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Abstract

Step-Indicator Saturation (SIS) is an algorithm to address multiple location
shifts at unknown dates in time series during model selection. We derive asymp-
totic theory for tuning parameter choice based on consistency and asymptotic
normality of the frequence gauge – the rate of false detections. Simulations sug-
gest that a smaller gauge minimizes bias in post-selection regression estimates.
For the small gauge situation, we develop a complementary Poisson theory. We
compare the local power of SIS to detect shifts with that of an extant method. We
find that SIS excels when breaks are near the sample end or closely spaced. An
application to UK labor productivity reveals a growth slowdown after the 2008
financial crisis.

1 Introduction

Step-Indicator Saturation (SIS), suggested by Castle et al. (2015), is a model selection
algorithm designed to address location shifts in time series without restrictions on their
number, date, and distance to each other or sample boundaries. In its most general
form, the initial specification has a k-variate regressor xi, which can be of the exogenous,
(trend-)stationary, or random walk type, and as many step indicators as observations:

yi = β′xi +
n∑
j=1

δj1(i≤j) + εi for i = 1, . . . , n. (1)

If the number of δj 6= 0 and their location j were small and known, the model could be
estimated by least squares. In practice, the nature of location shifts is often unknown,
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and investigators estimate them using block-search algorithms (Doornik, 2009; Hoover &
Perez, 1999; Hendry & Krolzig, 2005). Such algorithms depend on a tuning parameter,
which can be chosen indirectly by controlling the type I error. Castle et al. (2015)
measured type I errors in terms of the frequency of falsely detected shifts, which we
will refer to as the gauge. We develop an asymptotic theory to understand the gauge
of simplified versions of SIS, and show that for conformable values of the gauge, the
procedure maintains power to detect shifts.

Location shifts are a common phenomenon in observed time series (Perron, 1989;
Andrews, 1993; Bai & Perron, 1998), and a failure to address them can affect model
selection probabilities of variables (Castle & Hendry, 2014), distort parameter estimation
(Hendry & Mizon, 2011), and result in forecast failure (Clements & Hendry, 1998). The
growing importance of SIS in tackling location shifts is reflected in its applications
in fields as varied as economics (Chuffart & Hooper, 2019; Pellini, 2021; Bernstein &
Martinez, 2021), climate science (Raggad, 2018; Pretis et al., 2018; Koch et al., 2022;
O’Callaghan et al., 2022), and public health (Doornik et al., 2022). However, despite
its popularity, no study of its asymptotic properties exists. This study fills the gap
using theoretical insights to shed light on four pivotal areas for practitioners: First,
the control of its tuning parameter with the gauge can be closely aligned with the
investigator’s preferences without detailed knowledge of the regressor type. Second, the
bias in post-selection regression estimates can be addressed by choosing a small gauge,
or switching to the Poisson theory for the gauge when it is vanishing. Third, SIS can
detect minor shifts after a short period of upheaval and maintains power near the end
of the sample. Fourth, SIS has weak regularity conditions for the regressors.

In this paper, we study the split-half SIS algorithm. This is a simplified version of
the SIS algorithm as implemented in tools like EViews (2020), gets in R (Pretis et al.,
2018; Sucarrat, 2020), and Autometrics in Oxmetrics (Doornik, 2009). Simulations by
Castle et al. (2015) indicate that the general SIS has the same gauge properties as split-
half SIS, but can detect a wider range of shifts with more power. Split-half SIS splits
the sample into two subsets with n1 and n − n1 observations. It then applies stylized
SIS to both subsamples. Stylized SIS, when applied to the second subsample, excludes
the first set of step-indicators. For example, it is imposed that δj = 0 for j ≤ n1 in (1).
The model is then estimated by OLS to determine which of the coefficients δj for j > n1

are significant. An analysis of split-half SIS can shed light on more general versions of
the algorithm and provide mathematical tools for examining related algorithms.

Split-half SIS results in n decisions about the inclusion of step-indicators 1(i≤j). This
method requires setting a tuning parameter: a common cut-off c for selecting step-
indicators. Drawing inspiration from classical test theory, we aim to determine the
cut-off c indirectly from a measure of type I error. Classical testing problems focus on
single-decision problems in which the critical value – or the cut-off – is chosen from
the size of the test, which is the probability of a type I error of falsely rejecting the
hypothesis. In multiple-decision problems, there are many alternative ways of measuring
type I error. We study the gauge, which is based on a count of the false rejections. The
gauge is also referred to as the expected error rate (Miller, 1981) or the per-comparison
error rate (Dudoit & van der Laan, 2010). A concept similar to the gauge was introduced
by Hoover & Perez (1999). The term gauge originates in Hendry & Santos (2010) and

2



Castle et al. (2011), see also Hendry & Doornik (2014, p. 122).
When comparing the gauge to alternative measures of type I error in the context of

multiple-decision testing problems, we note that the gauge is more amenable to asymp-
totic analysis. These alternatives include the probability error rate (Miller, 1981; Dudoit
& van der Laan, 2010), also called the family-wise error rate (Dudoit & van der Laan,
2010), and the false discover rate (Benjamini & Hochberg, 1995). The probability error
rate is the probability of at least one false detection. It requires a detailed assessment
of the dependence of the individual decisions. In contrast, the gauge ignores this de-
pendence structure. The false discovery rate is the expected value of the proportion of
type I errors among the rejected hypotheses. Under our null hypothesis of no location
shift in the data generating process, the false discovery rate equals unity.

To formalize the notion of the gauge, consider two equivalent approaches to formulate
stylized SIS. We introduced this algorithm by imposing δj = 0 for j ≤ n1 in (1),
estimating the model by least squares and then investigating the significance of the
remaining step-indicators. An equivalent alternative formulation is to first regress yi on
xi and an intercept for i ≤ n1. This yields least squares estimators β̂1 and σ̂2

1. These
estimators will be consistent if there are no location shifts in the first subsample. We
then compute the scaled residuals in the second subsample. As pointed out by Castle
et al. (2015) and as shown in Section 2, we can then inspect the forward differenced
residuals for outliers. That is, if there are n observations of (1), compute

(∇yi − β̂′1∇xi)/
√

2σ̂1 for i = n1 + 1, . . . , n− 1, (2)

with ∇yi = yi − yi+1, and where the
√

2-factor arises since the variance of ∇εi is twice
the variance of εi. A location shift is declared if the absolute value of the forward
differenced residual exceeds a cut-off, c. The frequency of declared location shifts in the
stylized SIS algorithm is the frequence gauge:

γ̂n =
1

n− n1 − 1

n−1∑
i=n1+1

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1c)
. (3)

If the data generating process has no location shifts, then all declarations of shifts are
false, so that γ̂n is the average type I error. We show the consistency

γ̂n
p→ γ = P(|∇εi| ≥

√
2σc), (4)

for a wide range of time series regressors xi including stationary and non-stationary
regressors. We can then choose the cut-off c from the limiting gauge γ. In simulations,
we confirm the consistency result and provide some further analysis.

The consistency of the frequence gauge for a variety of time series regressors shows
that it is possible to control the type I error of SIS without prior knowledge of the
detailed time series structure. The regressors do have a second-order effect on this con-
sistency result, which we investigate through an asymptotic expansion of the normalized
frequence gauge n1/2(γ̂n − γ). We find that it is asymptotically zero mean normal, but
its variance depends on the correlation structure of ∇xi and ∇εi. Numerical approxima-
tions confirm that the asymptotic variance of the frequence gauge is strictly larger for
split-half SIS than for split-half IIS. In contrast to split-half IIS, the asymptotic variance
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of split-half SIS depends on the temporal persistence of the time series. A small gauge
substantially reduces its asymptotic variance.

A challenge to the asymptotic analysis of the frequence gauge for SIS is the temporal
and cross-sectional correlation due to the forward differencing of xi and εi in (2). For
instance, in the autoregression xi+1 = ρxi + εi with independent εi and xi, we get that
∇εi = εi − εi+1 is temporally and cross-sectionally correlated with ∇xi = xi − xi+1 =
(1 − ρ)xi − εi. In the related asymptotic analysis of IIS by Hendry et al. (2008) and
Johansen & Nielsen (2009, 2013, 2016a,b), the use of impulse-indicators of the form
1(i=j) avoids the temporal and cross-sectional correlation structure. Therefore, IIS can
be analyzed using a version of the empirical process theory of (Koul & Ossiander, 1994),
see also Giraitis et al. (2012). Our analysis of the SIS overcomes the correlation problem
by combining the empirical process theory with mixingale theory of McLeish (1977).

A simulation study shows that split-half SIS can introduce a bias in the updated
estimates for β in (1) that does not vanish asymptotically. The bias is largest when
regressors are lagged dependent variables with an autoregressive coefficient close to unity,
and when the frequence gauge is large. For split-half SIS, the empirical setting after
the selection over the step-indicators resembles an unbalanced panel regression with a
small temporal and large cross-sectional range. Each interval in between two consecutive
retained step-indicators can be interpreted as another i in the panel that introduces a
new individual fixed effect. The incidental parameter problem arises because with a
non-zero frequence gauge γ, the number of breaks is approximately nγ, so that the
number of observations in each interval is on average 1/γ and therefore finite even as
the sample size increases. This matches the situation of a panel data model with large
cross-sectional dimension and finite time series dimension, in which biases arise for the
dynamic parameter estimators. We conjecture that the bias is due to a combination
of the incidental parameter problem (Lancaster, 2000, 2002) and the correlation of the
retained step-indicators with the innovations (Arellano & Bond, 1991).

We suggest two different approaches address the bias in the estimation of β under
split-half SIS. First, simulations suggest investigators to use a small frequence gauge,
as a smaller frequence gauge is associated with a smaller bias. In a sample of 100
observations, we would recommend a frequence gauge of 1% if one would normally
conduct inference at the 5% level. Second, we develop a theory for shrinking the gauge
with increasing sample sizes. For this, we consider the absolute gauge

Γ̂n =
n−1∑

i=n1+1

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1cn), (5)

for increasing sequences of the cut-off cn that satisfy, for some λ > 0,

P(|∇εi| >
√

2σcn) = λ/n. (6)

As the cn increases with the sample size, the absolute gauge is smaller than the frequence
gauge as the sample grows. By modifying the theory of Johansen & Nielsen (2016b), we
show that the absolute gauge Γ̂n is asymptotically Poisson distributed. The asymptotic
result is the same whether the regressors are stationary or non-stationary. In the proof,
we encounter the same dependence issue between ∇xi and ∇εi. We address this using
the Poisson limit theorem of Chen (1975).
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An alternative to SIS is the Bai & Perron (1998) procedure. It builds on the Andrews
(1993) breaks test and provides estimates for timing and location of breaks. Comparing
the power properties of SIS and the Bai-Perron procedure is challenging due to the in-
herent complexity of both methods. Instead, we compare stylized SIS with the Andrews
test. We consider two types of scenarios: Scenarios where the Andrews test is consis-
tent in that power approaches unity while stylized SIS has trivial power approaching
the gauge. And scenarios where the Andrews test has trivial power while stylized SIS
is consistent. On balance, we find that the Andrews test is preferable if there is one
break or two well-separated breaks in the middle of the sample. SIS is preferable for
a break near the end of the sample. Such a break is important to discover and ad-
dress in forecasting contexts (Clements & Hendry, 1998). SIS is also preferable if two
close breaks offset each other, for instance if the growth rate moves from one level to a
slightly different level through a short period of upheavel, see Castle et al. (2023) and
the empirical illustration. We argue that the results carry over to a comparison with
the Bai-Perron procedure.

The proof of the local power results uses convergence on the D[0, 1] space of dis-
continuous functions. We handle the one-break case by the Skorokhod (1956) J1-metric
discussed by Billingsley (1968). However, in order to establish convergence in the two-
close-breaks case, we use Skorokhod’s M1 metric in line with Whitt (2002).

Our theory for simplified versions of SIS requires knowledge of the innovation distri-
bution. The normal distribution is the standard choice. Just as in a standard regression,
the normality assumption will be testable from the residuals once the model has been
fitted. With a finite cut-off, the standard cumulant based normality test may have to
be adjusted. Indeed, this is the case when applying outlier detection with finite cut-off
(Berenguer-Rico & Nielsen, 2023). In contrast, standard heteroscedasticity tests re-
main valid after outlier detection with finite cut-off (Berenguer-Rico & Wilms, 2021).
It should be noted that other procedures, such as the Andrews (1993) only require dis-
tributional assumptions that are sufficient to apply a Central Limit Theorem. In turn,
SIS requires weaker assumptions to the regressors.

We apply our split-half SIS theory to analyze the UK labor productivity from 1980
to 2021. While there is a growing consensus about the decline of productivity growth
in the UK (Chadha, 2022), a simple autoregressive model is not rejected by the stan-
dard diagnostic tests. This indicates that location shifts are not always obvious to the
investigator. Using a 1% gauge, the split-half SIS algorithm identified multiple shifts in
UK productivity growth: 0.56% before 2000, 0.37% up to 2008 and 0.04% up to 2020.
These findings also illustrate the ability of SIS to find minor shifts around episodes of
upheaval, in our case the 2008 financial crisis and the 2020 Covid pandemic.

Section 2 outlines the model and the SIS algorithm. Sections 3, 4 present the asymp-
totic results on the frequence gauge for the stylized and split-half SIS respectively, while
section 5 presents the Poisson theory for the absolute gauge. Power analysis is found in
Section 6. Simulation results are given in Section 7. An empirical illustration follows in
Section 8. Section 9 concludes. Proofs follow in an appendix.
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2 Model and algorithms

We begin by presenting the linear regression model to which we apply the SIS algorithm.
Subsequently, we introduce two simplified versions of the SIS: stylized SIS and split-half
SIS. Lastly, given that the decisions rules on the retaining of step-indicators pertain to
differenced innovations, we discuss of their notable properties.

2.1 The model

Step-Indicator Saturation (SIS) aims to detect location shifts within the model:

yi = µ+ β′xi + εi for i = 1, . . . , n. (7)

By saturating with step-indicators of the type 1(i≤j), we obtain equation (1) with δn = µ.
In practice, one would expect that only a few of the δj parameters in (1) are non-zero,
but their number and location are unknown. The regressor xi is a k-vector, which
does not include an intercept. It can include stationary, trend-stationary and random
walk variables, but excludes explosive regressors. The innovations εi are independent,
identically, distributed with a continuous distribution that is known up to the scale.
Further, the innovations are independent of current and past regressors xj for j ≤ i.
The coefficient to the intercept is identified when Eεi = 0, but the asymptotic theory
does not depend on this constraint.

As a model selection algorithm, the idea of SIS is grounded in the general-to-specific
approach to regressor selection of Hoover & Perez (1999). Its core mechanism revolves
around iterative backward elimination: in each step, a regression is estimated, the least
significant regressor is eliminated, and the smaller model is re-estimated. The iteration
stops when the fit of the model deteriorates too much. While a single backward elimi-
nation has poor properties for correlated regressors, Hoover & Perez (1999) found that
multiple backward eliminations with different starting points have better properties in
recovering the original data generating process. Algorithms such as PcGets (Hendry
& Krolzig, 2005) and Autometrics (Doornik, 2009) adopt this multi-path approach but
search over many more paths to get closer to evaluating all possible subsets of regressors.
Autometrics allows situations with more regressors than observations by searching over
blocks of regressors. This permits saturation with indicators for each observation as in
Impulse-Indicator Saturation (IIS) and Step-Indicator-Saturation (SIS). The saturation
approach allows a simultaneous search over regressors xi and indicator variables. The
simultaneous search is helpful when there is a high sample correlation between regres-
sors and indicator variables, see Hendry & Doornik (2014). SIS is implemented in the
R package gets (Pretis et al., 2018; Sucarrat, 2020), in EViews (2020), and within a
structural time series model in Marczak & Proietti (2016). It is worth noting that Auto-
metrics employs indicators of the form 1(i≤j) as here, while gets utilizes 1(i≥j). A related
algorithm based on sensitivity analysis was presented by Becker et al. (2021).

2.2 Split-half estimation and forward differencing

While regression equations with more variables than observations cannot be estimated
as a single equation, they can be approached by using a subset – or blocks – of those
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variables. The strategy involves experimenting with various blocks to find the relevant
regressors. The simplest block search algorithm is the stylized SIS. We apply it to (1).
It begins by dividing the observations into two parts: the first n1 observations and the
remaining n2 = n − n1 observations. For the first half, we keep only an intercept and
otherwise drop the indicator variables. This gives the model equation

yi = β′xi + µ1(i≤n1) +
n∑

j=n1+1

δj1(i≤j) + εi for i = 1, . . . , n. (8)

Since the second half-sample is saturated with indicators, that half will have perfect fit.
The consequence of this observation is best seen through reparameterization. Multiply
xi by unity, written as a sum of indicators for the first half (i ≤ n1) and for the impulses
(i = `) for n1 < ` ≤ n. Decompose the indicator for (i ≤ j) likewise. This gives

yi = β′xi1(i≤n1) +
(
µ+

n∑
j=n1+1

δj

)
1(i≤n1) +

n∑
`=n1+1

β′xi1(i=`) +
n∑

j=n1+1

δj

j∑
`=n1+1

1(i=`) +εi.

Interchanging summation order in the last δ-term gives the reparameterization

yi = β′xi1(i≤n1) + ν1(i≤n1) +
n∑

`=n1+1

η`1(i=`),

where

ν = µ+
n∑

j=n1+1

δj, η` = β′x` +

n1∑
j=`

δj. (9)

As the indicators are orthogonal, the least squares estimators for β, ν are found by
standard multiple regression on xi and the intercept using the first sample, while η` is
estimated by η̂` = y`. Solving the expression for η` in (9) for δ` shows that

δ̂` =
(
η̂` − β̂′x`

)
−
(
η̂`+1 − β̂′x`+1

)
= ∇y` − β̂′∇x` for n1 < ` < n, (10)

while δ̂n = η̂n − β̂′xn = yn − β̂′xn. In the subsequent analysis, we will analyze the
gauge, which is the count of the significant estimated δ` coefficients. Apart from the
last estimate, these are all based on forward differencing. In an asymptotic analysis of
the gauge, we can ignore the last estimator without affecting the asymptotic result.

2.3 Step-Indicator Saturation algorithms

We present two simplified SIS algorithms in a more formal way. The algorithms involve
splitting the sample in two consecutive parts for the n1 first observations and the n2 =
n − n1 last observations. When working with differenced variables, one observation is
lost from each sub-sample. We define index sets

I1 = (i ≤ n1), I◦1 = (i < n1), I2 = (n1 < i ≤ n), I◦2 = (n1 < i < n), (11)
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and counts n◦1 = n1− 1, n◦2 = n2− 1 and n◦ = n◦1 + n◦2 = n− 2. For each sub-sample Ij,
for j = 1, 2, we estimate the constant intercept regression model yi = µ + β′xi + εi by
least squares regression and get the estimators

xj = n−1
j

∑
i∈Ij

xi, β̂j =
{∑
i∈Ij

(xi − xj)(xi − xj)′
}−1∑

i∈Ij

(xi − xj)yi, (12)

yj = n−1
j

∑
i∈Ij

yi, σ̂2
j =

1

nj

∑
i∈Ij

{
(yi − yj)− β̂′j(xi − xj)

}2
. (13)

We will use the estimates from the first sub-sample to predict location shifts in the
second sub-sample. This corresponds to predicting outliers for the differenced series
using ∇yi − β̂1∇xi. This gives the forecast correction factors

ω2
1,i = 1 + (∇xi)′

{
2
∑
k∈I◦1

(xk − xj)(xk − xj)′
}−1

∇xi for i ∈ I2, (14)

and we define ω2
2,i vice versa when replacing the index sets I◦2 , I2 by I◦1 , I1. The factors

arise as follows. First, rewrite ∇yi − β̂′1∇xi = ∇εi − (β̂1 − β)′∇xi by applying equation
(7). Then, assuming fixed regressors and independent normal N(0, σ2) innovations we
get that ∇yi− β̂′1∇xi is normal N(0, 2σ2ω2

1,i). Later we show that under mild regularity
conditions ω2

2,i is uniformly close to unity and it can indeed be replaced by unity for
asymptotic purposes. We define the stylized SIS algorithm, which searches for location
shifts in the second sub-sample.

Algorithm 2.1. The stylized Step-Indicator Saturation algorithm.
1. Choose a cut-off value c > 0 to select breakpoints.
2. Calculate the least squares estimators (β̂1, σ̂

2
1) based on sample I1.

3. Calculate forecast correction factors ω2
1,i for i ∈ I2.

4. Declare a location shift at i+ 1 if∣∣∇yi − β̂′1∇xi∣∣ ≥ √2σ̂1ω1,ic for i ∈ I◦2 . (15)

The frequency of location shifts declared by Algorithm 2.1 is

γ̂stylizedn =
1

n◦2

∑
i∈I◦2

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1ω1,ic)
. (16)

When the data generating process has no location shifts, so that µi = µ, the expression
γ̂n is the frequence gauge of the algorithm, which is the object of interest in this paper.

Castle et al. (2015) refer to a split-half SIS algorithm, which is a symmetrized version
of the above algorithm. For reference, we define that algorithm including a statement
on how to update the estimators for β, σ2 in light of the identified location shifts. We
allow the sub-samples to be of unequal size, but retain the split-half descriptor.

Algorithm 2.2. The split-half Step-Indicator Saturation algorithm.
1. Choose a cut-off value c > 0 to select breakpoints.
2. Calculate the least squares estimators (β̂j, σ̂

2
j ) based on sample Ij for j = 1, 2.
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3. Calculate forecast correction factors ω2
j,i for i 6∈ Ij and j = 1, 2.

4. Declare a location shift at i+ 1 if

|∇yi − β̂′j∇xi| ≥
√

2σ̂jωj,ic for i ∈ I◦3−j and j = 1, 2. (17)

For notational simplicity, we do not consider the possibility of a location shift from
i = n1 to i = n1 + 1. The split-half SIS algorithm of Castle et al. (2015) continues to
re-estimate β, σ on the full sample while taking the detected location shifts into account.

