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Abstract
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Fortune brings in some boats that are not steered. — William Shakespeare

1 Introduction

Sometimes an individual’s success is explained, or even discredited, as resulting from

an initial stroke of good luck. Frank (2016) documents a multitude of careers of over-

achievers, ranging from the arts to business, that were kick-started by fortunate circum-

stances or events. Such narratives raise the question: To what extent do economic institu-

tions or organizational practices amplify the role of luck by making its effects long-lasting?

A common argument, across different social sciences, is that resources, training, men-

toring or, more generally, biases granted to early strong performers increase the likelihood

that an initial stroke of luck translates into a final economic advantage. For example,

academic tracking in schools (Gamoran and Mare, 1989) and professional fast-tracks in

firms or public agencies (Rosenbaum, 1979; Forbes, 1987; Baker et al., 1994) magnify the

importance of early performance for final success.1 As a consequence of such policies,

chance events such as graduating during a recession or being the oldest child in class can

have long-lasting effects on both labor market outcomes (Oreopoulos et al., 2012) and

educational achievements (Bedard and Dhuey, 2006). Sociologists refer to such phenom-

ena using the term cumulative advantage (Merton, 1968, DiPrete and Eirich, 2006) and

argue that performance differentials, such as the superior publication records of scientists

at elite universities, can be largely explained by accumulated resource advantages rather

than inherent differences in talent (Zhang et al., 2022).2

If initial success can be attributed at least in part to merit, commonly defined as a

combination of ability and effort (Sen, 2000), the use of such biases could be rationalized

as improving selective efficiency, i.e. the allocation of resources to the most productive

individuals. However, in the limit where noise swamps merit in the determination of

outcomes, using such biases merely makes luck persistent, by inducing final outcomes to

depend on early performance that is almost entirely random. In this paper we demonstrate

that, while seemingly at odds with meritocratic principles, making luck persistent in this

way is a necessary consequence of an organization’s pursuit of the goal of “selecting the

1Singapore’s Public Service Leadership Programme boosts the public service careers of the most ac-
complished college graduates through designated job assignments and leadership workshops (https:
//www.psd.gov.sg/leadership/public-service-leadership-careers).

2In a field experiment on NSF grant proposals Cole et al. (1981) concludes that “the fate of a particular
grant application is roughly half determined by the characteristics of the proposal and the principal
investigator, and about half by apparently random elements which might be characterized as the luck of
the reviewer draw.”
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best” in very noisy environments.3 We find that agents’ strategic effort choices, instead

of impeding learning, actually improve it but, somewhat paradoxically, lead to a higher

persistence of luck. Moreover, when some agents possess initial advantages—“societal

luck”—coming from their identity, e.g. race or gender, we show that identity-dependent

biases, such as gender-specific mentoring, create incentives that not only make final selec-

tion more efficient but also reduce the persistent effect of these initial advantages.

By explaining how institutions shape the role of luck for individual success, our the-

ory helps to illuminate the mechanisms behind economic inequality. This is important

because inequality appears to be tolerated when based on merit but not when based on

luck (Konow, 2000; Fong, 2001; Cappelen et al., 2007; Cappelen et al., 2013). Stronger

beliefs in the relevance of luck increase a country’s social spending (Alesina and Angeletos,

2005) and its citizens’ willingness to implement redistributive policies (Almås et al., 2020).

They also affect what recent critics of meritocracy have denoted as the social divide be-

tween the “deserving” and the “undeserving” (Sandel, 2020). To the extent that political

polarization is driven by group identification (Duclos et al., 2004), beliefs about the role of

luck for success may influence political outcomes. This is especially relevant when beliefs

determine the choice between a low-redistribution “American” equilibrium emphasizing

the role of merit and a high-redistribution “European” equilibrium acknowledging the role

of luck (Benabou and Tirole, 2006; Alesina et al., 2018).4

In Section 2, we present a stylized model of a two-agent, two-stage selection process

in which individual performance, at each stage, is the sum of an agent’s time-invariant

unobservable ability, privately-chosen effort, and a transitory shock. Agents are ex ante

identical to the organization but may share private information about their relative abil-

ities. The organization observes only the ordinal ranking of performances at each stage

and attempts to select the more able agent.5 Agents choose efforts to maximize the prob-

ability of being selected, minus their effort costs.6 The organization’s optimal selection

rule augments the second-stage performance of the agent who performed better in the

3The term “meritocracy” originates from Young’s (1958) apocalyptic vision of a society in which
“merit” serves as the sole determinant of power and wealth. In spite of a debate over what constitutes
merit, modern democracies claim to adopt merit as a basis for their allocation of resources and decision-
making power, although the validity of this claim has been disputed (Piketty, 2014).

4Experimental studies on redistribution find that U.S. subjects implement Gini-coefficients 0.2 points
lower when incomes are based on luck than when incomes are based on merit, which would be sufficient
to bring down U.S. inequality to European levels (Lefgren et al., 2016).

5Ordinal performance measurement arises naturally when performance is hard to quantify. Lazear
(2000) documents that for managers, piece rates are employed ten times less frequently than for operatives,
and attributes this difference to the absence of a cardinal measure of managerial performance.

6Lazear and Rosen (1981) argue that competition for promotions can provide workers inside firms
with strong incentives to exert effort and may thus substitute for incentive schemes that rely on cardinal
performance measurement when performance is hard to quantify.
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first stage with an additive bias and selects the agent who performs better in the second

stage. Our main focus of interest is the persistence of early success, i.e. the probability

that, in equilibrium, the agent with the better initial performance is selected in the final

stage.

We start our analysis in Section 3 by considering the case where agents are as unin-

formed about their relative abilities as the organization. We first show that effort choices

will be identical across agents in both stages, in spite of the asymmetries induced by learn-

ing from the first-stage performance and the application of the second-stage bias. In the

absence of private information, effort choices thus have no effect on selective efficiency,

implemented bias, or persistence. Our main result shows that in the limit as noise swamps

ability differences as a determinant of performance, equilibrium bias converges to a strictly

positive value. In other words, even when ability differences have only negligible impact

on performance, equilibrium bias makes first-stage winners considerably more likely to be

selected than first-stage losers: Luck is made persistent. This shows that the persistence

of luck illustrated by our motivating examples need not reflect the use of too much or

the wrong kind of bias, but can be understood as a byproduct of the pursuit of selective

efficiency.

To provide further insight into the implications of the pursuit of selective efficiency

for the persistence of luck, we consider an alternative setting where performance infor-

mation is cardinal rather than ordinal, so bias can condition on the first-stage margin of

victory. We show that for noise distributions that are normal, or thinner-tailed, organi-

zations will make luck more persistent when individual performance can be ranked but

not quantified. Furthermore, the greater persistence of luck under ordinal evaluation is

equivalent to greater front-loading of the dynamic selection process than in the cardinal

case, in that first-stage noise is given a relatively more important role than second-stage

noise. As ordinal performance measurement is more prevalent towards the top of an orga-

nization’s hierarchy, our theory thus highlights the importance of initial luck for selection

into positions where selection is most consequential.

In Section 4, we consider the case where agents have some, possibly imperfect, infor-

mation about their relative abilities. Because, in our setting, effort acts as a substitute

for ability in increasing performance, strategic behavior might be expected to decrease

the informativeness of the agents’ first-stage ranking, thereby reducing or even eliminat-

ing the need to make luck persistent through the application of bias. We show that,

contrary to this intuition, informed agents’ strategic behavior amplifies the persistence of

luck, because the agent more likely to be better exerts a larger first-stage effort than his

rival, thereby reinforcing the agents’ ability differential on average. This result resonates
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well with the prominent role of biased selection—in the form of fast-tracking and high-

potential programs—for careers such as management consulting where collaboration in

small, close-knit teams allows workers to learn about their relative abilities.

Finally, in Section 5, we extend our model to allow for a different type of luck—

“societal luck”—by assuming that one agent (randomly selected) possesses an “identity”

(e.g. race, ethnicity, gender, socio-economic background) that gives him a transitory ad-

vantage over his rival. For instance, women face disadvantages during the early stages

of their careers, e.g. in school grading (Lavy and Megalokonomou, 2024) or assessments

of their management potential (Benson et al., 2023). Investigating the mechanisms that

propagate such disadvantages, by making their effects long-lasting, therefore ranks high

on the agenda of the literature on cumulative advantage, both in economics (Blank, 2005)

and sociology (DiPrete and Eirich, 2006).

When we focused on early career luck, we defined persistence as the probability that

the agent with better first-stage performance is selected in the final stage. In Section 5,

we define the persistence of societal luck as the probability that the agent who receives the

transitory, exogenous advantage in the first stage is ultimately selected. We analyze how

this persistence is determined by the interaction between agents’ strategic effort choices

and the organization’s choice of second-stage bias.

We highlight that an important factor influencing the persistence of societal luck

is whether or not organizational selection can condition on whether early success was

achieved with or without an exogenous advantage, i.e. whether the second-stage bias can

depend on agents’ identity. We show that, if bias must be identity-independent, then

organizational learning always makes societal luck persistent. In contrast, allowing bias

to condition on agents’ identity not only increases the organization’s selective efficiency but

also reduces the persistence of societal luck, potentially altogether eliminating its long-

term consequences. An important insight is that agents’ strategic effort responses will

amplify these beneficial effects, because identity-dependent selection creates incentives

that help to mitigate transitory (dis)advantages. These results can be interpreted as

showing that affirmative action, e.g. in the form of gender-specific fast-tracks, can yield

gains in both efficiency and equity, and more so when workers’ responses to such policies

are considered.7

7Gender-specific fast-tracking exists in both public and private organizations in the form of mentoring
programs, such as the United Nations’ Mentorship Program for Emerging Young Women Leaders or the
FeMale Talent Program at Accenture. See also Azmat and Boring (2020) for a recent survey on the
performance of various gender-based policies in firms.
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Related literature Our paper contributes to the literature on organizational learning.

Driven by rich evidence about the functioning of internal labor markets (Baker et al.,

1994), the seminal studies by Farber and Gibbons (1996), Gibbons and Waldman (1999,

2006), and Altonji and Pierret (2001) have identified firms’ learning about workers’ pro-

ductivity as a key factor explaining wage and promotion dynamics. A robust empirical

finding is that early raises, either in wages or in position, increase the probability of later

promotions. Whether this correlation is caused by workers’ inherent productivity differ-

entials or by a “fast-track effect” is controversial, with U.S. evidence in favor of the former

(Belzil and Bognanno, 2008) and Japanese evidence pointing towards the latter (Ariga et

al., 1999). In the seminal models, serial correlation of promotion rates arises from work-

ers’ time-invariant ability differences or human capital accumulation. Our analysis shows

that even when ability differences become negligible and human capital is constant, serial

correlation can be explained by the non-vanishing optimality of fast-tracking (bias). The

special relevance of early performance for careers is underlined by Lange’s (2007) finding

that “employers learn fast”.8 Pastorino (2024) supports this view by documenting firms’

tendency to assign newly employed managers to tasks that are particularly informative

about their abilities. According to our theory, such task assignments increase the per-

sistence of early career luck even further because they increase the size of the optimal

bias. Pastorino’s structural estimates provide strong evidence that learning, in addition

to human capital accumulation, has a sizeable impact on career outcomes.

Our theory identifies a mechanism—selection with the help of biases— that augments

the relevance of initial performance for final success. Other mechanisms with similar ef-

fects exist in recent literature investigating the detailed process through which employers

learn about workers’ productivity.9 For instance, when organizational learning is viewed

as a bandit problem (Bergemann and Välimäki, 2008), negative experiences can terminate

an employer’s hiring from a group of potential employees or her task assignment to a

specific worker. This can lead to long-run disadvantages for groups whose productivity is

relatively undiscovered, e.g. minorities (Bartoš et al., 2016; Lepage, 2024), and to persis-

tent discrimination for subgroups of workers in careers which are exposed to “bad news”,

e.g. surgeons (Bardhi et al., 2023; Durandard, 2023). Alternatively, when employers rely

on the evaluations a worker obtained from previous employers, beliefs about other em-

8Using Armed Forces Qualification Test scores as measures of unobserved ability, Lange (2007) finds
that it takes only 3 years for employers’ expectation error about workers’ productivity to decline by one
half. Similarly, Lluis (2005) finds evidence that employer learning affects mobility between upper and
executive levels of German firms but only for workers below 35 years of age. For more experienced workers
learning is found to continue to matter when workers differ in how their productivity evolves over time
(Kahn and Lange, 2014).

