Empirical illustration

We consider the stars data of Rousseeuw and Leroy (1987) as shown in Figure 1. The
data consists of a sample of n = 47 stars on the CYG OB1 cluster, for which the log
light intensity and log temperature is recorded for each star. A detailed description can
be found in Berenguer-Rico et al. (2023). In short, from the right, the first four stars are
red supergiants of M-type, the fifth star is of F-type, the next 31 stars (1 doublet) are
of B-type, and the final 11 stars (1 doublet) to the left are of O-type. The figure shows
OLS and LAD fits, along with the LTS line for h = 43. Following Berenguer-Rico et al.
(2023), we choose h = 42 pointing at n − h = 5 ‘outliers’. This choice is based on an
estimator for λ developed in the above mentioned paper, where it was also also found
that the ‘good’ errors may be approximately normal. With h = 42, the LTS estimator
finds as outliers the four red giant stars and the F-type star that is unique in this sample
and distinct from the B and O type stars in the main sequence.

Once we have estimated the h = 42 ‘good’ observations, we conduct inference ac-
cording to the above theory, hence, computing standard least squares estimators and
t-test statistics on those observations. This gives

log.light
(seLTS)

[t−statLTS ]

= − 7.40
(2.09)

[−3.54]

+ 2.80
(0.48)

[5.09]

log.Te, σ̂LTS = 0.3761. (6.1)

The t-statistics are asymptotically normal under the above assumptions. These as-
sumptions are plausible as the supergiants seem to be of the leverage type of Example
4.6.

Alternatively, we may apply SLTS inference. This assumes an i.i.d. model for all n
observations with errors following an ε-contaminated normal distribution. The propor-
tion of ‘good’ observations is 42/47 = 0.89. Thus, if there was no contamination, which
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seems implausible, then the nuisance scaling factor would be ς20.89 = 0.608. Correcting
σ̂2
SLTS = σ̂2

LTS/ς
2
0.89 and se2SLTS = se2LTS/ς

4
0.89 gives

log.light
(seSLTS)

[t−statSLTS ]

= − 7.40
(3.43)

[−2.16]

+ 2.80
(0.78)

[3.59]

log.Te, σ̂SLTS = 0.4821. (6.2)

We see that the estimated uncertainty is considerably larger with the SLTS inference
than when using the LTS model as in (6.1).

7 Discussion

We have provided an asymptotic theory of LTS regression estimation allowing for lever-
age points. The theory shows that the LTS estimator is bounded and consistent with
the same asymptotic expansion as the infeasible least squares estimator on the ‘good’
observations. Thus, the asymptotic distribution does not depend on the ‘outliers’.

The LTS model will be appropriate for some data sets. For other data sets, ε-con-
tamination – the SLTS model – could be attractive despite the nuisance parameters in
the inference. The simulations indicate that SLTS inference is not appropriate under
the LTS model and vice versa. Mis-specification and model selection tools are therefore
needed. We suspect that many traditional methods can be applied directly to the
estimated sets of ‘good’ observations, but their properties need to be investigated.

A Proofs

A.1 Boundedness

Proof of Theorem 3.1. We adapt the proof of Johansen and Nielsen (2019).
(a) Overview. We want to prove that maxζ∈Mn |β̂ζ − β̂ζn| = OP(1), where Mn

is the set of minimizers. That is, ∀ε > 0, ∃B0, n0 > 0, ∀n > n0 and with An =
(maxζ∈Mn |β̂ζ − β̂ζn| > B0), then P(An) < ε.

Defining the set Anζ = (|β̂ζ − β̂ζn| > B0), we can write An = ∪ζ∈MnAnζ .
Any minimizer ζ ∈Mn has a residual variance satisfying σ̂2

ζ ≤ σ̂2
ζn

. Let Zn be the set
of all possible ζ and define the set Bnζ = (σ̂2

ζ ≤ σ̂2
ζn

). Since Bnζ contains all minimizers,
ζ ∈Mn and some non-minimizers, we get An ⊂ ∪ζ∈Zn(Anζ ∩ Bnζ).

Given an ε > 0, we will find a B0 > 0 and sets Cn with probability P(Cn) ≥ 1 − ε.
On Cn, we will argue deterministically that if |β̂ζ − β̂ζn| > B0 for some ζ then σ̂2

ζ ≥
(1 + ε)σ̂2

ζn
> σ̂2

ζn
. Thus, such a ζ cannot be a minimizer. Hence, on Cn, the intersection,

Anζ ∩ Bnζ is empty. We get

An ⊂ ∪ζ∈Zn(Anζ ∩ Bnζ) ⊂ ∪ζ∈Zn{(Anζ ∩ Bnζ ∩ Cn) ∪ (Anζ ∩ Bnζ ∩ Cc
n)} ⊂ Cc

n.

We can then bound An ⊂ Cc
n, so that P(An) ≤ P(Cc

n) < ε.
(b) Criterion function. Given a set ζ we find the least squares estimator

β̂ζ = (
∑
i∈ζ

xinx
′
in)−1

∑
i∈ζ

xinyi = β + (
∑
i∈ζ

xinx
′
in)−1

∑
i∈ζ

xinεiσ
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using the model equation (2.1). The scaled residuals are ε̃ζi = (yi−x′inβ̂ζ)/σ. For ζ = ζn
write ε̃i for ε̃ζni. For general ζ write ε̃ζi = εi−x′in(β̂ζ−β)/σ. Add and subtract x′inβ̂ζn/σ

to get ε̃ζi = εi−x′in(β̂ζn −β)/σ−x′in(β̂ζ − β̂ζn)/σ and in turn ε̃ζi = ε̃i−x′in(β̂ζ − β̂ζn)/σ.