The frequency of declared location shifts by Algorithm 2.2 is

γ̂splitn =
1

n◦

{∑
i∈I◦1

1(|∇yi−β̂′2∇xi|≥
√

2σ̂2ω2,ic)
+
∑
i∈I◦2

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1ω1,ic)

}
. (18)

2.4 Properties of the differenced innovations

The scaled innovations εi/σ have density f. In applications, we often assume f to be the
normal density. The forward differenced innovations are denoted

∇εi = εi − εi+1, χi = ∇εi/(
√

2σ). (19)

The scaled forward differenced innovations χi have the convolution density

h(x) =
√

2

∫ ∞
−∞

f(y)f(
√

2x+ y) dy, (20)

and distribution function H. Following (4) let

γ = P(|χi| ≥ c). (21)

We highlight four properties of the density h.

Theorem 2.3. Assume εi/σ are i.i.d. and continuous with density f. The density h
then satisfies the following properties:
(a) Symmetry: h(x) = h(−x);
(b) Suppose f has second moment. Then f = h if and only if f is standard normal;
(c) for k ∈ N0: supv∈R |v|kf(v) <∞ ⇒ supv∈R |v|kh(v) <∞;
(d) for k ∈ N0: supv∈R(1 + |v|k)|ḟ(v)| <∞ and E|εki | <∞ ⇒ supv∈R |vkḣ(v)| <∞.

Theorem 2.3 implies that when the reference distribution f for ε is standard normal
so is the distribution h for χi. Thus, the gauge γ is associated with a cut-off c chosen
as the normal (1− γ/2) quantile.

3 The main results for stylized SIS

We present an asymptotic theory for the frequence gauge of stylized SIS. The first-order
result is consistency. This allows us to choose the cut-off c indirectly from the gauge.
We obtain consistency for a wide range of stationary and non-stationary regressors.
We will also develop a second-order expansion of the gauge with a view to understand
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how uniform the consistency result is. In this section, we give an asymptotic expansion,
which is developed into an asymptotic theory for split-half SIS in the subsequent section.
We then find that the asymptotic distribution is normal for a wide range of regressors,
but with an asymptotic variance depending on the type of regressors.

We require the following time series structure for innovations εi and regressors xi.

Assumption 3.1. Let Fi be a filtration so that εi−1 and xi are Fi−1-adapted, and εi/σ
has unit variance and is independent of Fi−1 with distribution function F and positive
density f on R with derivative ḟ.

Assumption 3.1 rules out endogeneity of the form, Cov(xi, εi) 6= 0, but allows pre-
determined time series regressors. The innovations need not have zero mean as Theorem
2.3(a) implies E∇εi = 0 even if Eεi 6= 0. Intriguingly, Jiao (2019) exploits the techniques
developed here to analyze situations with endogeneity.

The theory results allow for stationary and non-stationary regressors. For this pur-
pose, we introduce normalization matrices Nj for each sub-sample j = 1, 2. This yields
normalized regressors

xin = N ′jxi, ∇xin = N ′j(xi − xi+1) for i ∈ I◦j , (22)

where we have suppressed the index j in the definition of the normalized regressor xin.
We choose the normalizations depending on the stochastic properties of xi so that

Σ̂jn =
∑
i∈Ij

N ′j(xi − x̄j)(xi − x̄j)′Nj where Σ̂−1
jn = OP(1). (23)

In the asymptotic theory we will require that

V̂jn =
∑
i∈Ij

N ′j(xi − x̄j)(εi − Eεi) = OP(1); E
∑
i∈I◦j

|∇xin|2 = O(1). (24)

For the practitioner it will be possible to choose the cut-off c without precise knowledge
of the type of regressors and hence the normalization. The knowledge of the type is only
needed for the second-order theory.

We give some examples of normalizations. If xi is stationary, then ∇xi is also
stationary. Thus, we let Nj = n

−1/2
j Idimx and find that Σ̂1n, V̂1n and E

∑
i∈I◦2
|∇xin|2

converge under mild regularity conditions. If xi is a random walk, then ∇xi is i.i.d. and
we let Nj = n−1

j Idimx. Then, under mild regularity conditions, Σ̂1n, V̂1n converge, while
E
∑

i∈I◦2
|∇xin|2 vanishes. Thus, the asymptotic expansions simplify in the latter case.

As an example of cointegrated regressors, we could have

N1 =

(
n−1/2 0

0 n−1

)(
1 −1
0 1

)
if xi =

(
1
1

) i−1∑
j=1

εj + zi

for some stationary, bivariate process zi. We note that this N1 is non-diagonal.
In most applications, the density of the innovations εi will be normal. However,

the density needs neither be centered at zero nor be symmetric as the theory results
will only depend on the implied density for the differenced innovations ∇εi = εi − εi+1.

10



Our theory does require that the density f of the innovations εi and its derivative are
bounded. The condition is satisfied for a wide range of densities, including the normal
density. Moreover, the differenced innovations’ conditional density, given the differenced
regressors and the past, should also be bounded. If the regressors are pre-determined,
this reduces to boundedness of the density of the differenced innovations and follows
from the boundedness of the density f of the innovations εi due to Theorem 2.3.

Assumption 3.2. Suppose that
(i) the density f satisfies (a) supv∈R f(v) <∞, (b) supv∈R(1 + v2)|ḟ(v)| <∞;
(ii) the conditional density mi(y|x) of χi given ∇xi and Fi−1 exists for i = n1 +1, . . . , n,

it is differentiable in y and satisfies maxn1+1≤i≤n supy∈R,x∈Rp(1 + |y|) |ṁi(y|x)| <∞;

(iii) the regressors xi satisfy, with Σ̂1n, V̂1n defined in (23), (24):

(a) Σ̂−1
1n = OP(1), (b) V̂1n = OP(1), (c) E

∑
i∈I◦2
|∇xin|2 = O(1);

(iv) the sub-sample lengths satisfy (n2/n1)1/2, N−1
2 N1 = o(n

1/4−η
2 ) for some η > 0.

We start by showing that the forecast correction factor ω2
1,i can be replaced by unity

with negligible asymptotic consequences.

Theorem 3.3. Consider the gauge of the stylized SIS Algorithm 2.1. Suppose Assump-
tions 3.1, 3.2(ia, iii, iv) apply and that no locations shifts are present so that µi = µ.
Then, we get for fixed c ∈ R that

γ̂stylizedn =
1

n◦2

∑
i∈I◦2

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1c)
=

1

n◦2

∑
i∈I◦2

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1ω1,ic)
+ oP(n

−1/2
2 ).

The next result presents the expansion for the frequence gauge γ̂stylizedn of stylized
SIS as defined in (16) around the population gauge γ = P(|χi| ≥ c) = P(|∇εi| ≥

√
2σc).

The data generating process is assumed to have no location shifts.

Theorem 3.4. Consider the gauge of the stylized SIS Algorithm 2.1. Suppose Assump-
tions 3.1, 3.2 apply and that no locations shifts are present so that µi = µ. Let

ξ2n(c) = n
−1/2
2

∑
i∈I◦2

Ei−1(∇xin | χi = c) = OP(1).

Then, we get for fixed c ∈ R that

n
1/2
2 (γ̂stylizedn − γ) = n

−1/2
2

∑
i∈I◦2

{1(|χi|≥c) − E1(|χi|≥c)} (25)

−ch(c)(n2/n1)1/2n
−1/2
1

∑
i∈I1

(ε2
i /σ

2 − 1)

−h(c)(
√

2σ)−1{ξ2n(c)− ξ2n(−c)}′N−1
2 N1Σ̂−1

1n V̂1n + oP(1).

Finally, γ̂stylizedn is consistent in that γ̂stylizedn → γ in probability and in mean.

The consistency statement in Theorem 3.4 for the stylized SIS algorithm is nuisance
parameter-free. It can be used for calibrating the SIS algorithm. The result provides

11



the rationale for choosing c to match the desired population gauge γ: We specify our
tolerance for false positives expressed by γ. Given the innovation density f we obtain
a selection quantile c. For example, if the innovations εi are normal, then the forward
differenced innovations χi are standard normal by Theorem 2.3. If the sample is n = 100
and γ = 1%, we choose c = 2.58, which is the normal 99.5% quantile.

The expansion in Theorem 3.4 has three components. The first component is a
binomial term. The next two components relate to the estimation uncertainty from the
initial estimation. They involve factors n2/n1 and N−1

2 N1, respectively, where N−1
2 N1

is an increasing function of n2/n1. These factors are allowed to diverge at an o(n1/4−η)
rate. This means that the expansion would apply if we choose, in a stationary context,
n1 = n7/8 and n2 = n − n1, so that n2/n1 = O(n1/8), which requires that η < 1/8 in
Assumption 3.2(iv). In other words, the length of the sub-sample used for the initial
estimation may be of a lower order of magnitude than the sub-sample used to search for
location shifts. This feature is implicitly exploited in more complicated versions of the
algorithm, which search for small sub-sets of observations without location shifts.

The third term in the Theorem 3.4 expansion involves the nuisance quantity ξ2n(c).
It vanishes in two distinct cases. First, if the regressors are strictly exogenous, then
Ei−1(∇xi | χi = c) = Ei−1∇xi does not depend on c so that ξ2n(c)−ξ2n(−c) = 0. Second,
for random walk type regressors with stationary ∇xi the normalization is N2 = n−1 so
that ξ2n(c) vanishes. The third term simplifies if the sequence ∇xi, χi is stationary.

In this case, we let N2 = n
−1/2
2 and get ξ2n(c) = n−1

2

∑
i∈I◦2

Ei−1(∇xi|χi = c). Under

regularity conditions, this converges in probability to EE0(∇x1|χ1 = c) = E(∇x1|χ1 = c).
Under a normality assumption, this can be computed explicitly. Thus, suppose that
(∇x1, χ1) are normal given F0 with conditional mean (v0, 0), where v0 is F0-measurable
with expectation Ev0 = 0. Noting that χ1 has unit variance, we have(

∇x1

χ1

)
| F0

D
= N

{(
v0

0

)
,

(
σ∇∇ σ∇χ
σχ∇ 1

)}
. (26)

Then, ξ2n(c) → Ev0 + cσ∇χ = cσ∇χ in probability, while ξ2n(c) − ξ2n(−c) → 2cσ∇χ.
For example, in the autoregression yi = µ + αyi−1 + εi so that xi = yi−1, we find that
σ∇χ = E0(x1 − x2)(ε1 − ε2)/(

√
2σ) = E0(y0 − y1)(ε1 − ε2)/(

√
2σ) = −σ/

√
2.

In the statement of Theorem 3.4, the initial least squares estimation is based on
observations with indices I1 = (i ≤ n1), while the search for location shifts is based on
observations with indices I2 = (i > n1). The consecutive nature of the sets I1 and I2 are
convenient in the proof to simplify notation. However, the result extends to situations
where the sets I1 and I2 are more complicated. Indeed, this is possible because Theorem
3.4 is derived under the hypothesis of no location shifts. It would be possible to choose
I1 as all odd and I2 as all even indices. In that case, all observations will be involved
when computing the forward differences arising from the set I2.

4 The main results for split-half SIS

We provide an asymptotic expansion for split-half SIS and analyze the asymptotic dis-
tribution of the frequence gauge for stationary and for random walk regressors.

12



4.1 Expansion of the gauge for split-half SIS

We expand the gauge for split-half SIS by applying Theorem 3.4 to each sub-sample.
This requires a symmetrized version of Assumption 3.2.

Assumption 4.1. Suppose that
(i) the density f satisfies supv∈R f(v) <∞, supv∈R(1 + v2)|ḟ(v)| <∞;
(ii) the conditional density mi(y|x) of χi given ∇xi and Fi−1 exists for i = 1, . . . , n,

it is differentiable in y and satisfies max1≤i≤n supy∈R,x∈Rp(1 + |y|) |ṁi(y|x)| <∞;

(iii) the regressors xi satisfy for j = 1, 2, with Σ̂jn, V̂jn defined in (23), (24):

(a) Σ̂−1
1n = OP(1), (b) V̂jn = OP(1), and (c) E

∑
i∈I◦j
|∇xin|2 = O(1);

(iv) the sub-sample lengths satisfy (n2/n1)1/2, N−1
2 N1 = o(n

1/4−η
2 ), and (n1/n2)1/2,

N−1
1 N2 = o(n

1/4−η
1 ) for some η > 0.

Theorem 4.2. Consider the gauge of the split-half SIS Algorithm 2.2. Suppose As-
sumptions 3.1, 4.1 apply and that no locations shifts are present so that µi = µ. Let
ξjn(c) = n

−1/2
j

∑
i∈Ij Ei−1(N ′j∇xi | χi = c) for j = 1, 2. Then, we get for fixed c ∈ R that

√
n(γ̂splitn − γ) = n−1/2

n−1∑
i=1

{
1(|χi|≥c) − E1(|χi|≥c)

}
− ch(c)n−1/2

n∑
i=1

{
n2n1

−11(i∈I1) + n1n2
−11(i∈I2)

}
(ε2
iσ
−2 − 1)

− h(c)(
√

2σ)−1
[
(n1/n)1/2{ξ1n(c)− ξ1n(−c)}′N−1

1 N2Σ̂−1
2n V̂2n

+ (n2/n)1/2{ξ2n(c)− ξ2n(−c)}′N−1
2 N1Σ̂−1

1n V̂1n

]
+ oP(1).

Finally, γ̂splitn is consistent in that γ̂splitn → γ in probability and in mean.

Once again, the consistency statement in Theorem 4.2 for the split-half SIS algorithm
is nuisance parameter-free.

4.2 Asymptotic distribution in the stationary case

We now consider the expansion of split-half SIS when the regressors xj are stationary.
We start by introducing some notations for various moments for the innovations εi:

κ1 = Eεi/σ, κ2 = Eε2
i /σ

2 = 1, κ4 = Eε4
i /σ

4, (27)

ς0 = E{1(|χi|≥c)1(|χi+1|≥c)}, (28)

ς2 = E{1(|χi|≥c)(ε
2
i+1/σ

2 − 1)} = E{1(|χi|≥c)(ε
2
i /σ

2 − 1)}. (29)

Further, for the stationary regressor xi, we denote

µx = Exi, Σx = Varxi, (30)

and finally, for a cross moment for innovations and regressors, we denote

ς1x = E{∇xi(1(|χi|≥c) − γ)(εi/σ − κ1)}, (31)

ξc = E(∇xi | χi = c) = E(∇xi | χi = −c). (32)
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Then, the vector si = {1(|χi|≥s) − γ, ε2
i /σ

2 − 1, (εi/σ − κ1)(xi − µx)′Σ−1
x }′ has variance

and first-order autocovariance of the form

Ω0 =

γ(1− γ) ς2 0
ς2 κ4 − 1 0
0 0 Σ−1

x (1− κ2
1)

 , Ω1 =

ς0 − γ2 ς2 ς ′1xΣ
−1
x

0 0 0
0 0 0

 . (33)

Finally, we define long-run variances for the summands of the frequence gauge in (18).
Let (j, k) be (1, 2) or (2, 1) and define with nj/n→ λj > 0 for j = 1, 2

dj =

 1
−ch(c)(λk/λj)

−h(c)ξc(λk/λj)/
√

2

 , ω2
j = d′jΩ0dj + 2e′1Ω1dj. (34)

The long-run variances ω2
j will be assumed to be positive in order to exploit the Func-

tional Central Limit Theorem for non-stationary mixingales in McLeish (1977).

Example 4.1. If εi/σ has standard normal density ϕ and distribution function Φ, then
h(x) = ϕ(x), while κ1 = 0 and κ4 = 3. It is argued in Appendix A.9 that

ς0 = 2γ − 4{T (c, 1/
√

3) + T (c,
√

3)}, ς2 = cϕ(c). (35)

Here, T (c, a) =
∫∞
c
ϕ(x)

∫ ax
0
ϕ(y)dydx following Owen (1980, 2.2; 2.8). In particular,

T (c, a) is positive and decreasing in c with T (0, 1/
√

3) = 1/12 and T (0,
√

3) = 1/6.
Finally, if ∇x1, χ1 are jointly normal given F0 as in (26) then ξc = 2cσ∇χ.

Assumption 4.3. Suppose
(i) the density f satisfies supv∈R |v|f(v) <∞ and

∫
R v

4+f(v)dv <∞;
(ii) the pairs xi, εi are stationary with E|x2+

i | <∞;
(iii) ω2

1, ω
2
2 > 0;

(iv) let zi be either of xi, xix
′
i or ∇xi1(|χi|≥c)(εi/σ − κ1) and suppose

E|Ek−mn−1
∑k+n

i=k+1(zi − Ezi)| → 0 as min(k,m, n)→∞;
(v) n−1

∑n
i=1 xi = µx + oP(1).

Theorem 4.4. Consider the gauge of the split-half SIS Algorithm 2.2 with nj/n →
λj > 0 for j = 1, 2, so that λ1 + λ2 = 1. Suppose Assumptions 3.1, 4.1, 4.3 apply
and that no locations shifts are present so that µi = µ. Then, for fixed c ∈ R, we get

n1/2(γ̂splitn − γ)
D→ N(0, B), where

B = λ1ω
2
1 + λ2ω

2
2

= γ(1− γ) + 2(ς0 − γ2)− 4ch(c)ς2 −
√

2h(c)ς ′1xΣ
−1
x ξc

+(λ2
1/λ2 + λ2

2/λ1)h2(c){c2(κ4 − 1) + (1− κ2
1)ξ′cΣ

−1
x ξc/2}. (36)

Example 4.2. Let yi = µ+αyi−1 +εi be stationary so that |α| < 1 and εi/σ is standard
normal. Then xi = yi−1 has mean µx = µ/(1− α) and variance Σx = σ2/(1− α2). It is
argued in Appendix A.9 that σ∇χ = −σ/

√
2 in (26), that ς1x = −σς2 and that condition

(iv) of Assumption 4.3 holds.
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Example 4.3. We consider the asymptotic distribution of the gauge for standard nor-
mally distributed error terms εi/σ, so that κ1 = 0 and κ4 = 3. Further, assume that
the sample size in the two sub-samples is equal and that the regressors xi are stationary.
The asymptotic variance (36) in Theorem 4.4 then reduces to

B = γ(1− γ) + 2(ς0 − γ2)− 4ch(c)ς2 −
√

2h(c)ς ′1xΣ
−1
x ξc

+h2(c)(2c2 + ξ′cΣ
−1
x ξc/2). (37)

Recall that if, in addition, ∇x1, χ1 are normal given F0 as in (26) then ξc = 2cσ∇χ.
Further, in a first-order autoregression yi = µ + αyi−1 + εi the conditional covariance
σ∇χ equals −σ/

√
2, while ς1x = −ς2 and Σx = Varxi = σ2/(1− α2).

4.3 Distribution of split-half SIS when ξnj vanishes

The Theorem 4.2 expansion for the split-half SIS’s frequence gauge simplifies when the
term ξnj vanishes so that the third term in the expansion falls away. As remarked
after Theorem 3.4, this happens for strictly exogenous or random walk regressors. The
limiting long-run variance simplifies so that

ω̃2
j = γ(1− γ) + 2(ς0 − γ2)− 4ch(c)(λk/λj)ς2 + c2h2(c)(λk/λj)

2(κ4 − 1). (38)

We will require that ω̃2
j > 0.

Theorem 4.5. Consider the gauge of the split-half SIS Algorithm 2.2 with nj/n→ λj >
0 for j = 1, 2, so that λ1 + λ2 = 1. Let ξjn = oP(1). Suppose Assumptions 3.1, 4.1,
4.3(i) apply, ω̃2

j > 0 for j = 1, 2 and that no locations shifts are present so that µi = µ.

Then, for fixed c ∈ R, we get n1/2(γ̂splitn − γ)
D→ N(0, B̃), where

B̃ = λ1ω̃
2
1 + λ2ω̃

2
2

= γ(1− γ) + 2(ς0 − γ2)− 4ch(c)ς2 + c2h2(c)(λ2
1/λ2 + λ2

2/λ1)(κ4 − 1). (39)

5 Poisson approximation

We present a theory for a vanishing frequence gauge. We set the cut-off so as to control
the absolute gauge, the number of falsely discovered outliers. This gives a Poisson
exceedance theory. For stylized and split-half SIS, the absolute gauges are

Γ̂stylizedn =
∑
i∈I◦2

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1ω1,icn), (40)

Γ̂splitn =
∑
i∈I◦2

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1ω1,icn) +
∑
i∈I◦1

1(|∇yi−β̂′2∇xi|≥
√

2σ̂2ω2,icn). (41)

Here, we choose the cut-off cn so that, for some λ > 0,

P(|∇εi| >
√

2σcn) = P(|χi| > cn) = λ/n. (42)
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The analysis builds on the Poisson exceedance theory for IIS, (Johansen & Nielsen,
2016b). The analysis has two part. The first part is a Poisson limit theorem for the case
without estimation errors. For IIS, the standard Poisson limit theorem could be used.
For SIS, we have that the forward differenced innovations are 1-dependent. We can then
apply the Chen (1975) Poisson limit theorem. The second part is an argument that the
estimation errors do not matter for the asymptotic theory. This argument is similar to
that of the IIS analysis. For the analysis, we need the following high-level assumptions.

