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Abstract

The cumulant based normality test after outlier removal is analyzed. It is
shown that the standard least squares normalizations can be misleading in this
context. The sample cumulants should be standardized according to the trunca-
tion imposed at the removal stage and the estimation method being used. New
standardizations that lead to chi-squared inference are derived.

1 Introduction

Misspecification tests are frequently used in empirical studies. When the presence of
outliers is suspected, these tests are also performed after the removal of outliers. This
is useful as valid inference in regression analysis after outlier removal depends on the
distributional assumptions on the good errors. Normality is usually tested. We show
that standard cumulant-based normality tests on the clean sub-sample are not valid in
i.i.d. settings and develop test statistics that deliver χ2 inference.

Two procedures for outlier removal are considered. First, we study the robustified
least squares (RLS) procedure, where the model is first estimated using ordinary least
squares (OLS). Least squares residuals are then used to identify outliers and remove
them from the sample. Finally, OLS is applied again on the clean sub-sample. This
methodology is commonly used although it is not fully robust. It has been labelled as
the ‘data analytic strategy’ (Welsh and Ronchetti, 2002), ‘rejection-plus-least squares’
(Hadi and Simonoff, 1993), or ‘rejection-estimation procedures’ (Hampel, 1985).

Second, we consider the least trimmed squares procedure (LTS), where the model
is estimated by the LTS estimator of Rousseeuw (1984). For a given number of good
observations, say h, in a sample of size n, the LTS estimator is least squares on the h
sub-sample that minimizes the squared residuals, delivering in this way an estimated set
of outliers. The robustness properties of the LTS estimator makes this second procedure
more appealing when outliers are suspected in the first place.

Asymptotic theory for the RLS estimator with i.i.d. errors has been studied by
Johansen and Nielsen (2009). They show that asymptotic inference requires consistency
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and efficiency corrections in order to be valid. These correction factors depend on the
underlying distribution of the error term.

Asymptotic theory for the LTS estimator with i.i.d. errors has been studied by Butler
(1982), Rousseeuw (1985), Croux and Rousseeuw (1992), Č́ıžek (2005), Vı́̌sek (2006),
Johansen and Nielsen (2016b). These papers show that appropriate (albeit different
from RLS) correction factors are also required in this case. Again, these correction
factors depend on the underlying distribution of the error term.

One important aspect of the results derived in this paper is that the standard mo-
ment based normality test on the RLS or LTS residuals is not valid in an i.i.d. setting.
Specifically, we show that the standardization of the sample moments depend on the
truncation imposed at the outlier removal stage and the estimation method being used.
The intuition behind this result is easily illustrated when there is no contamination and
all errors are normally distributed. In that case, removing outliers from the sample
implies that the regression errors are truncated and their underlying distribution is no
longer normal but truncated normal. Hence, the standardizations used when assuming
(untruncated) normality are not the right ones. We derive the correct standardizations,
which bring back χ2 inference. In this sense, the analyzed statistics can be seen as tests
for truncated normality.

The intuition from the non-contamination case actually extends to contaminated
samples where the retained observations have truncated normal errors. This means
that inferences are valid under a particular type of contamination, which we term ε-tail
contamination. Specifically, in an i.i.d. setting, the errors have a distribution which is
normal in the middle but can have non-normal tails. It is a special case of an ε-Lévy
neighbourhood (Huber and Ronchetti, 2009, p. 18), but differs from the gross error
model or ε-contamination (Huber, 1964). The ε-tail contamination scheme represents the
model behind standard practice when using the LTS estimator. In practical applications
of LTS, it is common to implement correction factors for non-contaminated, normal
errors. This imposes, de facto, an ε-tail contamination structure: normality in the
retained central observations with unmodelled tails. We develop normality tests in the
LTS context that provide guidance on the validity of this choice.

In practice, one encounters many types of contamination. Bad leverage points are
particularly worrysome. The LTS regression estimator is robust with respect to such
points, whereas the RLS regression estimator is not. However, bad leverage points
cannot be generated through an i.i.d. model. Instead, Berenguer-Rico et al. (2023);
Berenguer-Rico and Nielsen (2022) propose and analyze a model termed the LTS model.
This model has a proportion of good observations with i.i.d. normal errors, while the
remaining errors have support outside the realized range of the good errors. This model
permits bad leverage points. The LTS estimator is maximum likelihood in this model
and has the same asymptotic distribution as the infeasible least squares estimator on the
good observations. These properties are rather different from those discussed above for
the i.i.d. model. It is therefore desirable to test which, if any, of the models are relevant
for the data at hand. The normality test presented in this paper addresses this empir-
ical need. The analyzed statistics will detect deviations from ε-tail contamination (or
truncated normality), hence, guiding applied researchers in their data analysis allowing
them to conduct valid subsequent inference.
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We examine the theoretical results through simulation. We show that the normal-
ity test statistics that account for truncation (or outlier removal) have empirical sizes
approaching the nominal size in large samples. This confirms the χ2 asymptotics.

We study, analytically and by simulation, the power of these statistics to detect
deviations from (truncated) normality. Specifically, we study the power of the tests
to detect Cauchy distributions, the ε-contamination scheme and the LTS model. The
simulation results show that the tests analyzed in this paper have empirical power
approaching to one (as the sample size grows) in the different models considered.

In practice, one would also need misspecification tests for other aspects of the main-
tained model. In a related analysis, Berenguer-Rico and Wilms (2021) study the effect
of outlier removal on heteroscedasticity testing and show that standard inference can be
applied if the errors are symmetric.

Outline: §2 describes the model and test statistics. §3 derives the asymptotic prop-
erties of the test statistics. The theory is explored through simulations in §4. §5 contains
an empirical illustration. Finally, §6 concludes. Proofs are collected in the Appendix.

2 Model and test statistics

We consider the linear model for

yi = β′xi + εi i = 1, . . . , n, (2.1)

where β and xi are k vectors. The variables satisfy the following structure.

Assumption 2.1. Let Fin be an array of filtrations so that Fi−1,n ⊂ Fin and εi−1, xi
are Fi−1,n-adapted. Let εi/σ be independent of Fi−1,n with distribution function F and
scale σ.

Assumption 2.1 jointly with Assumptions 3.1 or 3.2 below allow for a wide variety
of regressors that can be both dependent and/or heterogeneously distributed. These
include cross-sections, stationary, random walk and fractionally integrated time series.
Indicator variables and structural breaks are also allowed. In the time series context,
these regressors can be lagged dependent variables, hence, covering autoregressions and
error correction models. While Assumption 2.1 allows for a wide range of regressor
types, it assumes that the standardized errors are i.i.d. and independent of Fi−1,n, hence,
avoiding endogeneity and heteroscedasticity.

We define the data analytic strategy for removing outliers. Given initial estimators
β̃, σ̃, residuals ε̃i = yi − x′iβ̃ are formed. Observations satisfying |ε̃i/σ̃| ≤ c, for a user
chosen cut-off c, are selected and a regression is run on those observations so that

β̂ = {
∑n

i=1xix
′
i1(|ε̃i/σ̃|≤c)}−1

∑n
i=1xiyi1(|ε̃i/σ̃|≤c) (2.2)

This leads to updated residuals ε̂i = yi − x′iβ̂ and residual variance estimator,

σ̂2 = ς−2
c {
∑n

i=11(|ε̃i/σ̃|≤c)}−1
∑n

i=1ε̂
2
i 1(|ε̃i/σ̃|≤c), (2.3)

where the consistency factor ς2
c is defined as follows. Let

τ cp = E(ε1/σ)p1(|ε1/σ|≤c) for c > 0, (2.4)
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denote two-sided truncated moments. In particular, τ c0 = P(|ε1/σ| ≤ c). Let τp = τ∞p .
The consistency factor ς2

c in (2.3) is then defined as ς2
c = τ c2/τ

c
0 .

We note that when F = Φ is the standard normal distribution function then,

τ c2p+1 = 0, τ c2p = {(2p− 1)!!}P(χ2
2p+1 ≤ c2) for p ∈ N0, (2.5)

where the odd factorial is (2p−1)!! =
∏p

`=1(2`−1) with the convention that (2p−1)!! = 1
for p = 0. To see this, integrate up with respect to Φ, substitute u2 = v and note
Γ{(p + 1)/2} = Γ(1/2)

∏p/2
`=1{(2` − 1)/2} by the gamma functional equation. Barr and

Sherrill (1999) has similar formulas for τ c1 , τ
c
2 . Insert c = ∞ in (2.5) to get the usual

moments: τ0 = τ2 = 1, τ4 = 3, τ6 = 15, τ8 = 105. The normal density satisfies
(∂/∂u){−uϕ(u)} = (u2 − 1)ϕ(u), so that τ c2 =

∫ c
−cu

2ϕ(u)du = τ c0 − 2cϕ(c).

Table 1 gives numerical values for ς2
c under the hypothesis of normal errors without

outliers. The above estimators are referred to as 1-step Huber-skip estimators and are
analyzed in Johansen and Nielsen (2009, 2013, 2016a,b).

In §3.1, we initialize the data analytic strategy with the full sample least squares
estimator so that β̃ = β̃OLS. This gives the robustified least squares estimator and we
write β̂RLS for β̂. We note that the least squares estimator arises when c =∞. In §3.3,
we initialize with the Least Trimmed Squares estimator. In that case, we choose the
indicators in (2.2) differently, which we ignore while establishing notation.

We consider the moment based normality test on the second stage residuals ε̂i =
yi−x′iβ̂ for the retained observations. Let s denote the estimation procedure being used
and define the conditional sample moments

µ̂sp,c = {
∑n

i=11(|ε̃i/σ̃s|≤c)}−1
∑n

i=1(ε̂i/σ̂s)
p1(|ε̃i/σ̃s|≤c) for p ∈ N. (2.6)

We then study the following truncated normality test statistics

T̂ s3,c = n1/2µ̂s3,c/(λ
s
6,c)

1/2, T̂ s4,c = n1/2(µ̂s4,c − λs3,c)/(λs24,c)
1/2, (2.7)

where λs3,c, λ
s
6,c, λ

s
24,c (to be formally defined in the next section) are normalizing con-

stants that depend on the selection method.
We note that when c = ∞ there is no selection and the statistics reduce to the

standard cumulant based normality test statistics based on least squares with λOLS3,∞ = 3,
λOLS6,∞ = 6 and λOLS24,∞ = 24. The resulting test has a long history going back to Thiele,
Pearson and Fisher. In econometrics it is often called the Jarque-Bera test.

3 Asymptotic properties

In this section, we study the effect of removing outliers from the sample on the cumulant
based normality test described in §2. In practice, it is unknown whether the data are
uncontaminated or not. Therefore, we first study the uncontaminated case in §3.1. In
this context, we analyze the properties of the test when the procedure is initialized by
the OLS estimator, what we call robustified least squares (RLS). In §3.2, we introduce
a new contamination scheme, which we term ε-tail contamination. This has non-normal
tails while the central part of the distribution is normal. Then, in §3.3, we study the
properties of the test in this contaminated setting, when the procedure is initialized
robustly using the LTS estimator. Power of both tests is discussed analytically in §3.4.
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3.1 Robustified least squares

We consider the normality test based on the truncated empirical moments in (2.6) where
β̃, σ̃ are full sample least squares estimators and β̂, σ̂ are the 1-step Huber skip estimators
with residuals ε̃i = yi − x′iβ̃ and ε̂i = yi − x′iβ̂.

In the context of i.i.d. normal errors, Johansen and Nielsen (2009, 2016b) study the
asymptotic properties of the RLS estimator, β̂, and show that n1/2(β̂−β) is asymptoti-
cally N(0, ηβσ

2Σ−1) where (τ c0)2ηβ = τ c2 + {4cϕ(c)τ c2}+ {2cϕ(c)}2 depends on the cut-off

value c. This dependence is carried into the test statistics T̂RLS3,c , T̂RLS4,c .

The normalizing constants λRLS3,c , λRLS6,c , λRLS24,c , for the test statistics T̂RLS3,c , T̂RLS4,c in
(2.7) are computed as follows. Define the vectors

zc3,i =


(εi/σ)31(|εi/σ|≤c)
(εi/σ)1(|εi/σ|≤c)

(εi/σ)

 , zc4,i =


(εi/σ)41(|εi/σ|≤c) − τ c4
(εi/σ)21(|εi/σ|≤c) − τ c2

1(|εi/σ|≤c) − τ c0
(εi/σ)2 − 1

 . (3.1)

For standard normal εi, these vectors are uncorrelated. The Central Limit Theorem
shows that n−1/2

∑n
i=1 z

c
3,i and n−1/2

∑n
i=1 z

c
4,i are asymptotically normal and indepen-

dent with variances Ωc
3,Ω

c
4 given by τ c6 τ c4 τ c4

τ c4 τ c2 τ c2
τ c4 τ c2 1

 ,


τ c8 − τ c4τ c4 τ c6 − τ c2τ c4 τ c4(1− τ c0) τ c6 − τ c4
τ c6 − τ c2τ c4 τ c4 − τ c2τ c2 τ c2(1− τ c0) τ c4 − τ c2
τ c4(1− τ c0) τ c2(1− τ c0) τ c0(1− τ c0) τ c2 − τ c0
τ c6 − τ c4 τ c4 − τ c2 τ c2 − τ c0 2

 .

We compute the vectors

ζRLS3,c = {1,−3τ c2/τ
c
0 , 2(c2 − 3τ c2/τ

c
0)cϕ(c)}′, (3.2)

ζRLS4,c = {1,−2τ c4/τ
c
2 , τ

c
4/τ

c
0 , (c

4 − c22τ c4/τ
c
2 + τ c4/τ

c
0)cϕ(c)}′, (3.3)

and define the normalizations, for s = RLS,

λs3,c = τ c4/τ
c
0 , λs6,c = ζs′3,cΩ

c
3ζ
s
3,c/(τ

c
0)2, λs24,c = ζs′4,cΩ

c
4ζ
s
4,c/(τ

c
0)2. (3.4)

Numerical values are given in Table 1. We note that these normalizations depend
substantially on the choice of c.

We introduce a deterministic normalization matrix N and define xin = N ′xi. The
normalization N is chosen so that

∑n
i=1 xinx

′
in has a positive definite limit. Examples

include N = n−1/2Ik for stationary regressors, N = n−1Ik for random walk regressors,
while N = diag(n−1/2, n−3/2) if xi = (1, i)′.

Assumption 3.1. Suppose (i) εi/σ are i.i.d. N(0, 1);
(ii) maxi≤n E|n1/2xin|2+κ = O(1) for some κ > 0;

(iii) (
∑n

i=1 xinx
′
in,
∑n

i=1 xinεi)
D→ (Σ, U), where Σ

a.s.
> 0 may be random.