Introduce polar coordinates with length ˆ̀
ζ = |β̂ζ − β̂ζn|/σ and direction δ̂ζ = (β̂ζ −

β̂ζn)/|β̂ζ − β̂ζn| when ˆ̀
ζ > 0. When ˆ̀

ζ = 0 the direction δ̂ζ can be chosen as an arbitrary

vector of unit length. Thus, β̂ζ − β̂ζn = ˆ̀
ζ δ̂ζσ and |δ̂ζ | = 1. The residuals satisfy

ε̃ζi = ε̃i − ˆ̀
ζx
′
inδ̂ζ , so that

hσ̂2
ζ = σ2

∑
i∈ζ

(ε̃i − ˆ̀
ζx
′
inδ̂ζ)

2. (A.1)

(c) Bounding residuals under constraints to εi, x
′
inδ̂ζ and ˆ̀

ζ . We will later choose

A0, a0, C0 > 0. Let Bn0 = (A0 + C0σ̂ζn/σ)/a0. Consider |ε̃i| ≤ A0 and |x′inδ̂ζ | > a0 and
ˆ̀
ζ > Bn0. Then, by the reverse triangle inequality, |x− y| ≥ |(|x| − |y|)| ≥ |y| − |x|,

|ε̃i − ˆ̀
ζx
′
inδ̂ζ | ≥ ˆ̀

ζ |x′inδ̂ζ | − |ε̃i| > Bn0a0 − A0 ≥ C0σ̂ζn/σ. (A.2)

(d) Bounding residual variance for large ˆ̀
ζ . Apply the expression for σ̂2

ζ in (A.1).

Delete summands of σ̂2
ζ for which |ε̃i| > A0 or |x′inδ̂ζ | ≤ a0 and consider only values of ζ

with large ˆ̀
ζ > Bn0 to get the lower bound

hσ̂2
ζ ≥ 1(ˆ̀ζ>Bn0)

σ2
∑
i∈ζ

(ε̃i − ˆ̀
ζx
′
inδ̂ζ)

21(|ε̃i|≤A0)1(|x′inδ̂ζ |>a0)
.

Now, for ˆ̀
ζ > Bn0 we can apply (A.2) to get the further bound

hσ̂2
ζ ≥ 1(ˆ̀ζ>Bn0)

C2
0 σ̂

2
ζn

∑
i∈ζ

1(|ε̃i|≤A0)1(|x′inδ̂ζ |>a0)
.

Use that for sets A and B then 1A∩B = 1A − 1A∩Bc ≥ 1A − 1Bc so that

hσ̂2
ζ ≥ 1(ˆ̀ζ>Bn0)

C2
0 σ̂

2
ζn

{∑
i∈ζ

1(|ε̃i|≤A0) −
∑
i∈ζ

1(|x′inδ̂ζ |≤a0)

}
. (A.3)

For each sum in (A.3), we find bounds not depending on ζ. The first sum satisfies,
noting that 1(|ε̃i|≤A0) = 1− 1(|ε̃i|>A0),∑

i∈ζ

1(|ε̃i|≤A0) ≥
∑
i∈ζ∩ζn

1(|ε̃i|≤A0) = #(ζ ∩ ζn)−
∑
i∈ζ∩ζn

1(|ε̃i|>A0).

Since ζ has at most n−h indices in ζcn, then #(ζ ∩ ζn) ≥ h− (n−h) = 2h−n. Further,
by summing over additional non-negative elements, we have that

∑
i∈ζ∩ζn 1(|ε̃i|>A0) ≤∑

i∈ζn 1(|ε̃i|>A0). The inequality 1(|ε̃i|>A0) ≤ ε̃2i /A
2
0 gives the further bound

∑
i∈ζn ε̃

2
i /A

2
0.

Since ε̃i are the residuals from OLS regression on ζn, we get
∑

i∈ζn ε̃
2
i ≤

∑
i∈ζn ε

2
i . Thus,

the first sum in (A.3) satisfies
∑

i∈ζ 1(|ε̃i|≤A0) ≥ 2h− n−
∑

i∈ζn ε
2
i /A

2
0.
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For the second sum in (A.3), replace δ̂ζ by an arbitrary δ, take supremum over δ and
take maximum over sets ζ of length h to get the bound∑

i∈ζ

1(|x′inδ̂ζ |≤a0)
≤ max

ζ:#ζ=h
sup
|δ|=1

∑
i∈ζ

1(|x′inδ|≤a0) = hFnh(a0).

Insert the bounds in (A.3) to get, uniformly in ζ satisfying ˆ̀
ζ > Bn0, that

σ̂2
ζ ≥ 1(ˆ̀ζ>Bn0)

C2
0 σ̂

2
ζn

{2h− n
h

− A−20

1

h

∑
i∈ζn

ε2i − Fnh(a0)
}
. (A.4)

(e) Probability argument. We construct sets Cn with large probability.
Assumption 3.1(i) has h/n→ λ > 1/2. Thus, (2h− n)/h→ 2− λ−1 > 0.
Assumption 3.1(ii) states that h−1

∑
i∈ζn ε

2
i = OP(1). This implies that σ̂2

ζn
/σ2 = OP(1),

see Remark 3.1.
Assumption 3.1(iii) states that lim(a,n)→(0,∞) P{Fnh(a) ≥ ξ} = 0 for some ξ < 2− λ−1.