Assumption 5.1. Suppose that
(i) the innovations εi are i.i.d., so that χi = ∇εi/(

√
2σ) has continuous distribution

function H with density h satisfying
(a) E|χ|r <∞ for some r > 4;
(b) h(cn)/[cn{1− H(cn)}] = O(1);
(c) h(cn − n−1/4A)/h(cn) = O(1) for all A > 0;
(d) given λ > 0 choose cn so that for all i then P(|χi| > cn) = λ/n and suppose

n{E1(|χi|>cn)1(|χi+1|>cn)} → 0;

(ii) the regressors xi satisfy, with j = 1, 2 and Σ̂jn, V̂jn defined in (23), (24):

(a) Σ̂−1
jn = OP(1), (b) V̂jn = OP(1), (c) E

∑
i∈I◦j
|∇xin|4 = O(n−1);

(iii) the sub-sample lengths satisfy N−1
2 N1, N−1

1 N2 = OP(1).

Remark 5.1. Assumption 5.1(i) is satisfied when the innovations εi are normal. For
parts (a)-(c), this follows from Lemma A.14 in the Appendix A.10. For part (d), this
follows from Lemma A.13.

Theorem 5.2. Suppose Assumption 5.1, that n2/n → ψ for 0 < ψ < 1 and that the
cut-off is chosen through P(|χi| > cn) = λ/n for all i. Then,

(a) Γ̂stylizedn =
∑

i∈I◦2
1(|χi|>σcn) + oP(1)

D→ Poisson(λψ);

(b) Γ̂splitn =
∑n−1

i=1 1(|χi|>σcn) + oP(1)
D→ Poisson(λ).

The Poisson result shows that the absolute gauge is not consistent for the target λ.
Rather, it has a Poisson variation around the target. The asymptotic Poisson variation
depends neither on the regressors nor on the estimation error.

6 Power

We consider local power for stylized SIS and for the Andrews (1993) test and argue
that the results carry over to the Bai & Perron (1998) procedure. Proofs are given in
Appendix A.11.

6.1 Power of stylized SIS

The power properties of the SIS algorithm are discussed by Castle et al. (2015). We
give further discussion for the stylized SIS algorithm. For simplicity, we focus on the
case without regressors, so the model in (8) reduces to

yi = σµ1(i≤n1) +
n∑

j=n1+1

σδj1(i≤j) + εi for i = 1, . . . , n, (43)
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with independent, normal N(0, σ2) innovations and where µ and δj are reparameterized
using the scale σ. This data generating process allows up to n− n1 − 1 breaks.

The stylized SIS Algorithm 2.1 estimates the error variance from the first sample-
half and used forward differences throughout the second sample-half to detect location
shifts, see §2.2. Thus, stylized SIS declares step-shifts for any observation in the second
sample half, n1 < i < n, if ∣∣∇yi∣∣ ≥ √2σ̂1c. (44)

Theorem 3.4 analyzes the gauge of the procedure. Under normality, we choose the cut-off
from the equation γ = 2{1− Φ(c)}, see (21); e.g. γ = 1% corresponds to c = 2.58.

By the temporal independence, then yi for i > n1 is independent of the variance
estimator σ̂2

1, which is asymptotically σ2χ2
n1−1/(n1− 1)-distributed. Assuming also nor-

mality, then the t-statistics defined from (44) are non-central t-distributed (Johnson
et al., 1993). We note that for an index i in the second sample-half, then (43) can be
written as yi =

∑n
j=i σδj + εi. Thus, we find with χi = ∇εi/(

√
2σ) that

zi =
∇yi√
2σ̂1

=
χi + δi/

√
2

σ̂1/σ
D
= tn1−1

( δi√
2

)
for n1 < i < n. (45)

A single step-shift at time τ+1 of size δ comes about in model (43) if µ = δτ = −δ, with
δn indicating the post-break level, while all other δi are zero. If χ represents a standard
normal variable then the power to detect such a shift is

P
{
|zi| > c

}
= P

{
tn1−1

(
− δ/
√

2
)}

→ P
(∣∣χ− δ/√2

∣∣ > c
)

= Φ
(
− c+ δ/

√
2
)

+ Φ
(
− c− δ/

√
2
)
. (46)

We learn a number of properties from this result. First, the power does not depend
on the sign of the shift. Second, the power of the difference decision rule (44) is invariant
to time τ . The power stays the same even in the boundaries of the sample. Third, the
t-tests are only consistent, i.e. approach unit power, when |δ| is increasing. Fourth,
two decisions are dependent if they concern consecutive time periods. Otherwise, they
are independent. Thus, the power is invariant to the number, magnitude, and timing of
other shifts as long as they are at least two periods away. SIS can detect shifts, even if
their number is large. Fifth, a slight location shift can be detected with high probability
if the two episodes are separated by a short period of upheaval. For analytic simplicity,
this short period is at least two periods long. Thus, suppose there is one level until τ ,
a location shift of size δ at τ + 1 followed by an opposite location shift of size ν − δ at
τ + 3, to a new level that is ν larger than the first level and where ν may be small. In
terms of the model (43) this comes about through µ = δτ = −δ and δτ+2 = δ − ν while
δn gives the post-break level. The joint probability of correct detection is

P
{
|zτ | > c, |zτ+2| > c

}
→
{

Φ
(
− c+ δ/

√
2
)

+ Φ
(
− c− δ/

√
2
)}

×
[
Φ
{
− c+ (δ − ν)/

√
2
}

+ Φ
{
− c− (δ − ν)/

√
2
}]
. (47)

Thus, for large n and small ν, we find

P
{
|zτ | > c, |zτ+2| > c

}
=
{

Φ
(
− c+ δ/

√
2
)

+ Φ
(
− c− δ/

√
2
)}2

+ O(ν).
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As a consequence, a small location shift can be discovered consistently, if the upheavel δ
is large. Once it has been established that there is, for instance, a shift of this type and
no other shifts, it can be tested whether ν = 0. This test will be consistent for finite ν.

While the fifth case may seem contrived, it occurs empirically. Castle et al. (2023)
find that the UK annual real wage growth rate increases from 0.8% prior to World War
II to 1.7% after the war, with a large impulse during the war. Similarly, the UK annual
productivity per worker increases from 1.2% prior to World War I to 1.7% after a huge
deflation episode in the wake of the war. Such changes have profound implications for
the economy, even if they are small relative to the residual standard error.

6.2 Local power for Andrews test

We consider the Andrews (1993) test for a single break at an unknown time in the
central part of the sample. This test is consistent for a shift of fixed magnitude that is
not at the ends of the sample. We consider local power for various alternatives. The
test is based on the simple one-shift model

yi = σµ+ σδ1(i≤τ) + εi for i = 1, . . . , n,

with independent, normal N(0, σ2) innovations. If the break point is known, we can form
the t-statistic, Zτ say, for the hypothesis δ = 0, see (A.28) for a detailed expression.
For the case of an unknown break point, τ , we may suppose n ≤ τ ≤ n for some user-
chosen bounds satisfying 0 < n ≤ n < n. The likelihood ratio test is then formed by
maximizing the squared t-statistic over location. This gives the test statistic

LRmax = max
n≤t≤n

Z2
t . (48)

Distribution under hypothesis. Critical values are found from the distribution
of the test statistic under the hypothesis of no break. There are two relevant limits. We
note two differences to stylized SIS. On the one hand, the Andrews test asymptotics
applies for unknown error distributions while SIS requires a known error distribution.
On the other hand, the Andrews test generalizes to the case of stationary regressors,
but in contrast to SIS, it does not generalize to the case of non-stationary regressors.

First, when there are no restrictions on the search range, so that 1 = n and n = n−1,
then the likelihood ratio statistic diverges at a rate of 2 log log n due to the behavior of
a Brownian motion near the origin as described by the law of iterated logarithms. With
an appropriate logarithmic normalization, the statistic converges to an extreme value
distribution (Yao & Davis, 1986; Hidalgo & Seo, 2013). This test is not so common.
Perhaps because it is felt that too much power is lost by the additional normalization.

Second, when the search range is trimmed, the likelihood ratio statistic converges
to a supremum of a standardized Brownian bridge (Andrews, 1993). That is, if Bu is a
standard Brownian bridge for 0 ≤ u ≤ 1, which has variance u(1− u), then for large n
and with n/n→ λ > 0 and n/n→ λ < 1, we get

LRmax = max
n≤t≤n

Z2
t

D→ sup
λ≤u≤λ

B2
u

u(1− u)
.
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The critical values increase with decreasing trimming, reaching the extreme value asymp-
totics when there is no trimming. Andrews provided simulated critical values. A 15%
trimming is commonly used with critical value 12.35 for a 1% sized test. Bai & Perron
(1998) preferred 5% trimming. The test is known to be consistent for a central break of
finite magnitude δ. This contrasts with SIS. We investigate local power in various cases.

A single break. We consider the power against an alternative with a shift of
vanishing magnitude at time τ = λn. We allow 0 < λ < 1, while noting that the
Andrews test is aimed at the trimmed interval 0 < λ ≤ λ ≤ λ < 1. Local power is
found when the magnitude of the break vanishes as δ = φ/

√
n for fixed φ. We find in

Appendix A.11 that, for fixed 0 < λ < 1,

LRmax
D→ sup

λ≤u≤λ

(Bu + φsλu)
2

u(1− u)
, (49)

where the function sλu increases linearly from 0 at u = 0 to λ(1−λ) at u = λ after which
it decreases linearly to 0 at u = 1 as given by

sλu = (1− λ)u1(u≤λ) + λ(1− u)1(u>λ). (50)

The non-centrality term is largest for u = λ, taking the value φ{λ(1 − λ)}1/2. Thus,
the Andrews test has local power for this alternative, whereas asymptotically, stylized
SIS has trivial power. For a finite sample, we compare the maximal pointwise non-
centrality for the Andrews test of φ{λ(1 − λ)}1/2 = δ{nλ(1 − λ)}1/2 with the SIS non-
centrality of δ/

√
2 arising from (45). Notably, the magnitude of the break δ will give

neither method an advantage in the power comparison. Instead, the positioning λ and
the sample size n determine the comparative performance. We compare the two non-
centralities, while ignoring the simultaneity of decisions within the two procedures. The
Andrews test with 15% trimming and 1% size has critical value 12.35 = (3.51)2, while
stylized SIS has 1% critical value 2.57 = (6.63)1/2. Dividing the non-centralities with
3.51 and 2.57, respectively, equating and solving gives n = (12.35/6.63)/{2λ(1 − λ)},
with SIS being advantageous for n smaller than those values. The implied n-values
for central values λ = (0.5, 0.75, 0.85) are n = (4, 5, 7) so that the Andrews test is
favourable. However, this changes when the break occurs in the trimmed period. The
largest u considered by the test statistic is λ, so that the Andrews test has maximal
pointwise non-centrality of δ{nλ/(1 − λ)}1/2(1 − λ). Proceeding as before, we find
n = (12.35/6.63)(1/2){(1−λ)/λ}/(1−λ)2. Thus, for λ = 0.85, the implied n-values for
λ = (0.9, 0.95, 0.99) are n = (16, 66, 1650). The comparison indicates that stylized SIS
may be competitive in small samples with a late break.

Next, consider the consequence of a break close to the sample boundaries. The above
derivation can be modified to the case where δ(1 − τ/n) = ψ/

√
n while τ/n → 1 and

fixed ψ. These constraints imply |δ|/
√
n ≤ |ψ| with equality when τ = n− 1. Thus, we

let δ/
√
n→ η where 0 ≤ |η| ≤ |ψ| while ηψ ≥ 0. For large n, we get

LRmax
D→ sup

λ≤u≤λ

(Bu + ψu)2

u(1− u)(1 + ηψ)
(51)

To see that (51) conforms with (49), note that u ≤ λ < 1 and τ/n → 1 imply that

u < τ/n so that s
τ/n
u = (1 − τ/n)u for large n, while a small δ corresponds to η = 0.
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The result (51) shows that when δ diverges, then the Andrews test has local power,
while the stylized SIS is consistent, see (45). In particular, we can let δ diverge a slow
rate with τ sufficiently close to n to achieve ψ = 0, so that the Andrews test has trivial
power, while stylized SIS is consistent.

Two breaks. Let yi = σµ + σδ11(i≤τ1) + σδ21(i≤τ2) + εi where εi is i.i.d. N(0, σ2) so
that the level is changed twice at τ1 < τ2. Again, this alternative is outside those the
Andrews test is optimized against, but relevant in practice. We consider the situation
where two large location shifts are close and nearly offset each other so that τ2− τ1 and
δ1 + δ2 are close to zero. This is an empirically relevant situation where SIS performs
well. Thus, we investigate local power when δ1 +δ2 = ξ/

√
n and δ2(τ2−τ1) = ψ

√
n while

τ1/n = λ and (τ2 − τ1)/n→ 0 for fixed ξ, ψ, λ. These constraints imply |δ2|/
√
n ≤ |ψ|

with equality when τ2 = τ1 + 1. Thus, we let δ2/
√
n → η where 0 ≤ |η| ≤ |ψ| while

ηψ ≥ 0. We find in Appendix A.11 using the Skorokhod (1956) M1-metric that

LRmax
D→ sup

λ≤u≤λ

[
Bu + ξsλu + ψ{1(u≥λ) − u}

]2
u(1− u)(1 + ηψ)

. (52)

Again, when δ2 and hence δ1 diverge, then the Andrews test has local power while split-
half SIS is consistent. In particular, when δ2 diverges slowly while τ2 and τ1 are so close
that ψ = 0, then the Andrews test has trivial power while stylized SIS is consistent.

6.3 Discussion of Bai and Perron procedure

We first summarize the findings for the Andrews test. This test is consistent for a
fixed-sized central break in contrast with stylized SIS which only has local power in that
situation. Otherwise, SIS can be competitive. We found that SIS is consistent, while
the Andrews test has trivial power in two situations. The first case has a break near
the end point of the sample. Detecting such a break is highly relevant when forecasting
(Clements & Hendry, 1998). The second case is when two breaks are close and nearly
offsetting. This can reveal small but important changes in, for instance, growth series
(Castle et al., 2023). Thus, the Andrews test is preferable if one is content that there
is only one central break or perhaps two well-separated central breaks. With more
complicated series, SIS will be competitive.

The Bai & Perron (1998) (BP) procedure is developed for the situation where there
is an unknown, but bounded, number of multiple well-separated breaks. This procedure
provides estimates of the number of breaks and their timing. This requires trimming
between breaks and at the end points of the sample and a maximal number of breaks.
The usual 15% trimming eliminates too much of the sample and a 5% trimming is
recommended. The above analysis suggests that the BP procedure will consistently
detect fixed-sized breaks that are not too close. But, with many breaks or with close
breaks, the BP procedure may have near trivial power, while SIS could have high power.

As a further point of comparison, we note that the BP procedure allows an unknown
error distribution and it generalizes to stationary, but not non-stationary regressors.
The SIS procedure requires a known error distribution, but allows both stationary and
non-stationary regressors. We note that for many macro-economic time series, normality
is not unreasonable, but assuming stationarity of the regressors may not be appropriate.
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(a) DGP1 with varying γ and n (b) DGP2 with varying α and n

Figure 1: Finite sample properties of the frequence gauge

Finally, the general SIS algorithm is designed to work jointly with regression selec-
tion, whereas the BP procedure requires a fixed set of regressors.

7 Simulations & Numerical Approximations

We complement the asymptotic analysis of split-half SIS with simulations and numerical
approximations. These results confirm the validity of the asymptotic theory, allow
comparisons to other algorithms, and inform us about the small sample properties of SIS.
First, we confirm the consistency of the frequence gauge and characterize its small sample
bias. Second, we use numerical approximations to decompose the components of the
asymptotic variance. Third, we confirm with simulations the distributional convergence
of the frequence gauge. Fourth, we consider the bias of an updated regression estimator.
Fifth, we compare the power of split-half SIS with the Andrews (1993).

All simulations have 104 repetitions. Each time we increase the sample size, we
redraw all n observations. The simulations have been coded in MATLAB using the
MFE toolbox (Sheppard, 2018). When we do not explicitly mention otherwise, we set
ω̂2
j,i = 1 for simplification, as we are mainly concerned with evaluating the asymptotic

distributions. Given a target frequence gauge γ, we choose the cut-off c in the SIS
algorithm as the normal (1− γ/2) quantile.

7.1 Analysis of consistency of frequence gauge

We validate the consistency of the frequence gauge of split-half SIS as analyzed in
Theorem 4.2. We consider two data generating processes. In both cases, the algorithm
is based on the model (7) with one univariate regressor xi and n1 = n2.

DGP1 includes an exogenous regressor yi = βxi+εi, so that xi and εi are independent
standard normal. The DGP1 is white noise, if β = 0, in which case yi is also independent
standard normal. As the regressor xi is strictly exogenous Theorem 4.5 applies.

DGP2 is a first-order auto-regression yi = αyi−1 +εi, where |α| < 1, εi is independent
standard normal and y0 = 0. Thus, δj = 0 for all j and β = α in (1) while xi = yi−1.
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(a) Variance decomposition for DGP2 (b) Variance comparison for IIS and SIS

Figure 2: Analysis of the asymptotic variance of the frequence gauge for varying c

Figure 1(a) uses DGP1 with exogenous regressor and coefficient β = 0. It shows the
frequence gauge γ for an increasing sample size and different gauges γ. We use the white
noise version of DGP1. We find that the small sample bias of the gauge is positive. The
bias vanishes quickly with growing samples and it is modest for n = 100.

Figure 1(b) uses the autoregressive DGP2. It considers different values of the first-
order autoregressive coefficient α for two sample sizes n = 100 and 1, 000. We also
consider the effect of including the weights ω2

j,i. For constant n, the small sample
bias appears to decrease for increasing α. This could reflect that as the autoregressive
coefficient α increases, the sample correlation between the retained step-indicators and
the autoregressive process increases. Consistent with theory, the small sample bias
vanishes asymptotically. The rescaling of the estimated variance using the forward
correction factors ω2

j,i reduces the small sample bias by about one-third.

7.2 Analysis of asymptotic distribution of frequence gauge

We decompose the asymptotic variance of the frequence gauge of split-half SIS as a
function of the cut-off c to understand the contributions of the various terms, and
compare the variance to IIS. We continue to use DGP1 and DGP2.

Figure 2(a) presents a decomposition of the individual terms of the asymptotic vari-
ance of the gauge as functions of the cut-off c for the autoregressive DGP2 as given
by Theorem 4.4 and Example 4.3. The terms that do not depend on estimation errors
are (1 − γ)γ and 2(ς1 − ψ2); the terms that depend on the scale estimation error are
−4ch(c)ς2 and 2c2h(c)2 and the terms that depend on the location estimation error are
c2h2(c)(1− α) and −2ch(c)ς2(1− α). Some terms increase the asymptotic variance one
of the location terms and one of the scale terms decrease the asymptotic variance.

Figure 2(b) compares the asymptotic variance of the gauge of the split-half Impulse-
Indicator Saturation (IIS) to split-half SIS.

(Johansen & Nielsen, 2016b, Corollary 5) gives the asymptotic distribution of the
IIS gauge as

n1/2{γ̂IIS
n (c)− γ} D→ N{0, γ(1− γ) + 2ch(c)κ̃2 + 2c2h2(c)}, (53)
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where κ̃2 =
∫ c
−c(u

2− 1)f(u)du is a truncated moment. Figure 2(b) displays the different
asymptotic variance curves of the gauge as functions of the cut-off c for IIS and SIS for
different DGPs. For IIS, we consider white noise DGP1. For SIS, we first consider the
same DGP1, and second consider the autoregressive DGP2 with α = 0.5 and α = 0.9.
Finally, we reconsider DGP1, but assume the error variance is known, so that ω̂2

j,i =
σ2 = 1 and two components of the asymptotic variance become zero.

We make the following observations. First, for all c, the asymptotic variance of
the gauge in IIS is lower than for all four competing SIS models. Second, running SIS
knowing the variance σ2 results in a higher asymptotic variance of the frequence gauge.
Third, in the autoregressive model, the α coefficient changes the asymptotic variance.
The asymptotic variance is larger with α = 0.9 than α = 0.5. This is different from
IIS, where the asymptotic variance does not include regressor-dependant terms. Finally,
we observe that the asymptotic variance of the gauge falls rapidly for growing c. This
motivates the choice of a large c in empirical applications, corresponding to a gauge of
1% or lower, as recommended by Castle et al. (2015).

γ vs. n 100 400 1600 ∞
DGP1 5% 0.0516 0.0399 0.0363 0.0347
β = 0 1% 0.0160 0.0104 0.0094 0.0089
ω̂2
j,i = 1 0.5% 0.0093 0.0057 0.0051 0.0047

0.1% 0.0025 0.0013 0.0011 0.0010
DGP2 5% 0.0411 0.0284 0.0261 0.0249
α = 0.5 1% 0.0149 0.0094 0.0085 0.0079
ω̂2
j,i = 1 0.5% 0.0089 0.0056 0.0044 0.0044

0.1% 0.0024 0.0013 0.0011 0.0010
DGP2 5% 0.0425 0.0348 0.0331 0.0323
α = 0.9 1% 0.0134 0.0097 0.0087 0.0086
ω̂2
j,i = 1 0.5% 0.0075 0.0052 0.0049 0.0046

0.1% 0.0019 0.0012 0.0010 0.0010
DGP1 5% 0.0649 0.0627 0.0606 0.0610
β = 0 1% 0.0132 0.0124 0.0118 0.0117
σ̂2
j = σ2 0.5% 0.0063 0.0060 0.0057 0.0057

0.1% 0.0013 0.0011 0.0011 0.0010

Table 1: Simulated and asymptotic variance of the frequence gauge of split-half SIS

7.3 Analysis of distribution convergence of frequence gauge

We now verify the asymptotic distribution results of the frequence gauge of split-half
SIS and evaluate small sample properties. Table 1 tabulates the simulated variance and
computed asymptotic variance of the frequence gauge of split-half SIS for the target
gauges γ = 5%, 1%, 0.5%, and 0.1% and sample sizes n = 100, 400, and 1600. We
consider the same models for split-half SIS as in Figure 2(b). Overall, the finite sample
variance is quite close to the asymptotic variance when n = 400 and not too bad when
n = 100. Our findings are consistent with the results in Figure 2.
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(a) Autoregressive model (b) Exogeneous regressor model

Figure 3: Bias of updated regression estimator as function of sample size

7.4 Updating estimation of regression coefficients

In this section, we use simulation to show that split-half SIS can introduce a bias when
updating the estimates for β in (1). We conjecture that this bias can persist asymptot-
ically with a fixed frequence gauge.