Theorem 3.1. Let Assumptions 2.1, 3.1 hold. Let c > 0 be fixed. Then, for p = 3, 4,

T̂RLSp,c = {(ζRLSp,c )′Ωc
p(ζ

RLS
p,c )}−1/2(ζRLSp,c )′n−1/2

∑n
i=1z

c
p,i + oP(1)

are asymptotically independent standard normal and
∑4

j=3(T̂RLSj,c )2 is asymptotically χ2
2.
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Table 1: Normality test for robust regressions. Normalization factors under normality.
τ c0 = P(|ε1/σ| < c) 0.5 0.95 0.99 0.999 0.9999 0.99999 1
c 0.67 1.96 2.58 3.29 3.89 4.42 ∞
ς−1
c 2.6477 1.1480 1.0399 1.0059 1.0008 1.0001 1
λRLS3,c = λLTS3,c 0.0379 1.3501 2.2750 2.8381 2.9709 2.9954 3
λRLS6,c 0.0111 0.8865 2.4986 4.6725 5.6472 5.9250 6
λLTS6,c 0.0041 0.8313 2.4908 4.6724 5.6472 5.9250 6
λRLS24,c 0.0012 1.1211 4.5439 12.9758 19.7877 22.7983 24
λLTS24,c 0.0013 1.6066 6.9538 16.5596 21.8304 23.5115 24

Remark 3.1. The normalizations λRLS3,c , λRLS6,c , λRLS24,c in (3.4) differ from the traditional
values 3, 6, 24. Those values are commonly applied in practice. This leads to severe size
distortions, when there are no outliers, as we compare µ̂RLS3,c and µ̂RLS4,c with N(0, 6/n)
and N(3, 24/n) distributions rather than N(0, λRLS6,c /n) and N(λRLS3,c , λRLS24,c /n). The 3rd

moment test is under-sized while the 4th moment test has asymptotic size of unity. In-
deed, suppose we set c = 2.58 corresponding to a 1% trimming and let n = 100. Incorrect
normalizations give 95% sampling regions of [−0.48, 0.48] and [2.04, 3.96] instead of the
correct [−0.30, 0.30] and [1.86, 2.69], leading to sizes of 0.24% and 13.5%, respectively.
For n = 200, 400 the 4th moment test has size 62.0% and 98.9%, respectively.

3.2 ε-tail contamination

We introduce a new contamination scheme. We term this ε-tail contamination since the
tails of the distribution are left unspecified while the central part is assumed normal.

Definition 1. Let 0 ≤ ε < 1 and let cε = Φ−1(1− ε/2) be the standard normal 1− ε/2
quantile. A distribution function that is differentiable on an open interval containing
[−cε, cε] with standard normal density on that interval is an ε-tail contaminated normal
distribution function.

The ε-tail contaminated normal distribution allows for outliers, while preserving
truncated normality. This provides an appropriate theoretical framework to test for
normality after the removal of outliers, in which both contaminated or uncontaminated
settings are allowed. It is worth noting that the definition can be extended to other
reference distributions. For instance, one could be interested in ε-tail contaminated t-
distributions. We also note that an ε-tail contaminated normal distribution need neither
be continuous nor symmetric, while the support can be bounded. It is a special case of
an ε-Lévy neighbourhood (Huber and Ronchetti, 2009, p. 18), but differs from the gross
error model, also called ε-contamination, which has support on R (Huber, 1964).

3.3 Least trimmed squares

Next, we initialize the data analytic strategy robustly with the LTS estimator. The LTS
estimator is defined as follows (Rousseeuw, 1984). The user chooses a h ≤ n. For a
given β compute the absolute residuals ξi(β) = |yi−x′iβ| with increasing order statistics
ξ(i)(β). The LTS estimator is then the minimizer β̃LTS = arg minβ

∑h
i=1 ξ

2
(i)(β).
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If we let ξ̃i = ξi(β̃LTS) with order statistics ξ̃(i) we can write the LTS estimator as

β̃LTS − β =
[ n∑
i=1

xix
′
i1{ξ̃i≤ξ̃(h)}

]−1
n∑
i=1

xiεi1{ξ̃i≤ξ̃(h)}. (3.5)

The corresponding scale estimator includes the consistency factor ς2
c = τ c2/τ

c
0 :

σ̃2
LTS = (τ c0/τ

c
2)
[ n∑
i=1

1{ξ̃i≤ξ̃(h)}

]−1
n∑
i=1

(yi − x′iβ̃LTS)21{ξ̃i≤ξ̃(h)}. (3.6)

We now consider the data analytic strategy initialized by the LTS estimator. Replace
β̃ and σ̃c with β̃LTS and ξ̃(h) = ξ(h)(β̃LTS) in (2.2) and (2.3), respectively. This selects

the same observations as before, so that β̂LTS = β̃LTS and σ̂LTS = σ̃LTS.
Robust estimators are often scaled to be consistent in normal samples. The validity

of this scaling depends on the assumed model for the regression errors. As LTS trims
the tails, the scaling is valid when the central part of the error distribution is truncated
normal. This is the case of the ε-tail contamination where the full set of errors are
i.i.d. as described in §3.2. In contrast, if the retained observations are i.i.d. untruncated
normal as in the LTS model of Berenguer-Rico et al. (2023), scaling should not be used.
Here, we focus on the ε-tail contaminated case, but return to the LTS model in the
power simulations in §4.2.3.

The available theory for the LTS estimator in an i.i.d. setting shows that under
certain regularity conditions, n1/2(β̃LTS − β) is asymptotically normal with a variance
depending on the error distribution. In particular, for the case of normal errors the limit-
ing distribution is N(0,Σ−1σ2/τ c2). This is proved by Butler (1982) for the location-scale
case where the errors have a smooth distribution function. The case with regressors is
analyzed by Č́ıžek (2005), Vı́̌sek (2006), requiring that the errors are symmetric with
smooth distribution function and fourth moments, fixed regressors and boundedness of
the estimator. All these papers have i.i.d. errors and allow ε-tail contamination. Re-
cently, Berenguer-Rico and Nielsen (2022) have given general conditions for bounded-
ness. In line with these results, we assume the following high level asymptotic expansion.

Assumption 3.2. Let h be the largest integer not exceeding n{Φ(c)−Φ(−c)}. Suppose
(i) εi/σ are ε-tail contaminated normal and 0 < c < cε;
(ii) maxi≤n E|n1/2xin|2+κ = O(1) for some κ > 0;

(iii) (Σn, Un) = {
∑n

i=1 xinx
′
in,
∑n

i=1 xinεi1(|εi/σ|≤c)}
D→ (Σ, U) and Σ

a.s.
> 0;

(iv) The LTS estimator has expansion N−1(β̃LTS − β) = (τ c2Σn)−1Un + oP(1).

In the LTS case, we define T̂LTS3,c , T̂LTS4,c in (2.7) using the cut-off ξ̃(h) instead of σ̃c,

ζLTS3,c = {1, 2c3ϕ(c)/τ c2 − 3, 0}′, (3.7)

ζLTS4,c = {1,−2τ c4/τ
c
2 , 2c

2τ c4/τ
c
2 − c4, 0}′, (3.8)

and normalizations λLTS as in (3.4) that are tabulated in Table 1. For larger values of
c, the values for RLS and LTS are not that different.

Theorem 3.2. Suppose Assumption 2.1, 3.2. Let c be fixed. Then, for p = 3, 4,

T̂LTSp,c = {(ζLTSp,c )′Ωc
p(ζ

LTS
p,c )}−1/2(ζLTSp,c )′n−1/2

∑n
i=1z

c
p,i + oP(1)

are asymptotically independent standard normal and
∑4

j=3(T̂LTSj,c )2 is asymptotically χ2
2.
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3.4 Power

We consider the power of the kurtosis test based on T̂ s4,c = n1/2(µ̂s4,c − λs3,c)/(λs24,c)
1/2.

Suppose the alternative hypothesis of interest is a distribution F. Write λs3cΦ and λs24cΦ

for λs3,c and λs24,c, respectively, and let λs3cF be the corresponding limiting term under F.
Then, rewrite the kurtosis statistic as

T̂ s4c =
n1/2(µ̂s4c − λs3cF)

(λs24cΦ)1/2
+
n1/2(λs3cF − λs3cΦ)

(λs24cΦ)1/2
. (3.9)

The first term in (3.9) is properly demeaned under the alternative distribution F. Hence,
this term converges. The second term in (3.9) is a non-centrality term. The test is
consistent when λs3cF 6= λs3cΦ.

Next, we study local power by analyzing the non-centrality term for the two proce-
dures considered above, RLS and LTS. Suppose that the alternative of interest is that
the innovations εi/σ are i.i.d. with a symmetric, continuous, ε-contaminated distribution
function F = (1− ε)Φ + εG with four moments and satisfying a local Lipschitz condition
in neighbourhoods of the cut-off c, see Remark A.1. Such distributions are covered by
the LTS theory by Č́ıžek (2005) and Vı́̌sek (2006) and the present appendix.

Let τ cpΦ and τ cpG denote the truncated moments under normality and under G. For
the RLS procedure, the numerator of the non-centrality term satisfies

n1/2(λRLS3cF − λRLS3cΦ ) = n1/2ε
τ c4Φ

τ c0Φ

[(τ c4G
τ c4Φ

− 2
τ c2G
τ c2Φ

+
τ c0G
τ c0Φ

)
+ cf(c)

{
(τ∞2G)1/2 − 1

}( c4

τ c4Φ

− 2
c2

τ c2Φ

+
1

τ c0Φ

)]
+ o(n1/2ε), (3.10)

see the derivation in (D) in Appendix D. Similarly, for the LTS procedure the numerator
of the non-centrality terms satisfies, see (D.3) in Appendix D,

n1/2(λLTS3cF − λLTS3cΦ ) = n1/2ε
τ c4Φ

τ c0Φ

(τ c4G
τ c4Φ

− 2
τ c2G
τ c2Φ

+
τ c0G
τ c0Φ

)
+ o(n1/2ε). (3.11)

The results show that, for both procedures RLS and LTS, the relevant local power
rate for ε is n−1/2 as in Heretier and Ronchetti (1994). It is interesting to note that
the RLS expression has an additional term relative to the LTS expression. This has
consequences for power properties. We illustrate them with a few examples.

First, suppose that G = Φ so that F = Φ and, hence, there is no contamination.
In this case τ cpG = τ cpΦ and τ∞2G = 1, so that both non-centrality terms are zero. This
matches the results in Theorem 3.1 and Theorem 3.2 with ε = 0.

Second, suppose G is ε-tail contaminated normal with τ∞2G 6= 1. Thus, G has a normal
density on the interval [−c, c]. In this case τ cpG = τ cpΦ and the non-centrality parameter
for the LTS procedure is zero. This matches the result in Theorem 3.2. Note however
that since f(c) = ϕ(c) 6= 0 and τ∞2G 6= 1 the non-centrality parameter for the RLS statistic
is non-zero, so that it declares G as contamination.

Third, suppose G only has probability mass in the tails with zero probability for the
interval [−c, c] and c > 1. In this case τ cpG = 0 while f(c) = (1− ε)ϕ(c) and τ∞2G > c2 > 1.
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Thus, the non-centrality term is zero for the LTS statistic but non-zero for the RLS
statistic. The conclusions are the same as in case two.

Finally, suppose G has a general form so that τ cpG is neither zero nor τ cpΦ. In this case
both tests will have power.

4 Simulations

For i = 1, ..., n let yi = 1 + xi + εi where xi is scalar, i.i.d. N(0, 1) and independent
of εi. To illustrate the above results, we consider different models for εi. Throughout,
we use a significance level of 5%. The number of replications is 106 when using the
OLS procedure and 104 when using the computationally intensive LTS procedure. All
simulations are run in Matlab. LTS is implemented using mlts.m (Argullo et al., 2008).

4.1 Size

We start by considering Theorem 3.1, where there is no contamination and the robusti-
fied least squares (RLS) procedure is used. Hence, in the first data generating process
(DGP 1) εi is i.i.d.N(0, 1). The empirical size of the normality test is reported in the
upper panel of Table 2. We consider sample sizes n = {50, 100, 200, 400, 800, 1600} and
cut-off values c = {0.67, 1.03, 1.96, 2.58, 3.29, 3.89, 4.42}. In small samples, the empirical
size varies with the cut-off values, c, but approches the nominal value of 5% in larger
samples. Overall, these results indicate that the test, when properly normalized using
the standardizations derived in Theorem 3.1, has the expected size properties.

Next, we consider Theorem 3.2, where the errors are ε-tail contaminated normal and
the LTS procedure is used. We start by choosing ε = 0, so that there is actually no con-
tamination and the errors are standard normal as in DGP 1. We use the LTS procedure
with a trimming proportion, γ = {0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01}. This corresponds to
retaining h = n(1 − γ) observations in the LTS estimation. To avoid rounding in the
implementation of the LTS procedure, we only report results when h = n(1 − γ) is an
integer and omit the combinations (0.05,50) and (0.01,50). The empirical size of the
normality test is reported in the lower panel of Table 2. A pattern similar to the RLS
procedure is observed, indicating that the size of the test is controlled, for large samples,
when using the normalizing constants derived in Theorem 3.2.

With DGPs 2-8 and Table 3, we study the performance of the LTS procedure under
ε-tail contamination, as analyzed in Theorem 3.2. We consider seven contamination pro-
portions ε = {0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01}. Let vi be standard normal and ηi standard
exponential. Let λε = {1 − Φ(cε)}/φ(cε) with Φ and φ denoting the standard normal
CDF and PDF, respectively. Then, the errors εi = vi1(|vi|<cε) +(cε+λεηi)sgn(vi)1(|vi|>cε)
have distribution function satisfying P(εi ≤ v) = Φ(v) for |v| ≤ cε and P(εi ≤ v) =
1 − {1 − Φ(vε)} exp{−(v − cε)/λ} for v > cε. The density is normal in the centre and
thus ε-tail contaminated so that Assumption 3.2(i) holds.

Empirical sizes of the LTS normality test are reported in Table 3. As expected, the
empirical size approaches the nominal size as the sample size grows, supporting that
the normalizing constants derived in Theorem 3.2 deliver χ2 inference, also in the ε-tail
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Table 2: Size of RLS & LTS procedures. DGP 1.
n=50 100 200 400 800 1600

RLS(c) 0.67 0.142 0.109 0.084 0.068 0.059 0.055
1.03 0.104 0.081 0.067 0.059 0.055 0.052
1.96 0.057 0.054 0.053 0.051 0.050 0.050
2.58 0.043 0.046 0.048 0.049 0.049 0.049
3.29 0.044 0.043 0.045 0.047 0.048 0.048
3.89 0.043 0.046 0.046 0.046 0.048 0.048
4.42 0.038 0.044 0.046 0.047 0.048 0.048

LTS(γ) 0.5 0.085 0.069 0.058 0.045 0.046 0.049
0.4 0.071 0.059 0.053 0.048 0.053 0.054
0.3 0.070 0.055 0.056 0.052 0.047 0.050
0.2 0.062 0.048 0.052 0.049 0.049 0.053
0.1 0.052 0.050 0.049 0.053 0.050 0.048
0.05 0.049 0.052 0.051 0.052 0.050
0.01 0.051 0.051 0.051 0.052 0.050

εi is i.i.d.N(0, 1). c is the cut-off value for the RLS procedure. γ
is the trimming proportion for the LTS procedure.

contaminated case. Values of γ that trim the sample more than ε will deliver more
favourable sizes. Here, we focus on the most stringent case where γ = ε.