These assumptions show that for all ε > 0 there exists a0, A0, n0 > 0 and sets Cn

with P(Cn) ≥ 1− ε for all n > n0 so that on Cn we have

1

h

∑
i∈ζn

ε2i ≤ εA2
0 and σ̂2

ζn/σ
2 ≤ A0 and Fnh(a0) ≤ ξ.

Now, choose C2
0 = (1 + ε)/(2 − λ−1 − 2ε − ξ), noting that C2

0 > 0 for small ε since
ξ < 2− λ−1. Let B0 = (A0 + C0A0)/a0 so that B0 ≥ Bn0 on Cn.

(f) Bound residual variance on Cn. As argued in (a), consider any ζ with ˆ̀
ζ =

|β̂ζ − β̂ζn| > B0 ≥ Bn0. Apply the constraints defining Cn to the lower bound for σ̂2
ζ in

(A.4) to get the bound

σ̂2
ζ ≥ C2

0 σ̂
2
ζn{(2− λ

−1 − ε)− ε− ξ} = (1 + ε)σ̂2
ζn

on the set Cn. Thus, this ζ cannot be a minimizer since minimizers satisfy σ̂2
ζ ≤ σ̂2

ζn
.

This is what had to be proved as outlined in item (a).

A.2 Consistent selection of ‘good’ observations

For a matrix m let ‖m‖ be the spectral norm. Thus, ‖m‖2 = max eigen(m′m). If the
matrices m1,m2 are conformable then ‖m1m2‖ ≤ ‖m1‖‖m2‖.

Proof of Theorem 3.2. We note that for any minimizer, ζ ∈Mn, then σ̂2
ζ ≤ σ̂2

ζn
.

We construct a high probability set Dn, where we can deterministically bound certain
statistics. Assumptions 3.1, 3.2(iii) along with Remark 3.1 and Theorem 3.1 show that
maxζ∈Mn |β̂ζ | and σ̂2

ζn
are OP(1). Assumption 3.2(ii) is that ‖

∑n
i=1 xinx

′
in‖ = OP(n) =

OP(h). Thus, for all ε > 0 there exist C, n0 > 0 and a sequence of sets Dn with
P(Dn) > 1− ε for all n > n0, so that on Dn

max
ζ∈Mn

|β̂ζ − β|/σ ≤ C, σ̂2
ζn/σ

2 ≤ C, ‖
n∑
i=1

xinx
′
in‖ ≤ Ch. (A.5)
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For a minimizer ζ, we expand the least squares residual variance as

hσ̂2
ζ = σ2

∑
i∈ζ

ε2i − (β̂ζ − β)′(
∑
i∈ζ

xinx
′
in)(β̂ζ − β). (A.6)

The first term satisfies
∑

i∈ζ ε
2
i ≥

∑
i∈ζ∩ζcn

ε2i ≥ #(ζ ∩ ζcn)m2
n{1 + oP(1)} by Assumption

3.2(i). For the second term, ‖
∑

i∈ζ xinx
′
in‖ ≤ ‖

∑n
i=1 xinx

′
in‖ ≤ Ch and |β̂ζ − β| ≤ Cσ

while Cσ2 ≥ σ̂2
ζn
≥ σ̂2

ζ on the set Dn. Thus, we get

hC ≥ hσ̂2
ζ/σ

2 ≥ #(ζ ∩ ζcn)m2
n{1 + oP(1)} − C3h. (A.7)

On Dn, solve to get #(ζ ∩ ζcn) ≤ (C +C3)(h/m2
n){1 + oP(1)}, uniformly in ζ ∈Mn.

A.3 Improving the rate of consistency

When improving the consistency rate we will bound terms like
∑

i∈ζ∩ζcn
xinx

′
in. The

bounds should be uniform in ζ where the number of misclassifications, #(ζ ∩ ζcn), is
bounded by some sequence gn. Thus, everywhere, gn > 0 is a sequence in n not de-
pending on ζ. When applying the bounds we will first choose gn = Ch/m2

n and later
gn = Chθ. The bounds will expressed in terms of

Sgn =
n∑

i>n−gn

φi,

where φ1, . . . , φn are non-decreasing order statistics of x′in(
∑

i∈ζn xinx
′
in)−1xin as intro-

duced in Assumption 3.3(ii).

Lemma A.1. Suppose Assumption 3.3(id, ii). Then ∀0 < C <∞ and gn = Ch/m2
n we

get Sgn = oP(1). Also, ∀0 < C <∞, ∀θ > 0 and gn = Chθ we get Sgn = OP(nη+θ−1).

Remark A.1. For Lemma A.1 and hence for Theorem 3.3 it suffices that 0 < η < 1 in
Assumption 3.3(id, ii).

Proof of Lemma A.1. The case gn = Ch/m2
n. Given a δ > 0 choose 0 < r < 1 − η so

that, by Assumption 3.3(iia), φn−bnrc/φn ≤ δ + oP(1). If bnrc < gn, decompose

Sgn =
n∑

i>n−gn

φi =

n−bnrc∑
i>n−gn

φi +
n∑

i=n−bnrc+1

φi.

The sums have summands bounded by φn−bnrc and φn, while their number of summands
are bounded by gn and nr, respectively. Thus, we can bound

Sgn ≤ gnφn−bnrc + nrφn. (A.8)

The first term of (A.8) has gn = Ch/m2
n by construction. Moreover, as noted above,

φn−bnrc/φn ≤ δ + oP(1) where φn = OP(m2
n/h) by Assumption 3.3(iib). Thus, the first

term is OP(δ). Since δ > 0 can be chosen arbitrarily small, it is actually oP(1).
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For the second term of (A.8) use again that φn = OP(m2
n/h) while m2

n = oP(nη) for
0 < η < 1/2 by Assumption 3.3(id). Since h/n → λ, the second term is OP(hr+η−1) =
oP(1) as r < 1− η. Then Sgn = oP(1).