Suppose the split-half SIS Algorithm 2.1 is applied to data generated from an au-
toregressive model yi = αyi−1 + εi. This may result in m − 1 level shifts at locations
τ0 = 0 < τ1 < · · · < τm−1 < τm = n. We update the α estimate by the regression

yi = µi + αyi−1 + ui for τj−1 < i ≤ τj and j = 1, . . . ,m. (54)

With a frequence gauge of γ we will have approximately m ≈ γn breaks so that the
sub-sample lengths are approximately n/m ≈ 1/γ. Thus, estimation of (54) corresponds
to estimation of an unbalanced dynamic panel model, with a (random) increasing cross-
sectional dimension and a (random) finite time dimension. It seems like we are faced
with the same issues as in panel data of a incidental parameter problem (Lancaster,
2000, 2002) and a correlation of the retained (random) step-indicators with the dynamic
regressors (Arellano & Bond, 1991). As with panel data, we would expect the bias to
disappear asymptotically in a model with strictly exogenous regressors.

Figure 3 shows simulated biases of the updated estimator of the regression coefficients
as a function of sample length n for different frequence gauges. Panel (a) uses the
autoregressive DGP2 with α = 0.5. As a baseline, we estimate the AR(1) model without
split-half SIS. This shows the well-known negative finite sample bias that disappears
asymptotically (Marriott & Pope, 1954). Then we use split-half SIS with the frequence
gauge at 1% (green), 5% (black), and 10% (blue). We find that a larger frequence gauge
is associated with a larger bias that does not appear to vanish asymptotically. When
we repeat this exercise in Panel b for exogenous regressors, we find that the bias is an
order of magnitude smaller than before.

Figure 4 uses the autoregressive DGP2 and shows simulated biases as a function of
the autoregressive coefficient α when the sample size is n = 1, 000. Both panels use a
standard autoregressive estimation without SIS as a benchmark along, with split-half
SIS estimation results. The frequence gauge is 10% in panel (a) and 1% in panel (b).
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(a) Frequence gauge of γ = 10% (b) Frequence gauge of γ = 1%

Figure 4: Bias of updated regression estimator as function of autoregressive coefficient

We find a bias across all values of α, and it grows together with the value of α. The
bias is much larger with the frequence gauge at 10% than at 1%.

Overall, the simulations provide evidence towards the presence of an incidental pa-
rameter bias when applying SIS with dynamic regressors and calibrated through the
frequence gauge. The bias increases with gauge and with the autoregressive coefficients.

7.5 Analysis of power

We compare the power of split-half SIS and the Andrews (1993) test. We consider a
one-shift data generating process with a view to validate the asymptotic theory in (45)
for SIS and (49) and (51) for the Andrews test.

DGP3 has one location shift and is given by

yi = αyi−1 + δ1(i≥λn) + εi for i = 1, . . . , n, (55)

with independent standard normal innovations. We will vary α, δ, λ and n.
We subject the model (55) to split-half SIS and the Andrews test. For SIS, we use

a 1% gauge and compute the retention frequency for the indicator at λn. The Andrews
F test for detecting a single location shift with 15% trimming has a 1% critical value of
12.35. We report the power for the (maximum) test.

Table 2 shows the simulation results. The magnitude δ of the location shift is ex-
plored along columns. The location λ is explored along rows. Panels 1 and 2 consider
a non-dynamic process α = 0 for n = 100 and 66. Panel 3 considers a dynamic process
α = 0.5 for n = 66. The value 66 is chosen to find the δ where Andrews and SIS have
equal power for λ = 0.95 as discussed in theory Section 6.

The columns marked δ = 0 show the finite sample size and frequence gauge. We
notice that the Andrews size is always larger than the SIS gauge. We note that the
distortion is larger for α = 0.5 than for α = 0. The power simulations are not size
corrected and are therefore favourable to the Andrews test.

The theory suggests that the power increases with δ. We see that the SIS power is
always increasing in δ. The Andrews power is also increasing in δ = 0, 2, and 4, but it
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δ = 0 δ = 2 δ = 4 δ = 8
λ A SIS A SIS A SIS A SIS

n = 100 0.90 1.3% 1.0% 88.6% 12.0% 100.0% 57.0% 100.0% 99.9%
α = 0 0.95 1.1% 1.1% 19.2% 11.9% 51.7% 58.3% 39.5% 99.8%

0.99 1.1% 1.2% 2.1% 11.3% 3.4% 58.1% 0.6% 99.9%
n = 66 0.90 1.4% 1.1% 76.5% 12.8% 99.9% 58.4% 100.0% 99.8%
α = 0 0.95 1.2% 1.1% 11.0% 12.9% 24.9% 57.1% 13.0% 99.7%

0.99 1.3% 1.2% 3.0% 12.3% 3.7% 58.2% 0.6% 99.7%
n = 66 0.90 2.3% 0.4% 19.6% 8.5% 74.0% 55.6% 99.8% 99.9%
α = 0.5 0.95 2.4% 0.4% 4.3% 8.3% 7.4% 56.0% 6.4% 99.9%

0.99 2.3% 0.3% 2.7% 8.8% 2.6% 56.4% 0.8% 99.9%

Table 2: Simulated power for the Andrews (A) test and split-half SIS

declines at δ = 8 for λ = 0.95 and 0.99. For λ = 0.99, it even dips below the size. This
may be a finite sample effect.

The theory suggests that the power of split-half SIS is invariant to the location λ,
whereas the the power of the Andrews test declines as λ approaches unity. This is
confirmed in the simulations.

Further, the theory suggests that the Andrews test has higher power than split-half
SIS when λ is away from 1 while SIS is more powerful for λ is close to zero. Indeed,
simulations are in favour of the Andrews test for λ = 0.9 and in favour of SIS for
λ = 0.99. For the inbetween case λ = 0.95, the results are mixed with SIS being more
powerful except in the first panel with n = 100 for δ = 2.

Finally, we see that the power declines with increasing temporal persistency by look-
ing at the panels 2 and 3 where n = 66, but the autoregressive coefficient is α = 0 and
α = 0.5, respectively. There is an indication that the decline in performance is larger
for the Andrews test than for SIS.

8 Empirical illustration

As an empirical example on the use of stylized SIS, consider the log UK labor produc-
tivity, yi, from the first quarter of 1980 to the third quarter of 2021. This gives a sample
of length of n = 167 plus initial values. The labor productively is measured by the UK’s
Office of National Statistics as a chain volume measure of gross value added at basic
prices divided by the number of hours worked. We used PcGive in OxMetrics 8 for the
analysis (Doornik & Hendry, 2013).

Figure 5(a) shows the log labor productivity y with a marked decline in its growth
rate after the 2008 financial crisis. There is considerable movement through the Covid
pandemic from 2020. The post-2008 decline has been of concern in the political debate
for some years, see for example Chadha (2022), and the submission to the Treasury
Committee in October 2021 by the Bank of England’s Chief Economist Huw Pill:

“Before the global financial crisis, UK productivity growth averaged over
two per cent per year. Since then, labor productivity (growth) has fallen
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Figure 5: UK labor productivity

considerably.”

Panel (b) shows the labor productivity growth rate measured as the log difference ∆yi =
yi − yi−1. Note that the y-axis has been truncated to better visualize the pre-Covid
periods. We make the following observations. The series is very noisy, and one can just
about visually discern a gradual decline over time. We will model the growth rate as
a first-order autoregression, thus imposing that the series in levels has a unit root. We
will show how SIS can help in capturing the declining level of the growth rate.

We start by fitting a first-order autoregression to the growth rate for the whole
period. While not reported here, the results point to a very mis-specified model, and
diagnostics point to difficulties matching movements through the Covid period. An
investigator may, therefore, drop that period and focus on the period until 2019:4. We
then find the model:

∆̂yi
(se)

= 0.104
(0.079)

∆yi−1 + 0.0035
(0.0007)

(56)

σ̂ = 0.0069, n = 160, RSS = 0.0074, (57)

χ2
norm[2] = 5.00 (p = 0.082), Far(1−5)[5, 153] = 1.96 (p = 0.088) (58)

maxC2 = 8.49 (p = 0.482) {arg max = 2008 : 3}. (59)

maxF = 3.52 (p = 0.01) {arg max = 2004 : 1}. (60)

The fitted model reported in (56) and in Figure 5(d). The fit indicates an overall
constant level for the quarterly growth rate of 0.0035/(1− 0.104) = 0.39%.

We subjected the model (to 2019:4) to various misspecification tests. These do not
tend to reject the model. A normality test based on cumulants (Doornik & Hansen,
2008) and a test for residual autocorrelation (Godfrey, 1978; Nielsen, 2006) are reported
in (58). Figure 5(c) shows a one-step recursive Chow test with pointwise 1% critical
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values. This indicates a slight rejection in 2008:3, but the practitioner may not wish to
give too much attention to this, given that about 144 tests were conducted (Hendry &
Nielsen, 2007). Indeed, a joint test as shown in (59) does not reject the model (Nielsen &
Whitby, 2015). The Andrews test reported in (60), used for detecting a single location
shift, gives a marginal decision indicating a possible break in 2004:1. It appears that
minor location-shifts are not reliably detected by conventional misspecification tests.
Yet, Figure 5(a) does show a marked decline in the log labor productivity yi since 2008.

We now apply the stylized SIS algorithm to the full sample until 2021:3. First, we
fit the first-order autoregression to the first sample-half until 1999:4. This is the same
as fitting the autoregression to the full sample combined with step-indicators for each
observation from 2000:1 to 2021:3. We get

∆̂yi
(se)

= 0.201
(0.111)

∆yi−1 + 0.0045
(0.0010)

+
167∑
j=81

δ̂j1(i≥j) (61)

σ̂ = 0.0068, n = 167, RSS = 0.0036, (62)

χ2
norm[2] = 3.78 (p = 0.151), Far(1−5)[5, 73] = 1.39 (p = 0.237). (63)

This fit indicates a constant quarterly growth rate of 0.0045/(1− 0.201) = 0.56% prior
to 2000. Test for normality and residual autocorrelation do not reject, see (63).

There are 87 estimated coefficients for the step-indicators. Computing the t-statistics
for these 87 estimates, we find that the most extreme t-statistics are: 10.4 for 2020:3,
-9.57 for 2020:4, 4.28 for 2021:1, -3.21 for 2000:2, -2.69 for 2008:3, 2.65 for 2016:1, 2.53
for 2000:1, 2.17 for 2004:2 and 2.00 for 2008:2. Using the 1% cut-off for the normal
distribution of 2.576, we keep the six most significant step-indicators. Rerunning the
model gives

∆̂yi
(se)

= −0.008
(0.074)

∆yi−1 + 0.0056
(0.0009)

+ 0.0183
(0.0068)

I(i≥00:1) − 0.0202
(0.0069)

I(i≥00:2) − 0.0033
(0.0015)

I(i≥08:3)

+ 0.080
(0.007)

I(i≥20:3) − 0.119
(0.012)

I(i≥20:4) + 0.036
(0.010)

I(i≥21:1) (64)

σ̂ = 0.0068, n = 167, RSS = 0.0072, (65)

χ2
norm[2] = 5.39 (p = 0.068), Far(1−5)[5, 154] = 2.39 (p = 0.041). (66)

The autoregressive coefficient is now insignificant. Adding up the constant terms and
correcting for the modest autoregressive coefficient gives long-run means of 0.56% prior
to 2000, then 0.37% until 2008, then 0.043% until 2020.

We identify two significant drops in productivity in 2000 and 2008, corresponding
to the burst of the dot-com bubble and the financial crises, respectively. Both are
characterized by pairs of offsetting step indicators. However, the split half-SIS retains
only one of the two step-indicators from 2008, which results in less accurate tracking of
the series during the financial crisis.

The more comprehensive SIS algorithm in OxMetrics yields a similar model to split-
half SIS, but it manages to retain two offsetting step-indicators for 2008 instead of just
one. In the updated OxMetrics model, these indicators have larger t-statistics than the
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single 2008 indicator found in (64). It appears that the split-half SIS is too simple to
track the somewhat protracted upheaval during the financial crisis.

9 Conclusion

In this paper, we investigated the properties of the SIS algorithm that addresses location
shifts in time series in the context of model selection. The growing importance of SIS
in tackling location shifts is reflected in its applications in fields as varied as economics
(Chuffart & Hooper, 2019; Pellini, 2021; Bernstein & Martinez, 2021), climate science
(Raggad, 2018; Pretis et al., 2018; Koch et al., 2022; O’Callaghan et al., 2022), and public
health (Doornik et al., 2022). In this section, we summarize the insights gained through
a study of SIS with asymptotic analysis, simulations, and numerical approximations.

The first insight is that the frequence gauge is consistent for a wide range of both
stationary and non-stationary regressors. This means that even without detailed knowl-
edge of the regressor types, an investigator can choose the cut-off of SIS from the limiting
gauge. To address the sensitivity of this result, we demonstrated that the variation of
the frequence gauge around its limit follows a normal distribution. However, its variance
depends on the type of regressors. Simulations revealed that this variation remains lim-
ited, even in small samples. As a result, the sole tuning parameter of the SIS algorithm
can be finely adjusted to align with the investigator’s preferences.

The second insight concerns the link between the frequence gauge and the bias in
the updated regression estimator after selecting over step-indicators. This bias appears
to emerge in the presence of dynamic regressors when searching for location shifts. This
contrasts with the theory of Impulse Indicator Saturation, where there is no such bias
(Johansen & Nielsen, 2016b). The bias diminishes as the gauge decreases, suggesting
that the gauge should be chosen small and possibly vanishing with sample size. For
that purpose, we developed a Poisson theory for the absolute gauge. For a sample size
of n = 100 observations, we recommend setting the absolute gauge to 1, which is equal
to the frequence gauge of 1%, in line with Castle et al. (2015). In larger samples, we
advise targeting the absolute gauge rather than the frequence gauge, so that the cut-off
drifts slowly to infinity.

The third insight pertains to the circumstances in which stylized SIS demonstrates
higher statistical power compared to the Andrews (1993) test. We developed a local
power theory for stylized SIS and the Andrews test. Our findings suggest that the
Andrews test maintains consistency when faced with one or two well-separated, central
location shifts, whereas the SIS shows trivial power. Conversely, for location shifts near
the end of the sample or for two offsetting location shifts close to each other, the SIS
maintains power, while the power of the Andrews test goes down to its size. In time
series observed over extended periods, major upheavals like the 2008 financial crisis and
the 2020 Covid pandemic might recur. Consequently, we anticipate multiple breaks in
the data. These breaks may occur closely together or towards the end of the sample. In
such scenarios, SIS appears to be preferable to the Andrews test. The same conclusions
hold for the Bai & Perron (1998) procedure that allows more breaks but inherits the
power trade-offs from the Andrews test.

The fourth insight relates to the regularity conditions of SIS compared to the An-
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drews test. SIS assumes a known error distribution, while the Andrews test does not.
The assumption is testable and contributes to the power of SIS to detect breaks that
occur closely together. The first-order theory for SIS applies to a variety of stationary
and non-stationary regressors. In order to do this, the present theory is formulated in
terms of normalization matrices. This implies that the theory works regardless of the
choice of the normalization matrix. In contrast, the asymptotic theory for the Andrews
test requires stationary regressors, introducing an additional risk of mistakes, as the
investigator must carefully determine the appropriate normalization of the regressors.
Furthermore, SIS is designed to be implemented along with regressor selection, which is
useful when there is uncertainty about the choice of regressors.

The theory for SIS is complicated because SIS operates on the differenced residuals
which are temporally dependent even for well-behaved errors. We found various technical
solutions that may be useful elsewhere. The empirical process theory was developed
using ideas from the McLeish (1977) mixingale theory. The Poisson theory requires the
Chen (1975) Poisson limit theorem for dependent binary variables. In addition, to allow
two close breaks in the power theory, we relied on the Skorokhod (1956) M1-metric
favoured by Whitt (2002) rather than the J1-metric favoured by Billingsley (1968).

A potential further development is to develop a test for the presence of location
shifts along the lines of the IIS test for outliers of Jiao & Pretis (2022). The techniques
for dealing with correlation between (differenced) errors and regressors turns out to be
useful for analyzing instrumental variable estimation (Jiao, 2019).
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A Proofs

In section A.1, we prove Theorem 2.3. In section A.2-A.6, we state and prove some
auxiliary results. Finally, the main results for the gauge are proven in sections A.7-A.9.

A.1 Properties of differenced innovations

Proof of Theorem 2.3. (a) Symmetry. h(x) is the density of the difference of two
i.i.d. variables εi, εj. Symmetry follows since εi − εj, εj − εi are identically distributed.
(b) Normal distribution. If ε/σ has a standard normal density f, then ∇ε/(

√
2σ) has

density h = f. Conversely, if h = f then h, f are symmetric by part (a), so that εi −
εj and εi + εj are identically distributed. In particular, εi, εj and (εi + εj)/

√
2 are

identically distributed. Pólya (1923) shows that if that distribution is continuous with
finite variance, then it must be normal with zero mean.
(c) Bounded densities. The inequality |x− y|k ≤ Ck(|x|k + |y|k) for some Ck > 0 implies

|v|kh(v) =
√

2

∫ ∞
−∞
|v + y − y|kf(y)f(v + y)dy

≤
√

2Ck

{∫ ∞
−∞
|y|kf(y)f(v + y)dy +

∫ ∞
−∞
|v + y|kf(y)f(v + y)dy

}
.

In the first integral, bound |y|kf(y) by its supremum and change variable from y to
s = v + y. In the second integral, bound |v + y|kf(v + y) by its supremum. We get

|v|kh(v) ≤ 2
√

2Ck{sup
v∈R
|v|kf(v)}

∫ ∞
−∞

f(y)dy = 2
√

2Ck{sup
v∈R
|v|kf(v)}.

(d) Bounded derivatives. By the Leibniz rule for improper integrals

vkḣ(v) = vk
√

2
∂

∂v

∫ ∞
−∞

f(y)f(v + y)dy = vk
√

2

∫ ∞
−∞

f(y)ḟ(v + y)dy.

Then proceed as in part (c) to get

|vkḣ(v)| ≤ Ck
√

2

∫ ∞
−∞

f(y)(|y|k + |v + y|k)|ḟ(v + y)|dy

≤ Ck
√

2
{

sup
v∈R
|ḟ(v)|

∫ ∞
−∞
|y|kf(y)dy + sup

v∈R
|vk ḟ(v)|

∫ ∞
−∞

f(y)dy
}
.

This is finite when E|εi|k <∞ and supv∈R(1 + |v|k)|ḟ(v)| <∞.

A.2 Expanding distribution function for residuals

The compensators in the empirical process theory will be quite complicated due to the
temporal dependence arising from forward differencing. Their analysis will be facilitated
by the following expansion of the distribution function for a single residual when the
estimation error can be assumed constant.

31



Theorem A.1. Let Y ∈ R and X ∈ Rp be random with density mY,X(y, x) with respect
to the product of the Lebesgue measure and some measure υ on Rp. Suppose (i) there
exists densities so that mY,X(y, x) = mY |X(y|x)mX(x) = mX|Y (x|y)mY (y) ;
(ii) mY |X(y|x) has y-derivative ṁY |X(y|x) ;
(iii) Cm = supy∈R,x∈Rp(1 + |y|)|ṁY |X(y|x)| <∞ ;
(iv) E|X|2 <∞.
Then, for |a| ≤ 1/2, b ∈ Rp and c ∈ R and with c† = c(1 + a), we get
(a) |P(Y − b′X ≤ c)− P(Y ≤ c)−mY (c)E(b′X|Y = c)| ≤ |b|2CmE|X|2/2.
(b) |mY (c†)E(b′X|Y = c†)−mY (c)E(b′X|Y = c)| ≤ 2|ab|CmE|X|.

Lemma A.2. (Jiao & Nielsen (2017), Lemma 1.1) If |c∗−c| ≤ |Ac+B| and |A| ≤ 1/2,
then |c| ≤ 2(|c∗|+ |B|) and (Ac+B)2 ≤ 16{A2(c∗)2 +B2}.

Proof of Theorem A.1. (a) Write P = P(Y − b′X ≤ c)− P(Y ≤ c) as an integral:

P = E{1(Y−b′X≤c) − 1(Y≤c)} =

∫
Rp

∫ c+b′x

c

mY,X(y, x)dydυ(x).

Apply the Mean Value Theorem and the identity mY,X = mY |XmX = mX|YmY to get∫ c+b′x

c

mY,X(y, x)dy = (b′x)mX|Y (x|c)mY (c) +
1

2
(b′x)2ṁY |X(c∗|x)mX(x),

where |c∗ − c| ≤ |b′x|. Then, decompose P = P1 + P2 with

P1 =

∫
Rp
b′xmY (c)mX|Y (x|c)dυ(x) and P2 =

1

2

∫
Rp

(b′x)2ṁY |X(c∗|x)mX(x)dυ(x).

The first term is P1 = mY (c)E(b′X|Y = c). For the second term, the triangle inequality
gives

|P − P1| = |P2| ≤
1

2

∫
Rp

(b′x)2
∣∣ṁY |X(c∗|x)

∣∣mX(x)dυ(x).

By assumption, Cm = supc∗∈R,x∈Rp(1+|c∗|)|ṁY |X(c∗|x)| <∞. The norm inequality gives
(b′x)2 ≤ |x|2|b|2. Thus, we get uniformly in c, that |P2| ≤ |b|2CmE|X|2/2.

(b) Consider the difference term |q(c†)− q(c)|, where

q(y) = mY (y)E(b′X|Y = y) = mY (y)

∫
Rp
b′xmX|Y (x|y)dυ(x).