Table 3: Size of the LTS(γ) procedure. DGPs 2-8.
DGPs γ n = 50 100 200 400 800 1600

2 0.5 0.088 0.069 0.057 0.054 0.055 0.054
3 0.4 0.079 0.060 0.060 0.051 0.051 0.050
4 0.3 0.071 0.060 0.053 0.053 0.050 0.048
5 0.2 0.063 0.058 0.056 0.054 0.049 0.050
6 0.1 0.053 0.051 0.051 0.048 0.053 0.053
7 0.05 0.051 0.051 0.050 0.047 0.048
8 0.01 0.053 0.054 0.054 0.051 0.051
εi is i.i.d. ε-tail contaminated normal with ε = γ.

Table 4: RLS(c) procedure. DGP 2.
DGPs c n = 50 100 200 400 800 1600 5000

2 0.67 0.139 0.110 0.089 0.080 0.082 0.098 0.193
εi is i.i.d. ε-tail contaminated normal with ε = 2{1− Φ(c)}.

The power analysis in Section 3.4 revealed that the RLS procedure declares the ε-tail
model as contamination. The simulations of DGP 2 reported in Table 4 confirm this.
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4.2 Power

Previous studies have simulated the power of the standard cumulant normality test
for full sample OLS residuals. For instance, Jarque and Bera (1987) considered Beta,
Student’s t, Gamma and Log-normal distributions while Thadewald and Büning (2007)
considered the ε-contamination model of Huber (1964). Thus inspired, we consider the
power of the RLS and LTS procedures for the following error distributions: Cauchy; the
ε-contamination model; and the LTS model of Berenguer-Rico et al. (2023). We use the
asymptotic critical values from Theorems 3.1 and 3.2.

4.2.1 Cauchy distribution

In DGP 9, εi is Cauchy distributed. Table 5 reports power results. The RLS procedure
is very powerful even in small samples. In contrast, the empirical power of the LTS
procedure depends highly on the trimming parameter γ. For γ = 0.5 or γ = 0.4, the
procedure requires larger samples to achieve adequate levels of rejection frequencies.
When γ ≤ 0.1 more observations of the fat tails of the distribution are retained and the
power is high in small samples.

Table 5: Power of RLS & LTS procedures. DGP 9.
n = 50 100 200 400 800 1600

RLS(c) 0.67 0.914 0.994 1.000 1.000 1.000 1.000
1.03 0.971 0.999 1.000 1.000 1.000 1.000
1.96 0.989 1.000 1.000 1.000 1.000 1.000
2.58 0.983 0.999 1.000 1.000 1.000 1.000
3.29 0.973 0.999 1.000 1.000 1.000 1.000
3.89 0.972 0.999 1.000 1.000 1.000 1.000
4.42 0.975 0.999 1.000 1.000 1.000 1.000

LTS(γ) 0.5 0.106 0.110 0.156 0.275 0.519 0.845
0.4 0.144 0.215 0.395 0.684 0.951 0.999
0.3 0.284 0.497 0.808 0.981 1.000 1.000
0.2 0.591 0.867 0.989 1.000 1.000 1.000
0.1 0.904 0.993 1.000 1.000 1.000 1.000
0.05 0.999 1.000 1.000 1.000 1.000
0.01 1.000 1.000 1.000 1.000 1.000

εi is i.i.d.t1.

4.2.2 ε-contamination

In DGP 10, εi ∼ (1− ε)N(0, 1) + εN(2, 9) with ε = 0.2, so the errors are ε-contaminated
in the sense of Huber (1964). Table 6 reports power results. First, as expected, the
empirical power of the RLS procedure increases with sample size and cut-off, c. When
n = {50, 100} the procedure has low power for small values of c. In larger samples, say
n ≥ 800, the procedure attains empirical power of (nearly) one for all c. Second, the
empirical power of the LTS procedure depends highly on the trimming parameter γ.
For γ = 0.5, the empirical power remains low even when n = 1600. When γ = 0.5, the
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Table 6: Power RLS & LTS procedures. DGP 10.
n = 50 100 200 400 800 1600

RLS(c) 0.67 0.248 0.330 0.493 0.749 0.956 0.999
1.03 0.389 0.583 0.825 0.978 0.999 1.000
1.96 0.650 0.877 0.986 0.999 1.000 1.000
2.58 0.708 0.922 0.994 1.000 1.000 1.000
3.29 0.757 0.953 0.998 1.000 1.000 1.000
3.89 0.804 0.971 0.999 1.000 1.000 1.000
4.42 0.837 0.980 0.999 1.000 1.000 1.000

LTS(γ) 0.5 0.085 0.071 0.061 0.059 0.065 0.064
0.4 0.080 0.069 0.066 0.067 0.085 0.114
0.3 0.077 0.077 0.083 0.111 0.171 0.290
0.2 0.113 0.131 0.190 0.308 0.535 0.820
0.1 0.359 0.517 0.725 0.921 0.995 1.000
0.05 0.867 0.979 0.999 1.000 1.000
0.01 0.985 0.999 1.000 1.000 1.000

εi ∼ (1− ε)N(0, 1) + εN(2, 9) with ε = 0.2.

LTS procedure trims 50% of the sample although there is only ε = 20% contamination.
Hence, the low power. For γ = 0.3, the empirical power grows only slowly with the
sample size. For smaller trimming proportions, γ ≤ 0.2, the LTS procedure performs
much better with empirical power close to one for n = 100 or larger.

4.2.3 LTS Model

In DGP 11, the error term follows the LTS model of Berenguer-Rico et al. (2023). This
is a model where LTS is maximum likelihood. Errors satisfy the following structure.
Let ζ be a set with h = nε elements from 1, ..., n with ε = 0.8. For i ∈ ζ, let εi be i.i.d.
N(0, 1). For j 6∈ ζ, let ξj be i.i.d. with distribution function Gj(x) for x ∈ R where Gj is
continuous at 0. The outlier errors are

εj = (max
i∈ζ

εi + ξj)1(ξj>0) + (min
i∈ζ

εi + ξj)1(ξj<0). (4.1)

The LTS model differs from ε-tail contamination as introduced in §3.2. The ε-
tail contamination model has i.i.d. errors and the uncontaminated part is truncated
normal. The LTS models does not have i.i.d. errors due to the construction (4.1), but
the uncontaminated part is (untruncated) normal.

To study the power, we set ξj−ν+1(ξj>0) +ν−1(ξj<0) to be i.i.d. N(0, 1). We consider
two cases. First, we let ν+ = ν− = 0 so that there is no separation between good and
outlier observations. Second, we let ν+ = 3 and ν− = −1 to allow for separation.

Table 7 reports power results for DGP 11, when ν+ = ν− = 0. The RLS procedure is
not very powerful in small samples but power tends to one as the sample size increases
for all cut-off values c. The empirical power is low for the LTS procedure when γ = 0.5,
even when n = 1600. For smaller values of γ, the power approaches one in the larger
sample sizes considered.
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Table 7: Power of RLS & LTS procedures. DGP 11.
n = 50 100 200 400 800 1600

RLS(c) 0.67 0.186 0.204 0.278 0.479 0.812 0.990
1.03 0.287 0.456 0.748 0.973 0.999 1.000
1.96 0.384 0.807 0.993 1.000 1.000 1.000
2.58 0.187 0.512 0.922 0.999 1.000 1.000
3.29 0.100 0.234 0.558 0.943 0.999 1.000
3.89 0.066 0.153 0.357 0.780 0.995 1.000
4.42 0.057 0.133 0.308 0.705 0.989 1.000

LTS(γ) 0.5 0.084 0.078 0.069 0.072 0.092 0.138
0.4 0.085 0.079 0.099 0.127 0.224 0.421
0.3 0.105 0.143 0.239 0.435 0.732 0.960
0.2 0.258 0.610 0.949 0.999 1.000 1.000
0.1 0.307 0.787 0.993 1.000 1.000 1.000
0.05 0.668 0.983 1.000 1.000 1.000
0.01 0.320 0.778 0.996 1.000 1.000

εi ∼ LTS model with h = nε, ε = 0.8. No separation: ν+ = ν− = 0

Table 8: Power of RLS & LTS procedures. DGP 11.
n = 50 100 200 400 800 1600

RLS(c) 0.67 0.362 0.554 0.835 0.990 1.000 1.000
1.03 0.620 0.880 0.993 1.000 1.000 1.000
1.96 0.987 1.000 1.000 1.000 1.000 1.000
2.58 0.973 0.999 1.000 1.000 1.000 1.000
3.29 0.865 0.998 1.000 1.000 1.000 1.000
3.89 0.742 0.985 1.000 1.000 1.000 1.000
4.42 0.698 0.973 1.000 1.000 1.000 1.000

LTS(γ) 0.5 0.084 0.078 0.069 0.073 0.092 0.138
0.4 0.088 0.079 0.100 0.127 0.224 0.421
0.3 0.112 0.144 0.239 0.435 0.732 0.960
0.2 0.505 0.823 0.986 0.999 1.000 1.000
0.1 0.986 1.000 1.000 1.000 1.000 1.000
0.05 1.000 1.000 1.000 1.000 1.000
0.01 0.999 1.000 1.000 1.000 1.000

εi ∼ LTS model with h = nε, ε = 0.8. Separation: ν+ = 3, ν− = −1.

Table 8 reports power results for DGP 11, when ν+ = 3 and ν− = −1. RLS is
markedly more powerful with separation than without for all values of c, n. The LTS
procedure is also notably more powerful for γ ≤ 0.2. For most values of c, in the RLS
case, or γ, in the LTS case, the power approaches one even in moderate sample sizes.
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Figure 1: Star data and fit by LTS for different h. Log light intensity against log
temperature. Bullets are estimated good observations for h = 42. Circle with cross is
the F -star. Two bullets with crosses are declared outliers by RLS procedure.

5 Empirical illustration

We illustrate the test for truncated normality using the stars data of Rousseeuw and
Leroy (1987, Table 2.3). For further discussion, see also Berenguer-Rico et al. (2023),
BR23 henceforth. Figure 1 shows observations on log light intensity and log temperature
for the Hertzsprung-Russell diagram of the star cluster CYG OB1 containing n = 47
stars. From the right, the first four stars are giant of M -type, the fifth star is of F -type,
the next 31 stars (1 doublet) are of B-type, and the last 11 stars (1 doublet) are of O-
type. We apply the suggested tests for truncated normality noting that the power will
be low in a sample as small as this. Hence, detecting departures from the null requires
strong evidence against truncated normal errors.

We start with the robustified least squares procedure, RLS. The initial least squares
estimators are

log.light
(seOLS)

[t−statOLS ]

= 6.79
(1.21)

[5.61]

− 0.41
(0.28)

[−1.48]

log.Te. (5.1)

The full sample OLS estimation is influenced by the M -stars. Proceeding with a cut-off
of c = 1.96, which is the normal 97.5% quantile, RLS declares that observations 14 and
17, marked with circles and crosses in Figure 1, are outliers. The RLS estimates are

log.light
(seRLS)

[t−statRLS ]

= 7.34
(1.44)

[5.08]

− 0.53
(0.33)

[−1.58]

log.Te, T normRLS = 4.83. (5.2)

Thus, the RLS estimation remains influenced by the M -stars in line with the analysis of
Welsh and Ronchetti (2002). The test statistic for truncated normality is asymptotically
χ2

2 with 90% quantile of 4.60 and 95% quantile of 5.99. Hence, the test T normRLS = 4.83
rejects at the 10% significance level, showing some evidence against the null.

We now turn to the LTS procedure. Figure 1 shows lines fitted by LTS for different
values of h. There is not much difference between the fits for h = 25 and h = 42. The
slope starts turning from h = 42 onwards. The four M -stars are arguebly bad leverage
points. The F -star may also be an outlier, but can have a masking effect (BR23).
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For inference, we will refer to two models, both depending on the choice of h. The
truncated normal model is an i.i.d. ε-tail contaminated model where the central h ob-
servations are truncated normal. In the LTS model, the central h observations are
untruncated i.i.d. normal (BR23). These models require different scale estimators. We
let σ̂trunc be the scale estimator in the ε-tail contaminated model and σ̂LTS the scale
estimator in the LTS model. More specifically, σ̂trunc is the standard LTS estimates with
a consistency correction as in (2.3), while σ̂LTS has no consistency correction.

Trunc. model LTS model

h ψ β̂1 β̂2 σ̂trunc T normtrunc σ̂LTS T normLTS

25 0.50000 -13.62 4.22 0.48 2.45 0.18 1.72
36 0.75000 -11.49 3.71 0.46 1.97 0.27 1.98
37 0.77274 -9.00 3.16 0.46 3.60 0.28 2.49
40 0.84092 -8.58 3.07 0.45 2.44 0.31 2.13
41 0.83365 -8.50 3.05 0.46 2.35 0.33 1.26
42 0.88638 -7.40 2.80 0.49 5.82 0.37 0.39
43 0.90910 -4.06 2.05 0.51 0.52 0.40 0.69
44 0.93183 1.89 0.70 0.59 2.78 0.49 0.49
45 0.95456 7.34 -0.53 0.60 5.54 0.51 2.94
46 0.97728 6.92 -0.44 0.59 4.99 0.53 2.74
47 1.00000 6.79 -0.41 0.56 3.40 0.55 2.75

Table 9: Estimates by LTS for the full sample.

Trunc. model LTS model

h ψ β̂1 β̂2 σ̂trunc T normtrunc σ̂LTS T normLTS

25 0.52274 -13.62 4.22 0.48 3.11 0.18 1.72
36 0.77274 -11.49 3.71 0.45 2.12 0.27 1.98
37 0.79546 -9.00 3.16 0.44 3.78 0.28 2.49
40 0.86365 -8.58 3.07 0.43 2.67 0.31 2.13
41 0.88637 -8.50 3.05 0.44 1.04 0.33 1.26
42 0.90910 -7.40 2.80 0.47 4.57 0.37 0.39
43 0.93183 7.88 -0.65 0.60 4.79 0.49 2.57
44 0.95456 7.74 -0.62 0.59 5.20 0.51 2.76
45 0.97728 7.58 -0.59 0.59 4.99 0.53 2.73
46 1.00000 7.12 -0.49 0.56 3.45 0.55 2.83

Table 10: Estimates by LTS for the sample excluding the F -star.

Table 9 shows the estimated coefficients when fitting LTS for different h values. Two
test statistics are reported, T normtrunc and T normLTS . Both combine third and fourth residual
cumulants. T normtrunc uses the new normalizations for the truncated normal model. T normLTS

has the standard normalizations and tests for untruncated normality of the good errors
in the LTS model. Both test statistics are asymptotically χ2

2 with 90% quantile of 4.60
and 95% quantile of 5.99. It should be noted that T normLTS has not been analyzed formally
under the LTS model. The test statistics should be interpreted in a pointwise fashion.
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Table 10 is applied to the sample where the F -star is removed. Otherwise, it has
the same structure as Table 9. This is to disentangle the masking effect of the F star
already pointed out in BR23.