If bnrc ≥ gn, then Sgn ≤
∑n

i>n−bnrc φi ≤ nrφn = OP(hr+η−1) = oP(1).

The case gn = Chθ. Recall φn = OP(m2
n/h) = OP(hη−1) by Assumption 3.3(iia).

Thus, we bound Sgn =
∑n

i>n−gn φi ≤ (gn + 1)φn = OP(hθ)OP(hη−1) = OP(hθ+η−1).

The following notation is convenient. Let

zjn = (
∑
i∈ζn

xinx
′
in)−1/2xjn,

Aζ = (
∑
i∈ζ

xinx
′
in)1/2(β̂ζ − β)/σ = (

∑
i∈ζ

xinx
′
in)−1/2

∑
i∈ζ

xinεi,

Bζ =
∑
i∈ζ

zinεi −
∑
i∈ζn

zinεi (A.9)

= Cζ = (
∑
i∈ζ

xinx
′
in)−1/2(

∑
i∈ζn

xinx
′
in)1/2 − Idimx.

so that Aζn =
∑

i∈ζn zinεi.

Lemma A.2. The squared difference |Aζ − Aζn|2 can be bounded as follows

1

3
|Aζ − Aζn|2 ≤ |Bζ |2(1 + ‖Cζ‖2) + ‖Cζ‖2|

∑
i∈ζn

zinεi|2. (A.10)

Proof of Lemma A.2. By definition

Aζ − Aζn = (
∑
i∈ζ

xinx
′
in)−1/2(

∑
i∈ζn

xinx
′
in)1/2(

∑
i∈ζ

zinε
′
i)− (

∑
i∈ζn

zinε
′
i).

Rewrite as Aζ−Aζn = Bζ+CζBζ+Cζ(
∑

i∈ζn zinε
′
i). The triangle and Jensen’s inequalities

and the spectral norm sub-multiplicativity give the desired result.

Lemma A.3. Let #(ζ ∩ ζcn) ≤ gn. Then
∑

i∈ζ∩ζcn
z′inzin,

∑
i∈ζc∩ζn z

′
inzin are at most Sgn .

Proof of Lemma A.3. By definition z′inzin = x′in(
∑

i∈ζn xinx
′
in)−1xin. As remarked in Sec-

tion 3.2, we have #(ζ ∩ ζcn) = #(ζc ∩ ζn). Since φi are the increasing order statistics of
z′inzin and #(ζ ∩ ζcn) ≤ gn both sums are bounded by Sgn .

Lemma A.4. Let #(ζ ∩ ζcn) ≤ gn. The term |Bζ |2 can be bounded by

|Bζ |2 ≤ 2
( ∑
i∈ζ∩ζcn

ε2i +
∑

i∈ζc∩ζn

ε2i

)
Sgn .

Proof of Lemma A.4. Decompose Bζ along the lines of (A.11) to get

Bζ =
∑
i∈ζ

ziεi −
∑
i∈ζn

ziεi =
∑
i∈ζ∩ζcn

zinεi −
∑

i∈ζc∩ζn

zinεi.
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Apply the triangle, Jensen and Cauchy-Schwarz inequalities to get

|Bζ |2 ≤
( ∑
i∈ζ∩ζcn

|zinεi|+
∑

i∈ζc∩ζn

|zinεi|
)2

≤ 2
{( ∑

i∈ζ∩ζcn

|zinεi|
)2

+
( ∑
i∈ζc∩ζn

|zinεi|
)2}

≤ 2
( ∑
i∈ζ∩ζcn

|zin|2
∑
i∈ζ∩ζcn

ε2i +
∑

i∈ζc∩ζn

|zin|2
∑

i∈ζc∩ζn

ε2i

)
.

Lemma A.3 bounds
∑

i∈ζ∩ζcn
|zin|2 and

∑
i∈ζc∩ζn |zin|

2 by Sgn .

Lemma A.5. Let Mζ = (
∑

i∈ζn xinx
′
in)−1/2

∑
i∈ζ xinx

′
in(
∑

i∈ζn xinx
′
in)−1/2 and #(ζ ∩

ζcn) ≤ gn. Then, ‖Mζ − Idimx‖ ≤ 2Sgn .

Proof of Lemma A.5. Since zjn = (
∑

i∈ζn xinx
′
in)−1/2xjn, we get Mζ =

∑
i∈ζ zinz

′
in. Write

Mζ =
∑
i∈ζn

zinz
′
in + (

∑
i∈ζ

zinz
′
in −

∑
i∈ζn

zinz
′
in),

and note that the first sum satisfies
∑

i∈ζn zinz
′
in = Idimx while, in the last two sums, we

can cancel elements with index in ζ ∩ ζn. Hence,

Mζ = Idimx +
∑
i∈ζ∩ζcn

zinz
′
in −

∑
i∈ζc∩ζn

zinz
′
in. (A.11)

Use the spectral norm and the triangle inquality to get that

‖Mζ − Idimx‖ ≤
∑
i∈ζ∩ζcn

‖zinz′in‖+
∑

i∈ζc∩ζn

‖zinz′in‖ =
∑
i∈ζ∩ζcn

z′inzin +
∑

i∈ζc∩ζn

z′inzin.

By Lemma A.3, each of the sums is bounded by Sgn . The desired bound follows.

Lemma A.6. If Sgn = oP(1) then maxζ:#(ζ∩ζcn)≤gn ‖Cζ‖ = OP(Sgn) .