9See Sections 3 and 4 of Onuchic (2023) for an excellent survey of this literature.
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ployers’ information or preferences start to play a role. Focusing on this social learning

component, Bohren et al. (2019) show that discrimination will be persistent, i.e. negative

discrimination will never be reversed, unless it is belief-based and some employers have

misspecified priors.10

A distinguishing feature of our theory is to consider organizational learning as a strate-

gic interaction—between a principal choosing bias for selection and agents exerting efforts

to become selected. More specifically, our analysis builds on the “pure” organizational

learning model of Meyer (1991) but introduces agents’ strategic choices of costly efforts.

Decomposing merit into a non-strategic part (“ability”) and a strategic part (“effort”)

sheds light on an ongoing controversy over what constitutes merit (Sen, 2000), by reveal-

ing how these two components interact to shape the role of luck for economic outcomes.

Notably, the broader notion of merit that makes agents “responsible” for their perfor-

mance induces organizational selection to assign an even greater role to luck, but only if

agents are informed about their relative abilities.

Our emphasis on modeling organizational selection as a strategic interaction is shared

by the literature on equilibrium statistical discrimination (e.g. Lundberg and Startz, 1983;

Coate and Loury, 1993; Moro and Norman, 2004; Fosgerau et al., 2023). In this litera-

ture, workers’ incentives to invest in human capital are a key driver of the result that

discrimination can be a self-fulfilling prophecy, and an important insight is that affir-

mative action—in the form of hiring quotas—can have the perverse effect of reducing

investments and wages for members of disadvantaged groups. Our analysis in Section 5,

on the contrary, shows that workers’ opportunity to compensate for early, identity-based

disadvantages through on-the-job effort constitutes an important channel through which

affirmative action—in the form of identity-dependent biases—improves both equality and

selective efficiency.

One component of our analysis in Section 5 of the persistence of societal luck is the

recognition that good performance in the face of a disadvantage is particularly informative

about an agent’s high ability. This feature is also present in the theoretical analyses of

Meyer (1991) and Fryer (2007) and is documented in a field experiment by Bohren et al.

(2019). Our analysis also links to the focus in Sethi and Somanathan (2023) and Bohren

et al. (2023) on systemic discrimination. In particular, Sethi and Somanathan (2023)

argue that expanding the representation of disadvantaged groups in hiring, e.g. through

exploration-prone algorithms (Li et al., 2024), can be necessary for selective efficiency.

Unlike Sethi and Somanathan (2023) and Bohren et al. (2023), however, we highlight that

10Gill and Prowse (2014) experimentally document a different mechanism by which initial performance
influences final success, namely, the psychological impact of early wins and losses on subsequent effort
choices. They find that this impact differs systematically between men and women.
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the effort responses to identity-based policies amplify their beneficial effects with respect

to both learning and persistence.

2 Model

We consider an organization consisting of a risk-neutral principal and two agents i ∈
{A,B} with heterogeneous abilities ai. The difference in abilities or heterogeneity is given

by h > 0, i.e. ∆a ≡ aA − aB ∈ {−h, h}. The principal observes the agents’ relative

performance during two stages, t ∈ {1, 2}. After the second stage, the principal needs to

select one of the agents for a higher-level task whose payoff to the principal is increasing

in the selected agent’s ability. The principal’s goal is thus simple: to select the more able

agent.

Agent i’s performance at stage t, xi,t ∈ ℜ, is the sum of three elements: the agent’s

time-invariant ability ai, multiplied by a stage-specific weight λt > 0; the agent’s private

choice of effort ei,t ≥ 0; and a time-varying random component ϵi,t ∈ ℜ. That is,

xi,t ≡ λtai + ei,t + ϵi,t.

Variation in λt across stages can reflect differences in the impact of ability on performance.

This is especially relevant when agents’ tasks change over time.

Information and choices The principal and the agents share a common prior, q0 ≡
P(∆a = h) ≥ 1

2
, but for the principal, agents A and B are indistinguishable. If q0 = 1

2
,

the agents are as uninformed as the principal, while if q0 > 1
2
, the agents have superior

information about their relative abilities, with both agents believing that agent A is more

likely to be better.11

The principal can observe only the ranking of the two agents’ performances after the

first stage. In the second stage, the principal may costlessly and publicly assign a bias

β ∈ ℜ to the winner of the first stage. If β > 0, the bias increments the winner’s second-

stage performance, and we say that the bias “favors” the first-stage winner, whereas if

β < 0, it reduces his second-stage performance. Having won the first stage, agent i is then

identified as the winner of the second stage if xi,2 + β > xj,2.
12

11Virtually all the employer learning models reviewed in the Introduction analyze only the case where
workers are ignorant about their own ability, and hence correspond to the case q0 = 1

2 . Section 4 contrasts
the results for q0 > 1

2 with those in Section 3 for q0 = 1
2 .

12In Section 3.2 we analyze a cardinal setting where the principal observes the difference in the first-stage
performances and can condition the choice of bias on this difference.
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The principal chooses the size of bias β and the selection rule to maximize selective

efficiency, S(β;h), defined as the probability that the more able agent is selected. The

agents exert privately-observed efforts ei,t in each stage to maximize the probability of

being selected minus the effort costs. The value of being selected is the same for both

agents and is normalized to 1. The cost-of-effort functions Ct(ei,t), t = 1, 2, are strictly

increasing and convex. Thus, effort costs are identical across agents but may differ across

stages.

Noise The distribution of the difference in the individual noise terms, ∆ϵt ≡ ϵA,t−ϵB,t, is

a key primitive in our model because outcomes depend only on performance differentials.

We assume that ∆ϵt are identically and independently distributed across stages and denote

the corresponding support by [−z, z] (where z may be infinite), the cumulative distribution

function by G, and its density by g. We make the following distributional assumptions:

Assumption 1 (i) g is symmetric about 0; (ii) g is strictly log-concave; (iii) g is differ-

entiable on (−z, z); (iv) limy→z L(y) = ∞, where

L(y) ≡ −g′(y)

g(y)
.

The symmetry of g captures the idea that the only source of heterogeneity across agents

is the difference in their abilities; it is a weaker assumption than individual shocks, ϵi,t,

being i.i.d. across agents. Log-concavity of g is equivalent to the monotone likelihood

ratio property in our setting; it guarantees that, in either stage, a larger performance

differential ∆xt ≡ xA,t − xB,t implies a higher likelihood that A’s ability exceeds B’s. It

also implies that L is increasing. Strict log-concavity makes all the implications strict.

Together with the remaining two assumptions, it ensures that the principal’s problem is

well-behaved.

Timing In the beginning of the first stage, the agents choose efforts. Then, the noise

is realized, and both the principal and the agents observe who has higher first-stage

performance. In the beginning of the second stage, the principal chooses the level of bias.

Then the agents exert efforts. The noise is realized, and both the principal and the agents

observe who has a higher second-stage performance. The principal then selects one of

the agents. Note that the principal chooses the bias after the first stage rather than

committing to it in the beginning.13

13Assuming instead that the principal can commit, before agents choose efforts, to a value of bias (in
the case of ordinal performance evaluation analyzed in Section 3.1) or to a schedule of bias (in case of

9



Equilibrium The solution concept is perfect Bayesian equilibrium (PBE). In a PBE, (i)

the effort choice by each agent at each stage is optimal for him given his conjectures about

the effort choices of the other agent and the bias and the selection rule set by the principal;

(ii) the bias and the selection rule are optimal for the principal given her conjectures about

the agents’ efforts; and (iii) the conjectures of both agents and the principal are correct.

It is easy to confirm that when the principal chooses the bias optimally, the optimal

selection rule is to select the winner of the second stage.

Persistence Our main focus of interest is the persistence of outcomes induced by the

interaction between the principal’s pursuit of selective efficiency and the agents’ desire to

be selected. We define persistence as the equilibrium probability that the winner of the

first stage is selected after the second stage.

It is important to note that the key parameter of our model, h > 0, which captures the

degree of agents’ heterogeneity in abilities, also has a broader interpretation as the ratio

of agents’ heterogeneity to the scale of noise.14 To shed light on the role of initial luck

for final outcomes, much of the analysis in Sections 3 and 4 will focus on the setting in

which h is very small: Here the scale of noise is large relative to the agents’ heterogeneity

and, as we show, differences in agents’ efforts vanish. Note that even in this environment,

the selection decision may still be important to the principal, because the selected agent’s

performance in the higher-level task may be very sensitive to ability.

When, in this limiting environment, persistence turns out to be strictly larger than

one-half, we will say that luck is made persistent, because the first-stage winner has a

greater chance of ultimately being selected than the first-stage loser, despite the fact that

the first-stage outcome is almost entirely determined by random factors.

3 Uninformed agents

In this section, we consider the setting where agents are as uninformed as the principal

about their relative abilities. We show that, in this case, the agents’ ability to influence

their performance through the exertion of effort has no impact on selective efficiency, and

hence no impact on the principal’s choice of bias or on the persistence of early success. This

cardinal performance evaluation analyzed in Section 3.2) would not affect our results unless agents are
informed about their relative abilities (see Section 4).

14To see this, introduce a scaling transformation ∆ϵt → σ∆ϵt, with σ > 1, which makes the difference
in the noise terms more dispersed: The cdf becomes G(∆ϵt

σ ), the pdf 1
σ g(

∆ϵt
σ ), and the support [−σz, σz].

If the underlying heterogeneity in abilities is H, then G(λ1H
σ ) is the probability that, when the first-stage

effort differential is zero, the more able agent wins the first stage. It depends on H and σ only through
the heterogeneity-to-noise ratio h ≡ H

σ .
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allows us to develop the basic intuition for the connection between these variables, before

examining, in Section 4, the effects of informed agents’ strategic behavior. In Section 3.1

we prove our main result, that even as noise swamps ability differences, equilibrium bias

converges to a strictly positive value, so luck is made persistent. In Section 3.2 we analyze

an alternative case where performance evaluation is cardinal rather than ordinal, allowing

bias to depend on the first-stage margin of victory. We show that, under mild conditions on

the distribution of noise, the limiting equilibrium bias under ordinal evaluation front-loads

the dynamic selection process compared to the limiting equilibrium bias under cardinal

information.

3.1 Equilibrium bias and persistence of luck

We start with the following lemma, which shows that, in equilibrium, the efforts of unin-

formed agents cancel each other in the determination of relative performance. The proof

of this lemma and all other proofs are in the Appendix.

Lemma 1 (Identical efforts) Let q0 = 1
2
. Then for any anticipated choice of bias β by

the principal, there exists a unique pure-strategy equilibrium in efforts. In this equilibrium,

agents choose identical efforts, both in the first stage and in the second stage.

In the second stage, despite the asymmetries due to learning and the use of bias, the

marginal benefit of effort is the same for the two agents. This is because the values of

winning, the marginal impacts of effort on performance, and the pivotal realizations of

∆ϵ2 are all identical for A and B (cf. Lazear and Rosen, 1981). In the first stage, given

the symmetry of the agents’ situations, there exists a pair of identical efforts that are

best responses to each other. If β ≤ 0, a higher first-stage performance reduces or leaves

unchanged the probability of being selected after the second stage, so only zero efforts are

mutual best responses. If β > 0, we show by contradiction that unequal efforts could not

be best responses. Specifically, if agent A were to exert more effort than agent B in the

first stage, then a first-stage win by B would be a stronger signal of ability than a win

by A. Hence, the biased second-stage contest would be more unbalanced following a win

by B and would therefore induce lower second-stage effort. But lower second-stage efforts

after a win by B would generate stronger first-stage incentives for B than for A, which

contradicts the initial assumption.

Given Lemma 1, the equilibrium efforts cancel out in selective efficiency S(β;h), the

probability with which the more able agent wins the second stage:

S(β;h) = G(λ1h)G(λ2h+ β) + [1−G(λ1h)]G(λ2h− β). (1)
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The first term in the sum is the probability that the more able agent wins the first stage

and then wins the second stage with bias β in his favor. The second term is the probability

that the more able agent loses the first stage but then wins the second stage despite being

disadvantaged by the bias.