We need to assume a model to conduct inference. Given the doublets, the data
are not consistent with the assumption of a continuous distribution. Most likely, the
doublets arise from rounding, so we disregard this point. Given the graphical evidence
in Figure 1 of having four potential outliers in this data set, the M -stars, we start
by considering a truncated normal model with h = 43. The LTS estimator declares,
precisely, the four M -stars as outliers in this case. The test for truncated normality in
Table 9 with h = 43 is T normtrunc = 0.52, therefore, it does not reject. Removing the F -star
from the sample alters this conclusion. The test based on Table 10 with h = 42 gives
T normtrunc = 4.57, which rejects the null hypothesis at the 10% significance level, giving
some evidence against the null. This suggests a masking effect of the F -star. Including
the possibly outlying F -star as good introduces noise and may explain these differences.

Given these results, next we consider a truncated normal model with h = 42 leaving
the four M -stars and the F -star as outliers. Table 9 has T normtrunc = 5.82. Again, it
rejects the null hypothesis of truncated normality at the 10% significance level. The
test statistic is actually very close to the critical value at 5% significance level, showing
stronger evidence against the null.

Finally, we consider an (untruncated) LTS normal model with h = 42. Tables 9, 10
both have T normLTS = 0.39, so that normality cannot be rejected. Moreover, BR23 suggest
that for LTS location-scale models, h can be estimated consistently by minimizing T normLTS

over h. Both tables have h = 42 as minimizer. This conclusion is clearest in Table 10
and somewhat fragile in Table 9, possibly due to a masking effect of the F -star.

Overall, there is some evidence against the two truncated normal models, whereas
the LTS model cannot be rejected. With h = 42, the estimated truncated normal model
and LTS model along with both sets of standard errors and t-statistics are

log.light
(seLTS)/[t−statLTS ]

(setrunc)/[t−stattrunc]

= − 7.40
(2.09)/[−3.54]

(3.43)/[−2.16]

+ 2.80
(0.48)/[5.09]

(0.78)/[3.59]

log.Te. (5.3)

Going along with the suggestion that the tests for normality and truncated normality
give more confidence in the LTS model than the ε-tail contamination model, we should
favour the smaller standard errors and larger t-statistic marked LTS, which gives more
confidendence that the slope is significant than those marked trunc.

6 Discussion

Conducting inference on the unknown parameters of regression models when accounting
for the presence of outliers requires knowledge of the distributional properties of the data
at hand. Normality of the good errors is often considered in practice. Yet, the good
errors could be truncated normal, as implicitly assumed by standard practice when using
the LTS estimator of Rousseeuw (1984), or untruncated normal as in the LTS model
of Berenguer-Rico et al. (2023); Berenguer-Rico and Nielsen (2022). Test statistics
that deliver valid inference differ in each model. Hence, assessing which model better
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describes a given dataset is key in applied work. We have derived a test for truncated
normality of the good errors that delivers standard χ2 inference. We have applied the
test statistic to the stars data of Rousseeuw and Leroy (1987, Table 2.3) and found some
evidence against truncated normality and in favour of untruncated normal good errors.

A Empirical processes

A.1 The main empirical process results

We are interested in the weighted and marked empirical distribution functions, for c > 0,

Ĝq,pn (c) = n−1
∑n

i=1(n1/2xin)⊗q(ε̂i/σ̂)p1(|ε̃i/σ̃|≤c), (A.1)

where v⊗0 = 1, v⊗1 = v, v⊗2 = vv′ for the vector v = n1/2xin. We refer to win =
(n1/2xin)⊗q as the weight and to (ε̂i/σ̂)p as the mark. We will use the (q, p)-combinations

Q = {(0, 0), (0, 2), (0, 3), (0, 4), (1, 1)} as well as (2, 0). (A.2)

Define the normalized estimation errors ã = n1/2(σ̃ − σ)/σ and b̃ = N−1(β̃ − β)/σ,
so that x′i(β̃ − β) = x′inb̃σ. Similarly, define â = n1/2(σ̂ − σ)/σ and b̂ = N−1(β̂ − β)/σ.
The standardized residuals satisfy

ε̃i
σ̃

=
yi − x′iβ̃

σ̃
=
εi − x′iNN−1(β̃ − β)

σ + n−1/2n1/2(σ̃ − σ)
=
εi/σ − x′inb̃
1 + n−1/2ã

.

Let θ̃ = (ã, b̃, â, b̂) and Gq,pn (θ̃, c) = Ĝq,pn (c). When analyzing Gq,pn (θ̃, c), we can replace θ̃
with deterministic values θ = (a1, b1, ap, bp) varying in some set due to the next result.
Subscripts indicate association with indicator or mark.

Lemma A.1. If ∀ε > 0, ∃ a compact set Θ so limn→∞ P(θ̃ ∈ Θc) < ε then P{|Gn(θ̃, c)| >
ε} ≤ P{supθ∈Θ |Gn(θ, c)| > ε}+ ε for large n.

Proof. Intersect the set {|Gn(θ̃, c)| > ε} with the set (θ̃ ∈ Θ) and its complement.

The processes of interest are therefore, with win = (n1/2xin)⊗q and εσi = εi/σ,

Gq,pn (θ, c) = n−1
∑n

i=1win

( εσi − x′inbp
1 + n−1/2ap

)p
1(|εσi −x′inb1|≤c+n−1/2a1c), (A.3)

G
q,p

n (θ, c) = n−1
∑n

i=1winEi−1

( εσi − x′inbp
1 + n−1/2ap

)p
1(|εσi −x′inb1|≤c+n−1/2a1c), (A.4)

where Ei−1 is the Fi−1,n conditional expectation. The weights win are Fi−1,n adapted.
In particular, using (2.4), we have

G
0,p

n (0, c) = E(εσi )p1(|εσi |≤c) = τ cp . (A.5)

Next, define the empirical process

Gq,p
n (θ, c) = n1/2{Gq,pn (θ, c)− G

q,p

n (θ, c)}, (A.6)
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which is a martingale. Define also the bias terms

Gq,p1n (θ, c) = 2cpϕ(c)n−1
∑n

i=1(n1/2xin)⊗q{1(p even)ca1 + 1(p odd)n
1/2x′inb1}, (A.7)

Gq,pmn(θ, c) = pn−1
∑n

i=1(n1/2xin)⊗q{1(p even)τ
c
pap + 1(p odd)τ

c
p−1n

1/2x′inbp}. (A.8)

The asymptotic analysis requires the next assumption. Remark A.1 below outlines how
part (i) can be relaxed.

Assumption A.1. Suppose Assumption 2.1 and
(i) εσi = εi/σ are ε-tail contaminated normal and 0 < c < cε,
(ii) max1≤i≤n E|n1/2xin|2+κ = O(1) for some κ > 0.

We will need the following asymptotic results.

Theorem A.2. Suppose Assumption A.1(ii). Let q = 0, 1, 2 and p = 0, 1, . . . , 4. Then
(a) Gq,p

n (0, c) = oP(n1/2);
(b) G

q,p

n (0, c) = n−1
∑n

i=1 winτ
c
p = OP(1).

Theorem A.3. Suppose Assumption A.1, then for all B > 0,
(a) sup|θ1|<B |G

2,0
n (θ1, c)− G2,0

n (0, c)| = oP(1);

(b) sup|θ1|<B |G
2,0

n (θ1, c)− G
2,0

n (0, c)| = oP(1).

Theorem A.4. Suppose Assumption A.1. Let (q, p) ∈ Q. Then, ∀B > 0,
(a) sup|θ|≤B |Gq,p

n (θ, c)−Gq,p
n (0, c)| = oP(1),

(b) sup|θ1|≤B |n
1/2{Gq,pn (θ, c)− G

q,p

n (0, c)} − {Gq,p1n (θ, c)− Gq,pmn(θ, c)}| = oP(1).

To see the usefulness of Theorem A.4 decompose

n1/2{Gq,pn (θ, c)− G
q,p

n (0, c)} = n1/2{Gq,pn (0, c)− G
q,p

n (0, c)}
+ Gq,p

n (θ, c)−Gq,p
n (0, c) + n1/2{Gq,pn (θ, c)− G

q,p

n (0, c)}. (A.9)

Combining the two statements of Theorem A.4, we get

n1/2{Gq,pn (θ, c)−Gq,pn (0, c)} = n1/2{Gq,pn (0, c)−Gq,pn (0, c)}+{Gq,p1n (θ, c)−Gq,pmn(θ, c)}+oP(1).
(A.10)

In turn, normalizing and applying Theorem A.2, we get

Gq,pn (θ, c) = G
q,p

n (0, c) + oP(1). (A.11)

In the case of LTS estimation, the cut-off is the order statistics ξ̃(h). We will show that

ξ̃(h) is consistent for σc for h being the largest integer not exceeding n{Φ(c)− Φ(−c)}.
We can always write ξ̃(h)/σ = c+n−1/2d̃ where d̃ = n1/2{ξ̃(h)/σ−c}. In our analysis, the
cut-off c is fixed. It is therefore equivalent to think of the estimation uncertainty in the
order statistic as a scale estimation error since ξ̃(h)/σ = c(1+n−1/2d̃/c). Thus, introduce

the notation cd = c + n−1/2d and θd = (d/c, 0, 0, 0) to get G
q,p

n (0, cd) = G
q,p

n (θd, c) and
Gq,pn (θ, cd) = Gq,pn (θ + θd, c). The uncertainty d will show up in the bias term Gq,p1n , but
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not in Gq,pmn. This results in the following expansions, uniformly in |θ|, |d| ≤ B. First,
Theorem A.4(a) gives

n1/2{Gq,pn (0, cd)− G
q,p

n (0, c)} = Gq,p1n (θd; c) + oP(1); (A.12)

Next, the expansions (A.10), (A.11) imply

n1/2{Gq,pn (θ, cd)− G
q,p

n (0, c)} = n1/2{Gq,pn (0, c)− G
q,p

n (0, c)}
+ {Gq,p1n (θ + θd, c)− Gq,pmn(θ, c)}+ oP(1); (A.13)

Gq,pn (θ, cd) = G
q,p

n (0, c) + oP(1). (A.14)

A.2 Preliminary Lemmas

The following lemmas are useful in proving the main empirical processes results.

Lemma A.5. Suppose max1≤i≤n E|n1/2xin|2+κ = O(1) for some κ > 0. Define the sets
Di = (|n1/2xin| ≤ nλ) where 1/(2 + κ) < λ < 1/2. Let vin(θ1) be random variables.
Then, for all ε > 0 and large n,

P
{

sup
|θ1|≤B

∣∣∣ n∑
i=1

vin(θ1)
∣∣∣ > ε

}
≤ P

{
sup
|θ1|≤B

∣∣∣ n∑
i=1

vin(θ1)1Di

∣∣∣ > ε
}

+ ε.

Proof. Let A = {sup|θ1|≤B |
∑n

i=1 vin(θ1)| > ε} and define D = ∩ni=1Di, so that

P(A) = P(A ∩D) + P(A ∩Dc) ≤ P(A ∩D) + P(Dc). (A.15)

We find P(Dc). Note that Dc = ∪ni=1Dci . By Boole’s and Markov’s inequalities

P(Dc) = P{
n⋃
i=1

(|n1/2xin| > nλ)} ≤
n∑
i=1

P(|n1/2xin| > nλ) ≤ n−λ(2+κ)

n∑
i=1

E|n1/2xin|2+κ.

Taking maximum over the summands gives P(Dc) ≤ n1−λ(2+κ) max1≤i≤n E|n1/2xin|2+κ.
Since the maximum of expectations is assumed bounded while λ > 1/(2 + κ), we get
P(Dc) → 0. Thus, P(Dc) ≤ ε for large n. Insert this in (A.15). Rewrite (A ∩ D) =
{sup|θ1|≤B |

∑n
i=1 vin(θ1)|1D > ε}. As D = ∩ni=1Di then D ⊂ Di for all i. Thus, (A∩D) ⊂

{sup|θ1|≤B |
∑n

i=1 vin(θ1)1Di | > ε}. Insert in (A.15).

Lemma A.6. Let Ii(θ1) = 1(|εσi −x′inb1|≤c+cn−1/2a1) − 1(|εσi |≤c) so that Ii(0) = 0. Let

Ji(θ0, θ1) = 1{c−n−1/2a0c−sin(θ0,θ1)≤εσi −x′inb0≤c+n−1/2a0c+sin(θ0,θ1)}

+ 1{−c−n−1/2a0c−sin(θ0,θ1)≤εσi −x′inb0≤−c+n−1/2a0c+sin(θ0,θ1)},

where sin(θ0, θ1) = cn−1/2|a1 − a0|+ |xin||b1 − b0|. Then

|Ii(θ1)− Ii(θ0)| ≤ Ji(θ0, θ1), (A.16)
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Proof. The second indicator in the definition of Ii cancels when taking difference. Thus,

Ii(θ1)− Ii(θ0) = {1(εσi ≤c+n−1/2a1c+x′inb1) − 1(εσi ≤c+n−1/2a0c+x′inb0)}
− {1(εσi ≤−c−n−1/2a1c+x′inb1) − 1(εσi ≤−c−n−1/2a0c+x′inb0)}.

For the first term, we note that c + n−1/2a1c + x′inb1 is located in the interval with
midpoint c+ n−1/2a0c+ x′inb0 and radius sin(θ0, θ1). Thus, the first term is bounded in
absolute value by the indicator on that interval. This is the first term of Ji(θ0, θ1). The
second term is bounded in a similar fashion.

Lemma A.7. Suppose F is ε-tail contaminated normal with 0 < c < cε. Let p =
0, 1, 2, . . . , 8. Let s = c or s = −c. Then, ∀0 < δ < cε − c, ∃C > 0, ∀s− δ ≤ s1 ≤ s2 ≤
s+ δ, we have
(a) Ei−1|εσi |p1(s1≤εσi ≤s2) ≤ (s2 − s1)C;
(b) |Ei−1(εσi )p{1(εσi ≤s1) − 1(εσi ≤s)} − (s1 − s)spϕ(s)| ≤ (s1 − s)2C.

Remark A.1. Lemma A.7 has the only argument requiring Assumption A.1(i) that F is
ε-tail contaminated normal and 0 < c < cε. Inspection of the proof shows that it suffices
that (1 + |s|8)f(s) is locally bounded and Lipschitz in neighbourhoods of c and −c, see
also Berenguer-Rico et al. (2019, Lemma A.6). Under those conditions the result holds
with the normal density ϕ replaced by f in part (ii).