Let c† = c(1 + a). Apply the Mean Value Theorem and mY |XmX = mX|YmY to get

q(c†)− q(c) = (c† − c)
∫ ∞
−∞

(b′x)ṁY |X(c∗|x)mX(x)dυ(x),

where |c∗ − c| ≤ |c† − c| ≤ |ac|. Lemma A.2 shows that |c| ≤ 2|c∗| since |a| ≤ 1/2
by assumption. By assumption Cm = supc∗∈R,x∈Rp(1 + |c∗|)|ṁY |X(c∗|x)| < ∞, we have
|q(c†)− q(c)| ≤ 2|ab|CmE|X|.
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A.3 Exponential martingale inequalities

The subsequent empirical process theory relies on a linear chaining argument. The
chaining argument uses a new iterated exponential martingale inequality. Our inequality
is related to that of Johansen & Nielsen (2016a, Theorem 5.1), which iterates the Bercu &
Touati (2008) exponential inequality for unbounded martingales. Here, a simpler result
suffices, which uses the Freedman (1975) exponential inequality for bounded martingales.

We present two versions. The first version is an exact tail probability bound.

Theorem A.3. For 1 ≤ ` ≤ L, let M`n =
∑n

i=1(zi` − Ei−1zi`) denote a martingale,
where zi` is Fi-adapted and |zi` − Ei−1zi`| ≤ 1. Then, for all κ0, κ1 > 0, we have

P

(
max

1≤`≤L
|M`n| > κ0

)
≤ 1

κ1

E max
1≤`≤L

n∑
i=1

Vari−1zi` + 2L exp

{
− κ2

0

2(κ1 + κ0)

}
.

The second version is an asymptotic tail probability bound.

Theorem A.4. For 1 ≤ ` ≤ L, let M`n =
∑n

i=1(zi`n − Ei−1zi`n) denote a mar-
tingale array, where zi`n is Fin-adapted and |zi`n| ≤ 1. Suppose ∃ς, λ ≥ 0 so that
Emax1≤`≤L

∑n
i=1 Ei−1z

2
i`n = O(nς) and L = O(nλ). Then, ∀ν > ς/2, κ > 0 we get

lim
n→∞

P

{
max

1≤`≤L
|M`n| > κnν

}
= 0.

Lemma A.5. (Freedman (1975), Theorem 1.6) Let Mn =
∑n

i=1(zi − Ei−1zi) denote a
martingale, where zi is Fi-adapted with |zi − Ei−1zi| ≤ 1. Let Tn =

∑n
i=1 Var(zi|Fi−1).

For a, b > 0 we get P(Mn ≥ a, Tn ≤ b) ≤ exp[−a2/{2(a+ b)}].

Proof of Theorem A.3. Let mi`n = zi`n − Ei−1zi`n. Let A` =
∑n

i=1mi` and A =
(max1≤`≤L |A`| > κ0). Let B` =

∑n
i=1 Ei−1m

2
i` and B = (max1≤`≤LBl ≤ κ1). We bound

P(A) = P(A ∩ B) + P(A ∩ Bc) ≤ P(A ∩ B) + P(Bc).

Bounding P(A ∩ B). Let A` = (|A`| > κ0) and B` = (|B`| ≤ κ1). Note A =
⋃L
`=1A`

and B ⊂ B` and apply Boole’s inequality to get

P(A ∩ B) ≤
L∑
l=1

P(A` ∩ B) ≤
L∑
l=1

P(A` ∩ B`).

Apply Lemma A.5, noting that |mi`| ≤ 1, to get

P(A ∩ B) ≤
L∑
l=1

P
{

(A` > κ0) ∩ B`
}

+ P {(−A` > κ0) ∩ B`} ≤ 2L exp
{
− κ2

0

2(κ1 + κ0)

}
.

Bounding P(Bc). The Markov inequality gives

P(Bc) = P( max
1≤`≤L

n∑
i=1

Ei−1m
2
i` > κ1) ≤ 1

κ1

E max
1≤`≤L

n∑
i=1

Ei−1m
2
i`.

Finally, combine the bounds to P(A ∩ B) and P(Bc).
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Proof of Theorem A.4. We consider the probability Pn = P{max1≤`≤L |M`n| > κnν},
where the martingale M`n has differences |zi`n − Ei−1zi`n| ≤ 2, since it is assumed that
|zi`n| ≤ 1, but otherwise M`n is of the form studied in Theorem A.3. Thus, for some
κ > 0, apply Theorem A.3 with κ0 = κnν/2 and κ1 = κ2n2ν{4(1 + λ) log n}−1/22. Let
n be fixed and sufficiently large such that κ0 < κ1. Use the bound

exp[−κ2
0/{2(κ1 + κ0)}] ≤ exp{−κ2

0/(4κ1)} = n−1−λ,

and the assumptions Emax1≤`≤L
∑n

i=1 Ei−1z
2
i`n = O(nς) and L = O(nλ) to get that

Pn = O(nς)/κ1 +nλn−1−λ. Note that nς/κ1 → 0 when 2v > ς to get that Pn = o(1).

A.4 The one-sided empirical process

We establish some empirical process results for differenced residuals. For this purpose,
we simplify the setup relative to that of SIS. In SIS, estimation of β, σ is done on one
subsample, and the evaluation of residuals is done on another sample. Here, the random
estimation error is replaced by a deterministic error. We can therefore avoid the division
of the sample into subsamples. We will therefore avoid reference to subsamples.

We consider the model (7). Recall the definition (19) and modify definition (22) as

χi = (εi − εi+1)/(
√

2σ), ∇xin = N ′(xi − xi+1) for i = 1, . . . , n. (A.1)

Thus, N is a normalization matrix similar to those considered before, but applied to
the full sample. Let a and b represent estimation errors in the scale and the location.
Define the empirical distribution function

F̂n(a, b, c) = n−1

n∑
i=1

1(χi≤c+n−1/2ac+b′∇xin). (A.2)

Here, χi is Fi+1-adapted and ∇xin is Fi-adapted. Thus, we will refer to

Fn(a, b, c) = n−1

n∑
i=1

Ei−11(χi≤c+n−1/2ac+b′∇xin) (A.3)

as a pseudo-compensator for F̂n. The empirical process

Fn(a, b, c) = n1/2{F̂n(a, b, c)− Fn(a, b, c)} (A.4)

satisfies the following result, which will be proved by linear chaining.

Theorem A.6. Suppose Assumption 3.1 holds and that
(i) the marginal density f is bounded: supv∈R f(v) <∞;
(ii) the regressors xi satisfy E

∑n
i=1 |∇xin| = O(n1/2).

Then, for all B > 0, 0 < η < 1/4 ,and c ∈ R we have

sup
|a|,|b|≤n1/4−ηB

|Fn(a, b, c)− Fn(0, 0, c)| = oP(1).
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Lemma A.7. Let χi = (εi − εi+1)/(
√

2σ), where εi/σ is Fi-adapted and has density f.
Let ci ≤ ci be Fi−1-adapted random variables. Then

Ei1(ci<χi≤ci) ≤
√

2(ci − ci) sup
v∈R

f(v).

Proof of Lemma A.7. Write the indicator as 1(ci≤χi≤ci) = 1(εi/σ−
√

2ci≤εi+1/σ<εi/σ−
√

2ci)
.

Only εi+1 is varying when conditioning on Fi. Thus, the Mean Value Theorem gives

Ei1(εi/σ−
√

2ci≤εi+1/σ<εi/σ−
√

2ci)
=

∫ εi/σ−
√

2ci

εi/σ−
√

2ci

f(x)dx =
√

2(ci − ci)f(v
∗),

where |v∗ − ci| ≤
√

2(ci − ci). Finally, note that f(v∗) ≤ supv∈R f(v).

Proof of Theorem A.6. Combine the two estimation errors as u = (a, b′)′ and create
an expanded vector of regressors win = (n−1/2c,∇x′in)′ so that n−1/2ac+ b′∇xin = u′win.

Recall the definition of Fn from (A.4) and write our object of interest as

Rn(u, c) = Fn(a, b, c)− Fn(0, 0, c)

= n−1/2

n∑
i=1

[{1(χi≤c+u′win) − 1(χi≤c)} − Ei−1{1(χi≤c+u′win) − 1(χi≤c)}].

We show Rn = sup|u|≤n1/4−ηB |Rn(u, c)| = oP(1).
This proof has three parts. First, we chain over u by introducing grid points um.

Second, we show that our empirical process vanishes on the grid points um,

Rn,1 = max
1≤m≤M

|Rn(um, c)| = oP(1). (A.5)

Third, we show that our empirical process vanishes in-between our grid points um,

Rn,2 = max
1≤m≤M

sup
|u−um|≤δ

|Rn(u, c)−Rn(um, c)|. (A.6)

1. The chaining setup. We chain over u, by covering them with balls of radius
δ > 0. We will choose δ independently of the sample size n in point 3.5 below.

1.1. Cover. For δ, n > 0, cover the set |u| ≤ n1/4−ηB with balls of radius δ which
centre in grid points um. Thus, for any u there exists a um so that |u − um| ≤ δ. The
minimum cover has M ∼ (n1/4−ηB/δ)dimx+1 ∼ n(1/4−η) dimx/δdimx+1 balls.

1.2. Apply chaining. Write Rn(u, c) = Rn(um, c) + {Rn(u, c) − Rn(um, c)}, where
Rn(um, c) is a discrete point term and Rn(u, c) − Rn(um, c) is a local oscillation term.
By the triangle inequality, Rn ≤ Rn,1 +Rn,2 where Rn,1, Rn,2 are given in (A.5), (A.6).

2. The discrete point term Rn,1 is oP(1). We decompose Rn into martingales.
Then, we apply Theorem A.4 on the constructed martingales.

2.1. Martingale decomposition. Let zim = 1(χi≤c+u′mwin)− 1(χi≤c). Define martingales

Ra
n(um, c) = n−1/2

n∑
i=1

(zim − Eizim), Rb
n(um, c) = n−1/2

n∑
i=1

(Eizim − Ei−1zim),
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so that Rn = Ra
n +Rb

n. Thus, it suffices to show that

Ra
n,1 = max

1≤m≤M
|Ra

n(um, c)| = oP(1), Rb
n,1 = max

1≤m≤M
|Rb

n(um, c)| = oP(1).

2.2. The martingale Ra
n,1. We show that Ra

n,1 = oP(1), by applying Theorem A.4 to
it. We set νa = 1/2, let index ` = m, and consider zi`,a = zim, which is Fi+1-adapted.
Note that |zi`,a| ≤ 1. We verify the conditions of Theorem A.4.

The parameter λa. The set of indices ` has size L = M . Since M ∼ n(1/4−η)(dimx+1)

as δ is fixed then L ∼ nλa where λa = (1/4− η)(dimx+ 1).
The parameter ςa. We show Ea = Emax1≤`≤L

∑n
i=1 Eiz

2
i`,a = O(n3/4−η). First note

Eiz
2
i`,a = Ei|zi`,a|. Further Ei|zi`,a| ≤ Ei1(c−|u′mwin|<χi≤c+|u′mwin|). Apply Theorem A.7 with

ci = c− |u′mwin| and ci = c+ |u′mwin|. Since |um| ≤ n1/4−ηB, we get, uniformly in `,

Ei|zi`,a| ≤ 2
√

2n1/4−ηB|win| sup
v∈R

f(v), (A.7)

where only |win| is random and depends on i. Apply the Law of Iterated Expectations
to get E

∑n
i=1 Ei|win| = E

∑n
i=1 |win|. Since win = (n−1/2c,∇x′in)′, we get the further

bound n1/2|c| + E
∑n

i=1 |∇xin|, which is O(n1/2) since c is fixed and by condition (ii).
Further, supv∈R f(v) <∞ by condition (i). Therefore Ea = O(nςa) where ςa = 3/4− η.

The condition ςa < 2νa. Since 0 < η and νa = 1/2, we have ςa = 3/4− η < 1 = 2νa .
2.3. The martingale Rb

n,1. We show that Rb
n,1 = oP(1) by applying Theorem A.4

to it. We set νb = 1/2, let index ` = m, and consider zi`,b = Eizi`,a = Eizim, which is
Fi-adapted. Note that |zi`,b| ≤ 1 as |zim| ≤ 1. We verify the conditions of Theorem A.4.

The parameter λb is λb = (1/4− η)(dimx+ 1) as in point 2.2.
The parameter ςb. We show that Eb = Emax1≤`≤L

∑n
i=1 Ei−1z

2
i`,b = O(n3/4−η). Note

that z2
i`,b = E2

i zi`,a ≤ Eiz
2
i`,a = Ei|zi`,a| by Jensen’s inequality. In (A.7) we found that

Ei|zi`,a| ≤ 2
√

2n1/4−ηB|win| supv∈R f(v). Therefore Eb has the same bound as Ea. Thus,
by point 2.2 we get Eb = O(nςb) where ςb = ςa = 3/4− η.

The condition ςb < 2νb is satisfied as in point 2.2, since (νb, λb, ςb) = (νa, λa, ςa).
3. The oscillation term Rn,2. We show that Rn,2 is oP(1). The proof relies on

bounding Sn(um, u, c) = Rn(u, c)−Rn(um, c) uniformly in u. We then apply a martingale
decomposition and use Theorem A.4.

3.1 The term Sn. Write

Sn(um, u, c) = n−1/2

n∑
i=1

{si(um, u, c)− Ei−1si(um, u, c)},

where, due to a cancellation of two indicator functions 1(χi≤c), we have

si(um, u, c) = 1(χi≤c+u′win) − 1(χi≤c+u′mwin).

Therefore Rn,2 = max1≤m≤M sup|u−um|≤δ |Sn(um, u, c)|.
3.2. Bounding si(um, u, c). Write c+ u′win = c+ u′mwin + (u− um)′win. Noting that

|u− um| ≤ δ, we introduce bounds,

cim = c+ u′mwin − δ|win|, cim = c+ u′mwin + δ|win|, (A.8)
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which do not depend on u. Thus, we can bound

|si(um, u, c)| ≤ zim = 1(cim<χi≤cim). (A.9)

3.3. Bounding |Sn(um, u, c)|. The triangle inequality gives that |
∑n

i=1(si−Ei−1si)| ≤∑n
i=1(|si|+ Ei−1|si|). Using that |si| ≤ zim by (A.9) in point 3.2 leads to the bound

|Sn(um, u, c)| ≤Mmn = n−1/2

n∑
i=1

(zim + Ei−1zim),

uniformly in u. Thus, Rn,2 = oP(1) if max1≤m≤M Mmn = oP(1).
3.4. Martingale decomposition. We decompose Mmn into two martingale and a

compensator term. Add and subtract n−1/2
∑n

i=1 Eizim twice to Mmn and write Mmn =

M̃ c
mn + M̃d

mn + 2Mmn, where we have two martingale terms

M̃ c
mn = n−1/2

n∑
i=1

(zim − Eizim), M̃d
mn = n−1/2

n∑
i=1

(Eizim − Ei−1zim),

and a compensator term

Mmn = n−1/2

n∑
i=1

Ei−1zim.

Thus, it suffices to show that M̃c
n = max1≤m≤M M̃ c

mn, M̃d
n = max1≤m≤M M̃d

mn, and
Mn = max1≤m≤M Mmn are oP(1).

3.5. The compensator termMn. We show thatMn = oP(1). Recall from (A.9) that
zim = 1(cim<χi≤cim), where cim = c + u′mwin − δ|win| and cim = c + u′mwin + δ|win|. The
Law of Iterated Expectations gives Ei−1zim = Ei−1Eizim. Apply Lemma A.7 to get

Ei−1zim = Ei−1Eizim ≤ Ei−12
√

2δ|win| sup
v∈R

f(v) = 2
√

2δEi−1|win| sup
v∈R

f(v), (A.10)

uniformly in m and where only win depends on i.
Turning to the expression forMn, we note that E

∑n
i=1 Ei−1|win| = O(n1/2) as argued

in point 2.2 using condition (ii). Further, condition (i) shows that supv∈R f(v) <∞. In
combination, we get that EMn = δO(1) where the OP(1)-term does not depend on δ.
Thus, by the Markov inequality, Mn = δOP(1).

To showMn = oP(1) we need to show that for any γ > 0 then P(Mn > γ) vanishes
for large n. We are still free to choose δ which will be exploited now. SinceMn = δOP(1),
we can find a constant C not depending on δ so that Mn ≤ δC with large probability.
Choosing δ = γ/C we get Mn ≤ γ with large probability. Hence, Mn = oP(1).

3.6. The martingale M̃c
n. We show M̃c

n = oP(1), using Theorem A.4. We set
νc = 1/2 and index ` = m and consider zi`,c = zim = 1(cim<χi≤cim) defined in (A.9),
which is Fi+1-adapted. Note that 0 ≤ zi`,c ≤ 1. We verify the conditions of Theorem
A.4.

The parameter λc is (1/4− η)(dimx+ 1) as in point 2.2.
The parameter ςc is 1/2. We show that Ec = Emax1≤`≤L

∑n
i=1 Eiz

2
i`,c = O(nςc).

Since z2
im = zim while Eizim = EiEi−1zim we have that Ec = Emax1≤`≤L

∑n
i=1 EiEi−1zim.
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Applying the bound to Ei−1zim in (A.10), which is uniform in m, we see that Ec has the
same bound as n1/2EMn. Now, use that EMn = O(1) by point 3.5.

The condition ςc < 2νc. Since 0 < η and νc = 1/2 we have ςc = 1/2 < 1 = 2νc.

3.7. The martingale M̃d
n. We show M̃d

n = oP(1) using Theorem A.4. We set
νd = 1/2 and index ` = m and consider zi`,d = Eizim, which is Fi-adapted. Note that
0 ≤ zi`,c ≤ 1. We verify the conditions of Theorem A.4.

The parameter λc is (1/4− η)(dimx+ 1) as in point 2.2.
The parameter ςd is 1/2. We show that Ed = Emax1≤`≤L

∑n
i=1 Ei−1z

2
i`,d = OP(nςd).

Note that z2
i`,d = E2

i zim ≤ Eiz
2
im = Eizim by Jensen’s inequality. Since Fi−1 ⊂ Fi, we get

Ei−1z
2
i`,d ≤ Ei−1Eizim = Ei−1zim. Thus, Ed = n1/2EMn, where EMn = O(1) by point 3.5.

The condition ςd < 2νd is satisfied as in point 2.2, since (νd, λd, ςd) = (νc, λc, ςc).

4. Conclusion. We have shown that M̃c
n = M̃d

n = Mn = oP(1) so that Rn,2 =
oP(1). In point 2 it was shown that Rn,1 = oP(1). In combination, Rn = oP(1).

A.5 The compensator

We provide a linearization of the pseudo-compensator Fn defined in (A.3).

Theorem A.8. Suppose Assumption 3.1 holds and that
(i) the marginal density f has bounded derivative: supv∈R(1 + v2)|ḟ(v)| <∞;
(ii) the conditional density mi(y|x) of χi given ∇xi and Fi−1 exists, it is differentiable
in y and satisfies max1≤i≤n supy∈R,x∈Rp(1 + |y|) |ṁi(y|x)| <∞;
(iii) the regressors xi satisfy E

∑n
i=1 |∇xin|2 = O(1).

Let ξn = n−1/2
∑n

i=1 Ei−1(∇xin|χi = c). Then, for all B > 0 and 0 < η < 1/4

sup
|a|,|b|≤n1/4−ηB

sup
c∈R
|n1/2{Fn(a, b, c)− Fn(0, 0, c)} − h(c){ac+ b′ξn(c)}| = OP(n−2η).

Proof of Theorem A.8. The quantity of interest is

Qn(a, b, c) = n1/2{Fn(a, b, c)− Fn(0, 0, c)} − h(c){ac+ b′ξn(c)}.

Define ca = c + n−1/2ac and note that Fn(a, b, c) = Fn(0, b, ca). Add and subtract
h(ca)b

′ξn(ca) and n1/2Fn(a, 0, c) = n1/2Fn(0, 0, ca) to Qn to get

Qn(a, b, c) = Qn(0, b, ca) +Qn(a, 0, c) +Rn(a, b, c), (A.11)

where
Rn(a, b, c) = h(ca)b

′ξn(ca)− h(c)b′ξn(c). (A.12)

We show that each of the terms of the right hand side of (A.11) vanish uniformly in
a, b, c.

1. The term Qn(0, b, ca). We note that supa,b,c |Qn(0, b, ca)| = supb,c |Qn(0, b, c)|
and consider the latter. Write Qn(0, b, c) = n−1/2

∑n
i=1 qi(b, c), where

qi(b, c) = Ei−1{1(χi−b′∇xin≤c) − 1(χi≤c)} − h(c)b′Ei−1(∇xin|χi = c).

Here, qi is an expression of the form considered in Theorem A.1(a), noting that the
expectation of an indicator is a probability. The probability measure P in the theorem
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is a conditional measure given Fi−1, while the variables are Y = χi and X = ∇xin.
Moreover, mi(y, x) is the joint density of Yi, Xi conditional on Fi−1. By condition
(ii), mi(y|x) is differentiable with respect to y. The derivative has the bound Cm =
max1≤i≤n supy∈R,x∈Rp(1+ |y|) |ṁi(y|x)| <∞. By condition (iii), E|X|2 exists. We bound

|qi(b, c)| ≤ 2−1|b|2CmEi−1|∇xin|2, Since |b| ≤ n1/4−ηB and using the triangular inequality
we get |Qn(b, c)| ≤ O(n−2η)Cm

∑n
i=1 Ei−1|∇xin|2. By condition (iii) and the Markov

inequality then
∑n

i=1 Ei−1|∇xin|2 = O(1). Thus, |Qn(b, c)| = OP(n−2η) uniformly in b, c.
2. The term Qn(a, 0, c). Write Qn(a, 0, c) = n−1/2

∑n
i=1 qi(a, c), where

qi(a, c) = Ei−1{1(χi≤c+n−1/2ac) − 1(χi≤c)} − n−1/2ach(c).