The equilibrium value of bias is then found by maximizing (1) with respect to β, which

yields the following first-order condition:15

G(λ1h)

1−G(λ1h)
=

g(λ2h− β)

g(λ2h+ β)
. (2)

The ratio on the left-hand side is the relative likelihood that a first-stage win is achieved

by the more able agent compared to the less able one. A victory in the first stage is a

stronger signal about relative ability when this likelihood ratio is higher. The term on

the right-hand side is also a likelihood ratio: It is the relative likelihood that a second-

stage draw when agent j is disadvantaged by bias β, i.e. xj,2 − β = xi,2, is achieved when

j is the more able agent compared to when j is the less able one. Equation (2) shows

that equilibrium bias strikes a balance between the informativeness of the ordinal first-

stage ranking—an unbiased win—and the informativeness of the marginal second-stage

outcome—a draw achieved despite being handicapped by bias. Equilibrium bias is such

that, if the principal were to observe a draw in stage two, she would be indifferent about

which agent to select.

Note that, for β = 0, the right-hand side of (2) is equal to one and hence strictly smaller

than the left-hand side. This is because, for β = 0, a second-stage draw is uninformative

about the agents’ abilities. Moreover, given the strict log-concavity of g, as the size of the

bias disadvantaging the first-stage loser increases, a second-stage draw becomes a strictly

stronger signal about that agent’s relative ability. It thus follows from Assumption 1 that

the first-order condition (2) has a unique solution, β∗(h) > 0, which maximizes selective

efficiency. Moreover, since the left-hand (right-hand) side of (2) is increasing in λ1 (λ2),

which measures the sensitivity of the first-stage (second-stage) performance to ability,

β∗(h) is increasing in λ1 and decreasing in λ2.

While these arguments establish that a positive bias will emerge in equilibrium for any

level h > 0 of heterogeneity in abilities, they are not sufficient to determine what happens

in the limit as h → 0. Does equilibrium bias converge to zero? The following proposition

characterizes the limiting value of the equilibrium bias as the scale of the noise swamps

the heterogeneity in abilities.

15Given that the agents choose identical first-stage efforts (Lemma 1), this first-order condition matches
the one in the pure organizational learning model of Meyer (1991).
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Proposition 1 (Equilibrium bias) Let q0 = 1
2
. The principal’s equilibrium choice of

bias, β∗(h), is strictly positive, even in the limit as noise swamps agents’ ability differences.

More specifically, β∗
0 ≡ limh→0 β

∗(h) > 0 is given by the unique solution of the equation

2λ1g(0) = λ2L(β
∗
0). (3)

At first sight, the fact that equilibrium bias remains strictly positive, even in the

limit, may seem counterintuitive, because when h tends to zero, a first-stage win becomes

completely uninformative about relative abilities. However, this reasoning neglects the fact

that, as h tends to zero, a second-stage draw also becomes uninformative, for any level of

bias. Formally, as h tends to zero, both sides of equation (2) approach one. Proposition

1 thus characterizes equilibrium bias in this limit by equating the rates at which the

informativeness of each stage tends to zero as h gets small. Since L is a strictly increasing

function, L(0) = 0, and the left-hand side of (3) is positive, the limiting value of bias must

be positive. More intuitively, observe that, when bias is zero, achieving a second-stage

draw is uninformative about relative abilities for any ratio h of heterogeneity to noise,

whereas the informativeness of a first-stage win rises with h. Thus, a strictly positive

bias emerges in the limit because, unless first-stage losers are disadvantaged relative to

first-stage winners even when ability differences are negligible, the informativeness of a

second-stage draw cannot keep up with the informativeness of a first-stage win when

ability differences start to matter.

An alternative interpretation of the limiting value of equilibrium bias is illustrated

in Figure 1. In the limit as h → 0, bias is chosen to maximize not the level of selective

efficiency—since selective efficiency becomes independent of bias in the limit—but the

rate at which selective efficiency increases with the agents’ heterogeneity. In the limit,

equilibrium bias thus maximizes the potential gains to selective efficiency from a marginal

increase in agents’ heterogeneity; were bias set to zero, these gains would not be fully

realized.

Though the logic behind the equilibrium level of bias is clear in the limit, the de-

pendence of β∗(h) on the heterogeneity-to-noise ratio for h > 0 can be complex. This

is because an increment in h increases both sides of equation (2): It raises both the in-

formativeness of a first-stage win and—by log-concavity of g—the informativeness of a

second-stage draw, for any given level of bias. The complex dependence of β∗(h) on h is

illustrated in Figure 2. The left panel plots the density functions for the family of expo-

nential power distributions with mean zero and shape parameter η > 1.16 The right panel

16 These density functions are given by g(∆ϵt; η) =
η

2Γ( 1
η )

exp(−|∆ϵt|η), and for all η > 1, they satisfy
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Figure 1: Selective efficiency. The figure depicts selective efficiency S as a function of
agents’ heterogeneity h for different values of bias. β∗

0 > 0 maximizes the slope of S at
h = 0.

Figure 2: Example distributions of noise and equilibrium bias. The left panel
depicts the density functions when noise follows an exponential power distributions with
mean zero and shape parameter η ∈ {1.5, 2, 3, 4, 7}. The right panel plots the correspond-
ing equilibrium bias as a function of h when λ1 = λ2 = 1.

Assumption 1. For η = 2, g(∆ϵt; η) is a normal distribution with variance 1
2 ; as η → ∞, g(∆ϵt; η)

approaches a uniform distribution with support [−1, 1]; and as η → 1, g(∆ϵt; η) approaches a Laplace
distribution with scale parameter 1. At η = 1, Assumption 1 is violated because the Laplace density is
not differentiable at 0 and is not strictly log-concave.
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in Figure 2 plots the equilibrium bias β∗(h) as a function of h, for λ1 = λ2 = 1. Despite

the many possibilities illustrated, we see that, as shown by Proposition 1, equilibrium bias

remains positive even as h gets small for all members of the family.

Persistence

Our results have implications for our understanding of the relevance of luck for the de-

termination of economic outcomes. According to meritocratic principles, the allocation of

resources and decision-making power should be attributable to merit—a combination of

ability and effort—rather than luck. In light of this principle, it is important to ask how

institutions and organizational practices shape the dynamic relationship between perfor-

mance and outcomes. A straightforward but important implication of the introduction of

bias favoring the first-stage winner is that it raises the correlation between initial success

and final selection. To see this, define the persistence of the selection process as the equi-

librium probability that the first-stage winner is selected after the second stage. Given

Lemma 1, persistence is independent of efforts and is given by:

P (β∗(h);h) = G(λ1h)G(λ2h+ β∗(h)) + [1−G(λ1h)][1−G(λ2h− β∗(h)]. (4)

Of course, even in the absence of bias, initial success and final selection are positively

correlated, and hence P (0;h) > 1
2
, because the outcomes of both stages are affected by the

time-invariant ability difference h > 0. However, in the limit as h → 0, this correlation

would vanish, and hence persistence would approach 1
2
, unless it were induced through

the use of bias. That is, defining P ∗
0 ≡ limh→0 P (β∗(h);h), we have from (4) that

P ∗
0 = G(β∗

0) and P ∗
0 >

1

2
⇐⇒ β∗

0 > 0. (5)

Hence, a direct implication of Proposition 1 is that luck is made persistent : P ∗
0 > 1

2
.

Also note that (3), coupled with the strict monotonicity of L, implies that β∗
0 , and hence

P ∗
0 , is increasing in the ratio λ1/λ2, which measures the relative sensitivity to ability of

first-stage compared to second-stage performance. This is true even though in the limit,

ability has only a negligible impact on performance. These important implications are

stated in the next corollary.

Corollary 1 (Persistence of luck) Let q0 = 1
2
. When bias is set to maximize selective

efficiency, luck is made persistent, i.e. P ∗
0 > 1

2
, and even more so when early performance

is relatively more sensitive to ability, i.e. P ∗
0 is strictly increasing in λ1

λ2
.
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Recent work by Pastorino (2024) shows that firms tend to allocate to newly-hired

workers those tasks that are relatively more informative about their abilities; our results

show that this pattern of task allocation enhances the persistence of luck.

In addition, because persistence in (4) is increasing both in the bias and in hetero-

geneity, the fact that, as shown by Figure 2, equilibrium bias β∗(h) can be decreasing

suggests that, overall, persistence could also be decreasing in h. This possibility is con-

firmed by Figure 3, where for η = 7 and relatively small h, equilibrium persistence falls as

the difference in agents’ abilities rises. This means that the use of bias for selection can

make final success less correlated with initial performance in settings where performance

differentials are more attributable to ability differences.

Figure 3: Equilibrium persistence. The figure plots the probability P (β∗(h);h) that
the first-stage winner is ultimately selected, as a function of the ratio h of agents’ hetero-
geneity to noise, when noise follows an exponential power distribution with mean 0 and
shape parameter η ∈ {1.5, 2, 3, 4, 7} and λ1 = λ2 = 1.

To conclude, our analysis shows that two apparent violations of meritocratic principles—

the persistence of luck and non-monotonicity of equilibrium persistence—can be rational-

ized by the very fact that organizations aim to allocate resources to the most talented

individuals. Thus, neither of these phenomena should automatically be considered an

abandonment of meritocratic principles. In fact, Corollary 1 shows that making luck

persistent by biasing selection in favor of early strong performers emerges as a necessary

consequence of the meritocratic pursuit of selective efficiency.
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3.2 Cardinal performance evaluation

We now analyze how the use of bias, and its consequences for the persistence of luck, vary

with the way in which performance differentials are measured, contrasting the case of

ordinal information, studied so far, to that of cardinal information. Lazear (2018) argues

that ordinal performance evaluation is prevalent towards the top of an organization’s hi-

erarchy, given the difficulty of quantifying the performance of increasingly complex tasks.

This means that in situations where selection matters most, for both the organization and

the agents themselves, ordinal performance measurement may be the most relevant case.

However, a comparison with the case where the principal can quantify the agents’ perfor-

mance differentials helps to highlight the specific contribution of rank-order information

to the persistence of luck. It may also help to assess whether luck can be expected to play

a more important role for selection into positions with higher ranks.

When all parties can observe the first-stage performance differential ∆x1 = xA,1−xB,1,

and can condition their second-stage actions on it, there exists an equilibrium in which,

in both stages, agent A exerts the same effort as agent B.17 Hence, in this equilibrium,

similarly to Section 3.1, efforts do not matter for selective efficiency or for persistence. The

probability of a margin of victory |∆x1| being achieved by the stronger agent is g(|∆x1|−
λ1h), whereas for the weaker agent the corresponding probability is g(|∆x1|+λ1h). Given

the observed |∆x1|, the principal then chooses the bias to maximize

Scard(β, |∆x1|;h) = g(|∆x1| − λ1h)G(λ2h+ β) + g(|∆x1|+ λ1h)G(λ2h− β). (6)

Intuitively, a larger margin of victory |∆x1| is a stronger signal about the winner’s ability

and thus induces the principal to choose a larger bias βcard(|∆x1|, h).
Equilibrium bias under cardinal information is particularly transparent when perfor-

mance in the two stages is equally sensitive to ability, that is, when λ1 = λ2. Here it

is optimal for the principal to select the agent with the higher aggregate performance,

xi,1 + xi,2. This selection rule can be implemented by biasing the second stage in favor of

the first-stage winner by exactly |∆x1|, the first-stage margin of victory. Hence, in this

case, βcard(|∆x1|, h) = |∆x1|, for all |∆x1| and h.

In general, the equilibrium bias when performance evaluation is ordinal, β∗(h) given by

(2), can be thought of as a form of average of the equilibrium biases βcard(|∆x1|, h) under
cardinal evaluation, as |∆x1| varies. Proposition 2 makes this intuition precise for the

limiting case where noise swamps ability. We define βcard
0 (|∆x1|) ≡ limh→0 β

card(|∆x1|, h).
17In close analogy to Lemma 1, agents exerting identical efforts constitutes the unique pure-strategy

equilibrium if agents anticipate that the principal chooses bias optimally, based on cardinal performance
information and given her conjecture about agents’ efforts.
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Proposition 2 (Cardinal bias) Let q0 = 1
2
. When the principal can condition bias on

cardinal performance information |∆x1|, the following holds as h → 0:

(i) βcard
0 (|∆x1|) > 0 whenever |∆x1| > 0, and βcard

0 (|∆x1|) solves

L(βcard
0 (|∆x1|)) =

λ1

λ2

L(|∆x1|). (7)

(ii) Cardinal bias and ordinal bias are related according to

E[L(βcard
0 (|∆x1|))] = L(β∗

0). (8)

Note that when the difference in the agents’ noise terms is normally distributed, so L

is linear, (8) implies E[βcard
0 (|∆x1|)] = β∗

0 .