Proof. Part (a). For a function H with derivative h, the mean value theorem gives
H(s2) = H(s1) + (s2 − s1)h(s∗) for an intermediate point s1 ≤ s∗ ≤ s2. Thus

Ei−1|εσi |p1(s1≤εσi ≤s2) =

∫ s2

s1

|v|pf(v)dv = (s2 − s1)|s∗|pf(s∗).

Since s− δ ≤ s∗ ≤ s+ δ we can take f as the normal density ϕ. We bound |s∗|pf(s∗) ≤
sups−δ≤s∗≤s+δ |s∗|pϕ(s∗) <∞.

Part (b). Follow the same steps and apply a second order mean value theorem, so
that H(s1) = H(s) + (s1− s)h(s) + (1/2)(s1− s)2ḣ(s∗). Use that for the normal density,
|s∗|pf(s∗) has a bounded derivative locally around s.

Lemma A.8. Let max1≤i≤n E|n1/2xin|2 = O(1). Let Di = (|n1/2xin| ≤ nλ) for λ < 1/2.
Recall win = (n1/2xin)⊗q. Then
(a) En−1

∑n
i=1(1 + |n1/2xin|2) = O(1);

(b) En−1
∑n

i=1 |win| = O(1) for q = 0, 1, 2;
(c) En−1

∑n
i=1 |win|2 = O(1) for q = 0, 1;

(d) En−2
∑n

i=1 |win|21Di = o(1) for q = 0, 1, 2.

Proof. Part (a). Swap expectation and summation and take maximum over expectations
to bound En−1

∑n
i=1(1 + |n1/2xin|2) ≤ 1 + max1≤i≤n E|n1/2xin|2, which is bounded.

Part (b). For q = 0, 1, 2, we get that |win| ≤ 2(1 + |n1/2xin|2). Apply part (a).
Part (c). For q = 0, 1, we get that |win|2 ≤ 2(1 + |n1/2xin|2). Apply part (a).
Part (d). For q = 0, 1, 2, we get |win|1Di ≤ 2(1 + |n1/2xin|2)1Di ≤ Cn2λ. Thus, we

can bound En−2
∑n

i=1 |win|21Di ≤ Cn2λ−1En−1
∑n

i=1 |win|. This vanishes as 2λ < 1 and
the expecation is bounded by part (b).
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A.3 Proofs of empirical process results

Proof of Theorem A.2. Part (a). Let n−1/2Gq,p
n (0, c) = n−1

∑n
i=1winvi with summands

given by vi = (εσi )p1(|εσi |≤c) − τ
c
p . This is a martingale

Lemma A.5 using Assumption A.1(ii) and where Di = (|n1/2xin| < nλ) with 1/(2 +
κ) < λ < 1/2 shows that it suffices that the martingale n−1

∑n
i=1winvi1Di vanishes.

The Chebyshev inequality shows that it suffices that E = E|n−1
∑n

i=1 winvi1Di|2
vanishes. By the martingale property, E = n−2

∑n
i=1 E|win|2v2

i 1Di . Apply the law of
iterated expectations and note Ei−1v

2
i is constant and finite by the truncation. Thus,

E ≤ CEn−2
∑n

i=1 |win|21Di , which vanishes by Lemma A.8(d) using Assumption A.1(ii).

Part (b). The identity G
q,p

n (0, c) = n−1
∑n

i=1 winτ
c
p follows from (A.4), (A.5).

Lemma A.8(b) using Assumption A.1(ii), shows that En−1
∑n

i=1 |win| is bounded.

Proof of Theorem A.3. Let Vn(θ1) = G2,0
n (θ1, c)−G2,0

n (0, c) =
∑n

i=1 vin(θ1) and V n(θ1) =

G
2,0

n (θ1, c) − G
2,0

n (0, c) =
∑n

i=1 Ei−1vin(θ1) with vin(θ1) = n−1nxinx
′
inIi(θ1) and Ii(θ1) =

1(|εi/σ−x′inb1|≤c+cn−1/2a1)− 1(|εi/σ|≤c). We need to show that Vn(θ1) and V n(θ1) vanish uni-
formly in |θ1| ≤ B. Throughout, C > 0 denotes a generic constant.

Apply Lemma A.5 using Assumption A.1(ii) and where Di = (|n1/2xin| < nλ) with

1/(2 + κ) < λ < 1/2. It suffices to show V Dn (θ1) =
∑n

i=1 |vin(θ1)|1Di and V
D
n (θ1) =∑n

i=1 Ei−1|vin(θ1)|1Di vanish uniformly. We will find a bound |vin(θ1)|1Di ≤ vin uni-

formly in θ1. Thus, E supθ1 V
D
n (θ1) and E supθ1 V

D
n (θ1) are both bounded by E

∑n
i=1 vin =

E
∑n

i=1 Ei−1vin, which we will show to be vanishing.
By Lemma A.6 with θ0 = 0 and defining sin(θ1) = n−1/2|a1|c+ |xin||b1|, we have

|Ii(θ1)| ≤ Ji(θ1) = 1{c−sin(θ1)≤εσi ≤c+sin(θ1)} + 1{−c−sin(θ1)≤εσi ≤−c+sin(θ1)}.

On Di we have that |xin| < nλ−1/2 with λ < 1/2. Since |θ1| ≤ B, c is fixed, we get
sin(θ1) ≤ Cnλ−1/2 = sn. Having exploited Di, we then bound 1Di ≤ 1 to get

|Ii(θ1)|1Di ≤ Ji = 1(c−sn≤εσi ≤c+sn) + 1(−c−sn≤εσi ≤−c+sn),

uniformly in θ1. Thus, |vin(θ1)|1Di ≤ n−1|n1/2xin|2Ji = vin, uniformly in θ1. Now, apply
Lemma A.7 using Assumption A.1(i) to get Ei−1Ji ≤ Csn = Cnλ−1/2. In turn, we find
that E

∑n
i=1 Ei−1vin ≤ Cnλ−1/2En−1

∑n
i=1 |n−1/2xin|2 vanishes since the expectation is

bounded by Lemma A.8(a) using Assumption A.1(ii) while λ < 1/2.

Theorem A.4 compares the empirical process and the compensator at θ and 0. We
introduce an intermediate point θ1 = (a1, b1, 0, 0) representing the situation with esti-
mation error in the indicator but not in the mark and θp = (0, 0, ap, bp) representing the
situation with estimation error in the mark but not in the indicator. We decompose

Gq,p
n (θ, c)−Gq,p

n (0, c) = {Gq,p
n (θ, c)−Gq,p

n (θ1, c)}+ {Gq,p
n (θ1, c)−Gq,p

n (0, c)}. (A.17)

We analyze the two terms in (A.17) separately. For the compensator term in Theorem
A.4, we decompose

n1/2{Gq,pn (θ, c)− G
q,p

n (0, c)} − {Gq,p1n (θ, c)− Gq,pmn(θ, c)}
= n1/2{Gq,pn (θ, c)−G

q,p

n (θ1, c)}+ Gq,pmn(θp, c) + n1/2{Gq,pn (θ1, c)−G
q,p

n (0, c)}−Gq,p1n (θ1, c).
(A.18)
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As with (A.17), we analyze the compensator comparing θ to θ1 and the one comparing
θ1 to 0 in (A.18) separately.

Lemma A.9. Suppose Assumption A.1. Let q = 0, 1 and p = 0, 1, . . . , 4. Then, ∀B > 0
and for θ1 = (a1, b1, 0, 0),
(a) sup|θ1|≤B |n

1/2{Gq,pn (θ1, c)− G
q,p

n (0, c)} − Gq,p1n (θ1, c)| = oP(1);
(b) sup|θ1|≤B |G

q,p
n (θ1, c)−Gq,p

n (0, c)| = oP(1).

The proof adapts that of Theorem 1.17 of Johansen and Nielsen (2009). More general
results that are also uniform in the cut-off c are given by Johansen and Nielsen (2016a),
Jiao and Nielsen (2017), Berenguer-Rico et al. (2019).

Proof. Let Ii(θ1) = 1(|εσi −x′inb1|≤c+n−1/2a1c) − 1(|εσi |≤c), while C > 0 is a generic constant.

Part (a). We show that V n(θ1) = n1/2{Gq,pn (θ1, c) − G
q,p

n (0, c)} − Gq,p1n (θ1, c) vanishes
uniformly in |θ1| ≤ B. Write V n(θ1) =

∑n
i=1 vin(θ1) with summands given by vin(θ1) =

n−1/2win[Ei−1(εσi )pIi(θ1)− 2cpϕ(c){n−1/2a1c1(p even) + x′inb11(p odd)}].
Apply Lemma A.5 using Assumption A.1(ii) and where Di = (|n1/2xin| < nλ) with

1/(2+κ) < λ < 1/2. We show V
D
n (θ1) =

∑n
i=1 vin(θ1)1Di vanishes uniformly in |θ1| ≤ B.

Consider Ei = Ei−1(εσi )pIi(θ1)1Di . Write Ii(θ1) = Ji1(θ1) − Ji2(θ1) where Ji1(θ1) =
1(εσi ≤c+n−1/2a1c+x′inb1)−1(εσi ≤c) and Ji2(θ1) = 1(εσi ≤−c−n−1/2a1c+x′inb1)−1(εσi ≤−c). Since |θ1| ≤
B, c is fixed, and on Di we have that |xin| < nλ−1/2, then n−1/2|a1|c+ |xin||b1| ≤ Cnλ−1/2

for λ < 1/2. Lemma A.7 using Assumption A.1(i) then gives

Ei−1(εσi )pJi1(θ1)1Di = (n−1/2a1c+ x′inb1)cpϕ(c)1Di +Ri1(θ1)1Di (A.19)

Ei−1(εσi )pJi2(θ1)1Di = (−n−1/2a1c+ x′inb1)(−c)pϕ(−c)1Di +Ri2(θ1)1Di (A.20)

where Rij(θ1)1Di ≤ C(n−1/2|a1|c + |xin||b1|)2. We now collect the first order terms on
the right hand side of (A.19), (A.20). We note that the normal density is symmetric so
that ϕ(c) = ϕ(−c) and write (−c)p = cp{1(p even) − 1(p odd)}. This gives

(n−1/2a1c+ x′inb1)cpϕ(c)− (−n−1/2a1c+ x′inb1)(−c)pϕ(−c)
= 2cpϕ(c){n−1/2a1c1(p even) + x′inb11(p odd)},

which matches the bias term in vin(θ1). Thus, we can bound

|V Dn (θ1)| = |
n∑
i=1

vin(θ1)1Di | ≤ n−1/2

n∑
i=1

|win|(|Ri1(θ1)|+ |Ri2(θ1)|)1Di .

We bound the sum of remainder terms. For q = 0, 1, then |win| ≤ (1 + |n1/2xin|), so
that |win| ≤ Cnλ on Di. By the Jensen inequality and the construction |a|, |b| ≤ B, then

|Rij(θ1)| ≤ Cn−1(1+|n1/2xin|2). Thus, |V Dn (θ1)| ≤ Cnλ−1/2n−1
∑n

i=1(1+|n1/2xin|2). This
vanishes since the average is bounded in expectation by Lemma A.8(a) using Assumption
A.1(ii) while λ < 1/2.

Part (b). Consider Ṽn(θ1) = Gq,p
n (θ1, c) − Gq,p

n (0, c) =
∑n

i=1ṽin(θ1) with summands
ṽin(θ1) = n−1/2win{(εσi )pIi(θ1)− Ei−1(εσi )pIi(θ1)}. Apply Lemma A.5 using Assumption
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A.1(ii) and where Di = (|n1/2xin| < nλ) with 1/(2 + κ) < λ < 1/2. We show Ṽ Dn (θ1) =∑n
i=1 ṽin(θ1)1Di vanishes uniformly in |θ1| ≤ B.
To tackle the uniformity in θ1, we use the following chaining argument and inequality.

Given a small ε > 0, we can choose a (small) radius of size M according to (A.26)
below and cover the set |θ1| ≤ B with a finite number, K, of balls with centres θ1k for
k = 1, ..., K. The balls are given by

Bk = (θ1 : |θ1 − θ1k| ≤M, |θ1| ≤ B).

The chaining inequality uses that any θ1 belongs to some ball with index k. Thus,

|Ṽ Dn (θ1)| ≤ |Ṽ Dn (θ1k)|+ |Ṽ Dn (θ1)− Ṽ Dn (θ1k)|
≤ max

k
|Ṽ Dn (θ1k)|+ max

k
sup
θ1∈Bk

|Ṽ Dn (θ1)− Ṽ Dn (θ1k)|. (A.21)

The term maxk |Ṽ Dn (θ1k)| in (A.21). We show Pn = P{maxk |Ṽ Dn (θ1k)| ≥ ε} → 0, for
any ε > 0. Here max is a union of events. The Boole and Chebyshev inequalities give

Pn = P
K⋃
k=1

{|Ṽ Dn (θ1k)| > ε} ≤
K∑
k=1

P{|Ṽ Dn (θ1k)| > ε} ≤ 1

ε2

K∑
k=1

E|Ṽ Dn (θ1k)|2. (A.22)

Here, Ṽ Dn (θ1k) is a scalar for q = 0 and a vector for q = 1. Moreover, it is a sum of mar-
tingale differences ṽDin(θ1k) = ṽin(θ1k)1Di and thus a sum of mean zero and uncorrelated
terms. Therefore, by iterated expectations,

E|Ṽ Dn (θ1k)|2 =
n∑
i=1

E|ṽDin(θ1k)|2 =
n∑
i=1

EEi−1|ṽDin(θ1k)|2. (A.23)

Using the definition of ṽDin(θ1k), we find

Ei−1|ṽDin(θ1k)|2 = n−1|win|21DiEi−1{(εσi )pIi(a1k, b1k)− Ei−1(εσi )pIi(a1k, b1k)}2

≤ n−1|win|21DiEi−1[(εσi )2p{Ii(a1k, b1k)}2]. (A.24)

Lemma A.6 with θ0 = 0 shows that |Ii(a1k, b1k)| ≤ Ji(θ1k) = 1{|εσi −c|≤sin(θ1k)} +

1{|εσi +c|≤sin(θ1k)} with sin(θ1k) = cn−1/2|a1k| + |xin||b1k|. Since |θ1k| ≤ B, c fixed and on

Di, we have that sin(θ1k) ≤ Cnλ−1/2, uniformly in θ1k. The Jensen inequality shows
{Ii(a1k, b1k)}2 ≤ 2Ji(θ1k). Lemma A.7(a) using Assumption A.1(i) then shows

Ei−1[(εσi )2p{Ii(a1k, b1k)}2] ≤ Cnλ−1/2 (A.25)

Insert (A.25) in (A.24), (A.23), (A.22) to get Pn ≤ ε−2KCnλ−1/2En−1
∑n

i=1 |win|21Di ,
which vanishes since ε and K are fixed, λ < 1/2 and the expectation is bounded by
Lemma A.8(c) using Assumption A.1(ii).