Proof of Lemma A.6. Let Mζ = (
∑

i∈ζn xinx
′
in)−1/2

∑
i∈ζ xinx

′
in(
∑

i∈ζn xinx
′
in)−1/2 as be-

fore. We express Cζ in terms of Mζ as follows

Cζ =
{(∑

i∈ζn

xinx
′
in

)1/2
Mζ

(∑
i∈ζn

xinx
′
in

)1/2}−1/2(∑
i∈ζn

xinx
′
in

)1/2
− I.

Expanding the curly bracket, we get

Cζ =
(∑
i∈ζn

xinx
′
in

)−1/4
M
−1/2
ζ

(∑
i∈ζn

xinx
′
in

)1/4
− I. (A.12)

By Lemma A.5, ‖Mζ − Idimx‖ ≤ 2Sgn . Write Mζ = Idimx + (Mζ − Idimx) so

Mζ = Idimx{1 + O(‖Mζ − Idimx‖)} = Idimx{1 + O(Sgn)}.

Since Sgn = oP(1), we get M
−1/2
ζ = Idimx{1 + OP(Sgn)}. Inserting into (A.12) gives

Cζ = IdimxOP(Sgn), so that maxζ ‖Cζ‖ = OP(Sgn) as desired.
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Lemma A.7. Suppose Assumption 3.3(iii). Let Sgn = oP(1). Then,

|Aζ − Aζn|2 ≤
( ∑
i∈ζ∩ζcn

ε2i +
∑

i∈ζc∩ζn

ε2i

)
OP(Sgn) + oP(1),

where the remainder terms are uniform in ζ so that #(ζ ∩ ζcn) ≤ gn.

Proof of Lemma A.7. By Lemma A.2,

|Aζ − Aζn|2 ≤ 3|Bζ |2{1 + ‖Cζ‖2}+ 3‖Cζ‖2|
∑
i∈ζn

zinεi|2. (A.13)

By Assumption 3.3(iii),
∑

i∈ζn zinε
′
i = OP(1). By Lemma A.6 using the Assumption

that Sgn = oP(1), we get ‖Cζ‖ = OP(Sgn) = oP(1) uniformly in ζ. By Lemma A.4,
|Bζ |2 ≤ 2(

∑
i∈ζ∩ζcn

ε2i +
∑

i∈ζc∩ζn ε
2
i )Sgn . Insert these results into (A.13).

Lemma A.8. Suppose Assumption 3.3(iii). Let Sgn = oP(1). Then,

h(σ̂2
ζ − σ̂2

ζn)/σ ≥ {1 + oP(1)}
∑
i∈ζ∩ζcn

ε2i − {1 + oP(1)}
∑

i∈ζc∩ζn

ε2i + OP(1),

where all remainder terms are uniform in ζ so that #(ζ ∩ ζcn) ≤ gn.

Proof of Lemma A.8. Write

Qζ = h(σ̂2
ζ − σ̂2

ζn)/σ =
∑
i∈ζ

ε2i − A′ζAζ −
∑
i∈ζn

ε2i + A′ζnAζn . (A.14)

Manipulate the sums as in (A.11) and note A′ζnAζn ≥ 0 to bound

Qζ ≥
∑
i∈ζ∩ζcn

ε2i −
∑

i∈ζc∩ζn

ε2i − A′ζAζ . (A.15)

Write Aζ = Aζn + (Aζ − Aζn) to get

A′ζAζ ≤ 2{A′ζnAζn + (Aζ − Aζn)′(Aζ − Aζn)} = 2A′ζnAζn + 2|Aζ − Aζn|2. (A.16)

Assumption 3.3(iii) has A′ζnAζn = OP(1), while Lemma A.7 using the assumption Sgn =
oP(1) uniformly in ζ bounds |Aζ−Aζn|2 ≤ (

∑
i∈ζ∩ζcn

ε2i +
∑

i∈ζc∩ζn ε
2
i )oP(1)+oP(1), where

the remainders are uniform in ζ. Therefore, the bound (A.16) becomes

A′ζAζ ≤ OP(1) +
( ∑
i∈ζ∩ζcn

ε2i +
∑

i∈ζc∩ζn

ε2i

)
oP(1) + oP(1). (A.17)

Insert (A.17) in (A.15) to get the desired result.

Lemma A.9. Suppose Assumptions 3.2(i), 3.3 with 0 < η < 1. Then, ∀C > 0,
0 < θ < 1− η, we have that minζ:hθ≤#(ζ∩ζcn)≤hC/m2

n
h1−θ(σ̂2

ζ − σ̂2
ζn

)→∞ in probability.
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Proof of Lemma A.9. Let # be short hand for #(ζc ∩ ζn) = #(ζ ∩ ζcn).
We consider hθ ≤ # ≤ gn where gn = hC/m2

n. We have that Sgn = oP(1), by Lemma
A.1 using Assumption 3.3(id, ii). Thus, Lemma A.8 using Assumption 3.3(iii) shows

h(σ̂2
ζ − σ̂2

ζn)/σ ≥ {1 + oP(1)}
∑
i∈ζ∩ζcn

ε2i − {1 + oP(1)}
∑

i∈ζc∩ζn

ε2i + OP(1), (A.18)

where all remainder terms are uniform in ζ. We show that the lower bound diverges.
The first sum in (A.18) relates to ‘outliers’, which satisfy ε2j ≥ m2

n{1 + oP(1)} for
j 6∈ ζn by Assumption 3.2(i). Thus,

∑
i∈ζ∩ζcn

ε2i ≥ m2
n#{1 + oP(1)}.