A direct implication of Proposition 2(i), recalling (4) and (5), is that with cardinal

performance evaluation, luck is made persistent on average, i.e.

P card
0 ≡ lim

h→0
E[P (βcard(|∆x1|, h), h)] = E[G(βcard

0 (|∆x1|)] >
1

2
. (9)

For the special case of λ1 = λ2, since the principal selects the agent with the higher

aggregate performance xi,1 + xi,2, we have, for any noise distribution g,

P card
0 = lim

h→0
P(∆x1 +∆x2 ≥ 0|∆x1 ≥ 0) = P(∆ϵ1 +∆ϵ2 ≥ 0|∆ϵ1 ≥ 0) =

1

2
+

1

4
=

3

4
,

since ∆ϵ1 and ∆ϵ2 are i.i.d.

To highlight the specific contribution of ordinal evaluation to the persistence of luck,

we compare P card
0 with P ∗

0 in (5), the persistence under ordinal evaluation. Figure 3,

which is plotted for λ1 = λ2 = 1, shows that P ∗
0 is larger than 3

4
for all values of the shape

parameter depicted. For η = 2 (∆ϵt normally distributed), this is not surprising, given

that E[βcard
0 (|∆x1|)] = β∗

0 and given that persistence in (9) is the expectation of a concave

function of bias.18 In fact, a sufficient condition for P ∗
0 to exceed P card

0 is that the function

L is convex, since (8) shows that for L convex, the limiting ordinal bias is at least as large

as the expected limiting cardinal bias.19 Distributions for which L is convex are those with

densities g̃ that are thinner-tailed than the normal distribution, more precisely, those that

are more log-concave than the normal in the sense that ln g̃ is a concave transform of ln g,

18Concavity of G on the positive domain follows from the log-concavity and symmetry about 0 of g.
19Convexity of L is not necessary for P ∗

0 to exceed P card
0 . For the exponential power family of distri-

butions in footnote 16, L is convex if and only if η ≥ 2, but for λ1 = λ2, the persistence of luck is larger
under ordinal than under cardinal evaluation for all η > ∼1.38.
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for g normal.

The following corollary shows that this insight extends to the case of arbitrary λ1 and

λ2.

Corollary 2 (Persistence of Luck: Cardinal versus ordinal evaluation) Let q0 =
1
2
and suppose that the function L is convex.

(i) The persistence of luck is greater when performance evaluation is ordinal than when

it is cardinal, i.e.

P ∗
0 = G(β∗

0) > E[G(βcard
0 (|∆x1|)] = P card

0 . (10)

(ii) The inequality in (10) is equivalent to the organization assigning greater relative

weight to first-stage performance than to second-stage performance when perfor-

mance evaluation is ordinal than when it is cardinal, as h → 0, i.e. for all λ1,

λ2,

P(select A|∆ϵ1 > 0,∆ϵ2 < 0, ord.)

P(select A|∆ϵ1 < 0,∆ϵ2 > 0, ord.)
>

P(select A|∆ϵ1 > 0,∆ϵ2 < 0, card.)

P(select A|∆ϵ1 < 0,∆ϵ2 > 0, card.)
. (11)

Corollary 2 shows that if, as argued by Lazear (2000), organizations are constrained to

use ordinal performance measurement at high ranks because of the difficulty of quantifying

performance in complex tasks, luck may have especially persistent effects on selection at

the top of the hierarchy.

Corollary 2 also shows that greater persistence of luck under ordinal than cardinal

evaluation is equivalent to greater “front-loading” of the dynamic selection process when

performance evaluation is constrained to be ordinal. This inflation of the importance

of early luck under ordinal evaluation is especially transparent when performance in the

two stages is equally sensitive to ability, that is, when λ1 = λ2: Whereas under cardinal

evaluation luck is weighted equally across stages (the right-hand side of (11) equals one),

under ordinal evaluation early luck has a greater impact on selection than later luck (the

left-hand side of (11) is greater than one).

4 Informed agents

The model in Section 3 shares with the literature on organizational learning (e.g. Gib-

bons and Waldman, 2006; Lange, 2007; Pastorino, 2024) the assumption that agents are

as uninformed about their relative abilities as the principal. But what if agents have
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some common, possibly imperfect, information about their relative abilities? For exam-

ple, workers might know each other from college or might have shared experiences with

previous employers, allowing them to better judge their relative abilities. We capture this

by assuming that q0 ≡ P(∆a = h) > 1
2
, where ∆a = aA − aB. While with uninformed

agents, Lemma 1 showed that effort choices had no impact on the principal’s learning,

because in equilibrium efforts cancelled each other in the determination of relative perfor-

mance, with informed agents, their efforts may no longer be identical. In this section, we

examine how the strategic behavior of informed agents impacts organizational learning

and the persistence of luck, in our main setting of ordinal performance evaluation.

Because effort and ability are substitutes for agents’ performance, the agent thought

less likely to be the more able might use effort to compensate for his ability disadvantage,

thereby decreasing the informativeness of early performance about relative abilities, re-

ducing the optimal bias, and weakening our result about the persistence of luck. In fact,

we show that, on the contrary, informed agents’ strategic behavior reinforces the impact

of agents’ ability difference, resulting in luck being made even more persistent than when

agents are ignorant of relative abilities. The following lemma represents the crucial step

in our argument.

Lemma 2 (Informed agents’ effort differential) Let q0 > 1
2
. Then for any antici-

pated choice of bias β > 0, agents choose identical efforts in the second stage, but in the

first stage, the agent thought more likely to have higher ability exerts a strictly larger effort

than his rival.

The explanation for why the agents choose identical second-stage efforts is the same

as for Lemma 1. To understand the sign of the first-stage effort differential

∆e∗1(β, h, q
0) ≡ e∗A,1(β, h, q

0)− e∗B,1(β, h, q
0) > 0,

note first that because exactly one agent will be selected after the second stage, the

“rewards” of winning the first stage arising from the increased probability of being selected

are precisely the same for the two agents. However, in contrast to the case where agents

are uninformed, the level of second-stage effort that agents exert, and hence their effort

cost, now depends on which agent wins the first stage. To see this most clearly, suppose

for simplicity that q0 = 1, so that agent A is known with certainty to be more able. Recall

that the principal is aware of the agents’ superior knowledge but cannot distinguish agent

A from agent B, so she must assign the same level of bias whoever wins the first stage.

If agent A wins the first stage, then the bias will reinforce the agents’ ability difference,

and the pivotal realization h + β of noise ∆ϵ2 will determine second-stage efforts via
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C ′
2(e

∗
A,2) = g(h + β) = C ′

2(e
∗
B,2). If, instead, agent A loses the first stage, then bias will

mitigate the agents’ ability difference, so it is the pivotal realization h−β that determines

second-stage efforts via C ′
2(e

∗
A,2) = g(h − β) = C ′

2(e
∗
B,2). Because g(h + β) < g(h − β)

by unimodality of g (implied by log-concavity), agent A faces lower second-stage effort

costs after winning the first stage than after losing, so A has a “cost-saving incentive” to

win the first stage. For agent B, the argument is reversed, because bias mitigates agents’

heterogeneity when B wins but reinforces it when B loses, so agent B has a “cost-saving

disincentive” for first-stage effort.

Lemma 2 shows that, in equilibrium, informed agents’ first-stage effort differential on

average reinforces the ability difference, thus raising the informativeness of the first-stage

outcome. The following result extends Proposition 1 to the case of informed agents, under

the additional assumption that effort costs are quadratic.20

Proposition 3 (Bias with informed agents) Let q0 > 1
2
and suppose that Ct(ei,t) =

ct
2
e2i,t for all i, t. In the limit as noise swamps ability differences, equilibrium bias β∗

0(q
0) ≡

limh→0 β
∗(h, q0) is unique, strictly positive, and strictly increasing in q0, and it solves

2g(0)

[
λ1 + (2q0 − 1)

∂∆e1(β
∗
0(q

0), 0, q0)

∂h

]
= λ2L(β

∗
0(q

0)). (12)

Proposition 3 shows that our insights about the optimal use of bias for selection are

robust to the introduction of private information on the part of the agents about their

relative abilities. In particular, equilibrium bias continues to remain positive in the limit as

noise swamps ability differences. Even though in this limit, the first-stage effort differential

∆e1(β, h, q
0) between the “better” agent A and the “worse” agent B vanishes, nevertheless

limh→0
∂∆e1(β,h,q0)

∂h
> 0, which implies that the informativeness of the first-stage outcome

increases as h rises from 0; hence, the left-hand side of (12), just like the left-hand side of

(3), is strictly positive, ensuring that equilibrium bias β∗
0(q

0) is strictly positive.

Proposition 3 also reveals that the limiting equilibrium bias is strictly increasing in

the precision q0 of the agents’ private information and that there are two distinct forces

generating this result. First, (12) shows that the larger is q0, the greater is the impact of

any given limh→0
∂∆e1
∂h

, because the effort differential is more likely to be aligned with the

ability difference. Second, the larger is q0, the larger is limh→0
∂∆e1
∂h

itself, because in the

first stage, both A’s “cost-saving incentive” for effort and B’s “cost-saving disincentive”

are stronger the better informed the agents are about relative abilities.

This comparative statics result in Proposition 3 provides further insights about the

20The assumption of quadratic costs simplifies the proof that the equilibrium in the limit as h → 0 is
unique, but it is not necessary for this result.
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relevance of luck for selection:

Corollary 3 (Persistence amplified) When agents have private information about their

relative abilities, luck is made even more persistent than when agents are uninformed, i.e.

P ∗
0 (q

0) = G(β∗
0(q

0)) > P ∗
0 for all q0 > 1

2
. Moreover, the persistence of luck is greater the

more informed the agents are about their relative abilities, i.e. P ∗
0 (q

0) is increasing.

Corollary 3 emphasizes that the more informed the agents are about their relative

abilities, the more their strategic behavior amplifies the persistence of luck induced by the

organization’s use of bias. The corollary also relates our theory to an ongoing discussion

of what constitutes “merit” (Sen, 2000). Inherited talents, acquired abilities, and costly

noble acts are all potential sources of merit, endowing their possessor with a justification

for receiving decision-making power or economic prosperity. Our theory allows us to dis-

tinguish between the case where performance—or merit—is given by the (noisy) sum of

an agent’s ability and effort, and the case where only ability matters. Section 3 showed

that whether or not effort is included in the definition of merit is irrelevant for the out-

come of organizational selection when agents are uninformed about their relative abilities.

However, Proposition 3 and Corollary 3 suggest that with informed agents, organizational

selection becomes more biased when merit depends not only on ability but also on efforts.

Perhaps surprisingly, when viewed from this angle, our theory thus predicts a greater

relevance of luck for selection in situations where agents carry a greater “responsibility”

for their performance.

5 Societal luck

Our analysis in Sections 3 and 4 highlights the relevance of early career luck for an individ-

ual’s long-term success and explains how it is made persistent by organizational learning,

even in environments where learning is very difficult. The “luck” on which we have focused

so far derives from the inherent noisiness of individual performance. We have abstracted

from factors that could impact agents systematically, such as the luck of possessing the

“right identity” in the form of gender, race, ethnic origin, or socioeconomic background.

There exists evidence showing that individuals with certain identities obtain advantages

early in their career that can have long-lasting effects on social and economic outcomes.21

Conceptually, these forms of “societal luck” are different from what we have considered so

21Ciocca Eller (2023) provides evidence that differences in educational achievement of students attend-
ing colleges of equal selectivity can be traced to heterogeneous socioeconomic backgrounds. Bukodi et al.
(2024) document the impact of “parental class” on attainment of ultra-elite scientific status in the UK.
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far in that individuals might condition their actions on them. More specifically, agents’ in-

centives might vary with their identity, and organizations might reward good performance

with biases that depend on whether success was achieved with or without an exogenous

advantage.