The term maxk supθ1∈Bk |Zn(θ1k, θ1)| in (A.21) where Zn(θ1k, θ1) = Ṽ Dn (θ1)−Ṽ Dn (θ1k).
and write Zn(θ1k, θ1) =

∑n
i=1{zin(θ1k, θ1)− Ei−1zin(θ1k, θ1)} with summands

zin(θ1k, θ1) = n−1/2win(εσi )p{Ii(a1, b1)− Ii(a1k, b1k)}.
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Apply Lemma A.5 using Assumption A.1(ii) and where Di = (|n1/2xin| < nλ) with
1/(2 + κ) < λ < 1/2. We show ZDn (θ1k, θ1) =

∑n
i=1{zDin(θ1k, θ1) − Ei−1z

D
in(θ1k, θ1)}

vanishes uniformly in θ1k, θ1, where zDin(θ1k, θ1) = zin(θ1k, θ1)1Di . By Lemma A.6, then
|zDin(θ1k, θ1)| ≤ n−1/2|win||εi/σ|pJi(θik, θ1)1Di , where

Ji(θik, θ1) = 1{c−n−1/2a1kc−sin(θ1k,θ1)≤εσi −x′inb1k≤c+n−1/2a1kc+sin(θ1k,θ1)}

+ 1{−c−n−1/2a1kc−sin(θ1k,θ1)≤εσi −x′inb1k≤−c+n−1/2a1kc+sin(θ1k,θ1)}

with sin(θ1k, θ1) ≤ n−1/2|a1k−a1|c+|xin||b1k−b1|. Since |θ1k−θ1| ≤M , c fixed and on Di,
we have that sin(θ1k, θ) ≤ sin uniformly in θ1k, θ1, where sin = Cn−1/2M(1 + |n1/2xin|),
Thus, Ji(θik, θ1) ≤ Jik, where

Jik = 1(c−n−1/2a1kc−sin≤εσi −x′inb1k≤c+n−1/2a1kc+sin)

+ 1(−c−n−1/2a1kc−sin≤εσi −x′inb1k≤−c+n−1/2a1kc+sin),

uniformly in θ1 ∈ Bk. We then get |zDin(θ1k, θ1)| ≤ zJik = n−1/2|win||εσi |pJik1Di . By the
triangle inequality

ZDn (θ1k, θ1) ≤
n∑
i=1

(zJik + Ei−1z
J
ik) =

n∑
i=1

(zJik − Ei−1z
J
ik) +

n∑
i=1

Ei−1z
J
ik = Z̃J

nk + Z
J

nk,

say. It suffices to show that each of Z̃J
nk and Z

J

nk vanishes uniformly in k.

The term Z
J

nk. On Di, then sin ≤ Cn1/2−λ, which vanishes uniformly in k. Thus,
Lemma A.7(a) using Assumption A.1(i) shows that Ei−1z

J
ik ≤ Cn−1/2|win|1Disin. The

weight win is 1 or n1/2xin so that |win| ≤ 1+ |n1/2xin|. Then the Jensen inequality shows
|win|sin1Di ≤ CMn−1/2(1 + |n1/2xin|2) and we get Ei−1z

J
ik ≤ CMn−1(1 + |n1/2xin|2).

Thus, Z
J

nk ≤ CMn−1
∑n

i=1(1 + |n1/2xin|2) uniformly in k. The Markov inequality shows
that

P(max
k
Z
J

nk > ε) ≤ 1

ε
Emax

k
Z
J

nk ≤
CM

ε
En−1

n∑
i=1

(1 + |n1/2xin|2) < ε, (A.26)

since the expectation is bounded by Lemma A.8(a) using Assumption A.1(ii) and since,
for given ε > 0, we can choose M freely.

The term Z̃J
nk. We show PZ = P{maxk |Z̃J

nk| ≥ ε} → 0 for an ε > 0. As in (A.22),
write maxk as a union then use Boole’s and Chebyshev’s inequalities to get

PZ = P
K⋃
k=1

(|Z̃J
nk| ≥ ε) ≤

K∑
k=1

P(|Z̃J
nk| ≥ ε) ≤ 1

ε2

K∑
k=1

E(Z̃J
nk)

2. (A.27)

We note that Z̃J
nk =

∑n
i=1(zJik−Ei−1z

J
ik) is a martingale with zJik = n−1/2|win||εσi |pJik1Di .

Thus it has uncorrelated summands, which shows

E(Z̃J
nk)

2 =
n∑
i=1

E(zJik)
2 = n−1

n∑
i=1

EnEi−1(zJik)
2. (A.28)
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We proceed as for Z
J

nk. Note that J2
ik ≤ 2Jik by the Jensen inequality. Thus, Lemma

A.7(a). using Assumption A.1(i) shows that nEi−1(zJik)
2 ≤ C|win|21Disin. As before,

sin1Di ≤ Cnλ−1/2. Thus, nEi−1|zJnk|2 ≤ Cnλ−1/2|win|2. Insert in (A.28), (A.27), to
get PZε−2KCnλ−1/2En−1

∑n
i=1 |win|2. This vanishes for ε, K, since λ < 1/2 and the

expectation is bounded by Lemma A.8(c) using Assumption A.1(ii).

For the first term in (A.17) with mark estimation error, we need a further result.

Lemma A.10. Suppose Assumption A.1. Let (q, p) ∈ Q. Then, ∀B > 0 and for
θ = (a1, b1, am, bm) and θ1 = (a1, b1, 0, 0),
(a) sup|θ|≤B |Gq,p

n (θ, c)−Gq,p
n (θ1, c)| = oP(1);

(b) sup|θ|≤B |n1/2{Gq,pn (θ, c)− G
q,p

n (θ1, c)}+ Gq,pmn(θ, c)| = oP(1).

Proof. Notation. Let vi(θ) = {(εabσi )p− (εσi )p}1(|εσi −x′inb1|≤c+n−1/2a1c) where εσi = εi/σ and

εabσi = (εi/σ − x′inbm)/(1 + n−1/2am). Define a∗m and b∗m through

εabσi − εσi =
εσi − x′inbm

1 + n−1/2am
− εσi =

−n−1/2am
1 + n−1/2am

εσi −
x′inbm

1 + n−1/2am
= n−1/2a∗mε

σ
i + x′inb

∗
m.

(A.29)
Note that given a B > 0 a B∗ > 0 exists so that |a∗m|, |b∗m| ≤ B∗ for |am|, |bm| ≤ B.

Finally, the mean value theorem with |εσ∗i − εσi | ≤ |εabσi − εσi | shows that

(εabσi )p− (εσi )p = 1(p≥1)p(ε
abσ
i − εσi )(εσi )p−1 + 1(p≥2)

1
2
p(p− 1)(εabσi − εσi )2(εσ∗i )p−2. (A.30)

Part (a). We must show that Vn(θ) = n1/2{Gq,p
n (θ, c)−Gq,p

n (θ1, c)} vanishes uniformly
in θ. We have Vn(θ) = n−1/2

∑n
i=1win{vi(θ)− Ei−1vi(θ)}.

Decomposition. Using the above expansions write vi(θ) =
∑2

s=1 vsi(θ) where

v1i(θ) = 1(p≥1)p(ε
abσ
i − εσi )(εσi )p−11(|εσi −x′inb1|≤c+n−1/2a1c),

v2i(θ) = 1(p≥2)
1
2
p(p− 1)(εabσi − εσi )2(εσ∗i )p−21(|εσi −x′inb1|≤c+n−1/2a1c).

Let Vn(θ) =
∑2

s=1 Vsn(θ) with Vsn(θ) = n−1/2
∑n

i=1win{vsi(θ) − Ei−1vsi(θ)}. By the
triangle inequality, it suffices to show that each Vsn is oP(1) uniformly in θ.

The term V1n(θ). Since εabσi − εσi = n−1/2a∗mε
σ
i + x′inb

∗
m by (A.29), we can write

V1n(θ) = n−1/2p{Gq,p
n (θ1, c)a

∗
m + Gq+1,p−1

n (θ1, c)b
∗
m}

for p ≥ 1. We argue that Gn(θ1, c) = Gn(0, c)+oP(n1/2) uniformly in θ1. Apply Theorem
A.3 for (q+1, p−1) = (2, 0) and Lemma A.9(b) for all other cases. Both use Assumption
A.1. Theorem A.2 using Assumption A.1(ii) shows Gq,`

n (0, c) = oP(n1/2). Thus, V1n(θ).
vanishes due to the factor n−1/2 and since |a∗m|, |b∗m| ≤ B∗.

The term V2n(θ). Since p ≥ 2 then q = 0 for all (q, p) ∈ Q, see (A.2), thus we can
set win = 1 and V2n(θ) = n−1/2

∑n
i=1{v2i(θ) − Ei−1v3i(θ)}. Apply Lemma A.5 using

Assumption A.1(ii) and where Di = (|n1/2xin| < nλ) with 1/(2 + κ) < λ < 1/2. We
show VD2n(θ) = n−1/2

∑n
i=1{v2i(θ)− Ei−1v2i(θ)}1Di vanishes.

By the triangle inquality, |VD2n(θ)| ≤ n−1/2
∑n

i=1{|v2i(θ)|+ Ei−1|v2i(θ)|}1Di .
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We bound v2i(θ). By Jensen’s inequality |εσ∗i |p−2 ≤ C(|εσ∗i − εσi |p−2 + |εσi |p−2). Thus,

|v2i(θ)| ≤ C|εabσi − εσi |2(|εσ∗i − εσi |p−2 + |εσi |p−2)1(|εσi −x′inb1|≤c+n−1/2a1c).

By (A.29) then |εσ∗i − εσi | ≤ |εabσi − εσi | ≤ n−1/2|a∗m||εσi |+ |xin||b∗m|. Here, |a∗m|, |b∗m| < B∗,
so that |εσ∗i −εσi | ≤ Cn−1/2(1+|n1/2xin|)(1+|εσi |). We need two further bounds. First, by
the Jensen inequality, |εσ∗i −εσi |2 ≤ Cn−1(1+|n1/2xin|2)(1+|εσi |2). Second, |xin| ≤ nλ−1/2

on Di where λ < 1/2, so that |εσ∗i − εσi | ≤ nλ−1/2C ≤ 1 for large n. In combination

|v2i(θ)|1Di ≤ Cn−1(1 + |n1/2xin|2)(1 + |εσi |2)(1 + |εσi |p−2)1(|εσi −x′inb1|≤c+n−1/2a1c)1Di

By Jensen’s inequality, (1 + |εσi |2)(1 + |εσi |p−2) ≤ C(1 + |εσi |p). Further, on Di we have
n−1/2|a∗1|c+ |xin||b∗1| ≤ Cnλ−1/2, so that 1(|εσi −x′inb1|≤c+n−1/2a1c) ≤ 1(|εσi |≤c+Cnλ−1/2). Finally,
we bound 1Di ≤ 1. Thus

sup
|θ|≤B∗

|v2i(θ)|1Di ≤ Cn−1(1 + |n1/2xin|2)(1 + |εσi |p)1(|εσi |≤c+Cnλ−1/2).

Take conditional expectation, apply Lemma A.7 using Assumption A.1(i). We get

Ei−1 sup
|θ|≤B∗

|v2i(θ)|1Di ≤ Cn−1(1 + |n1/2xin|2).

Return to the sum and bound

E sup
|θ|≤B∗

|V2i(θ)| ≤ En−1/2

n∑
i=1

Ei−1 sup
|θ|≤B∗

|v2i(θ)|1Di ≤ Cn−1/2En−1

n∑
i=1

(1 + |n1/2xin|2),

which vanishes as the expecation is bounded by Lemma A.8(a) with Assumption A.1(ii).
Part (b). Decomposition. We show Vn(θ) = n1/2{Gq,pn (θ, c) − G

q,p

n (θ1, c)} + Gq,pmn(θ, c)
vanishes uniformly in θ. Use (A.5), (A.8) and note τ cp = 0 when p is odd and τ cp−1 = 0

when p is even and write Vn(θ) = n−1/2
∑n

i=1 winvi(θ) where

vi(θ) = Ei−1

[
{(εabσi )p − (εσi )p}1(|εσi −x′inb1|≤c+n−1/2a1c) + sip(ε

σ
i )p−11(|εσi |≤c)

]
,

with si = n−1/2amε
σ
i +x′inbm. Apply the expansion (A.30) to vi(θ) and add and subtract

sip(ε
σ
i )p−11(|εσi −x′inb1|≤c+n−1/2a1c) to get vi(θ) =

∑3
s=1 vsi(θ) where

v1i(θ) = −Ei−1

[
sip(ε

σ
i )p−1

{
1(|εσi −x′inb1|≤c+n−1/2a1c) − 1(|εσi |≤c)

}]
,

v2i(θ) = 1(p≥1)Ei−1

{(
εabσi − εσi + si

)
p(εσi )p−11(|εσi −x′inb1|≤c+n−1/2a1c)

}
,

v3i(θ) = 1(p≥2)
1
2
p(p− 1)Ei−1(εabσi − εσi )2(εσ∗i )p−21(|εσi −x′inb1|≤c+n−1/2a1c),

for |εσ∗i − εσi | ≤ |εabσi − εσi |. We analyze the terms Vsn(θ) = n−1/2
∑n

i=1winvsi(θ) in turn.
The term V1n(θ). We note p ≥ 1 so that q ≤ 1. Thus, by the definition of si, we have

V1n(θ) = {Gq,pn (θ1, c)− G
q,p

n (0, c)}am + {Gq+1,p−1

n (θ1, c)− G
q+1,p−1

n (0, c)}bm. We find that
Gn(0, c) = oP(1) uniformly in θ1 by applying Theorem A.3(b) for (q + 1, p− 1) = (2, 0)
and Lemma A.9(b) for all other cases. Both use Assumption A.1. Since |θ| ≤ B, we find
that V1n(θ) vanishes.
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The term V2n(θ). Expand using (A.29) to get

εabσi − εσi + si = n−1/2{εσi (a∗m + am) + n1/2x′in(b∗m + bm)}.

From (A.29), we get a∗m = −am/(1+n−1/2am) so that a∗m+am = −n−1/2a∗mam. Similarly
b∗m + bm = −n−1/2a∗mbm. Thus, εabσi − εσi + si = −n−1{εσi am + n1/2x′inbm}a∗m.

The sum of interest is V2n(θ) = −n−1/2{Gq,pn (θ1, c)am+G
q+1,p−1

n (θ1, c)bm}a∗m. We find

V2n(θ) = −n−1/2{V1n(θ) +G
q,p

n (0, c)am +G
q+1,p−1

n (0, c)bm}a∗m by adding and subtracting
G
q,p

n (0, c). Here, V1n(θ) was found to vanish above; Theorem A.2(b) using Assumption

A.1(ii) shows that G
`,p

n (0, c) is bounded; and |am|, |a∗m|, |bm| are bounded. Thus, V2n(θ)
vanishes due to the n−1/2 factor.

The term V3n(θ). Since p ≥ 2 then win = 1. Note that v3i(θ) = Ei−1v2i(θ). We get
that E supθ |V3n(θ)| = E supθ |

∑n
i=1 Ei−1v2i(θ)| ≤ E

∑n
i=1 Ei−1 supθ |v2i(θ)|, which was

found to vanish for the term V2n(θ) above.