Note χi = (εi − εi+1)/(
√

2σ) has density h and is independent of Fi−1. As f is differen-
tiable by Assumption 3.1, so is h. Thus, the Mean-Value Theorem gives

qi(a, c) =

∫ c+n−1/2ac

c

h(u)du− n−1/2ach(c) = n−1a2c2ḣ(c̃)/2,

where |c̃ − c| ≤ |n−1/2ac|. Since |a| ≤ n1/4−ηB, then |n−1/2a| ≤ 1/2 for large n. The
second inequality in Lemma A.2 then shows that a2c2 ≤ 16a2c̃2. We then have qi(a, c) ≤
16n−1a2c̃2ḣ(c̃).

Condition (i) shows that supv∈R(1 + v2)ḟ(v) <∞. Theorem 2.3(d) then implies that
supv∈R v

2ḣ(v) < ∞. Using that |a| ≤ n1/4−ηB we get qi(a, c) = O(n−1/2−2η) uniformly
in a, c, i. It follows that |Qn(a, c)| = O(n−2η) uniformly in a, c.

3. The term Rn(a, b, c). Write Rn(a, b, c) = n−1/2
∑n

i=1 qi(a, b, c), where

qi(a, b, c) = h(ca)b
′Ei−1(∇xin|χi = ca)− h(c)b′Ei−1(∇xin|χi = c)

with ca = c + n−1/2ac. Apply Theorem A.1(b). The setup is as in point 1, with
Yi = χi and Xi = ∇xin, while mi(y, x) denotes the joint conditional density of Yi, Xi

given Fi−1, and Cm = max1≤i≤n supy∈R,x∈Rp(1 + |y|) |ṁi(y|x)| < ∞, using conditions

(ii, iii). We bound |qi(a, b, c)| ≤ |n−1/2ab|CmEi−1|∇xin|. Since |a|, |b| ≤ n1/4−ηB and∑n
i=1 Ei−1|∇xin| = O(1) by condition (iii), we get |Rn(a, b, c)| = O(n−2η) uniformly in

a, b and c.

A.6 The empirical distribution function

We combine Theorems A.6 and A.8 to expand the empirical distribution function.

Theorem A.9. Suppose Assumption 3.1 holds and that
(i) the marginal density f satisfies: supv∈R f(v) <∞, supv∈R(1 + v2)|ḟ(v)| <∞;
(ii) the conditional density mi(y|x) of χi given ∇xi and Fi−1 exists, it is differentiable
in y and satisfies max1≤i≤n supy∈R,x∈Rp(1 + |y|) |ṁi(y|x)| <∞;
(iii) the regressors xi satisfy E

∑n
i=1 |∇xin|2 = O(1);

Let ξn = n−1/2
∑n

i=1 Ei−1(∇xin|χi = c). Then, for all B > 0, 0 < η < 1/4, c ∈ R, and
uniformly in |a|, |b| ≤ n1/4−ηB, we have

√
n{F̂n(a, b, c)− Fn(0, 0, c)} = Fn(0, 0, c) + h(c){ac+ b′ξn(c)}+ oP(1)
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Proof of Theorem A.9. The conditions of Theorems A.6 and A.8 are directly listed
in the present conditions apart from condition (ii) of Theorem A.6. The latter follows
from the present condition (iii) by Jensen’s inequality in that n−1/2E

∑n
i=1 |∇xin| ≤

(E
∑n

i=1 |∇xin|2)1/2 = O(1). Rewrite Rn = n1/2{F̂n(a, b, c)− Fn(0, 0, c)} as

Rn = n1/2[{F̂n(a, b, c)− Fn(a, b, c)} − {F̂n(0, 0, c)− Fn(0, 0, c)}]
+[n1/2{Fn(a, b, c)− Fn(0, 0, c)} − h(c){ac+ b′ξ(c)}]
+n1/2{F̂n(0, 0, c)− Fn(0, 0, c)}+ h(c){ac+ b′ξ(c)}.

By Theorems A.6 and A.8, the terms in square brackets is oP(1) uniformly in |a|, |b|.

A.7 Results for stylized SIS

Lemma A.10. Suppose Assumption 3.1, 3.2(ia, iiic). Let η > 0 be given. Let σn
be a sequence of random variables so that n

1/2
j (σ2

n − σ2) = OP(n
1/4−η
j ). Let Vn, Σ−1

n

be sequences of random vectors and square matrices which are OP(1). Let Mn be a

sequence of deterministic square matrices satisfying Mn = O(n
1/4−η
j ) for some η > 0.

All those vectors and square matrices have the same dimension as xi. Let w2
in = 1 +

(∇xin)′MnΣ−1
n M ′

n∇xin and

Di = 1(|∇εi−V ′nΣ−1
n M ′n∇xin|>

√
2σnwinc)

− 1(|∇εi−V ′nΣ−1
n M ′n∇xin|>

√
2σnc)

.

Then
∑

i∈Ij Di = oP(n
1/2
j ).

Proof of Lemma A.10. By definition w2
in ≥ 1, so that 1 ≤ win ≤ w2

in. Thus,

0 ≤ Di = 1(
√

2σnc<|∇εi−V ′nΣ−1
n M ′n∇xin|≤

√
2σnwinc)

≤ 1(
√

2σnc<|∇εi−V ′nΣ−1
n M ′n∇xin|≤

√
2σnw2

inc)
.

Further, use the spectral norm as matrix norm. As this is sub-multiplicative, we can
bound w2

in − 1 ≤ |∇xin|2‖Mn‖2‖Σ−1
n ‖ and get

0 ≤ Di ≤ 1(
√

2σnc<|∇εi−V ′nΣ−1
n M ′n∇xin|≤

√
2σnc+

√
2σn|∇xin|2‖Mn‖2‖Σ−1

n ‖c).

Introduce the empirical distribution function and pseudo-compensator

Ĥn(a, b1, b2, c) = n−1
j

∑
i∈Ij

1
(χi≤c+n

−1/2
j ac+b′1z1i+b2z2ic)

, (A.13)

Hn(a, b1, b2, c) = n−1
j

∑
i∈Ij

Ei−11
(χi≤c+n

−1/2
j ac+b′1z1i+b2z2ic)

. (A.14)

where χi = ∇εi/(
√

2σ) as in (19), zi = (z′1i, z2i)
′ = {(∇xin)′, n

1/2
j |∇xin|2}′ is Fi-adapted,

and â = n
1/2
j (σn/σ − 1) , b̂′1 = V ′nΣ−1

n M ′
n/
√

2 and b̂2 = (σn/σ)n
−1/2
j ‖Mn‖2‖Σ−1

n ‖. Then,
noting that χi has a continuous distribution, we get with probability one

n−1
j

∑
i∈Ij

Di ≤ Ĥn(â, b̂1, b̂2c, c)− Ĥn(â, b̂1, 0, c)− Ĥn(â, b̂1,−b̂2c,−c) + Ĥn(â, b̂1, 0,−c).
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The empirical distribution function Ĥn has the same structure as F̂n defined in (A.2),

albeit with b′∇xin replaced by (b′1, b2c)zi. We note that â = OP(n
1/4−η
j ), b̂1 = OP(n

1/4−η
j ),

b̂2 = OP(n−2η
j ), so that all are OP(n

1/4−η
j ). Thus, we can on a set with large probability

find a large B > 0 so that |â|, |̂b1| ≤ Bn
1/4−η
j and |̂b2| ≤ Bn−2η

j ≤ Bn
1/4−η
j uniformly

in nj. We can then apply the expansion in Theorem A.6 to replace Ĥn by Hn, while

substituting â, b̂1, b̂2 for a, b1, b2 and using Assumption 3.1, 3.2(ia, iiic). Thus,

0 ≤ n−1
j

∑
i∈Ij

Di ≤ Hn(â, b̂1, b̂2c, c)− Hn(â, b̂1, 0, c)

− Hn(â, b̂1,−b̂2c,−c) + Hn(â, b̂1, 0,−c) + oP(n
−1/2
j ). (A.15)

Finally, we show that Hn(â, b̂1, b̂2c, c) − Hn(â, b̂1, 0, c) = oP(n
−1/2
j ) for fixed c ∈ R.

For this, it suffices to show that

sup
|a|,|b1|≤Bn1/4−η

j

sup
0≤b2≤Bn−2η

j

|Hn(a, b1, b2c, c)− Hn(a, b1, 0, c)| = oP(n
−1/2
j ). (A.16)

Now, Hn(a, b1, b2c, c)− Hn(a, b1, 0, c) = n−1
j

∑
i∈Ij Ei−1hin(a, b1, b2, c) where

hin(a, b1, b2, c) = 1{χi≤c+n−1/2
j ac+(b′1,b2c)zi}

− 1{χi≤c+n−1/2
j ac+(b′1,0)zi}

has the same sign as c. We get Ei−1hin(a, b1, b2, c) = Ei−1{Eihin(a, b1, b2, c)} by iterated
expectations. Recall that χi = (εi−εi+1)/(

√
2σ), so that all elements of hin but εi+1 are

Fi-measurable while εi+1 is independent thereof. Thus, we can write the Ei-expectation
as an integral and use the Mean Value Theorem to get, for an intermediate point c∗,

Eihin(a, b1, b2, c) =

∫ εi/σ−
√

2{c+n−1/2
j ac+(b′1,0)zi}

εi/σ−
√

2{c+n−1/2
j ac+(b′1,b2c)zi}

f(u)du =
√

2(0, b2)′zicf(c
∗).

Now, (0, b2)′zi = b2n
1/2
j |∇xin|2, where 0 ≤ b2 ≤ Bn−2η

j by the construction (A.16).
Further, c is fixed, while f(c∗) ≤ maxv∈R f(v) which is finite by Assumption 3.2(ia).

Thus, we find |Eihin(a, b1, b2, c)| ≤ Cn
1/2−2η
j |∇xin|2 for some constant C > 0, uniformly

in a, b1, b2.
We note that hin and hence the Hn-differences has the same sign as c so that

Hn = E|Hn(a, b1, b2, c)− Hn(a, b1, 0, c)| = |E{Hn(a, b1, b2, c)− Hn(a, b1, 0, c)}|.

Writing out in terms of the hin functions and using iterated expectations, we get

Hn = |En−1
j

∑
i∈Ij

Ei−1Eihin(a, b1, b2, c)| = |En−1
j

∑
i∈Ij

Eihin(a, b1, b2, c)|.

Thus, uniformly in a, b1, b2

Hn ≤ En−1
j

∑
i∈Ij

Cn
1/2−η
j |∇xin|2 = O(n

−1/2−η
j )

by Assumption 3.2(iiia), so that (A.16) follows. The desired result follows.
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Proof of Theorem 3.3. 1. The OLS estimator on the first sample. Normalizing
the OLS estimator β̂1 in (12) gives N−1

1 (β̂1 − β) = Σ̂−1
1n V̂1n when using the following

notation from (23), (24)

Σ̂−1
1n =

∑
i∈I1

N ′1(xi − x̄1)(xi − x̄1)′N1, V̂1n =
∑
i∈I1

N ′1(xi − x̄1)(εi − Eεi),

while x̄1 = n−1
1

∑
i∈I1 xi, where the expectation can be subtracted from εi since the

regressors are demeaned. By Assumption 3.2(iiia, b), N−1
1 (β̂1 − β) = Σ̂−1

1n V̂1n = OP(1).
Similarly, the normalized estimator for the residual variance in (23) is

n
1/2
1 (σ̂2

1 − σ2) = n
−1/2
1

∑
i∈I1

{(εi − ε̄1)2 − σ2} − n−1/2
1 V̂ ′1nΣ̂−1

1n V̂1n,

where ε̄1 = n−1
1

∑
i∈I1 εi. By Assumption 3.1, the innovations εi are i.i.d. The first term

converges in distribution by the Central Limit Theorem. The second vanishes as Σ̂1n,
V̂1n converge in distribution by Assumption 3.2(iiia, b) while the factor n

−1/2
1 vanishes.

Therefore, the estimators are converging and bounded with OP(1).

2. Apply Lemma A.10 with j = 2 and ωin = ω1,i. Since (n2/n1)1/2 = o(n
1/4−η
2 ) by

Assumption 3.2(iv), we get n
1/2
2 (σ2

n − σ) = (n2/n1)1/2n
1/2
1 (σ̂2

1 − σ2) = oP(n
1/4−η
2 ). Note,

that V̂1n and Σ−1
n = Σ̂−1

1n , are both OP(1). Let Mn = N−1
2 N1 = o(n

1/4−η
2 ) by Assumption

3.2(iv). Lemma A.10 also requires Assumption 3.2(ia, iiic).

Proof of Theorem 3.4. It was shown in step 1 of the proof of Theorem 3.3 that
N−1

1 (β̂1−β), n
1/2
1 (σ̂2

1−σ2) = OP(1). This uses Assumptions 3.1, 3.2(iiia, b). We rewrite
the gauge and apply Theorem A.9.

1. Rewriting expression for the gauge. The gauge is defined in (16). Due to
Theorem 3.3 with Assumptions 3.1, 3.2(ia, iii, iv) we can set wi,1 = 1 and we ignore the
resulting remainder term. Forward difference equation (7) to get ∇yi = β′∇xi + ∇εi.
With that, rewrite the gauge as

γ̂n =
1

n◦2

∑
i∈I◦2

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1c)
=

1

n◦2

∑
i∈I◦2

1{|∇εi−(β̂1−β)′∇xi|≥
√

2σ̂1c}.

We normalize β̂1−β by N1 and xi by N2. At the same time we divide through by
√

2σ.
Recall the notation χi = εi/(

√
2σ) and xin = N ′2xi for i ∈ I2. Define

â1 = (n2/n1)1/2n
1/2
1 (σ̂1/σ − 1), b̂1 = (N−1

2 N1)N−1
1 (β̂1 − β)/(

√
2σ), (A.17)

so that â1, b̂1 = OP(n
1/4−η
2 ) by the convergence results in point 1 of the proof of Theorem

3.3 and Assumption 3.2(iv). We then get the two-sided empirical distribution function

γ̂n =
1

n◦2

∑
i∈I◦2

1{|χi−b̂′1∇xin|≥c+n
−1/2
2 â1c}

. (A.18)
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2. Apply empirical process result. Theorem A.9 expands

n−1/2

n∑
i=1

{1(χi≤c+n−1/2ac+b′∇xin) − E1(χi≤c)} = n−1/2

n∑
i=1

{1(χi≤c) − E1(χi≤c)}

+ h(c){ac+ b′ξn(c)}+ oP(1),

uniformly in |a|, |b| ≤ n1/4−ηB for all η,B > 0. As remarked above, this expansion will
be used for observations in the second sub-sample. Thus, the conditions of Theorem
A.9 are satisfied by Assumption 3.2 (i, ii, iiic). Since 1(|χi|≥c) = 1−1(χi<c) + 1(χi≤−c) and
noting that χi is continuously distributed we can form a two sided version

n−1/2

n∑
i=1

{1(|χi|≥c+n−1/2ac+b′∇xin) − E1(|χi|≥c)} = n−1/2

n∑
i=1

{1(|χi|≥c) − E1(|χi|≥c)}

+ Bn(a, b, c) + oP(1). (A.19)

with the bias term Bn(a, b, c) = −h(c){ac+ b′ξn(c)}+ h(−c){−ac+ b′ξn(−c)}. Theorem
2.3 shows that h is symmetric: h(c) = h(−c). Thus, the bias term satisfies

Bn(a, b, c) = −2ch(c)a− h(c)b′{ξn(c)− ξn(−c)}.

We now apply the expansion (A.19) to the expression for the gauge in (A.18) with
two adjustments. First, the gauge in (A.18) depends on estimators â1, b̂1. These are

OP(n
1/4−η
2 ) as remarked above. Thus, on a set with large probability a large B > 0 exists

so that |â1|, |b̂1| < Bn
1/4−η
2 uniformly in n. Since the expansion in (A.19) is uniform in

|a1|, |b1| < Bn1/4−η, we can apply the expansion in (A.19) while substituting â1, b̂1 for
a1, b1. Second, we will need to change the index of the observations, as the expansion
in (A.18) is concerned with indices, i ∈ I◦2 while the expansion in (A.19) has indices
i = 1, . . . n.

Thus, defining γ = E1(|χi|≥c) and ξ2n = n
−1/2
2

∑
i∈I2 Ei−1(∇xin|χi = c), while noting

n◦2/n2 → 1, we get the desired expansion (25).

3. Consistency. The terms on the right hand side of expansion (25) are oP(n
1/2
2 )

under the stated conditions. This gives the convergence in probability. As the gauge is
bounded by unit, this extends to convergence in mean (Billingsley, 1968, p. 32).

A.8 Results for split-half SIS

Proof of Theorem 4.2. Define gauges for each of the sub-samples as

γ̂1n =
1

n◦1

∑
i∈I◦1

1(|∇yi−β̂′2∇xi|≥
√

2σ̂2ω2,ic)
, γ̂2n =

1

n◦2

∑
i∈I◦2

1(|∇yi−β̂′1∇xi|≥
√

2σ̂1ω1,ic)
,

noting that n◦γ̂splitn = n◦γ̂1n + n◦γ̂2n. As in the proof of Theorem 3.3, we can apply
Lemma A.10 and set ωj,i = 1 and ignore the resulting remainder terms.

Apply Theorem 3.4 to each of γ̂1n, γ̂2n noting that its derivation does not depend on
the ordering of two sub-samples. This requires Assumptions 3.1, 4.1. We get expansions,
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with (j, k) = (1, 2) or (j, k) = (2, 1),

n
1/2
j (γ̂jn − γ) = n

−1/2
j

∑
i∈I◦j

{1(|χi|≥c) − E1(|χi|≥c)} − ch(c)(nj/nk)
1/2n

−1/2
k

∑
i∈Ik

(ε2
i /σ

2 − 1)

−h(c){ξjn(c)− ξjn(−c)}′N−1
j NkΣ̂

−1
kn V̂kn/(

√
2σ) + oP(1).

Use that n◦j/nj → 1 and n◦1 + n◦2 = n◦ and insert the Theorem 3.4 sub-sample expan-

sions into (n◦)1/2(γ̂splitn − γ) = (n◦1/n
◦)1/2(n◦1)1/2(γ̂1n − γ) + (n◦2/n

◦)1/2(n◦2)1/2(γ̂2n − γ).
Asymptotically, we can replace n◦j , I

◦
j with nj, Ij.

The proof of Theorem 4.4 uses the following non-stationary mixingale result

Lemma A.11. (McLeish, 1977, Theorem 2.4) Let Xni for i, n = 1, 2, . . . be a double
array of zero mean random variables. Let kn(t) be a sequence of nonrandom integer
valued, nondecreasing, right continuous functions on [0,∞). Suppose a double array of
constants σ2

ni > 0 exists such that for each T <∞:

(a) sups<t<T lim supn→∞
∑kn(t)

kn(s) σ
2
ni/(t− s) <∞;

(b) {X2
ni/σ

2
ni;n = 1, 2, . . . , i ≤ kn(T )} is a uniformly integrable set;

(c) maxi≤kn(T ) σni → 0 as n→∞.

(d) E|E{(
∑kn(u)

i=kn(t)Xni)
2 | Fn,kn(s)} − (u− t)| → 0 as n→∞ for each s < t < u.

Further, Xni is a mixingale with respect to σ-fields Fni that are nondecreasing in i and
a vanishing sequence of constants ψn > 0 so that for all n, i, k + 1 ≥ 1 then
(e) E{E(Xni | Fn,i−k)}2 ≤ ψ2

kσ
2
ni;

(f) E{Xni − E(Xni | Fn,i+k)}2 ≤ ψ2
k+1σ

2
ni;

(g)
∑∞

k=1(
∑k

n=0 ψ
−2
n )−1/2 <∞, which is satisfied when

∑∞
k=1 ψk <∞,

Then, Wn(t) =
∑kn(t)

i=1 Xni converges weakly to a standard Wiener process in the Stone
(1963) topology on the space of right continuous function with left limits, D[0,∞).

Proof of Theorem 4.4. We will rewrite the Theorem 4.2 expansion as

√
n◦(γ̂splitn − γ) =

1√
n◦

2∑
j=1

∑
i∈I◦j

(d′jnsi − d′3jnvin) + oP(1), (A.20)

where si is a stationary mixingale, djn and its third component d3jn are deterministic
with different levels for the two sample periods, and vin is a residual term. We will
apply Lemma A.11 to the sum of Xni = d′jnsi/

√
n◦ in (A.20) with filtration Fni = Fi as

defined in Assumption 3.1. We then argue that
∑2

j=1

∑
i∈I◦j

d3jnvin/
√
n◦ vanishes.

1. Mixingale expansion and notation. The expansion in Theorem 4.2 is

√
n(γ̂splitn − γ) = n−1/2

n−1∑
i=1

{1(|χi|≥c) − γ}

− ch(c)n−1/2

n∑
i=1

{
n2n1

−11(i∈I1) + n1n2
−11(i∈I2)

}
(ε2
iσ
−2 − 1)

− h(c)(
√

2σ)−1
[
n

1/2
1 n−1/2{ξ1n(c)− ξ1n(−c)}′N−1

1 N2Σ̂−1
2n V̂2n

+ n
1/2
2 n−1/2{ξ2n(c)− ξ2n(−c)}′N−1

2 N1Σ̂−1
1n V̂1n

]
+ oP(1),
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for fixed c ∈ R. By Assumptions 4.1(iii, a, b), Σ̂−1
jn → Σj and V̂jn → Vj in distribution.

We define a stationary mixingale component

si =

s1i

s2i

s3i

 =

 1(|χi|≥c) − γ
ε2
i /σ

2 − 1
Σ−1
x (xi − µx)(εi/σ − κ1)

 .