In this section, we extend our model of organizational learning by assuming that

one agent i ∈ {A,B} obtains an additive advantage of size α > 0 that augments his

initial performance xi,1. This advantage is uncorrelated with ability and affects only the

first-stage performance. In line with our earlier analysis, we examine to what extent the

strategic interaction between the organization and the agents results in the societal luck

of receiving a transitory advantage having a persistent effect. We define the persistence of

societal luck as the probability that the initially advantaged agent is ultimately selected.

For simplicity, our remaining analysis focuses on the case q0 = 1
2
.22 Without loss of

generality, we let agent A receive the advantage α, and we assume that this information

is common knowledge. We distinguish two scenarios. Under identity-dependent (ID)

biases, the principal can condition her bias βi on the agents’ identity i ∈ {A,B}. In

contrast, under identity-independent (II) bias, the principal is required to set βA = βB. II

bias might be a consequence of legislation aimed at preventing discriminatory practices.23

Alternatively, there may be behavioral reasons why advantages are not accounted for,

even when they are known to exist.24 Our focus will be on how the persistence of societal

luck differs between the equilibria in the regimes of ID and II biases.

In each scenario (ID or II), agents choose efforts optimally in response to the bias(es)

they anticipate. For the by-now familiar reasons, second-stage efforts are identical across

agents, so we can focus on the agents’ first-stage effort differential ∆e1 = eA,1 − eB,1.

Suppose that under ID biases, agents’ optimization results in ∆e1 = ∆e∗1(βA, βB), and let

∆e1 = ∆e∗1(β) be the analogous notation under II bias. As will become clear below, the

principal’s choice of bias depends on the anticipated net advantage, α̃ = α +∆e1, of the

advantaged agent. Denote the principal’s optimal choice of biases in the ID regime by

β∗
A(α̃) and β∗

B(α̃), and let β∗(α̃) be her optimal II bias. In the ID regime, an equilibrium is

a combination of biases and net advantage (βID
A , βID

B , α̃ID) that are mutual best responses,

that is, βID
A = β∗

A(α̃
ID), βID

B = β∗
B(α̃

ID), and α̃ID = α +∆e∗1(β
ID
A , βID

B ). Similarly, in the

22Our result in Corollary 4 on the persistence of societal luck generalizes to arbitrary q0, for small
values of the exogenous advantage.

23Title VII of the 1964 Civil Rights Act declares as “an unlawful employment practice [...] to discrimi-
nate against any individual because of his race, color, religion, sex, or national origin in admission to, or
employment in, any program established to provide apprenticeship or other training.”

24Exley and Nielsen (2024) document that evaluators correctly expect women to be less confident than
men in the assessment of their own abilities but fail themselves to account for this gender gap in their
evaluations. We can show that, for small α, optimal II bias becomes insensitive to α, so that our analysis
approximates the case where an advantage exists but is neglected by the principal.
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II regime, an equilibrium (βII , α̃II) satisfies βII = β∗(α̃II) and α̃II = α + ∆e∗1(β
II). We

use ∆eID1 and ∆eII1 to denote ∆e∗1(β
ID
A , βID

B ) and ∆e∗1(β
II), respectively.

For arbitrary values of biases βA and βB, and net advantage α̃, selective efficiency can

be written as:

S(βA, βB, α̃) =
1

2
[G(λ1h+ α̃)G(λ2h+ βA) +G(−λ1h− α̃)G(λ2h− βB)] (13)

+
1

2
[G(λ1h− α̃)G(λ2h+ βB) +G(−λ1h+ α̃)G(λ2h− βA)].

The terms in the first (respectively, second) square brackets are the probability that the

better agent is selected conditional on being advantaged (respectively, disadvantaged).

The principal’s optimal ID biases β∗
A and β∗

B solve the first-order conditions

G(λ1h+ α̃)

G(−λ1h+ α̃)
=

g(λ2h− β∗
A)

g(λ2h+ β∗
A)

and
G(λ1h− α̃)

G(−λ1h− α̃)
=

g(λ2h− β∗
B)

g(λ2h+ β∗
B)

. (14)

The principal’s optimal II bias β∗ solves ∂S
∂β

= 0 under the constraint that βA = βB = β:

G(λ1h+ α̃) +G(λ1h− α̃)

G(−λ1h+ α̃) +G(−λ1h− α̃)
=

g(λ2h− β∗)

g(λ2h+ β∗)
. (15)

Comparing (14) with (15) shows that in the II regime, the principal is restricted to set bias

to match the “average” informativeness of a first-stage win, whereas ID biases allow the

principal to adapt to whether such a win was achieved with or without a net advantage.

From the log-concavity of g, it thus follows that for all α̃:

β∗
B(α̃) > β∗(α̃) > β∗

A(α̃) > 0. (16)

Intuitively, a first-stage win against a net disadvantage is a stronger positive signal about

the winner’s ability than a first-stage win with a net advantage in the winner’s favor.

While comparing biases for given net advantage α̃ is straightforward, a full comparison of

the two scenarios requires a characterization of the agents’ equilibrium effort differentials:

Proposition 4 (Incentive effects with societal luck) Let q0 = 1
2
and suppose agent

A’s identity augments his first-stage performance by α > 0.

(i) Independently of whether bias can condition on agents’ identity, in equilibrium agent

A exerts a lower first-stage effort than agent B but maintains a strict net advantage:

−α < ∆eII1 < 0 and − α < ∆eID1 < 0.
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(ii) If effort costs are Ct(ei,t) = ct
2
e2i,t, with ct > 0 sufficiently large for equilibrium in

both regimes to be unique, and if the agents’ ability difference h is sufficiently small,

then

α̃ID = α +∆eID1 < α+∆eII1 = α̃II ,

i.e. making bias identity-dependent reduces agent A’s equilibrium net advantage.

Similarly to Section 4, where the first-stage competition was asymmetric due to agents’

information about their relative abilities (q0 > 1
2
), the agents’ first-stage effort differential

arises exclusively from the impact of the first-stage outcome on second-stage effort costs.

Because a net advantage α + ∆e1 > 0 makes A more likely to win the first stage, both

the agents and the principal are less confident in the first-stage winner’s ability when it

is A compared to when it is B. Under II bias, the agents will therefore expect the biased

second-stage competition to be more balanced, and consequently more costly, after a first-

stage win by A than after a first-stage win by B. This difference in second-stage effort

costs gives the advantaged agent, A, a weaker incentive than his rival to exert first-stage

effort, resulting in ∆e1 < 0. Identity-dependent biases augment this “future effort-cost

effect”, reducing the induced ∆e1 further below zero, because the principal will optimally

choose βA < βB for any anticipated α + ∆e1 > 0. As long as the ability difference h is

not too large, a reduction in βA makes the second-stage competition even more balanced

following a win by A, and an increase in βB makes the second-stage competition even less

balanced following a win by B.25

Having characterized the principal’s and the agents’ behavior under both II and ID

biases, we are now ready to compare outcomes across these two regimes. Note first that,

because the principal cannot commit to the level of bias, it is unclear a priori whether

she will do better with ID biases, even though she is less constrained in this regime than

under II bias. Yet it follows from Proposition 4(ii) that selective efficiency is always higher

under ID biases than under II bias. This is because, by the envelope theorem, maximized

selective efficiency under II bias is decreasing in the net advantage, and because under ID

biases the net advantage is reduced. Thus, agents’ effort responses augment the direct

benefits of ID biases for selective efficiency.

Our main interest, however, is in the comparison of the persistence of societal luck,

25The assumption of quadratic costs allows us to compare the agents’ first-stage effort differential across
the two regimes by focusing on the size of the difference in their marginal benefits of effort.
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given by the probability Pα that the initially advantaged agent is ultimately selected:

Pα(βA, βB, α̃) =
1

2

∑
∆a∈{−h,h}

[G(λ1∆a+ α̃)G(λ2∆a+ βA) +G(−λ1∆a− α̃)G(λ2∆a− βB)].(17)

Under II bias, societal luck is always made persistent, that is, Pα(β
II , βII , α+∆eII1 ) > 1

2
.

This is most easily seen by noting that, for βA = βB = β, persistence can be written more

simply as

Pα(β, β, α̃) =
1

2
{1 + [G(λ1h+ α̃)−G(λ1h− α̃)][G(λ2h+ β)−G(λ2h− β)]} , (18)

and in equilibrium, both the net advantage, α̃II = α + ∆eII1 , and the principal’s choice

of bias, βII , are strictly positive, as shown by Proposition 4 and (16). Intuitively, the

advantaged agent is selected with higher probability than his rival, because he is more

likely to win the first stage (despite his lower effort), and with II bias, the second stage is

biased by the same amount, no matter the identity of the first-stage winner.

In striking contrast, allowing for ID biases may completely eliminate the persistence

of societal luck. For example, we can show that, when the difference in agents’ noise

terms has a logistic distribution, then Pα(β
ID
A , βID

B , α + ∆eID1 ) = 1
2
for all values of ex-

ogenous advantage α > 0.26 The following corollary to Proposition 4 provides a general

comparison of the persistence of societal luck between the equilibria in the II and ID

regimes. It also compares the expected utility difference ∆U between the advantaged and

the disadvantaged agent across these equilibria:

∆U(βA, βB, α+∆e1) ≡ [2Pα(βA, βB, α+∆e1)− 1]− [C1(eA,1)− C1(eB,1)]. (19)

Corollary 4 (Persistence of societal luck) Under the assumptions of Proposition 4

(ii) and for exogenous advantage α > 0 sufficiently small, allowing bias to be identity-

dependent

(i) reduces the persistence of societal luck:

Pα(β
ID
A , βID

B , α+∆eID1 ) < Pα(β
II , βII , α+∆eII1 )

26The logistic distribution does not satisfy part (iv) of Assumption 1. Yet, all our results go through as
long as the first stage is not too informative relative to the second one, that is, λ1 is not too high relative
to λ2.
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(ii) reduces the expected utility difference between agents:

∆U(βID
A , βID

B , α+∆eID1 ) < ∆U(βII
A , βII

B , α+∆eII1 ).

We stress that ID biases reduce the persistence of societal luck via two distinct

channels. For any given net advantage α̃, persistence is reduced by ID biases because

β∗
A(α̃) < β∗(α̃) < β∗

B(α̃), and Pα in (17) is increasing in βA and decreasing in βB. This

reduction in persistence reflects the fact that, whatever the first-stage outcome, ID bi-

ases effectively penalize in the second stage the agent who benefited from the first-stage

advantage.

The second driver behind the reduced persistence is the effect ID biases have on agents’

incentives. As shown by Proposition 4(ii), ID biases induce the disadvantaged agent to

compensate even more for his disadvantage through higher first-stage effort than under II

bias. This generates a further reduction in the persistence of societal luck, as long as α is

sufficiently small, because for small α̃, Pα(β
∗(α̃), β∗(α̃), α̃) is increasing in α̃.27

In summary, the results in this section can be interpreted as offering support for af-

firmative action, in the form of selection processes that allow organizations to condition

biases on agents’ identities—for instance, through gender-specific mentoring or grants ac-

counting for socioeconomic backgrounds. Roemer (2000) argues that an equal opportunity

principle should be applied at the entry level of careers, e.g. for admissions to medical

school, while a non-discrimination principle should govern the selection for final positions,

such as the licensing of surgeons. The first part of Corollary 4 shows that applying a non-

discrimination principle (requiring bias to be identity-independent) in the selection for

later positions can backfire, by propagating disadvantages stemming from a failure to es-

tablish equal opportunity upon entry. Moreover, the second part of Corollary 4 shows that

in our setting, affirmative action is in fact doubly beneficial, because identity-dependent

biases also decrease inequality. Finally, our analysis highlights that the incentive effects

of such policies do not hinder their effectiveness but rather amplify their benefits.28

27Under cardinal information, ID biases would allow the principal to completely filter out the effect of
α. As a result, the advantaged agent would be no more likely to be selected than his rival, and the unique
equilibrium first-stage effort differential would be zero.

28Analysis of the case where q0 > 1
2 indicates that the beneficial effects of agents’ effort responses are

further amplified when agents are informed about their relative abilities.
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6 Conclusion

When the careers of National Hockey League players (Deaner et al., 2013) or S&P 500

CEOs (Du et al., 2012) are kick-started by the proximity of their birthdays to a cut-

off or when hedge funds (Cong and Xiao, 2022) or venture capitalists (Nanda et al.,

2020) persistently outperform the market following a fortunate initial investment, luck

seems to play an unjustified role in the selection of the most gifted. Such findings and

related anecdotes might seem to support recent critiques of a meritocratic worldview (e.g.