Proof of Theorem A.4. Use the decompositions (A.17), (A.18) for Gq,p
n and G

q,p

n along
with Lemmas A.9, A.10.

B Normality testing initialized by OLS

B.1 Preliminary Results on Estimators

Lemma B.1. Let xi = (1, z′i)
′ while mn, vn are random sequences and

N−1(β̂ − β) = (
∑n

i=1xinx
′
in)−1

∑n
i=1xinmi + vn. (B.1)

Then,
∑n

i=1x
′
i(β̂ − β) =

∑n
i=1mi + vn

∑n
i=1x

′
in.

Proof. Use that xin = N ′xi and xi = (1, z′i)
′. We get

∑n
i=1x

′
i = (1, 0)

∑n
i=1xix

′
i so that∑n

i=1x
′
i(β̂ − β) = (1, 0)

∑n
i=1xix

′
iNN

−1(β̂ − β). Insert expansion (B.1) for β̂. Cancel
normalizations and sums of squares of xi. Use that (1, 0)xi = 1.

Lemma B.2. Let β̃, σ̃ be full sample least squares estimators of β, σ. Suppose Assump-
tion 3.1(iii). Then

N−1(β̃ − β)/σ = (
∑n

i=1xinx
′
in)−1

∑n
i=1xinε

σ
i = OP(1), (B.2)

n1/2(σ̃ − σ) = (σ/2)n−1/2
∑n

i=1{(ε
σ
i )2 − 1}+ oP(1) = OP(1). (B.3)

Proof. (B.2) follows from Assumption 3.1(iii). For (B.3) note that n1/2(σ̃2 − σ2) =
n−1/2

∑n
i=1(ε2

i − σ2) − n−1/2Qn where Qn =
∑n

i=1εix
′
i(
∑n

i=1xix
′
i)
−1
∑n

i=1xiεi. The first
term is asymptotically normal since εi are independent normal by Assumption 3.1(i).
The term n−1/2Qn is oP(1) by (B.2) and Assumption 3.1(iii). A Taylor expansion of
(1 + x)1/2 with x = σ̂2/σ2 − 1 shows that σ̂ − σ = (σ/2)(σ̂2/σ2 − 1) + oP(σ̂2 − σ2). The
main term is asymptotically normal.

The estimators satisfy an improved version of Jiao and Nielsen (2017, Theorem 1).
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Lemma B.3. Let c > 0. Suppose Assumptions 2.1, 3.1 hold. Then

N−1(β̂RLS − β)/σ = {2cϕ(c)/τ c0}N−1(β̃ − β)/σ

+ (τ c0
∑n

i=1xinx
′
in)−1

∑n
i=1xinε

σ
i 1(|εσi |≤c) + oP(1), (B.4)

n1/2(σ̂RLS − σ) = {c(c2 − τ c2/τ c0)ϕ(c)/τ c2}n1/2(σ̃ − σ)

+ {σ/(2τ c2)}n−1/2
∑n

i=1{(ε
σ
i )2 − τ c2/τ c0}1(|εσi |≤c) + oP(1), (B.5)

where the initial estimators β̃, σ̃ have expansions given in Lemma B.2.

Proof. We apply Theorems A.2, A.3, A.4 using Assumptions 2.1, 3.1(i, ii)
Expression (B.4). Write N−1(β̂RLS − β)/σ = {Ĝ2,0

n (c)}−1{n1/2Ĝ1,1
n (c)}. By As-

sumption 3.1(iii), the initial estimator converges in probability. Thus, by Lemma
A.1 it suffices to analyze {G2,0

n (θ1, c)}−1{n1/2G1,1
n (θ1, c)} uniformly in |θ1| < B, where

θ1 = (a1, b1, 0, 0) with a1 = n1/2(σ̃ − σ)/σ and b1 = N−1(β̃ − β)/σ.
The denominator. By Theorem A.3, G2,0

n (θ1, c) = G2,0
n (0, c) + oP(1). By Theorem

A.2, G2,0
n (0, c) = G

2,0

n (0, c) + oP(1), where G
2,0

n (0, c) = τ c0
∑n

i=1 xinx
′
in.

The numerator. By Theorem A.2 and since τ c1 = 0 then G
1,1

n (0, c) = 0. By Theorem
A.4, see also (A.9), (A.10), n1/2G1,1

n (0, c) = G1,1
n (0, c) + G1,1

1n (θ1, c) − G1,1
mn(θ1, c). Here,

G1,1
n (0, c) =

∑n
i=1 xinε

σ
i 1(|εσi |≤c) while G1,1

1n (θ1, c) = 2cϕ(c)
∑n

i=1 xinx
′
inb1 by (A.7), and

G1,1
mn(θ1, c) = 0 by (A.8). Combine these elements and scale by σ to get (B.4).

Expression (B.5). Proceed along the same lines. See also the proof of Jiao and
Nielsen (2017, Theorem 1).

B.2 Proof of results for the RLS procedure

Consider the truncated moments (2.6). Here, the superscript RLS is ignored. Let θ̃1 =
(ã, b̃) where ã = n1/2(σ̃−σ)/σ, b̃ = N−1(β̃−β)/σ are full sample least squares estimation
errors. Let also θ̃p = (â, b̂) where â = n1/2(σ̂ − σ)/σ, b̂ = N−1(β̂ − β)/σ are the least
squares estimation errors for the selected sub-sample. In combination, θ̃ = (θ̃1, θ̃p),
which was analyzed in Lemmas B.2, B.3. We expand G0,p

n (θ̃, c) for p = 3, 4 in terms of
the vectors zcp,i given in (3.1).

Lemma B.4. Let Assumptions 2.1, 3.1, hold. Recall ζRLS3,c , ζRLS4,c defined in (3.2), (3.3).
Then, uniformly in c ≥ c0 for some c0 > 0, we get
(a) G0,0

n (θ̃, c) = τ c0 + oP(1);
(b) n1/2G0,3

n (θ̃, c) = (ζRLS3,c )′n−1/2
∑n

i=1z
c
3,i + oP(1);

(c) n1/2{G0,4
n (θ̃, c)− (τ c4/τ

c
0)G0,0

n (θ̃, c)} = (ζRLS4,c )′n−1/2
∑n

i=1z
c
4,i + oP(1).

Proof. Throughout, we use Theorem A.4 using Assumptions 2.1, 3.1(i, ii) and Lemma
A.1 noting that â, b̂ are bounded by Assumption 3.1(iii), while ã, b̃ are bounded by
Lemma B.3 using Assumptions 2.1, 3.1.

(a) Apply Lemma A.1 and Theorem A.4 with (A.11) as well as G
0,0

n (0, c) = τ c0 .

(b) Let N3,c = G0,3
n (θ̃, c) − G

0,3

n (0, c) where G
0,3

n (0, c) = E(εσi )31(|εσi |≤c) = 0. By Lemma
A.1, Theorem A.4 and (A.10),

n1/2N3,c = n1/2{G0,3
n (0, c)− G

0,3

n (0, c)}+ G0,3
n (θ̃, c) + oP(1). (B.6)
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Theorem A.4 and (A.7), (A.8) show that the bias term is

G0,3
n (θ̃, c) = 2c3ϕ(c)n−1/2

∑n
i=1x

′
inb̃− 3τ c2n

−1/2
∑n

i=1x
′
inb̂.

Let vG = (1, 0, 0)′ ṽG = (0, 0, 1)′ and v̂G = {0, 1/τ c0 , 2cϕ(c)/τ c0}′, so that ζRLS3,c =
vG + 2c3ϕ(c)ṽG − 3τ c2 v̂G = {1,−3τ c2/τ

c
0 , 2(c2 − 3τ c2/τ

c
0)cϕ(c)}′ as in (3.2). We show that

n1/2N3,c = (ζRLS3,c )′n−1/2
∑n

i=1z
c
3,i + oP(1).

We have that G0,3
n (0, c) = v′Gn

−1/2
∑n

i=1z
c
3,i and G

0,3

n (0, c) = 0. For the bias terms,

given expansions for b̃, b̂ in (B.2), (B.4), Lemma B.1 implies
∑n

i=1x
′
inb̃ =

∑n
i=1ε

σ
i =

ṽ′Gn
−1/2

∑n
i=1z

c
3,i and

∑n
i=1x

′
inb̂ = (1/τ c0)

∑n
i=1ε

σ
i 1(|εσi |≤c) + {2cϕ(c)/τ c0}

∑n
i=1ε

σ
i + oP(1) so

that
∑n

i=1x
′
inb̂ = v̂′Gn

−1/2
∑n

i=1z
c
3,i. Insert these expressions in (B.6).

(c) Let N4,c = G0,4
n (θ̃, c) − (τ c4/τ

c
0)G0,0

n (θ̃, c). Due to Lemma A.1 and Theorem A.4 with
(A.10), we get, for p = 0, 4,

n1/2{G0,p
n (θ̃, c)− G

0,p

n (0, c)} = n1/2{G0,p
n (0, c)− G

0,p

n (0, c)}+ G0,p
n (θ̃, c) + oP(1),

with compensators G
0,p

n (0, c) = Eεσi 1(|εσi |≤c) = τ cp . We note the equation G
0,4

n (0, c) −
(τ c4/τ

c
0)G

0,0

n (0, c) = τ c4 − τ c0τ c4/τ c0 = 0. Therefore we can write

n1/2N4,c = {G0,4
n (0, c) + G0,4

n (θ̃, c)} − (τ c4/τ
c
0){G0,0

n (0, c) + G0,0
n (θ̃, c)}+ oP(1).

Proceed as in (b). Let vG,4 = (1, 0, 0, 0)′ and vG,0 = (0, 0, 1, 0)′, so that Gj
n(0, c) =

v′G,jn
−1/2

∑n
i=1z

c
4,i for j = 0, 4. Let vG,0 = 2cϕ(c)(0, 0, 0, 1/2)′. From Theorem A.4 we

have G0,0
n (θ̃, c) = 2cϕ(c)ã. As ã satisfies (B.3) we get G0,0

n (θ̃, c) = v′G,0n
−1/2

∑n
i=1z

c
4,i +

oP(1). Let vG,4 = 2c5ϕ(c)(0, 0, 0, 1/2)′−2(τ c4/τ
c
2){0, 1,−(τ c2/τ

c
0), c(c2−τ c2/τ c0)ϕ(c)}. The-

orem A.4 shows G0,4
n (θ̃, c) = 2c5ϕ(c)ã − 4τ c4 â. Since ã and â satisfy (B.3) and (B.5) we

get G0,4
n (θ̃, c) = v′G,4n

−1/2
∑n

i=1z
c
4,i + oP(1). Insert these expressions in the expansion of

n1/2N4,c noting that ζRLS4,c = vG,4 + vG,4 − (τ c4/τ
c
0)(vG,0 + vG,0) to get (3.3).

Proof of Theorem 3.1. Throughout, we use Theorem A.4 using Assumptions 2.1, 3.1.
1. Write µ̂p,c = G0,p

n (θ̃, c)/G0,0
n (θ̃, c) for p = 3, 4. Let

TRLSp,c,n = {(ζRLSp,c )′Ωc
p(ζ

RLS
p,c )}−1/2(ζRLSp,c )′n−1/2

∑n
i=1z

c
p,i.

2. Denominator. Lemma B.4(a) shows G0,0
n (θ̃, c)− τ c0 = oP(1).

3. Third moment. Lemma B.4(b) shows n1/2G0,3
n (θ̃, c) = ζ ′3,cn

−1/2
∑n

i=1 z
c
3,i+oP(1). Note

that (τ c0)2λ6,c = Var{(ζ3,c)
′zc3,i} to get T̂3,c = n1/2µ̂3,c/λ

1/2
6,c = T3,c,n + oP(1).

4. Fourth moment. Expand the demeaned moment n1/2(µ̂4,c−τ c4/τ c0) as n1/2{G0,4
n (θ̃, c)−

(τ c4/τ
c
0)G0,0

n (θ̃, c)}/G0,0
n (θ̃, c). Expand the numerator as ζ ′4,cn

−1/2
∑n

i=1 z
c
4,i + oP(1) using

Lemma B.4(c). Proceed as in item 3 to see that T̂4,c = T4,c,n + oP(1).
5. Distributions. The Central Limit Theorem shows that the finite dimensional dis-
tributions of T3,c,n, T4,c,n converge jointly to zero mean normal distributions with unit
marginal variances.
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C Normality testing initialized by LTS

C.1 Preliminary Results on Estimators

We analyze the order statistics of the LTS residuals and the LTS variance estimator.
We follow the analysis in §D.4 of Johansen and Nielsen (2016a), henceforth JN16. Let
c̃LTS = ξ̃(h)/σ be the hth smallest order statistic of ξ̃i = |yi − x′inβ̃LTS|, where b̃LTS =

N−1(β̂LTS − β)/σ. Let θ̃LTS = (0, b̃LTS, 0, b̃LTS). Then,

c̃LTS = inf
{
c :

1

n

n∑
i=1

1(|εσi −x′inb̃LTS |≤c)
≥ h

n

}
= inf

{
c : G0,0

n (θ̃LTS, c) ≥
h

n

}
and G0,0

n (θ̃LTS, c̃LTS) = h/n. Similarly, if ĉ0 is the hth order statistic of |εσi | then
G0,0
n (0, ĉ0) = h/n. Finally, let G be the distribution function of |εσi | and let θ̃d =
{n1/2(c̃LTS/c− 1), 0, 0, 0)}.

Lemma C.1. Let c ∈ (0, cε) and h = bnG(c)c. Suppose Assumptions 2.1, 3.2. Then

n1/2(c̃LTS − c) = −{2f(c)}−1G0,0
n (0, c) + oP(1), (C.1)

n1/2(σ̃LTS − σ) = (σ/2τ c2)n−1/2{G0,2
n (0, c)− c2G0,0

n (0, c)}+ oP(1). (C.2)

Proof. Suppress the index LTS. Lemma A.1 and Theorem A.4 are used repeatedly. This
requires Assumption 3.2(i, ii).

Quantiles of εi/σ. From Bahadur (1966), we have 2f(c)n1/2(ĉ0 − c) = −G0,0
n (0, c) +

oP(1), which is then OP(1) by the Central Limit Theorem.
Initial assessment of c̃. We argue that n1/2(c̃ − c) = OP(1). Lemma D.6 of JN16

shows that n1/2|c̃− c| ≤ 2|b̃|max1≤i≤n |xin|. Assumption 3.2(ii, iii, iv) gives the bounds
b̃ = N−1(β̃ − β)/σ = OP(1) and max1≤i≤n |xin| = oP(1), see also Lemma A.5.

Result (C.1). Follow the proof of Theorem D.7 in JN16 for fixed c. By construction

h/n = G0,0
n (θ̃, c̃) = G0,0

n (θ̃ + θ̃d, c), and h/n = G0,0
n (0, ĉ0) = G0,0

n (θ̃d, c).