By Assumption 4.3(ii) the pairs xi, εi are stationary with µx = Exi and Σx = Var(xi) so
that Σj = Σx. Here si is Fi+1-adapted, while Ei−1si = 0, since xi is Fi−1-adapted.

Define the deterministic component. The vector takes on two distinct values with
j = 1, 2 for the observations within the two sub-samples Ij:

djn =

d1jn

d2jn

d3jn

 =

 1
−ch(c)nkn

−1
j

−h(c)ξcnkn
−1
j 2−1/2

 ,

where (k, j) for i ∈ I1 is (2, 1) and for i ∈ I2 is (1, 2). For ξc, we used that as the pairs
xi, εi are stationary then Ei−1(∇xi | χi = c) is deterministic and constant in i, and thus

ξc = ξjn(c)− ξjn(−c) = E0(∇x1 | χ1 = c)− E0(∇x1 | χ1 = −c), for j = 1, 2.

We note that djn is finite since nk/nj has a positive and finite limit, while Assumption
4.3(i) has that
|c|f(c) is bounded, hence |c|h(c) is bounded by Theorem 2.3(c).
Define the residual term for i ∈ Ij as

vin = (Σ−1
x − Σ̂−1

jn )(xi − µx)(εi/σ − κ1)− Σ̂−1
jn (µx − x̄j)(εi/σ − κ1). (A.21)

Finally, note that
Nj = n

−1/2
j Idim x. Thus, the Theorem 4.2 expansion has the form (A.20).

2. Conditional autocovariance matrices for si. We have Ei−1si = 0 since s1i,
s2i are independent of Fi−1 with zero mean, while s3i has a factor with that property.
Thus, for ` ≥ 1, we have Ei−`si = 0. The term, Ei−1s

2
1i = γ(1−γ) is a Bernoulli variance,

while Ei−1s1is2i = ς2 and Ei−1s
2
2i = κ4− 1 by definitions of second and fourth moments.

Similarly, Ei−1s1is1,i+1 = ς0 − γ2 and Ei−1s1is2,i+1 = ς2. Since s2i, s3i are Fi-adapted,
and Eisi+1 = 0 we get for ` = 2, 3 that Ei−1s`is

′
i+1 = Ei−1s`iEis

′
i+1 = 0. Since si is

Fi+1-adapted, then it is also Fi+m−1-adapted for m ≥ 2. Therefore, for m ≥ 2, we
get Ei−1sis

′
i+m = Ei−1siEi+m−1s

′
i+m = 0. Since xi is Fi−1-adapted while χi and εi are

independent of Fi−1, we get

Ei−1s3is1i = Σ−1
x (xi − µx)E1(|χi|≥c)(εi/σ − κ1) = Σ−1

x (xi − µx)ς1,

where ς1 = E1(|χi|≥c)(εi/σ − κ1). Similarly

Ei−1s3is2i = Σ−1
x (xi − µx)(κ3 − κ1),

Ei−1s3is
′
3i = Σ−1

x (xi − µx)(xi − µx)′Σ−1
x (1− κ2

1).
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Decompose xi+1 − µx = xi − µx − xi + xi+1 = xi − µx −∇xi. Write

Ei−1s3,i+1s1i = Σ−1
x (xi − µx)E1(|χi|≥c)(εi/σ − κ1)− Σ−1

x Ei−1∇xi(1(|χi|≥c) − γ)(εi/σ − κ1)

= Σ−1
x (xi − µx)ς1 − Σ−1

x ς1xi,

with ς1xi = Ei−1{∇xi(1(|χi|≥c) − γ)(εi/σ − κ1)}. The conditional auto product moments
are Ei−1sis

′
i+j−1 = 0 for j ≥ 2 and

Ei−1sis
′
i =

γ(1− γ) ς2 ς1(xi − µx)′Σ−1
x

∗ κ4 − 1 (κ3 − κ1)(xi − µx)′Σ−1
x

∗ ∗ (1− κ2
1)Σ−1

x (xi − µx)(xi − µx)′Σ−1
x

 , (A.22)

Ei−1sis
′
i+1 =

ς0 − γ2 ς2 {ς ′1xi − ς1(xi − µx)′}Σ−1
x

0 0 0
0 0 0

 . (A.23)

3. Unconditional autocovariance matrices for si. Note that Exi = µx and
Var(xi) = Σx. Apply iterated expectations noting that Ei−1si = 0 to get Var(si) =
EEi−1sis

′
i so that

Ω0 = Var(si) =

γ(1− γ) ς2 0
ς2 κ4 − 1 0
0 0 Σ−1

x (1− κ2
1)

 , (A.24)

Ω1 = Cov(si, si+1) =

ς0 − γ2 ς2 ς ′1xΣ
−1
x

0 0 0
0 0 0

 , (A.25)

as in (33), whereas Cov(si, si+j) = 0 for j ≥ 2. We note that these autocovariances are
finite when Ex2

i <∞ and Eε4
i <∞ as assumed in Assumption 4.3(i, ii).

4. Two-level long-run variance. Let e1 = (1, 0, 0)′ and define, for j = 1, 2,

ω2
jn = Var(d′jnsi) + 2Cov(d′jnsi, d

′
jnsi+1) = d′jnΩ0djn + 2e′1Ω1djn. (A.26)

For large n then nk/nj → λk/λj > 0, so that djn → dj and ω2
jn → ω2

j , where

dj =

 1
−ch(c)(λk/λj)

−h(c)ξc(λk/λj)/
√

2

 , ω2
j = d′jΩ0dj + 2e′1Ω1dj,

as in (34). By Assumption 4.3(iii) we have that ω2
1, ω

2
2 > 0. Following McLeish, consider

EX2
ni +

∑
i 6=j EXniXnj. For i which are not near n1 this equals ω2

jn/n for i ∈ Ij by the

above derivations. As ωjn → ωj, it is convenient to define σ2
ni = ω2

j/n for i ∈ Ij.
5. Time distortion function. Cumulate to get

∑n
i=1 σ

2
ni = (n1/n)ω2

1 + (n2/n)ω2
2.

Asymptotically, this is equivalent to T = λ1ω
2
1 + λ2ω

2
2. Define the time distortion

kn(t) =

{
int (tn/ω2

1) for t ≤ λ1ω
2
1,

λ1n+ int (t− λ1ω
2
1)n/ω2

2 for λ1ω
2
1 < t ≤ T.

Note that kn(t) increases in steps of 1 from 0 to kn(T ) = n. It maps the proportion of
the cumulated variance to the original observations. Following McLeish, let Wn(t) =

46



∑kn(t)
i=1 Xni, so that

∑kn(T )
i=1 Xni =

∑n
i=1 Xni. The long-run variance cumulates linearly

for the time distorted process Wn. We get
∑kn(t)

i=kn(s) σ
2
ni/(t− s) = 1 + o(1) for s < t < T ,

where the remainder arises from a rounding error at the break point.
6. Checking conditions of Lemma A.11. We choose mixingale coefficients

ψ2
k = C for k = 0, 1, 2 and some constant C > 0 described below, while ψk = 1/k2 for
k > 2.

(a) By the definition of σ2
ni we have

∑kn(t)
i=kn(s) σ

2
ni/(t − s) → 1 for s < t < 1. Thus,

sups<t<T lim supn→∞
∑kn(t)

i=kn(s) σ
2
ni/(t− s) <∞.

(b) It suffices to show that E|Xni|2+/σ2+
ni is bounded uniformly in n, i (Billingsley,

1968, p. 32). We have E|Xni/σni|2+ ≤ |djn|2+E|si|2+/ω2+
j for i ∈ Ij. Here |djn| converges

in n for j = 1, 2 while ωj > 0 by Assumption 4.3(iii) for j = 1, 2. Finally, si is stationary
with 2+ moments since ε2

i and xi have 2+ moments by Assumption 4.3(ii).
(c) Since nσ2

ni = ω2
ji

takes two values only, then maxi≤n σ
2
ni → 0 for n→∞.

(d) Let Sstu = Ekn(s)(
∑kn(u)

i=kn(t) Xni)
2. We check that E|Sstu − (u − t)| → 0 for each

s < t < u. Since Ei−1sis
′
i+j−1 = 0 for j ≥ 2 we have

Sstu = Ekn(s)

{ kn(u)∑
i=kn(t)

X2
ni + 2

kn(u)−1∑
i=kn(t)

XniXn,i+1

}
.

Recalling the expressions for Ei−1XniXn,i+j and EXniXn,i+j in items 4, 5, we get that

Sstu = E
{ kn(u)∑
i=kn(t)

X2
ni + 2

kn(u)−1∑
i=kn(t)

XniXn,i+1

}
+ remainder.

The detailed comparison of (A.22), (A.23) and (A.24), (A.25) shows that the remainder
is a linear function of components like Ek−mn

−1
∑k+n

i=k+1(yi − Eyi), where yi represents
either of the three zi sequences in Assumption 4.3(iv), which are xi, (xi − µx)(xi − µx)′
and ∇xi(1(|χi|≥c)− γ)(εi/σ−κ1), for any k,m, n. These components vanish in mean by
that assumption.

Now, as remarked in item 4, we have E(X2
ni + 2XniXn,i+1) = ωjn/n for i ∈ Ij,

where ωjn → ωj = nσ2
ni This convergence is uniform over n, i using condition (b) and

(Billingsley, 1968, Theorem 5.4). Thus, the desired statement E|Sstu − (u − t)| → 0
follows as for condition (a).

(e) Let φn,−k = E(Ei−kXni)
2. We will define a positive, vanishing sequence ψk for

k ≥ 0, so that φn,−k ≤ ψ2
kσ

2
ni for all k ≥ 0.

For k > 0, we find Ei−ksi = Ei−kEi−1si = 0 so that φn,−k = 0. Any ψk > 0 suffices.
For k = 0, Jensen’s inequality gives φn,−0 = E(EiXni)

2 ≤ EEiX
2
ni = EX2

ni. Following
the analysis for condition (b), we have EX2

ni ≤ Cσ2
ni for some C > 0 and all n, i. We can

choose ψ2
0 > C.

(f) Let φn,+k = E{Xni−Ei+k(Xni)}2. The sequence ψk must also satisfy that φn,+k ≤
ψ2
k+1σ

2
ni for all k ≥ 0.

For k > 1, then si is Fi+k-adapted, so that φn,+k = 0. Any choice of ψk > 0 suffices.
For k = 0, 1, bound φn,+k = EEi+k{Xni − Ei+k(Xni)}2 ≤ EEi+kX

2
ni = EX2

ni. As in
condition (b), we have EX2

ni ≤ Cσ2
ni for some C > 0 and all n, i. We must choose

ψ2
1, ψ

2
2 ≥ C.
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(g) This holds since
∑∞

k=0 ψk = 3C +
∑∞

k=3(1/k2) <∞.

7. Applying Lemma A.11. We get that
∑kn(t)

i=1 Xni converges in distribution to a

standard Brownian motion. In particular
∑kn(T )

i=1 Xni is asympotically N(0, B), where

B = λ1ω
2
1 + λ2ω

2
2 = λ1(d′1Ω0d1 + 2e′1Ω1d1) + λ2(d′2Ω0d2 + 2e′1Ω1d2)

= λ1d
′
1Ω0d1 + λ2d

′
2Ω0d2 + 2e′1Ω1(λ1d1 + λ2d2).

Inserting the expressions for Ω0, Ω1, dj in (33), (34), see also (A.24), (A.25), (A.26),
gives

B = (λ1 + λ2)γ(1− γ)− 2ch(c)(λ1 + λ2)ς2

+{ch(c)}2(λ2
1/λ2 + λ2

2/λ1)(κ4 − 1) + {h(c)}2(1− κ2
1)(λ2

1/λ2 + λ2
2/λ1)ξ′cΣ

−1
x ξc/2

+2(λ1 + λ2)(ς0 − γ2)− 2ch(c)(λ1 + λ2)ς2 −
√

2h(c)(λ1 + λ2)ς ′1xΣ
−1
x ξc.

Noting that λ1 + λ2 = 1 this reduces to the desired expression in (36), which is

B = γ(1− γ) + 2(ς0 − γ2)− 4ch(c)ς2 −
√

2h(c)ς ′1xΣ
−1
x ξc

+(λ2
1/λ2 + λ2

2/λ1){h(c)}2{c2(κ4 − 1) + (1− κ2
1)ξ′cΣ

−1
x ξc/2}.

8. Remainder term. We argue that n−1/2
∑2

j=1

∑
i∈Ij d3jnvin vanishes, where

vin = (Σ−1
x − Σ̂−1

jn )(xi − µx)(εi/σ − κ1)− Σ̂−1
jn (µx − x̄j)(εi/σ − κ1), for i ∈ Ij

see (A.21). We have Σ̂jn → Σx and x̄j → µx in probability by Assumptions 3.2(iiia),
4.1(a), 4.3(v). Further, n−1/2

∑n
i=1(xi−µx)(εi/σ−κ1) = n−1/2

∑n
i=1 Σxs3i and is asymp-

totically normal using the above mixingale considerations. Finally, n−1/2
∑n

i=1(εi/σ−κ1)
converges by a standard Central Limit Theorem.

Proof of Theorem 4.5. The third term in the expansion of Theorem 4.2 vanishes since
ξjn vanishes. We can then proceed exactly as in the proof of Theorem 4.4, but dropping
any consideration to the third term in the expansion and in the assumptions.

A.9 Explicit formulas for stationary case

Example 4.1. Derivation of ς0 in (35). Write ς0 as E{1 − 1(|χi|<c)}{1 − 1(|χi+1|<c)} =
1− 2(1− γ) + Ic, where Ic = E1(|χi|<c)1(|χi+1|<c). Conditional on εi+1 the two indicators

are i.i.d. with expectation Φ(εi+1 + c
√

2)− Φ(εi+1 − c
√

2). Thus,

Ic =

∫
R
ϕ(x){Φ(x+ c

√
2)− Φ(x− c

√
2)}2dx.

Following Owen (1980, 2.2; 2.8) let T (h, a) =
∫∞
h
ϕ(x)

∫ ax
0
ϕ(y)dydx. By Owen (1980,

20,010.3) then 2
∫
R ϕ(x)Φ(x+u

√
2)Φ(x+v

√
2)dx = Φ(u)+Φ(v)−2T{u, (2v/u−1)/

√
3}−

2T{v, (2u/v − 1)/
√

3} − 1(uv<0) for u, v 6= 0, so that

Ic = {Φ(c)− 2T (c, 1/
√

3)}+ {Φ(−c)− 2T (−c, 1/
√

3)}

− 2{1

2
Φ(c) +

1

2
Φ(−c)− T (c,−

√
3)− T (−c,−

√
3)− 1/2}.
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By Owen (1980, 2.5; 2.6) then T (−h, a) = T (h, a) and T (h,−a) = −T (h, a). Thus,

Ic = 1− 4{T (c, 1/
√

3) + T (c,
√

3)},

so that ς0 = 1−2(1−γ)+1−4{T (c, 1/
√

3)+T (c,
√

3)} = 2γ−4{T (c, 1/
√

3)+T (c,
√

3)}.
Derivation of ς2 in (35). Recall ς2 = E{1(|χi|≥c)(ε

2
i /σ

2−1)}. Since E{(ε2
i /σ

2−1)} = 0,
then ς2 = −Ic where

Ic = E{1(|χi|<c)(ε
2
i /σ

2 − 1)} =

∫
R
ϕ(s)

∫ s+c
√

2

s−c
√

2

(t2 − 1)ϕ(t)dtds.

As ϕ(t) has derivates ϕ̇(t) = −tϕ(t) and ϕ̈(t) = (t2 − 1)ϕ(t) then

Ic = −
∫
R
ϕ(s){(s+ c

√
2)ϕ(s+ c

√
2)− (s− c

√
2)ϕ(s− c

√
2)}ds

Since ϕ(x)ϕ(x+ c
√

2) = ϕ(c)ϕ(x
√

2 + c) and ϕ(x)ϕ(x− c
√

2) = ϕ(c)ϕ(x
√

2− c), we get

Ic = −ϕ(c)

∫
R
{(s+ c

√
2)ϕ(s

√
2 + c)− (s− c

√
2)ϕ(s

√
2− c)}ds.

Substituting t = s
√

2 + c and u = s
√

2− c, we get ς2 = −cϕ(c) since

Ic = −1

2
ϕ(c)

[ ∫
R
(t+ c)ϕ(t)dt−

∫
R
(u− c)ϕ(u)du

]
= −cϕ(c).

Example 4.2. Let yi = µ + αyi−1 + εi where εi/σ is standard normal, |α| < 1 and
the stationary distribution is normal with mean µy = µ/(1 − α) and variance σ2

y =
σ2/(1− α2). Note ∇xi = yi−1 − yi = (1− α)yi−1 − εi.

Proof that σ∇χ = −σ/
√

2. Recall that σ∇χ = Cov(∇x1, χ1 | F0). Insert the expres-
sions for x1, χ1 to get σ∇χ = Cov{(1− α)y0 − ε1, (ε1 − ε2)/(21/2σ)} = −σ/

√
2.

We show that ς1 = E{(1(|χi|≥c)− γ)(εi/σ−κ1)} = 0 for a symmetric density. We get
E1(εi−εi+1≤−q)εi = E1(−εi+εi+1≤−q)(−εi) by the symmetry and independence of εi, εi+1.
Change sign in the right indicator and combine the two expectations to get ς1 = 0.

Proof that ς1x = −σς2. Let ς1x = E{∇xi(1(|χi|≥c) − γ)(εi/σ − κ1)}. We show ς1x =
−σς2. Write ∇xi = (1 − α)yi−1 − εi as ς1x = (1 − α)ς1x1 − ς1x2. Since yi−1 is Fi−1-
measurable while εi, χi are independent of Fi−1, we get ς1x1 = (Eyi−1)ς1 = 0 by the
above result. Further, ς1x2 = E{εi(1(|χi|≥c) − γ)(εi/σ − κ1)} satisfies

ς1x2 = σE{1(|χi|≥c)(ε
2
i /σ

2 − 1)} − σγE{(ε2
i /σ

2 − 1)}
+ σE{(1(|χi|≥c) − γ)(1− κ2

1)− σκ1E{(1(|χi|≥c) − γ)(εi/σ − κ1)}

The first term equals σς2, the next two terms are zero by (27), (21), and the last term
is 0 as ς1 = 0. Thus, ς1x = −σς2.

We check condition (iv). Write yi − µy =
∑i−k+m−1

j=0 αjεi−j + αi−k+m(yk−m − µy).
For the case zi = yi note that zikm ≡ Ek−m(yi − Eyi) = αi−k+m(yk−m − µy), so that

skm ≡ n−1
∑k+n

i=k+1 zikm = n−1αm+1(yk−m−µy)(1−αn)/(1−α), which converges to zero
in mean as min(k,m, n)→∞.
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For the case zi = (yi − µy)
2 note that zikm ≡ Ek−m{(yi − µy)

2 − E(yi − µy)
2} =

α2(i−k+m){(yk−m − µy)
2 − σ2

y}, so that skm ≡ n−1
∑k+n

i=k+1 zikm = n−1α2(m+1){(yk−m −
µy)

2 − σ2
y}(1− α2n)/(1− α2), which converges to zero in mean as min(k,m, n)→∞.

For the case zi = y2
i note that y2

i − Ey2
i = 2µy(yi − µy) + {(yi − µy)2 − σ2

y} and use
the previous two cases.

For the case zi = ∇yi−11(|χi|≥c) write ∇yi−1 = yi−1 − yi = (1 − α)yi−1 − εi so
that zi = z1i − z1i where z1i = (1 − α)yi−11(|χi|≥c) and z2i = εi1(|χi|≥c). Since z1i is a
product of independent terms, we get z1ikm ≡ Ek−m(z1i−Ez1i) = (1−α)γEk−m(yi−Eyi)
and the above results can be used. Since z2i is independent of 〉 −∞, we get z2ikm ≡
Ek−m(z1i − Ez2i) = 0.

A.10 Proof of Poisson results

We write an ∼ bn if an/bn → 1. We state a special case of Chen (1975, Theorem 4.3).

Lemma A.12 (Chen, 1975). Suppose εi are i.i.d. so that χi = ∇εi/(
√

2σ) satisfies

P(|χi| > cn) = λ/n. Suppose Assumption 5.1(i, d). Then
∑n

i=1 1(|χi|>cn)
D→ Poisson(λ).

We check the condition for normal variables

Lemma A.13. If εi/σ are i.i.d. standard normal then n{E1(|χi|>cn)1(|χi+1|>cn)} → 0.

Proof of Lemma A.13. Since εi/σ are i.i.d. standard normal, then

(
χi
χi+1

)
=

1√
2σ

(
1 −1 0
0 1 −1

) εi
εi+1

εi+2

 D
= N{0,

(
1 −1/2
−1/2 1

)
}.

We can bound the covariance matrix, Ω1, in terms of positive definite ordering, that is,
for any 2-vector v 6= 0, then by

v′Ω−1
1 v = v′

(
1 −1/2
−1/2 1

)−1

v > v′
(

4 0
0 4

)−1

v = v′Ω−1
2 v.

Thus, we find

P1 = E1(|χi|>cn)1(|χi+1|>cn) =

∫∫
|v1|,|v2|>cn

1

2π(det Ω1)1/2
exp

(
− 1

2
v′Ω−1

1 v
)
dv1dv2

<
(det Ω2

det Ω1

)1/2
∫∫
|v1|,|v2|>cn

1

2π(det Ω2)1/2
exp

(
− 1

2
v′Ω−1

2 v
)
dv1dv2 = P2. (A.27)

Substituting z′z = v′Ω−1
2 v, that is zj = vj/2 and dzj = dvj/2, so that

P1 < P2 =
(det Ω2

det Ω1

)1/2{∫
|z|>cn/2

ϕ(z)dz
}2

=

√
64

3
{1− Φ(cn/2)}2.