Piketty, 2014; Sandel, 2020). Their argument is that, in spite of this worldview forming

the basis of modern democratic societies, meritocracy is a myth, used to justify exorbitant

degrees of economic and social inequality. The main contribution of this paper is to show

that making initial luck have a persistent effect on selection is consistent with—if not

a necessary feature of—a society aiming to allocate resources and decision power to the

most able individuals.

Our theory illuminates a basic mechanism behind inequality by rationalizing the per-

sistence of luck as an equilibrium outcome of the strategic interaction between an or-

ganization aiming to maximize selective efficiency and heterogeneous agents capable of

influencing their likelihood of being selected through costly efforts. We have characterized

the settings where the impact of initial luck can be expected to be most amplified. This

happens when agents are informed about their relative abilities and the organization is

restricted to use ordinal rather than cardinal performance information. Both conditions

seem more likely to be met towards the top of an organization’s hierarchy, which suggests

that luck is a more significant determinant of selection where, arguably, selection matters

most, both for the organization and for the induced inequality among the agents.

We have also analyzed how organizational learning impacts the persistence of a dif-

ferent type of luck—termed “societal luck”—which reflects advantages that individuals

derive from their identities. Our results suggest that non-discrimination policies that

constrain an organization’s selection process may backfire, by propagating disadvantages

stemming from unequal initial opportunities, especially when agents strategically respond

to such policies.
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Appendix

Proof of Lemmas 1 and 2

Use superscripts w and l, respectively, to distinguish the cases where agent A won and

lost the first stage. Define ∆e1 = eA,1 − eB,1, ∆ew2 = ewA,2 − ewB,2, and ∆el2 = elA,2 − elB,2.

Let qw(∆e1, q
0) and ql(∆e1, q

0) denote the posterior probabilities that the winner of the

first stage is the more able agent, given q0 and ∆e1. When there is no risk of confusion,

we suppress the arguments of the posteriors.

We first show that agents exert identical effort in the second stage and that this holds

independently of q0 and ∆e1. In case w, A’s and B’s first-order conditions determining

second-stage efforts are:

C ′
2(e

w
A,2) = qwg (h+ β +∆ew2 ) + (1− qw)g (−h+ β +∆ew2 )

C ′
2(e

w
B,2) = qwg (−h− β −∆ew2 ) + (1− qw)g (h− β −∆ew2 ) .

By the symmetry of g, the marginal returns to effort are identical, so ewA,2 = ewB,2. An

analogous argument for case l shows that elA,2 = elB,2.

Now consider the agents’ incentives for first-stage efforts. We can write the overall

utility of agent A as follows:

−C1(eA,1) + q0{G (λ1h+∆e1)
[
G (λ2h+ β +∆ew2 )− C2

(
ewA,2

)]
+ [1−G (λ1h+∆e1)]

[
G
(
λ2h− β +∆el2

)
− C2

(
elA,2

)]
}

+ (1− q0){G (−λ1h+∆e1)
[
G (−λ2h+ β +∆ew2 )− C2

(
ewA,2

)]
+ [1−G (−λ1h+∆e1)]

[
G
(
−λ2h− β +∆el2

)
− C2

(
elA,2

)]
}.

A change in eA,1 does not affect ewB,2, e
l
B,2, or β, because it is unobservable, and the local

effect via the induced changes in ewA,2 and elA,2 is zero by the envelope theorem. Using

∆ew2 = ∆el2 = 0 and the symmetry of g around 0, the first-order condition for eA,1 can be

written as

C ′
1(eA,1) =

[
q0g (λ1h+∆e1) + (1− q0)g (−λ1h+∆e1)

]
(20)

·
{
[G (λ2h+ β)−G (λ2h− β)]−

[
C2 (e

w
2 )− C2

(
el2
)]}

Analogously, for agent B the first-order condition for eB,1 can be written as

C ′
1(eB,1) =

[
(1− q0)g (λ1h−∆e1) + q0g (−λ1h−∆e1)

]
(21)

·
{
[G (λ2h+ β)−G (λ2h− β)] +

[
C2 (e

w
2 )− C2

(
el2
)]}
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Again using the symmetry of g, and noting that the component of the marginal benefit of

the first-stage effort stemming from the enhanced probability of selection is identical for

the two agents, when we subtract (21) from (20), we get

C ′
1(eA,1)− C ′

1(eB,1)

C2(el2)− C2(ew2 )
= 2

[
q0g (λ1h+∆e1) + (1− q0)g (−λ1h+∆e1)

]
(22)

Given that costs are strictly increasing and strictly convex, we conclude that in equilib-

rium, ∆e1 = eA,1 − eB,1 and el2 − ew2 must have the same sign.

To determine the sign of el2 − ew2 , compare agent A’s first-order conditions for the

second-stage effort, after a first-stage win byA vs. after a first-stage loss byA, respectively:

C ′
2(e

w
2 ) = qw(∆e1, q

0)g(λ2h+ β) + (1− qw(∆e1, q
0))g(−λ2h+ β), (23)

C ′
2(e

l
2) = ql(∆e1, q

0)g(−λ2h− β) + (1− ql(∆e1, q
0))g(λ2h− β). (24)

Subtracting the second FOC from the first, and using the symmetry of g, gives

C ′
2(e

w
2 )− C ′

2(e
l
2) = [qw(∆e1, q

0)− ql(∆e1, q
0)][g(λ2h+ β)− g(−λ2h+ β)]. (25)

The strict log-concavity and symmetry of g imply that for any β > 0, g(λ2h + β) −
g(−λ2h+ β) < 0, while for β = 0, g(λ2h+ β)− g(−λ2h+ β) = 0. Hence, since costs are

strictly convex,

el2 − ew2 ≷ 0 ⇐⇒ qw(∆e1, q
0)− ql(∆e1, q

0) ≷ 0. (26)

The posterior beliefs qw(∆e1, q
0) and ql(∆e1, q

0) are given by

qw(∆e1, q
0) =

q0G(λ1h+∆e1)

q0G(λ1h+∆e1) + (1− q0)G(−λ1h+∆e1)
, (27)

ql(∆e1, q
0) =

(1− q0)G(λ1h−∆e1)

(1− q0)G(λ1h−∆e1) + q0G(−λ1h−∆e1)
(28)

Observe that qw and ql are, respectively, strictly decreasing and strictly increasing in ∆e1.

For q0 = 1
2
, they are equal at ∆e1 = 0, while for q0 > 1

2
, they are equal at some ∆e1 > 0.

We are now in a position to complete the proof of Lemma 1. Let q0 = 1
2
. Suppose

first that agents anticipate bias β ≤ 0. Then, the agents would like to decrease their

first-stage performance (if β < 0) or are indifferent with respect to it (if β = 0) while the

effort is costly. Hence, eA,1 = eB,1 = 0. Now, let agents anticipate bias β > 0. Suppose,

for contradiction, that ∆e1 > 0. Then qw(∆e1, q
0)− ql(∆e1, q

0) < 0, so by (26), el2 < ew2 .
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In turn, this implies, using (22), that ∆e1 < 0, which is a contradiction. Analogously,

assuming that ∆e1 < 0 would also lead to a contradiction. Hence, equilibrium requires

equal first-stage efforts: eA,1 = eB,1. These are unique since with ∆e1 = 0, the right-hand

sides of (20) and (21) are independent of the common level of e1.

To complete the proof of Lemma 2, we need to show that for any q0 > 1
2
and any

β > 0, equilibrium entails eA,1−eB,1 > 0. Suppose, for contradiction, that ∆e1 ≤ 0. Then

from (27) and (28), qw(∆e1, q
0) − ql(∆e1, q

0) > 0, because the agents’ prior is that A is

more able and a first-stage win by A despite an effort disadvantage is per se a stronger

signal of ability than a first-stage win by B with an effort advantage. By (26), it follows

that el2 > ew2 . In turn, this implies, using (22), that ∆e1 > 0, which is a contradiction.

Proof of Proposition 1

Equilibrium bias maximizes selective efficiency, S(β;h), which for q0 =
1
2
by Lemma 1 is

given by (1). We use sub-indices to denote partial derivatives. For any h > 0, Assumption

1 ensures that the first-order condition Sβ(β;h) = 0 uniquely determines the optimal bias

β∗(h):

Sβ(β
∗(h);h) = G (λ1h) g (λ2h+ β∗(h))− [1−G (λ1h)] g (λ2h− β∗(h)) = 0.

To see that β∗(h) > 0 for all h > 0 note that G(λ1h) > 1 − G(λ1h). However,

limh→0 Sβ(β, h) = 0 ∀β. Characterizing β∗
0 ≡ limh→0 β

∗(h) thus requires totally differ-

entiating Sβ(β
∗(h);h) with respect to h, setting it equal to 0, and letting h → 0. Total

differentiation yields

d

dh
Sβ(β

∗(h);h) = Sβh(β
∗(h);h) + Sββ(β

∗(h);h)
∂β∗(h)

∂h
, (29)

where limh→0 Sββ(β;h) = 0 ∀β (since limh→0 Sβ(β;h) = 0 ∀β). Hence, (29) and Assump-

tion 1(i) imply that β∗
0 solves

lim
h→0

Sβh(β
∗(h);h) = Sβh(β

∗
0 , 0) = 2λ1g(0)g(β

∗
0) + λ2g

′(β∗
0) = 0,

which gives (3). Since Assumptions 1(i) and 1(iii) guarantee that L(0) = 0 and that L is

strictly increasing, it follows that β∗
0 > 0.

Proof of Proposition 2

To abbreviate notation we let k = |∆x1| ≥ 0 denote the observed first-stage margin of

victory.
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Part (i) Having observed the margin of victory, k, the principal chooses β to maximize

the objective in (6), and the first-order condition is

Scard
β (β, k;h) = g(k − λ1h)g(λ2h+ β)− g(k + λ1h)g(λ2h− β) = 0. (30)

By Assumption 1, (30) uniquely determines the optimal cardinal bias βcard(k, h) as a

strictly increasing function of k, equal to zero for k = 0. Since limh→0 S
card
β (β, k;h) =

0 ∀β, k, characterizing βcard
0 (k) ≡ limh→0 β

card(k, h) requires totally differentiating the

value Scard
β (βcard(k, h), k;h) with respect to h, setting it equal to zero, and letting h → 0.

Doing so shows that βcard
0 (k) solves limh→0 S

card
βh (β, k;h) = 0, which yields

L(βcard
0 (k)) =

λ1

λ2

L(k),

which is equation (7). By Assumption 1, L(0) = 0 and L(k) > 0 ∀k > 0. Hence,

βcard
0 (k) > 0 ∀k > 0.

Part (ii) Given (3) and (7), we need only show that E[L(k)] = 2g(0). As h → 0, the

density of k converges to 2g(k) on support [0, z]. Hence

E[L(k)] =
∫ z

0

L(k)2g(k)dk = −2

∫ z

0

g′(k)dk = 2g(0),

using g(z) = 0, which is implied by Assumption 1(iii).

Proof of Corollary 2

Part (i) When L is convex, (8) implies that β∗
0 ≥ E[βcard

0 (k)] and hence

G(β∗
0) ≥ G(E[βcard

0 (k)]), (31)

since G is strictly increasing. Strict log-concavity and symmetry of g imply that G is

strictly concave on the positive domain, so

G(E[βcard
0 (k)]) > E[G(βcard

0 (k))]. (32)

Inequalities (31) and (32) together imply (10).

Part (ii) Whichever type of information, ordinal or cardinal, is used, and given the

ex ante symmetry of the selection process with respect to agents A and B, the limiting
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value of persistence as h → 0 can be expressed as

2P(select A,∆ϵ1 > 0)

= 2 [P(select A,∆ϵ1 > 0,∆ϵ2 > 0) + P(select A,∆ϵ1 > 0,∆ϵ2 < 0)]

=
1

2
[P(select A |∆ϵ1 > 0,∆ϵ2 > 0) + P(select A |∆ϵ1 > 0,∆ϵ2 < 0)] ,

where we have used the fact that P(∆ϵ1 > 0,∆ϵ2 > 0) = P(∆ϵ1 > 0,∆ϵ2 < 0) = 1
4
. Since

P(select A |∆ϵ1 > 0,∆ϵ2 > 0, ord.) = P(select A |∆ϵ1 > 0,∆ϵ2 > 0, card.) = 1, (33)

it follows that P ∗
0 > P card

0 if and only if

P(select A |∆ϵ1 > 0,∆ϵ2 < 0, ord.) > P(select A |∆ϵ1 > 0,∆ϵ2 < 0, card.). (34)

Whether ordinal or cardinal information is used, the ex ante symmetry of the selection

process with respect to A and B means that the ex ante probability of selecting A is 1
2
.