Equating the two expressions we have

0 = n1/2{G0,0
n (θ̃, c̃)− G0,0

n (θ̃d, c)}.

Here, b̃ = OP(1) by assumption while n1/2(c̃ − c), n1/2(ĉ0 − c) = OP(1) for fixed c as
argued above. Thus, using Lemma A.1, we can replace these estimation errors with
deterministic terms and apply Theorem A.4 with the expansion (A.13) to each of the
G0,0
n functions. Deleting common terms in the two expansions then shows that

0 = G0,0
1n (θ̃ + θ̃d, c) + G0,0

1n (θ̃d, c) + oP(1).

Thus, by the expression for G0,0
1n in (A.7) we get oP(1) = 2cf(c){(c̃/c− 1)− (ĉ0/c− 1)}

so that 2cf(c)(c̃− c) = 2cf(c)(ĉ0 − c) + oP(1). Last, insert the expansion for ĉ0.
The result (C.2). Recall that ξi = |εσi − x′in(β̂ − β)|. We have that

σ̃2 =
(τ c0
τ c2

)n−1
∑n

i=1 ε̃
2
i 1{ξ̃i≤ξ̃(h)}

n−1
∑n

i=1 1{ξ̃i≤ξ̃(h)}
= σ2

(τ c0
τ c2

)G0,2
n (θ̃, c̃)

G0,0
n (θ̃, c̃)

,
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when using the empirical process notation with b̃ = n1/2(β̂−β)/σ as well as θ̃ = (0, b̃, 0, b̃)
and θ̃d = {n1/2(c̃− c), b̃, 0, 0}. Normalize to get

n1/2(σ̃2 − σ2) = σ2
(τ c0
τ c2

)n1/2{G0,2
n (θ̃, c̃)− (τ c2/τ

c
0)G0,0

n (θ̃, c̃)}
G0,0
n (θ̃, c̃)

.

By assumption b̃ = OP(1). Applying Lemma A.1, Theorem A.4 with (A.14) to the

denominator shows G0,0
n (θ̃, c̃) = G

0,0

n (0, c) + oP(1). By (A.5) we have that G
0,p

n (0, c) = τ cp

so that G0,0
n (θ̃, c̃) = τ c0 +oP(1) as well as G

0,2
(0, c)−(τ c2/τ

c
0)G

0,0
(0, c) = 0. In combination,

n1/2(σ̃2−σ2) = σ2
(τ c0
τ c2

)n1/2{G0,2
n (θ̃, c̃)− G

0,2
(0, c)} − (τ c2/τ

c
0)n1/2{G0,0

n (θ̃, c̃)− G
0,0

(0, c)}
τ c0 + oP(1)

.

Now, the expansion in Lemma A.1, Theorem A.4 with (A.13) shows that

n1/2{G0,p
n (θ̃, c̃)− G

0,p
(0, c)} = G0,p

n (0, c) + G0,p
1n (θ̃ + θ̃d, c)− G0,p

mn(θ̃ + θ̃d, c).

For p = 0, 2 we get from (A.7), (A.8) that G0,p
1n (θ̃ + θ̃d, c) = 2cp+1ϕ(c)n1/2(c̃/c − 1) and

G0,p
mn(θ̃ + θ̃d, c) = 0. The expansion in (C.1) shows that 2ϕ(c)n1/2(c̃− c) = −G0,0

n (0, c) +
oP(1). Insert all this above to get

n1/2(σ̃2 − σ2) =
(σ2

τ c2

)[
G0,2
n (0, c)−

(τ c2
τ c0

)
G0,0
n (0, c)−

(
c2 − τ c2

τ c0

)
G0,0
n (0, c)

]
+ oP(1).

Cancel the (τ c2/τ
c
0) terms and use that n1/2(σ̃ − σ) = n1/2(σ̃2 − σ2)/(2σ) + oP(1) by the

δ-method.

C.2 Proof of results for the LTS procedure

Consider the truncated moments (2.6). Define estimation errors ãLTS = n1/2(σ̃LTS−σ)/σ
and b̃LTS = N−1(β̃LTS − β)/σ. Let c̃LTS be the h quantile of |yi − x′inβ̃LTS|.

Lemma C.2. Suppose Assumptions 2.1, 3.2 hold. Recall ζLTS3,c , ζLTS4,c from (3.7) and

(3.8) and zc3,i, z
c
4,i from (3.1). Let ϑ̃LTS = (0, b̃LTS, ãLTS, b̃LTS). Then

(a) G0,0
n (ϑ̃LTS, c̃LTS) = τ c0 + oP(1);

(b) n1/2G0,3
n (ϑ̃LTS, c̃LTS) = (ζLTS3,c )′n−1/2

∑n
i=1z

c
3,i + oP(1);

(c) n1/2{G0,4
n (ϑ̃LTS, c̃LTS)− τ c4/τ c0G0,0

n (ϑ̃LTS, c̃LTS)} = (ζLTS4,c )′n−1/2
∑n

i=1z
c
4,i + oP(1).

Proof. Let θ̃d = {n1/2(c̃LTS/c − 1), 0, 0, 0)}. Note G0,p
n (θ̃LTS, c̃LTS) = G0,p

n (θ̃LTS + θ̃d, c).
Note that b̃LTS is OP(1) due to Assumptions 3.2(iii, iv), while θ̃d, ãLTS are OP(1) due to
Lemma C.1 using Assumptions 2.1, 3.2. Lemma A.1 shows that we can replace random
estimation errors with determiniatic quanties in a compact set. We then apply Theorem
A.4 using Assumptions 3.2(i, ii). Suppress the sub-index LTS throughout.

(a) Apply Theorem A.4 with (A.14) and G
0,0

n (0, c) = τ c0 .

(b) Let N3,ĉ = G0,3
n (ϑ̃, c̃) − G

0,3

n (0, c) with G
0,3

n (0, c) = 0. Lemma A.1 and Theorem
A.4 with (A.13) show n1/2N3,ĉ = G0,3

n (0, c) + G0,3
n (ϑ̃+ θ̃d, c) + oP(1).
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Define vG = (1, 0, 0)′ and vG = (τ c2)−1{2c3ϕ(c)−3τ c2}(0, 1, 0)′ so that ζ3,c = vG +vG =
[1, {2c3ϕ(c)−3τ c2}/τ c2 , 0]′ as in (3.7). We show that n1/2N3,c = ζ ′3,cn

−1/2
∑n

i=1z
c
3,i+oP(1).

First, G0,3
n (0, c) = v′Gn

−1/2
∑n

i=1z
c
3,i. Second, Theorem A.4 with (A.10), (A.11) shows

G0,3
n (ϑ̃ + θ̃d, c) = {2c3ϕ(c) − 3τ c2}n−1/2

∑n
i=1x

′
inb̃. The estimation error b̃ = N−1(β̃ − β)

has an expansion given in Assumption 3.2(iv) and is of the form considered in Lemma
B.1. Therefore,

∑n
i=1x

′
inb̃ = (τ c2)−1

∑n
i=1(εσi )1(|εσi |≤c) + oP(1). In turn, G0,3

n (ϑ̃ + θ̃d, c) =
v′G
∑n

i=1z
c
3,i + oP(1).

(c) Let N4,ĉ = {G0,4
n (θ̃, c̃)−τ c4/τ c0G0,0

n (θ̃, c̃)}. Lemma A.1 and Theorem A.4 with (A.13)

give, for j = 0, 4, that n1/2{Gjn(θ̃, c̃)− G
j

n(0, c)} = Gj
n(0, c) + Gjn(ϑ̃ + θ̃d, c) + oP(1). Due

to the identity G
0,4

n (0, c)− (τ c4/τ
c
0)G

0,0

n (0, c) = τ c4 − τ c0τ c4/τ c0 = 0, we write

n1/2N4,ĉ =
{
G0,4
n (0, c) + G0,4

1n (ϑ̃+ θ̃d, c)
}
− (τ c4/τ

c
0)
{
G0,0
n (0, c) + G0,0

1n (ϑ̃+ θ̃d, c)
}

+ oP(1).

Let vG,4 = (1, 0, 0, 0)′ and vG,0 = (0, 0, 1, 0)′ for p = 0, 4, so that G0,p
n (0, c) =

v′G,pn
−1/2

∑n
i=1z

c
4,i. From Theorem A.4 with (A.10), (A.11) we get biases G0,0

1n (ϑ̃+ θ̃d, c) =

2ϕ(c)n1/2(c̃− c) and G0,4
1n (ϑ̃+ θ̃d, c) = 2c4ϕ(c)n1/2(c̃− c)− 4τ c4σ

−1ã.
Let vG,0 = (0, 0,−1, 0)′ and vG,4 = {(0, 0,−c4, 0)− 2(τ c4/τ

c
2)(0, 1,−c2, 0)}′. Then, the

expansions for ã, n1/2(c̃− c) in (C.1), (C.2) give G0,p
1n (ϑ̃+ θ̃d, c) = v′G,p

∑n
i=1z

c
4,i.

Insert these expressions in the above expansion of n1/2N4,c noting that ζ4,c = vG,4 +
vG,4 − (τ c4/τ

c
0)(vG,0 + vG,0) giving the expression in (3.8).

Proof of Theorem 3.2. As the proof of Theorem 3.1 replacing Lemma B.4 by
Lemma C.2. �

D Power expansions for the kurtosis statistics

The kurtosis statistic T̂ s4c was expanded in (3.9). Here, we consider the numerator of the
non-centrality term, that is λs3cΦ−λs3cF, where λs3cF is the limiting value of µ̂s4c as defined
in (2.6). We let τ cpΦ and τ cpF denote the truncated moments under normality and F.

Least trimmed squares limits. The initial and updated LTS scale estimators defined
in (3.6) satisfy

σ̃2
LTS = σ̂2

LTS
P→ σ2/$2

c where $2
c = (τ c0F/τ

c
2F)(τ c2Φ/τ

c
0Φ),

see Lemma C.1. The fourth moment estimator defined in (2.6) then satisfies

µ̂LTS4c = $4
c

∑n
i=1{ε̂i/(σ̂LTS$c)}41(|ε̃i|≤ξ̃h)∑n

i=1 1(|ε̃i|≤ξ̃h)

P→ λLTS3cF = $4
c

τ c4F
τ c0F

,

by Lemma C.2. We expand the numerator of the non-centrality in (3.9) as

λLTS3cF − λLTS3cΦ =
τ c4Φ

τ c0Φ

{
$4
c

( τ c4F
τ c4Φ

)(τ c0Φ

τ c0F

)
− 1
}

=
τ c4Φ

τ c0Φ

{( τ c0F
τ c0Φ

)( τ c4F
τ c4Φ

)(τ c2Φ

τ c2F

)2

− 1
}

(D.1)

Since F = (1− ε)Φ + εG, we get that τ cpF = (1− ε)τ cpΦ + ετ cpG. Rearrange to get

τ cpF
τ cpΦ

= 1 + ε
(τ cpG
τ cpΦ
− 1
)
. (D.2)
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Insert the expression (D.2) in (D.1) to get

λLTS3cF − λLTS3cΦ =
τ c4Φ

τ c0Φ

[{1 + ε(τ c0G/τ
c
0Φ − 1)}{1 + ε(τ c4G/τ

c
4Φ − 1)}

1 + 2ε(τ c2G/τ
c
2Φ − 1)

− 1
]

= ε
τ c4Φ

τ c0Φ

(τ c4G
τ c4Φ

− 2
τ c2G
τ c2Φ

+
τ c0G
τ c0Φ

)
+ o(ε). (D.3)

Robustified least squares limits. The initial least squares estimator satisfies

σ̃2
OLS

P→ σ2/$2 where $2 = $2
∞ = 1/τ∞2F .

The updated least squares scale estimator satisfies

σ̂2
RLS =

τ c0Φ

∑n
i=1 ε̂

2
i 1{|ε̃i|<(σ̃OLS$)(c/$)}

τ c2Φ

∑n
i=1 1{|ε̃i|<(σ̃OLS$)(c/$)}

P→ σ2

$̃2
c

where $̃2
c =

(τ c/$0F

τ
c/$
2F

)(τ c2Φ

τ c0Φ

)
.

The fourth moment estimator defined in (2.6) then satisfies

µ̂RLS4c = $̃4
c

∑n
i=1{ε̂i/(σ̂RLS$̃c)}41{|ε̃i|≤(σ̃OLS$)(c/$)}∑n

i=1 1{|ε̃i|≤(σ̃OLS$)(c/$)}

P→ λRLS3cF = $̃4
c

τ
c/$
4F

τ
c/$
0F

, (D.4)

by Lemma B.4. We expand the numerator of the non-centrality term in (3.9) as

λRLS3cF −λRLS3cΦ =
τ c4Φ

τ c0Φ

{
$̃4
c

(τ c/$4F

τ c4Φ

)( τ c0Φ

τ
c/$
0F

)
−1
}

=
τ c4Φ

τ c0Φ

{(τ c/$0F

τ c0Φ

)(τ c/$4F

τ c4Φ

)( τ c2Φ

τ
c/$
2F

)2

−1
}

(D.5)

We expand the truncated moments evaluated in a distorted cut-off. First, note that p
is even and, then, apply the mean value theorem to get

τ
c/$
pF =

∫ c/$

−c/$
updF(u) = τ cpF + 2

∫ c/$

c

updF(u) = 1 +
2

τ cpF
cp+1f(c∗)

( 1

$
− 1
)

+ o(ε).

It is convenient to let y = (1/$ − 1) = (τ∞2F)1/2 − 1. Combine with (D.2) to get

τ
c/$d
pF

τ cpΦ
=
(τ c/$dpF

τ cpF

)( τ cpF
τ cpΦ

)
=
{

1 + (ε/τ cpF)cp+1f(c)y + o(ε)
}[

1 + ε{(τ cpG/τ cpΦ)− 1}
]

= 1 + ε
{τ cpG
τ cpΦ
− 1 +

1

τ cpΦ
cp+1f(c)y

}
+ o(ε). (D.6)

Insert the expression (D.6) in (D.5) to get

λRLS3cF − λRLS3cΦ =
τ c4Φ

τ c0Φ

(
[1 + ε{(τ c0G/τ c0Φ)− 1 + cf(c)y/τ c0Φ}]

× 1 + ε{(τ c4G/τ c4Φ)− 1 + c5f(c)y/τ c4Φ}
[1 + ε{(τ c2G/τ c2Φ)− 1 + c3f(c)y/τ c2Φ}]2

− 1
)

+ o(ε).

Expand for small ε and use that y = (τ∞2F)1/2 − 1 to get the final expression

λRLS3cF −λRLS3cΦ = ε
τ c4Φ

τ c0Φ

{(τ c4G
τ c4Φ

−2
τ c2G
τ c2Φ

+
τ c0G
τ c0Φ

)
+cf(c)

{
(τ∞2G)1/2−1

}( c4

τ c4Φ

−2
c2

τ c2Φ

+
1

τ c0Φ

)}
+o(ε).
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