The second sum in (A.18) relates to ‘good’ errors. Let ψ1 ≤ · · · ≤ ψh be the order
statistics of ε2i for i ∈ ζn. Given θ > 0 choose 0 < ρ < θ. Since bhρc < #, then

∑
i∈ζc∩ζn

ε2i ≤
h∑

i=h+1−#

ψi =

h−bhρc∑
i=h+1−#

ψi +
h∑

i=h−bhρc+1

ψi ≤ #ψh−bhρc + hρψh.

For the first term, Assumption 3.3(ic) shows a Cρ < 1 exists so that ψh−bhρc/m
2
n ≤

Cρ + oP(1). Thus, the first term is bounded by m2
n#{Cρ + oP(1)}.

For the second term, we have ρ < θ so that hρ = o(hθ) while hθ ≤ # by construction.
Further, Assumption 3.3(ib) shows ψh/m

2
n = OP(1). Thus, the second term is bounded

by m2
n#oP(1). Overall, we get

∑
i∈ζc∩ζn ε

2
i ≤ m2

n#{Cρ + oP(1)}.
Inserting the above bounds in (A.18), we find

h(σ̂2
ζ − σ̂2

ζn)/σ ≥ m2
n#(1− Cρ){1 + oP(1)}.

Since m2
n diverges due to Assumption 3.3(ia), # ≥ hθ and Cρ < 1, then h1−θ(σ̂2

ζ−σ̂2
ζn

)→
∞ in probability.

Proof of Theorem 3.3. First, Theorem 3.2 using Assumptions 3.1 and 3.2, shows that
maxζ∈Mn #(ζ ∩ ζcn) = OP(h/m2

n).
Second, Lemma A.9 using Assumptions 3.2(i), 3.3, considers estimators σ̂2

ζ for index

sets ζ that contain a positive number of ‘outliers’, in the range, hθ ≤ #(ζ∩ζcn) ≤ Ch/m2
n

for any C > 0, 0 < θ < 1 − η. This set of ζ does not include the true set of ‘good’
observations, ζn. Lemma A.9 states that h1−θ(σ̂2

ζ − σ̂2
ζn

) diverges to positive infinity
uniformly in values of ζ in the set. Since the function (σ̂2

ζ − σ̂2
ζn

) is zero at ζn, the
considered set of ζ values cannot contain a minimizer in the limit.

In combination, all minimizers, ζ ∈Mn, satisfy maxζ∈Mn #(ζ ∩ ζcn) = OP(hθ).

A.4 Main result

Proof of Theorem 3.4. (a) Theorem 3.3, using the Assumptions 3.1, 3.2, 3.3, gives that
#(ζ ∩ ζcn) = OP(hθ) for any 0 < θ < 1. Hence, consider minimizers ζ so that #(ζ ∩
ζcn) ≤ gn = Chθ. Then, by Lemma A.1 using Assumption 3.3(id, ii), we have that
Sgn = OP(hθ+η−1). Since η < 1/2 and θ > 0 is arbitrary, we have Sgn = oP(1).

For any minimizer σ̂2
ζ − σ̂2

ζn
≤ 0. Thus we need to show that σ̂2

ζ − σ̂2
ζn
≥ −εh−1/2

with large probability for any small ε > 0. Lemma A.8, using Assumption 3.3(id, ii, iii)
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and the fact that Sgn = oP(1), gives the lower bound

h(σ̂2
ζ − σ̂2

ζn) ≥ {1 + oP(1)}
∑
i∈ζ∩ζcn

ε2i − {1 + oP(1)}
∑

i∈ζc∩ζn

ε2i + OP(1), (A.19)

where all remainder terms are uniform in ζ. First, we bound
∑

i∈ζ∩ζcn
ε2i ≥ 0. Second,∑

i∈ζc∩ζn

ε2i ≤ (max
i∈ζn

ε2i ){#(ζc ∩ ζn)} = oP(hθ+η), (A.20)

uniformly in ζ, as maxi∈ζn ε
2
i = OP(m2

n) and m2
n = oP(nη) by Assumptions 3.3(ib, id),

while #(ζc ∩ ζn) ≤ Chθ . Thus, for η < 1/2 and small θ > 0, we get, with large
probability that 0 ≥ σ̂2

ζ − σ̂2
ζn
≥ −εhθ+η−1 > −εh−1/2.

(b) We show for all ζ so that #(ζ ∩ ζcn) ≤ Chθ that

Dζ = |(
∑
i∈ζ

xinx
′
in)1/2(β̂ζ − β)− (

∑
i∈ζn

xinx
′
in)1/2(β̂ζn − β)| = oP(1).

Lemma A.7 using Assumption 3.3(iii) gives that

D2
ζ = |Aζ − Aζn|2 ≤

( ∑
i∈ζ∩ζcn

ε2i +
∑

i∈ζc∩ζn

ε2i

)
OP(Sgn) + oP(1). (A.21)

For the first sum, we use (A.19) in part (a) to bound

{1 + oP(1)}
∑
i∈ζ∩ζcn

ε2i ≤ h(σ̂2
ζ − σ̂2

ζn) + {1 + oP(1)}
∑

i∈ζc∩ζn

ε2i + OP(1), (A.22)

where all reminder terms are uniform in ζ. Insert the bound σ̂2
ζ − σ̂2

ζn
≤ 0 and use that

{1+oP(1)}−1 = 1+oP(1) and {1+oP(1)}{1+oP(1)} = 1+oP(1) while {1+oP(1)}OP(1) =
OP(1) to get the further bound∑

i∈ζ∩ζcn

ε2i ≤ {1 + oP(1)}
∑

i∈ζc∩ζn

ε2i + OP(1). (A.23)

Insert this bound into (A.21) and use Sgn = oP(1) to get

D2
ζ ≤

( ∑
i∈ζc∩ζn

ε2i

)
OP(Sgn) + oP(1). (A.24)

As noted above, Sgn = OP(nθ+η−1) and
∑

i∈ζc∩ζn ε
2
i = oP(hθ+η) in (A.20). Noting that

η < 1/2 and that θ > 0 can be chosen small, we get D2
ζ = oP(1).