Using the first equality in (33), and the fact that

P(select A |∆ϵ1 < 0,∆ϵ2 < 0, ord.) = P(select A |∆ϵ1 < 0,∆ϵ2 < 0, card.) = 0, (35)

it thus must be that

P(select A |∆ϵ1 > 0,∆ϵ2 < 0, ord.) + P(select A |∆ϵ1 < 0,∆ϵ2 > 0, ord.) (36)

= P(select A |∆ϵ1 > 0,∆ϵ2 < 0, card.) + P(select A |∆ϵ1 < 0,∆ϵ2 > 0, card.).

Using (36), it is then straightforward to confirm that (34) holds if and only if (11) is

satisfied.

Proof of Proposition 3

In the limit as h → 0, (25) implies that ew2 − el2 → 0, since agents’ posterior beliefs

about their relative ability become irrelevant to their second-stage effort incentives. The

first-stage effort differential ∆e1 = eA,1 − eB,1 therefore approaches 0 as h → 0, since the

right-hand sides of (20) and (21) become equal.

Using this result, we now characterize the principal’s optimal choice of bias, for any

anticipated first-stage effort differential ∆e1. The principal chooses β to maximize selective
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efficiency S(β, h, q0), where

S(β;h, q0) = [q0G(λ1h+∆e1) + (1− q0)G(λ1h−∆e1)]G(λ2h+ β) (37)

+ [q0G(−λ1h−∆e1) + (1− q0)G(−λ1h+∆e1)]G(λ2h− β).

The first-order condition for β is

Sβ(β;h, q
0) = [q0G(λ1h+∆e1) + (1− q0)G(λ1h−∆e1)]g(λ2h+ β) (38)

− [q0(1−G(λ1h+∆e1)) + (1− q0)(1−G(λ1h−∆e1))]g(λ2h− β) = 0.

Since limh→0∆e1 = 0, limh→0 Sβ(β;h, q
0) = 0 for all β. As in the proof of Proposition

1, characterizing the optimal bias β∗(h) in the limit as h → 0 thus requires totally differ-

entiating Sβ(β
∗(h), h, q0) with respect to h, setting it equal to 0, and letting h → 0. Since

limh→0 Sβ(β;h, q
0) = 0 for all β, limh→0 Sββ(β;h, q

0) for all β. Hence the limiting optimal

bias as h → 0, β∗
0 , solves the first-order condition

0 = lim
h→0

Sβh(β
∗(h);h, q0) = Sβh(β

∗
0 ; 0, q

0) (39)

= 2g(0)g(β∗
0)

[
λ1 + (2q0 − 1)

∂∆e1
∂h

∣∣∣∣∣h → 0

]
+ λ2g

′(β∗
0).

To complete the characterization of equilibrium in the limit as h → 0, we must

determine how the limiting derivative with respect to h of the agents’ best-response effort

differential, limh→0
∂∆e1
∂h

, depends on their anticipations about the principal’s choice of β.

The derivation of limh→0
∂∆e1
∂h

is simplified by the following observation, which is based on

a symmetry argument: limh→0
∂β∗(h)

∂h
= 0.

To show that limh→0
∂β∗(h)

∂h
= 0, we begin by observing that since limh→0 β

∗(h) solves

the first-order condition limh→0 Sβh = 0, the sign of limh→0
∂β∗(h)

∂h
= 0 will be determined

by the sign of limh→0 Sβhh(β
∗(h);h, q0). We will show that limh→0 Shh(β;h, q

0) = 0 for all

β, q0, from which it follows that limh→0 Sβhh(β
∗(h);h, q0) = 0 for all β, q0 and therefore

limh→0
∂β∗(h)

∂h
= 0.

To prove that limh→0 Shh(β;h, q
0) = 0 for all β, q0, we will show that, for any β,

S(β;h, q0), regarded as a function of h ∈ ℜ, displays 180◦ rotational symmetry around the

point (h = 0, S = 1
2
), that is, S(β;h, q0) = 1−S(β;−h, q0). To interpret the mathematical

expression S(β;−h, q0), temporarily set ∆e1 = 0; S(β;−h, q0) then gives the probability

of selecting the more able agent when the principal assigns bias β in favor of the first-stage

loser. In such a setting, the endogenous first-stage effort differential would switch sign, that

is, ∆e1(−h) = −∆e1(h), as can be seen from (22) and (25). Using ∆e1(−h) = −∆e1(h),
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we have

S(β;−h, q0) = [q0G(λ1h+∆e1(h)) + (1− q0)G(λ1h−∆e1(h))]G(−λ2h− β) (40)

+ [q0G(−λ1h−∆e1(h)) + (1− q0)G(−λ1h+∆e1(h))]G(−λ2h+ β).

It follows from (40) and (37) that for all h, β, q0, S(β;h, q0) = 1−S(β;−h, q0). Differentiat-

ing this identity twice with respect to h and letting h → 0 then yields limh→0 Shh(β;h, q
0) =

0 for all β, q0.

Having established that limh→0
∂β∗(h)

∂h
= 0, we now return to the analysis of how

limh→0
∂∆e1
∂h

depends on agents’ anticipations about the principal’s choice of β. Differen-

tiating the agents’ first-order conditions for first-stage effort, (20) and (21), with respect

to h, letting h → 0, and using limh→0
∂β∗(h)

∂h
= 0, yields

C ′′
1 (e0)

[
∂eA,1

∂h
− ∂eB,1

∂h

]
= −4λ2g(0)X

′(g(β))g′(β)(2q0 − 1), (41)

where e0 is the agents’ common limiting first-stage effort, given β, which solves C ′
1(e0) =

g(0)[2G(β) − 1], and the function X(·) ≡ C2(C
′−1
2 (·)). Note that e0 is independent of

q0 and that strict convexity of C2(·) ensures that X(·) is strictly increasing. For any

anticipated β > 0 and any q0 > 1
2
, the right-hand side of (41) is strictly positive, so

limh→0
∂∆e1
∂h

> 0.

An equilibrium value of β as h → 0, β∗
0 , solves the fixed-point equation derived from

(39), recognizing the dependence of limh→0
∂∆e1
∂h

on β0:

2g(0)

[
λ1 + (2q0 − 1)

∂∆e1(β
∗
0 ; 0, q

0)

∂h

]
= λ2L(β

∗
0). (42)

Since limh→0
∂∆e1
∂h

> 0 for all β > 0, q0 > 1
2
, the left-hand size of (42) is strictly positive,

so any fixed point β∗
0 must be strictly positive. To show that the fixed point is unique,

use (41) to substitute for ∂∆e1(β0;0,q0)
∂h

in (42). This yields, after rearrangement,

2λ1g(0) = λ2L(β
∗
0)

[
1− 8(g(0))2

C ′′
1 (e0)

X ′(g(β∗
0))g(β

∗
0)(2q

0 − 1)2
]
. (43)

For Ct(ei,t) =
ct
2
e2i,t, C

′′
1 (e0) is a constant, and X ′(·) is linear, so the expression in square

brackets on the right-hand side of (43) is strictly increasing in β0. For quadratic costs,

therefore, the right-hand side of (43) is strictly increasing in β0 whenever the expression

in square brackets is positive. Since the left-hand side of (43) is strictly positive, there is a

unique equilibrium value β∗
0 . Finally, since the right-hand side of (43) is strictly decreasing
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in q0 for all β0 > 0, the equilibrium β∗
0 is increasing in q0.

Proof of Proposition 4

We first derive properties of the principal’s optimal bias, given her belief (correct in

equilibrium) about the agents’ effort differential and the corresponding net advantage α̃.

First note that, given net advantage α̃, the principal’s optimal biases β∗
A(α̃), β

∗
B(α̃), and

β∗(α̃) are strictly positive. This is because the left hand sides of the first-order conditions

(14) and (15) are strictly larger than one, while the right hand sides are equal to one

when bias is zero and strictly increasing in bias by the log-concavity of g. Moreover,

β∗
A(α̃) < β∗(α̃) < β∗

B(α̃) for α̃ > 0 because the principal’s “confidence” in the first-stage

winner’s ability is strictly decreasing in his net advantage, i.e.

G(λ1h+ α̃)

G(−λ1h+ α̃)
>

G(λ1h+ α̃) +G(λ1h− α̃)

G(−λ1h+ α̃) +G(−λ1h− α̃)
>

G(λ1h− α̃)

G(−λ1h− α̃)
. (44)

For the same reason, β∗
A(α̃) and β∗(α̃) are strictly decreasing whereas β∗

B(α̃) is strictly

increasing. As all three terms in (44) converge to G(λ1h)
G(−λ1h)

for α̃ → 0, it holds that

limα→0 β
ID
A = limα→0 β

ID
B = limα→0 β

II . Finally, differentiating the left hand side of (15)

with respect to α̃ gives

2[g(λ1h+ α̃)− g(λ1h− α̃)]

[G(−λ1h+ α̃) +G(−λ1h− α̃)]2
,

which converges to zero for α → 0, proving that limα̃→0
∂β∗

∂α̃
= 0. And since the first-

order conditions (14) determining optimal identity-dependent biases are identical except

for the sign of α̃, it has to hold that limα̃→0
∂β∗

A

∂α̃
= − limα̃→0

∂β∗
B

∂α̃
. Having established the

properties of the optimal bias response we can now turn our attention to the claims in

Proposition 4 about agents’ first-stage effort differential.

Part (i) The proof of this claim treats jointly the cases of identity-dependent and

identity-independent bias, for the latter simply impose βA = βB = β and all arguments go

through for all β > 0. In the second stage, agent A’s effort equals agent B’s effort. The

proof of this claim is analogous to that of Lemma 1 and will thus be omitted. Let ew2 and

el2 denote the agents’ (identical) second-stage efforts after the advantaged agent A won or

lost the first stage, respectively. Agent A’s expected utility in stage one is then given by

−C1(eA,1) +
1

2

∑
∆a∈{−h,h}

{G(λ1∆a+ α +∆e1)[G(λ2∆a+ βA)− C2(e
w
2 )]

+G(−λ1∆a− α−∆e1)[G(λ2∆a− βB)− C2(e
l
2)]},
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and the corresponding first-order condition is

2C ′
1(eA,1) =

∑
∆a∈{−h,h}

g(λ1∆a+ α +∆e1)[G(λ2∆a+ βA)−G(λ2∆a− βB) + C2(e
l
2)− C2(e

w
2 )].(45)

Similarly, for agent B we get

2C ′
1(eB,1) =

∑
∆a∈{−h,h}

g(λ1∆a+ α +∆e1)[G(−λ2∆a+ βB)−G(−λ2∆a− βA) + C2(e
w
2 )− C2(e

l
2)].(46)

Comparing the marginal benefits of effort across agents, it follows from G(x) = 1 −
G(x) that those parts stemming from the enhanced probability of selection are identical.

Subtracting B’s first-order condition from A’s yields:

C ′
1(eA,1)− C ′

1(eB,1)

C2(el2)− C2(ew2 )
=

∑
∆a∈{−h,h}

g(λ1∆a+ α +∆e1). (47)

Given that C1 and C2 are increasing and convex, in equilibrium ∆e1 = eA,1 − eB,1 and

el2−ew2 must have the same sign. To determine the sign of el2−ew2 , consider the advantaged

agent A’s expected utility in the second stage, separately for the two cases where the

advantaged agent won (w) or lost (l) the first stage, respectively:

qwG(λ2h+ βA +∆ew2 ) + (1− qw)G(−λ2h+ βA +∆ew2 )− C2(e
w
A,2),

qlG(−λ2h− βB +∆el2) + (1− ql)G(λ2h− βB +∆el2)− C2(e
l
A,2).