By Mill’s ratio, it holds that x{1 − Φ(x)} ∼ ϕ(x) for x → ∞ (Sampford, 1953), so
that log x ∼ logϕ(x) − log{1 − Φ(x)}. Apply for x = cn = Φ−1{1 − λ/(2n)} while

50



recalling the expression for the normal density and noting 1 − Φ(cn) = λ/(2n), to get
2 log cn ∼ − log(2π) − c2

n − 2 log{λ/(2n)}. This implies c2
n ∼ −2 log{λ/(2n)} ∼ 2 log n

noting that log cn = o(cn) and 2π = O(1). We then expand the normal density as

ϕ(cn/2) ∼ (2π)−1/2 exp{−(2 log n)/4} = O(n−1/2).

Insert in Mill’s ratio, that is {1 − Φ(cn/2)} ∼ ϕ(cn/2)/(cn/2), to get 1 − Φ(cn/2) =
O{(n log n)−1/2}. Insert this in the bound (A.27) to get nP1 = o(1).

We extract the following result from Johansen & Nielsen (2016b), see item 3 in the
proof of their Theorem 8 as well as their Remark 2.

Lemma A.14 (Johansen & Nielsen, 2016b). Consider a continuous random variable χ
with distribution function H and density h. Given λ > 0 choose cn so that P(|χ| > cn) =
λ/n. Suppose, as n→∞,
(a) E|χ|r <∞ for some r > 4;
(b) h(cn)/[cn{1− H(cn)}] = O(1);
(c) h(cn − n−1/4A)/h(cn) = O(1) for all A > 0.
Then, for all A > 0, as n→∞,

nE1(cn−n−1/4A≤|χ|≤cn+n−1/4A) → 0.

The conditions (a)-(c) are satisfied if χ is normal.

We need a modification of Lemma 1.11 in Johansen & Nielsen (2009).

Lemma A.15. If |a|+ |b| < ζ and c > ζ > 0 then |1(|χ−b|>c+a)−1(|χ|>c)| ≤ 1(c−ζ≤|χ|≤c+ζ).

Proof of Lemma A.15. Let D = |1(|χ−b|>c+a) − 1(|χ|>c)|. Using that 1(χ>c) = 1 − 1(χ≤c),
we get D = |1(|χ−b|≤c+a) − 1(|χ|≤c)|. Write out as

D = |1(−c−a+b≤χ≤c+a+b) − 1(−c≤χ≤c)| = |1(χ≤c+a+b) − 1(χ≤c) − 1(χ<−c−a+b) + 1(χ<−c)|,

which can be bounded around the focal points c and −c by

D ≤ 1(c−|a|−|b|≤χ≤c+|a|+|b|) + 1(−c−|a|−|b|≤χ≤−c+|a|+|b|) = 1(c−|a|−|b|≤|χ|≤c+|a|+|b|).

Using the assumption |a|+ |b| ≤ ζ, the desired result follows.

We combine Chen’s Poisson limit in Lemma A.12 with Lemmas A.14, A.15.

Lemma A.16. Suppose the conditions of Lemmas A.14, A.15 hold. Let ai, bi be se-
quences so that maxi≤n |ai|+ maxi≤n |bi| = OP(n−1/4). Then

n∑
i=1

1(|χi−bi|>cn+ai) =
n∑
i=1

1(|χi|>cn) + oP(1)
D→ Poisson(λ).
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Proof of Lemma A.16. Let γn =
∑n

i=1 1(|χi−bi|>σcn+ai). Add and subtract
∑n

i=1 1(|χi|>cn)

and let n-vectors a, b represent ai and bi for i ≤ n to get

γn =
n∑
i=1

1(|χi|>σcn) +Rn(a, b) where Rn(a, b) =
n∑
i=1

1(|χi−bi|>σcn+ai) − 1(|χi|>σcn).

The first term is asymptotically Poisson(λ) distributed by Lemma A.12. We show that
the second term vanishes.

Since maxi≤n |ai| + maxi≤n |bi| = OP(n−1/4), we can, for any ε > 0 and sufficiently
large n, construct a sequence of sets Sn with P(Scn) ≤ ε, so that |ai|+ |bi| ≤ An−1/4 for
i ≤ n on Sn. We find

P{|Rn(a, b)| > ε} = P[{|Rn(a, b)| > ε} ∩ Sn}P(Sn) + P[{|Rn(a, b)| > ε} ∩ Scn]P(Scn).

Bounding P(Sn) and P[{|Rn(a, b)| > ε}∩Scn] by unity and the last probability by ε gives

P{|Rn(a, b)| > ε} ≤ Pn + ε where Pn = P[{|Rn(a, b)| > ε} ∩ Sn].

It suffices to show that Pn is small. We rewrite Pn. On the set Sn, we apply first the
triangle inequality and then Lemma A.15 to get

|Rn(a, b)| ≤
n∑
i=1

|1(|χi−bi|>σcn+ai) − 1(|χi|>σcn)| ≤
n∑
i=1

|1(cn−An−1/4≤|χi|≤cn+An−1/4)| = R∗n.

Thus, Pn ≤ P{(R∗n > ε) ∩ Sn} ≤ P(R∗n > ε) = P∗n. It suffices to show that P∗n vanishes.
Using the Markov inequality and then Lemma A.14 gives

P∗n ≤
1

ε
ER∗n =

1

ε
nE|1(cn−An−1/4≤|χ1|≤cn+An−1/4)| → 0

for any (fixed) ε > 0. Thus R∗n vanishes and hence Rn vanishes.

We assess the order of magnitude of the initial estimators and weights.

Lemma A.17. Suppose Assumption 5.1(ia, ii, iii). Then N−1
1 (β̂1 − β), n

1/2
1 (σ̂2

1 − σ2),
n1/4 maxi∈I◦2 |∇xin| and n1/2 maxi∈I◦2 |w

2
j,i − 1| are all OP(1).

Proof of Lemma A.17. (a) We have N−1
1 (β̂1 − β) = Σ̂−1

1n V̂1n when using the notation in
(23), (24). Note that these expressions are invariant to the expectation of εi due to the
demeaning. Using Assumption 5.1(ii, a, b), we find that N−1

1 (β̂1 − β) is then OP(1).
(b) Let ε̄1 = n−1

1

∑
i∈I1 εi and write

n
1/2
1 (σ̂2

1 − σ2) = n
−1/2
1

∑
i∈I1

{(εi − ε̄1)2 − σ2} − n−1/2
1 V̂ ′1nΣ̂−1

1n V̂1n.

By Assumption 5.1(i, a), then εi are i.i.d. with second moment, so that the first term
converges in distribution by the Central Limit Theorem. The second term vanishes since
Σ̂1n, V̂1n are OP(1) by Assumption 5.1(ii, a, b) while the factor n

−1/2
1 vanishes.
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(c) We have P = P(maxi∈I◦2 |∇xin| > Cn−1/4) = P ∪i∈I◦2 (|∇xin| > Cn−1/4) for

any C > 0. Boole’s and Markov’s inequalities give P ≤
∑

i∈I◦2
P(|∇xin| > Cn−1/4) ≤

C−4nE
∑

i∈I◦2
|∇xin|4, which is small for large C due to Assumption 5.1(ii, c).

(d) Using the definition of the weights in (14) we find

w2
1,i − 1 = (N ′2∇xi)′N−1

2 N1(2Σ̂1)−1(N−1
2 N1)′(N ′2∇xi).

Here, N ′2∇xi = ∇xin is OP(n−1/4) by part (c), while Σ̂−1
1 and N−1

2 N1 are OP(1) by
Assumption 5.1(iia, iii).

Proof of Theorem 5.2. (a) The stylized gauge has the expansion

Γ̂stylizedn =
∑
i∈I◦2

1(|∇yi−β̂′1∇xi|>
√

2σ̂1w1,icn) =
∑
i∈I◦2

1(|χi−bi|>cn+ai),

where χi = ∇εi/(
√

2σ), while ai = (σ̂1w1,i/σ − 1)cn and bi = (β̂1 − β)′∇xi/(
√

2σ). We
show that maxi∈I◦2 |ai|+ |bi| = OP(n−1/4) with a view to applying Lemma A.16

We bound ai, bi. Bound ai by

|ai| =
[
{1 + (σ̂2

1 − σ2)/σ2}1/2{1 + (w2
1,i − 1)}1/2 − 1

]
cn.

≤
{

(1 + |σ̂2
1 − σ2|/σ2)1/2(1 + max

i∈I◦2
|w2

1,i − 1|)1/2 − 1
}
cn.

Here, |σ̂2
1 − σ2| and maxi∈I◦2 |w

2
1i − 1| are OP(n−1/2) by Lemma A.17 using Assumption

5.1(ia, ii, iii). Thus, using the Taylor expansions (1+x)1/2 = 1+x/2+· · · = 1+O(x) and
(1+x)2−1 = 1+2x+x2−1 = O(x) for small x, we find that maxi∈I◦2 |ai| = OP(n−1/2)cn.

The cut-off cn is oP(n1/4), see Johansen & Nielsen (2016b, Remark 1) using Assumption
5.1(ia). Thus, we find maxi∈I◦2 |ai| = oP(n−1/4).

Finally, write
√

2σbi = {N−1
1 (β̂1 − β)}′N ′1∇xi = (Σ̂−1

1n V̂1n)′∇xin using (23), (24).

Here, Σ̂−1
1n , V̂1n are OP(1) by Assumption 5.1(iia, iib), and maxi∈I◦2 |∇xin| = OP(n−1/4)

by Lemma A.17 using Assumption 5.1(ia, ii, iii). Thus, maxi∈I◦2 |bi| = OP(n−1/4).

Having established that maxi∈I◦2 |ai| + |bi| = OP(n−1/4), we can now apply Lemma

A.16 using Assumption 5.1(i) to conclude that the stylized gauge satisfies Γ̂stylizedn =∑
i∈I◦2

1(|χi|>cn) + oP(1), which is asymptotically Poisson. Note, that P(|χi| > cn) =

λ/n = (λ/n2)(n2/n), where n2/n→ ψ. Hence, the Poisson parameter is λψ.
(b) For the split gauge, we can analyze the stylized gauges separately for each sub-

sample as above and combine the expansions.

A.11 Proof of power results

We prove the local power results for the Andrews test. The F-test statistic for a break
at time t given in (A.28) has the expression

Z2
t = (n− 2)

S2
yt/Stt

Syy − S2
yt/Stt

= (n− 2)
S2
yt/(SyyStt)

1− S2
yt/(SyyStt)

, (A.28)
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where the product moment statistics in (A.29) have the form

Stt =
1

n

n∑
i=1

{
1(i≤t) −

t

n

}2

, Syy =
1

n

n∑
i=1

(yi − y)2, Syt =
1

n

∑
i≤t

(yi − y). (A.29)

We note that the test statistic is location-scale invariant.
Mode of convergence. We will be interested in sequences of continuous break

functions that may have a single discontinuity in the limit. Such functions are members
of the D[0, 1] space of discontinuous function that are right continuous on [0,1), with
left limits on (0,1], and left continuous at 1. Skorokhod (1956) suggested five metrics
of which we focus on: U , J1 and M1. Broadly speaking, the uniform metric U ap-
plies when the limit is continuous; the one-jump metric J1 applies when the elements
of the sequence have isolated jumps; the metric M1 controls upcrossings and applies
when the sequence members have isolated jumps or isolated smooth level shifts with
discontinuous limits (Skorokhod, 1956, 2.2.11). Billingsley (1968) refers to J1 as ‘the’
Skorokhod metric, whereas Whitt (2002) prefers to use the M1 metric. Both metrics
result in a separable and topologically complete metric space (Whitt, 2002, Theorem
12.8.1). Skorokhod (1956, p. 267) argues that U -convergence implies J1-convergence,
which in turn implies M1-convergence. Equally, U -weak convergence implies J1-weak
convergence, which implies M1-weak convergence, noting that for weak convergence un-
der a metric m, the involved probability measures must be measurable under the Borel
σ-field generated by the m-topology. For a limiting Brownian bridge formed from con-
vergence of a random walk in a time series, we have U -weak convergence (Billingsley,
1968, Chapter 18). We can check M1 convergence of elements xn(u)→ x(u) by showing
that the number of upcrossings of xn over a, b strips converges over all intervals [u1, u2],
where u1, u2 are continuity points of x(u) and for almost every a < b (Skorokhod, 1956,
2.2.11). Running suprema are U , J1, M1 continuous mappings into D (Whitt, 2002,
Lemma 13.4.1, Theorem 13.4.1). Consequently, k-dimensional coordinate projections
are U , J1, M1 continuous mappings into Rk. Addition is U , J1 and M1-continuous for
continuous limits. Addition is J1 and M1-continuous for limits with no common jumps.
Further, addition is also M1-continuous for limits with common jumps with the same
sign (Whitt, 2002, Example 3.3.1, Theorem 12.7.3). Thus, addition of a U -convergent
process and a J1 or an M1 convergent process is continuous.

A single central break. The data generating process is given by yi = µ+σδ1(i≤τ)+
εi, where εi is i.i.d. N(0, σ2) while 0 < τ < n. In the following, note that τ is the break
in the data generating process and t is the position of the break in the test statistic. Due
to the location-scale invariance, it suffices to consider µ = 0 and σ = 1. Take average
to get y = δτ/n+ ε and residuals yi − y = δ{1(i≤τ) − τ/n}+ εi − ε. We find

√
nSyt =

1√
n

∑
i≤t

(εi − ε) + xn(u) (A.30)

for the deterministic function

xn(u) = δ
√
n
{(

1− τ

n

) t
n

1(t≤τ) +
τ

n

(
1− t

n

)
1(t>τ)

}
. (A.31)
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We embed Syt as a process in D[0, 1] through t = bunc for 0 ≤ u ≤ 1. The first
component in (A.30) U -converges to a standard Brownian bridge. To see this note
that n−1/2

∑
i≤bunc εi will J1-converge to a Brownian motion (Billingsley, 1968, Theorem

16.1). Due to the continuity of the Brownian motion it will also U -converge (Skorokhod,
1956, Theorem 2.6.2). The convergence is also weak, that is Borel measurable Billingsley
(1968, Section 18). The Brownian bridge convergence emerges with the mapping x(t) 7→
x(t)− tx(1), which is U -continuous due to U -continuity of multiplication, addition and
the coordinate mapping. We can also expand

Syy =
1

n

n∑
i=1

(εi − ε)2 + 2δ
1

n

∑
i≤τ

(εi − ε) + δ2 τ

n

(
1− τ

n

)
. (A.32)

The first term converges to one in probability by the Law of Large Numbers. We also
have U -convergence in u = t/n for 0 ≤ u ≤ 1 of

Stt =
t

n

(
1− t

n

)
→ u(1− u).

The local power result (49) arises when δ
√
n = φ and τ/n = λ for fixed φ, λ.

We embed xn from (A.31) in D[0, 1] through u = t/n. Connecting grid points linearly
gives the continuous process

xn(u) = φ
{

(1− λ)u1(u≤λ) + λ(1− u)1(u>λ)

}
= φsλu.

This is constant in n and therefore U -convergent. Further, Syy → 1 when δ vanishes
since n−1/2

∑
i≤τ (εi − ε) converges by the Central Limit Theorem. Using that addition,

multiplication and supremum are U -continuous, we get by continuous mapping
√
nSyt√
SyyStt

1(λ≤t/n≤λ)

D→ Bu + φsλu√
u(1− u)

1(λ≤u≤λ)

as U -convergence on D[0, 1]. Form the t-statistic and take supremum to get (49).
The local power result (51) arises as τ/n → 1. Thus, let δ

√
n(1 − τ/n) = ψ

where ψ is fixed while τ/n → 1. Note that τ ≤ n − 1 implies δ/
√
n ≤ ψ with equality

for τ = n− 1. We get

xn(u) = ψ
{
u1(u≤τ/n) +

τ/n

1− τ/n
(
1− u

)
1(u>τ/n)

}
→ x(u) = ψu

as U -convergence on D[0, λ] noting τ/n > λ for large n. Consider Syy in (A.32). We have
that n−1/2

∑
i≤τ (εi − ε) = −n−1/2

∑
i>τ (εi − ε), which vanishes as τ/n → 1. Further,

with δ/
√
n→ η, we must have 0 ≤ |η| ≤ |ψ| and ηψ ≥ 0. Using that δ

√
n(1− τ/n) = ψ

and τ/n→ 1, we get

Syy = 1 + oP(1) +
( δ√

n

)
δ
√
n(1− τ/n)

(τ
n

)
→ 1 + ηψ. (A.33)

Combine as before to get, as U -convergence on D[0, λ] and on D[0, 1],
√
nSyt√
SyyStt

1(λ≤t/n≤λ)

D→ Bu + ψu√
u(1− u)(1 + ηψ)

1(λ≤u≤λ).
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Form the t-statistic and take supremum to get (51).
Two central breaks. The data generating process is given by yi = µ+σδ11(i≤τ1) +

σδ21(i≤τ2) + εi, where εi is i.i.d. N(0, σ2) where 0 < τ1 < τ2 < n. Due to location-scale
invariance, we can set µ = 0 and σ = 1. Proceed as before to get

√
nSyt =

1

n

∑
i≤t

(εi − ε) + xn(u),

where the deterministic part is now

xn

( t
n

)
= δ1

√
n
{(

1− τ1

n

) t
n

1(t≤τ1) +
τ1

n

(
1− t

n

)
1(t>τ1)

}
+ δ2

√
n
{(

1− τ2

n

) t
n

1(t≤τ2) +
τ2

n

(
1− t

n

)
1(t>τ2)

}
.

Local power arises as τj/n→ λj for 0 < λ1 < λ2 < 1 and δj = ξj/
√
n for fixed ξj.

The local power result (52) arises when the breaks are close and offsetting each
other. Thus, let τ1/n = λ and δ2(τ2 − τ1)/

√
n = ψ while (δ1 + δ2)

√
n = ξ for fixed λ1,

ψ, ξ, while (τ2 − τ1)/n→ 0. As for (51), we note that τ2 > τ1 implies δ2/
√
n ≤ ψ with

equality when τ2 − τ1 = 1. Finally, we let u = t/n.
We analyze xn. Add and subtract δ2 to δ1 and to get xn = xn,1 + xn,2 where

xn,1(u) =
(
δ1 + δ2

)√
n
{

(1− λ)u1(u≤λ) + λ(1− u)1(u>λ)

}
= sλu = x1(u), (A.34)

xn,2(u) = δ2

√
n
{(

1− τ2

n

)
u1(t≤τ2) +

τ2

n
(1− u)1(t>τ2)

−
(

1− τ1

n

)
u1(t≤τ1) −

τ1

n
(1− u)1(t>τ1)

}
.

Here xn,1 is continuous and constant in n, so U -converges to x1 say. We rewrite xn,2
further as

xn,2(u) = δ2
τ2 − τ1√

n

{
1(t>τ1) −

t

n
− τ2 − t
τ2 − τ1

1(τ1<t≤τ2)

}
= ψ

[
1(u>λ) − u−

τ2 − un
τ2 − τ1

1{λ<u≤λ+(τ2−τ1)/n}

]
,

which is continuous. We argue that as (τ2 − τ1)/n shrinks, xn,2 has a discontinous
M1-limit on D[0, 1] given by

x2(u) = ψ
{

1(u≥λ) − u
}
. (A.35)

We apply the Skorokhod (1956, 2.2.11) criterion for M1-convergence. It suffices to
consider convergence of zn,2(u) = xn,2(u) + ψu to z2 = x2 + ψu, noting that if we have
M1-convergence of zn,2 then addition with the U -convergent function −ψu is continuous.
The function zn,2 is the x′-example of Skorokhod (1956, p. 266) of a function that
is M1-converging but not J1-converging. To establish M1-convergence, consider a, b-
upcrossings over intervals [u1, u2] for z2-continuity points, so that u1, u2 6= λ. The
functions zn,2(u) and z2(u) are continuous and identical for u < λ and u > τ2/n. So we
have convergence when u1 < u2 < λ and λ < u1 < u2. Thus, consider a, b-upcrossings
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for u1 < λ < u2. For 0 < a < b < 1 there is one upcrossing for zn,2 and z2 for large n.
If a < 0 or b > 1 there are zero upcrossing for zn,2 and z2. In both cases, the number of
upcrossings converges. Thus, zn,2 and hence xn,2 will M1-converge. Next, we show that
Syy satisfies a result resembling (A.33). Write

yi − y = εi − ε+
(
δ1 + δ2

){
1(i≤τ1) −

τ1

n

}
+ δ2

{
1(τ1<i≤τ2) −

τ1 − τ1

n

}
.

From this we find

Syy =
1

n

n∑
i=1

(εi − ε)2 + 2
(
δ1 + δ2

) 1

n

∑
i≤τ1

(εi − ε) + 2δ2
1

n

∑
τ1<i≤τ2

(εi − ε)

+
(
δ1 + δ2

)2
{τ1

n

(
1− τ1

n

)}
+ δ2

2

τ2 − τ1

n

(
1− τ2 − τ1

n

)
− 2
(
δ1 + δ2

)
δ2

(τ2 − τ1)τ1

n2
.

We note that n−1
∑n

i=1(εi−ε)2 and n−1/2
∑

i≤τ1(εi−ε) converge while n−1/2
∑

τ1<i≤τ2(εi−
ε) vanishes when (τ2 − τ1)/n vanishes. Use also that τ1/n = λ, δ1 + δ2 = ξ/

√
n and

δ2(τ2− τ1) = ψ
√
n. Finally, let δ2/

√
n→ η where 0 ≤ |η| ≤ ψ and ηψ ≥ 0. We get that

Syy → 1 + ηψ. Put all together to get as M1 convergence on D[0, 1] that

√
nSyt√
SyyStt

1(λ≤t/n≤λ)

D→
Bu + ξsλu + ψ{1(u≥λ) − u}√

u(1− u)(1 + ηψ)
1(λ≤u≤λ).

Form the t-statistic and take supremum to get (52).
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