B On extreme and intermediate quantiles

We verify Assumption 3.3 (i) for some common distributions. We let ε1, . . . , εn be i.i.d.
from a symmetric, unbounded distribution F with extremes ε(n) = max1≤i≤n εi and
ε(1) = min1≤i≤n εi. We write an ∼ bn if an/bn → 1 in probability.
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B.1 Extreme quantiles

If F has exponential tails, we can establish Assumption 3.3 (ib, id) as follows. It suffices
to show that ε(n)/an → 1 in probability for some increasing sequence an of logarithmic
rate, so that an = o(nη) for all η > 0. In that case, ε(1)/an → −1 by symmetry so that
max{ε2(n), ε2(1)}/min{ε2(n), ε2(1)} → 1 and Assumption 3.3 (ib, id) follows. We can check
the sufficient condition using the following multiplicative strong law of large numbers.

Lemma B.1. (Galambos, 1978, Theorem 4.4.4) Let an = inf{y : F(y) ≥ 1 − 1/n}.
Then, ε(n)/an → 1 a.s. if and only if, for any k > 1,

∞∑
n=3

{1− F(kan)} <∞. (B.1)

Example B.1. Let F be standard normal. Condition (B.1) is satisfied and an ∼√
2 log(n) (DasGupta, 2008, Example 8.13). Thus, ε2(n) ∼ 2 log(n) a.s.

Example B.2. Let F be standard Laplace. This symmetric distribution has F(x) =
1 − exp(−x)/2 for x ≥ 0 so that an = F−1(1 − 1/n) = − log(2/n) for n > 2, Thus,
1− F(kan) = (2/n)k/2 for n > 2. Since

∑∞
n=3 n

−k <∞ for k > 1 then condition (B.1)
is satisfied. We note that an ∼ log n, so that ε(n) ∼ log n a.s.

Example B.3. Let F be double geometric with f(x) = (1− p)|x|−1p/2 for x ∈ Z\{0}, so
that F(x) = 1 − (1 − p)x/2 for x ∈ N and an = blog(2/n)/ log(1 − p)c for n > 2 where
b·c is the floor. Note, an ∼ log n. We note that this distribution is not of an extremal
type. To see this, modify Example 1.7.15 for the geometric distribution in Leadbetter
et al. (1982). To apply Lemma B.1 note that bxc > x− 1 > x− log n for n > 2, so that
an > log(2/n2)/ log(1− p) = ãn for n > 2. Thus, 1− F(kan) ≤ 1− F(kãn) = (2/n2)k/2
and the argument is completed as in Example B.2.

If F has polynomial tail behaviour, we need a different argument.

Example B.4. Let F be td with d > 0 degrees of freedom. The extremal quotient
ε(n)/ε(1) converges to a non-degenerate, positive distribution with median 1 (Gumbel and
Keeney, 1950). Assumption 3.3 (ib) follows. Next, 1 − F(x) ∼ Cdx

−d for x → ∞ and
F−1(1 − 1/n) ∼ cdn

1/d for n → ∞ for some constants Cd, cd depending on d (Soms,
1976). Thus, {1− F(tx)}/{1− F(t)} → x−d for t → ∞ so that ε(n) ∼ n1/d (Galambos,
1978, Theorem 2.1.1). Assumption 3.3 (id) follows for η < 1/d.

B.2 Intermediate quantiles

We now consider the Assumption 3.3 (ic, iia) concerning intermediate quantiles.

Lemma B.2. Let ε1, . . . , εn be i.i.d. with distribution function F where inf{x : F(x) >
0} = −∞. Let n→∞ and 0 < ρ < 1. Define Cn = F−1(nρ−1/ log n)/F−1(n−1 log n). If
lim supn→∞Cn ≤ Cρ < 1 then ε(nρ)/ε(1) ≤ Cρ + oP(1).
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Proof. Theorem 1.8.1 in Leadbetter et al. (1982) with vn = F−1(n−1 log n) so that
nF(vn) = log n→∞ shows that P{ε(1) > vn} → exp(−∞) = 0.

Lemma 1 in Chibisov (1964) with an = F−1(nρ−1/ log n), x = 1, bn = 0, kn = nρ and

un(x) = {nF(anx+bn)−kn}/k1/2n shows that P{ε(kn) ≤ anx+bn}−Φ{un(x)} → 0. In our
case, un(x) = nρ/2{(log n)−1−1} → −∞, so that Φ{un(x)} → 0 and P{ε(kn) ≤ an} → 0.

Let ε > 0 be given. Consider the set An = {ε(kn)/ε(1) ≤ C + ε}. We must show that
P(An) → 1. Rewrite An = {(ε(kn)/an) < (Cvn/an)(ε(1)/vn)}. Let Bn = {ε(1)/vn ≥ 1}
and Dn = {ε(kn)/an < 1}, so that P(Bn),P(Dn)→ 1, noting that vn, an are negative. By
assumption, lim supn→∞ an/vn ≤ C. Thus, ∀ε > 0 then an/vn ≤ C+ε for large n. Hence,
(C + ε)vn/an > 1. Thus, An holds on Bn ∩ Cn, so that P(An) ≥ P(Bn ∩ Cn)→ 1.

Example B.5. Let F be standard normal. By Mill’s ratio, xΦ(x) ∼ −ϕ(x) for x→ −∞,
so that Φ−1(s−1n ) ∼ −(2 log sn)1/2 → ∞ for sn → ∞. We find, for 0 < ρ < 1, that
Cn = {log(nρ−1/ log n)/ log(n−1 log n)}1/2 ∼ (1 − ρ)1/2 = Cρ < 1. Assumption 3.3
(ic) follows by Lemma B.2. Example B.1 shows that ε2(n) ∼ 2 log n = o(nη) for any
η > 0. Thus, for all δ > 0, we can choose η so small that a ρ < 1 − η exists so that
ε2(nρ)/ε

2
(1) ≤ Cρ + oP(1) < δ and Assumption 3.3 (iia) follows.

Example B.6. Let F be Laplace. Then F(x) = exp(x)/2 for x < 0 and F−1(ψ) = log(2ψ)
for ψ < 1/2 Thus, Cn = log(2nρ−1/log n)/ log(2n−1 log n) so that Cn ∼ 1− ρ = Cρ < 1.
Assumption 3.3 (ic, iia) follow by Lemma B.2.

Example B.7. Let F be double geometric. Then F(x) = (1 − p)x/2 for x ∈ −N and
F−1(ψ) ∼ − log(2ψ)/ log(1 − p) for ψ → 0. Assumption 3.3 (ic, iia) follow by Lemma
B.2 since Cn ∼ {log(2nρ−1/ log n)}/{log(2n−1 log n)} ∼ 1− ρ = Cρ < 1.

Example B.8. Let F be the td with d degrees of freedom, so that F−1(ψ) ∼ −cdψ−1/d for
ψ → 0 and some constant cd depending on d (Soms, 1976). Thus, for any 0 < ρ < 1,
we get Cn ∼ {(nη−1/ log n)/(n−1 log n)}−1/d = n−η/d(log n)2/d → 0. Thus, by Lemma
B.2 we have that ε(nρ)/ε(1) vanishes for any ρ.

C Heteroscedastic example

Let z = x−ω be gamma distributed with shape and inverse scale of ν = p/2 and some
ω > 2. Let ε given x be N(0, 1/z). We will require that p > 4 so that x, ε have the
fourth moments needed for heteroscedastic inference.

We show that ε is tp distributed. Using a gamma integral, the density is found to be

fε(ε) =

∫ ∞
0

1√
2π/z

exp(−zε2/2)
νν

Γ(ν)
zν−1 exp(−νz)dz

=
νν

Γ(ν)
√

2π

∫ ∞
0

zν−1+1/2 exp{−z(ν + ε2/2)}dz (C.1)

=
{ νν

Γ(ν)
√

2π

}{ Γ(ν + 1/2)

(ν + ε2/2)−ν−1/2

}
=

Γ{(p+ 1)/2}
Γ(p/2)

√
πp

(1 + ε2/p)−(p+1)/2.
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We show that x = z−1/ω has a bounded density so that Assumption 3.1(iii) is satisfied
through Example 4.2. By the change-of-variable formula with mapping z 7→ z−1/ω = x,
inverse mapping x 7→ x−ω and Jacobean ωx−ω−1 then x has density

fx(x) = fz(x
−ω)ωx−ω−1 =

ωνν

Γ(ν)
x−ων−1 exp(−νx−ω).

The density is positive and continuous for x > 0 with f(x) → 0 for x → 0 since the
exponential function dominates the power function. Thus, the density is bounded.

We show that Ex4 <∞ so that Assumption 3.2(ii) is satisfied by the Law of Large
Numbers and x has the required moments. With ν = p/2 > 2 and ω > 2 we get

(Ex4)ω/2 ≤ Ex2ω = E(1/z2)

=
νν

Γ(ν)

∫ ∞
0

1

z2
zν−1 exp(−νz)dz =

{ νν

Γ(ν)

}{Γ(ν − 2)

νν−2

}
=

νν

νν−2(ν − 1)(ν − 2)
=

ν2

(ν − 1)(ν − 2)
<∞.

We study the tail behaviour of x as required in Assumption 3.3. It suffices to show
that x has thinner tails than ε. Consider n i.i.d. repetitions of x, ε. Example B.4 implies
that max1≤i≤n ε

2
i ∼ n2/p since εi is tp. Thus, we show Pn = P(max1≤i≤n x

2
i ≤ n2/p)→ 1.

Exploiting the i.i.d. structure, we get

Pn = P ∩1≤i≤n (x2i ≤ n2/p) = {P(x21 ≤ n2/p)}n = exp{n logP(x21 ≤ n2/p)}. (C.2)

Exploiting that z = x−ω where y = νz is gamma with shape ν = p/2 and scale 1 gives

P(x21 ≤ n2/p) = P(z ≥ n−ω/p) = P(y ≥ νn−ω/p)

=
1

Γ(ν)

∫ ∞
νn−ω/p

yν−1 exp(−y)dy.

Expand the gamma integral (Gradshteyn and Ryzhik, 1965, 8.354.2) to get

P(x21 ≤ n−2/p) = 1− (νn−ω/p)ν

νΓ(ν)
+ o{(n−ω/p)ν} = 1− νν−1n−ω/2

Γ(ν)
+ o(n−ω/2).

Insert in (C.2) and expand the logarithm to see that Pn → 1 when ω > 2.
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