Here we have introduced

qw =
G(λ1h+ α +∆e1)

G(λ1h+ α +∆e1) +G(−λ1h+ α +∆e1)
, (48)

ql =
G(λ1h− α−∆e1)

G(λ1h− α−∆e1) +G(−λ1h− α−∆e1)
(49)

to denote the posterior probabilities that the winner of the first-stage is the more able

agent. The corresponding first-order conditions determining ew2 and el2 are

C ′
2(e

w
2 ) = qwg(λ2h+ βA) + (1− qw)g(−λ2h+ βA), (50)

C ′
2(e

l
2) = qlg(−λ2h− βB) + (1− ql)g(λ2h− βB). (51)

Note that qw (resp. ql) is a decreasing (resp. increasing) function of the net advantage
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and that

ql > qw ⇔ α +∆e1 > 0.

Also note that, as we argued above, with identity-dependent biases, the principal awards

a larger bias when she is more certain that the first-stage winner is the more able agent,

that is, in equilibrium βA − βB and qw − ql have the same sign.

We now argue, by contradiction, that −α < ∆e1 < 0. Suppose, instead, that, ∆e1 ≤
−α. Then α+∆e1 ≤ 0 implies that ql ≤ qw and thus βA ≥ βB. (For identity-independent

bias, this condition holds trivially.) We have, for all β ∈ (0, βA],

qw

1− qw
=

g(λ2h− βA)

g(λ2h+ βA)
≥ g(λ2h− β)

g(λ2h+ β)
>

g′(λ2h− β)

g′(λ2h+ β)
= −g′(−λ2h+ β)

g′(λ2h+ β)
,

where the first equality is the principal’s first-order condition for βA, the two inequalities

follow from β ∈ (0, βA] and the strict log-concavity of g, and the second equality holds

because g is symmetric. Hence, for β ∈ (0, βA],

qwg′(λ2h+ β) + (1− qw)g′(−λ2h+ β) < 0

and therefore

qwg(λ2h+ βA) + (1− qw)g(−λ2h+ βA) ≤ qwg(λ2h+ βB) + (1− qw)g(−λ2h+ βB), (52)

with strict inequality if βB < βA. Since βB > 0 and, under the hypothesis, ql ≤ qw, the

right-hand side of (52) is less than or equal to qlg(λ2h + βB) + (1 − ql)g(−λ2h + βB).

Hence (50) and (51) imply that C ′
2(e

w
2 ) ≤ C ′

2(e
l
2), and by the convexity of C2 it follows

that ew2 ≤ el2. Since in equilibrium, ∆e1 must have the same sign as el2−ew2 ≥ 0, we obtain

a contradiction to our assumption that ∆e1 ≤ −α < 0.

Similarly, if ∆e1 ≥ 0, then it follows from α+∆e1 > 0 that ql > qw, so βB > βA. Now

we have, for all β ∈ (0, βB),

ql

1− ql
=

g(λ2h− βB)

g(λ2h+ βB)
>

g(λ2h− β)

g(λ2h+ β)
>

g′(λ2h− β)

g′(λ2h+ β)
= −g′(−λ2h+ β)

g′(λ2h+ β)
,

and thus

qlg′(λ2h+ β) + (1− ql)g′(−λ2h+ β) < 0.
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Hence, since βB > βA > 0,

qlg(λ2h+ βB) + (1− ql)g(−λ2h+ βB) < qlg(λ2h+ βA) + (1− ql)g(−λ2h+ βA),

and the right-hand side is strictly smaller than qwg(λ2h + βA) + (1 − qw)g(−λ2h + βA)

because ql > qw. So it follows from (50) and (51) that C ′
2(e

w
2 ) > C ′

2(e
l
2) and thus ew2 > el2.

Since in equilibrium, ∆e1 must have the same sign as el2−ew2 < 0, we obtain a contradiction

to our assumption that ∆e1 ≥ 0.

Part (ii) Let (βII ,∆eII1 ) and (βID
A , βID

B ,∆eID1 ) denote the unique equilibrium with

identity-independent and identity-dependent biases, respectively. Assume that h is suf-

ficiently small such that −λ2h + βID
A ≥ 0. Choosing h like that is possible because, by

analogy to Proposition 1, it holds that limh→0 β
ID
A > 0. We now show that

∆eID1 < ∆eII1 . (53)

By contradiction, assume that ∆eID1 ≥ ∆eII1 . Starting from (βID
A , βID

B ,∆eID1 ) suppose

the principal is restricted to use identity-independent bias, resulting in the choice β̂ =

β∗(α+∆eID1 ). Consider the agents’ corresponding effort response ∆e∗1(β̂, β̂). As costs are

quadratic it follows from (47) that the agents’ first-stage effort differential satisfies the

implicit equation

c1∆e1 − [C2(e
l
2)− C2(e

w
2 )]

∑
∆a∈{−h,h}

g(λ1∆a+ α +∆e1) = 0, (54)

where, using (50) and (51),

C2(e
l
2)− C2(e

w
2 ) =

1

c2
[qlg(−λ2h− βB) + (1− ql)g(λ2h− βB)]

2

− 1

c2
[qwg(λ2h+ βA) + (1− qw)g(−λ2h+ βA)]

2.

Because βID
A < β∗(α + ∆eID1 ) < βID

B as shown above, the move from βA = βID
A and

βB = βID
B to βA = βB = β∗(α+∆eID1 ) decreases g(λ2h+ βA) and increases g(−λ2h− βB)

and, given −λ2h+ βID
A ≥ 0 (which implies λ2h− βID

B < 0) it also decreases g(−λ2h+ βA)

and increases g(λ2h− βB). The move from (βID
A , βID

B ) to β∗(α+∆eID1 ) thus reduces (54)

for any fixed ∆e1 by increasing C2(e
l
2)−C2(e

w
2 ), which is negative, as shown in the proof

of claim (i). Given that (54) is negative for ∆e1 = −α and positive for ∆e1 = 0 and

equilibrium is unique (which is guaranteed by the assumption that c1 is sufficiently large),

the move from (βID
A , βID

B ) to β∗(α +∆eID1 ) thus leads to an increase in ∆e1, i.e. we have
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shown that ∆e∗1(β
∗(α +∆eID1 ), β∗(α +∆eID1 )) > ∆e∗1(β

ID
A , βID

B ) = ∆eID1 .

To see that this leads to a contradiction, let γ = (β∗)−1 − α. Then γ(β) gives

the conjectured effort differential ∆e1 that makes β the principal’s optimal choice of

identity-independent bias. Given uniqueness of the equilibrium (βII ,∆eII1 ), the curves

γ(β) and ∆e∗1(β, β) intersect exactly once. And because ∆e∗1(β, β) goes to zero for β → 0

and for β → ∞ and γ(β) is strictly decreasing, ∆e∗1(β, β) must cross γ(β) from be-

low. In particular, for any β < βII it must hold that γ(β) > ∆e∗1(β, β). Note that

β̂ = β∗(α + ∆eID1 ) < β∗(α + ∆eII1 ) = βII because β∗ is decreasing and we have as-

sumed that ∆eID1 > ∆eII1 . Hence γ(β̂) > ∆e∗1(β̂, β̂), or formulated equivalently, ∆eID1 =

∆e∗1(β
ID
A , βID

B ) > ∆e∗1(β
∗(α+∆eID1 ), β∗(α+∆eID1 )), which contradicts our earlier finding.

Proof of Corollary 4

This proof assumes that α is sufficiently small such that Pα(β
∗(α̃), β∗(α̃), α̃) is increasing

in α̃ for all α̃ < α+∆eII1 . Such values of α exist because Pα(β
∗(α̃), β∗(α̃), α̃) is increasing

in α̃ for small α̃ since ∂Pα

∂α̃
> 0 and, as shown in the proof of Proposition 4, limα→0∆eII1 = 0

and limα̃→0
∂β∗

∂α̃
= 0.

Part (i) This claim is true because Pα(β
ID
A , βID

B , α +∆eID1 ) < Pα(β
II , βII , α +∆eII1 )

follows from (53). To see this, note first that, as Pα is increasing in βA but decreasing in

βB, it holds that Pα(β
ID
A , βID

B , α + ∆eID1 ) < Pα(β
∗(α + ∆eID1 ), β∗(α + ∆eID1 ), α + ∆eID1 ),

because, as shown above, the principal’s optimal biases satisfy βID
A = β∗

A(α + ∆eID1 ) <

β∗(α +∆eID1 ) < β∗
B(α +∆eID1 ) = βID

B . And because, by assumption, Pα(β
∗(α̃), β∗(α̃), α̃)

is increasing in α̃ for all α̃ < α+∆eII1 it follows from (53) that Pα(β
∗(α+∆eID1 ), β∗(α+

∆eID1 ), α+∆eID1 ) < Pα(β
∗(α +∆eII1 ), β∗(α +∆eII1 ), α+∆eII1 ) = Pα(β

II , βII , α+∆eII1 ).

Part (ii) To prove the second claim, we determine the effect of a move from identity-

independent to identity-dependent bias on the agents’ utility differential by considering

lim
α→0

d

dα
∆U(βA, βB, α+∆e1) = 2

dPα

dα
|α=0 + c1e

∗
1

∂∆e1
∂α

|α=0.

Here we used that costs are quadratic and that in the limit as α → 0 agents exert the same

first-stage effort e∗1 = limα→0 e
∗
A,1 = limα→0 e

∗
B,1. When α → 0, the first-order conditions

(45) and (46) both simplify to

c1e
∗
1 = g(λ1h)[G(λ2h+ β∗(0))−G(λ2h− β∗(0))].

Using the fact that, as shown in the proof of Proposition 4, limα→0
∂β∗

A

∂α
= − limα→0

∂β∗
B

∂α
,
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we get

dP ID
α

dα
|α=0 = g(λ1h)[G(λ2h+ β∗(0))−G(λ2h− β∗(0))]

(
1 +

d∆eID1
dα

|α=0

)
+[G(λ1h)g(λ2h+ β∗(0)) +G(−λ1h)g(−λ2h+ β∗(0))]

dβ∗
A

dα
|α=0,

whereas limα→0
∂β∗

∂α
= 0 implies

dP II
α

dα
|α=0 = g(λ1h)[G(λ2h+ β∗(0))−G(λ2h− β∗(0))]

(
1 +

d∆eII1
dα

|α=0

)
.

For the difference we thus get

lim
α→0

d(∆U ID −∆U II)

dα
= g(λ1h)[G(λ2h+ β∗(0))−G(λ2h− β∗(0))]

d(∆eID1 −∆eII1 )

dα
|α=0

+ [G(λ1h)g(λ2h+ β∗(0)) +G(−λ1h)g(−λ2h+ β∗(0))]
dβ∗

A

dα
|α=0.

This is strictly negative, because
dβ∗

A

dα
|α=0 < 0 as shown in the proof of Proposition 4 and

because our analysis above implies that ∆eID1 − ∆eII1 must be non-increasing for small

α. Given that for α → 0, ∆U ID = ∆U II = 0, for small α it must therefore hold that

∆U(βID
A , βID

B , α+∆eID1 ) < ∆U(βII
A , βII

B , α+∆eII1 ).
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Bukodi, Erzsébet, John H. Goldthorpe, and Inga Steinberg, “Social stratification

in science: the ultra-elite in the UK,” European Societies, 2024, pp. 1–42.

Cappelen, Alexander W., Astri Drange Hole, Erik Ø. Sørensen, and Bertil

Tungodden, “The Pluralism of Fairness Ideals: An Experimental Approach,” Ameri-

can Economic Review, 2007, 97 (3), 818–827.

, James Konow, Erik Ø. Sørensen, and Bertil Tungodden, “Just luck: An

experimental study of risk-taking and fairness,” American Economic Review, 2013, 103

(4), 1398–1413.

Ciocca Eller, Christina, “What Makes a Quality College? Reexamining the Equalizing

Potential of Higher Education in the United States,” American Journal of Sociology,

2023, 129 (3), 637–714.

Coate, Stephen and Glenn Loury, “Will Affirmative-Action Policies Eliminate Neg-

ative Stereotypes?,” American Economic Review, 1993, 83 (5), 1220–1240.

Cole, Stephen, Jonathan R. Cole, and Gary A. Simon, “Chance and Consensus

in Peer Review,” Science, 1981, 214 (4523), 881–886.

Cong, Lin William and Yizhou Xiao, “Persistent Blessings of Luck: Theory and an

Application to Venture Capital,” Review of Financial Studies, 2022, 35 (3), 1183–1221.

Deaner, Robert O., Aaron Lowen, and Stephen Cobley, “Born at the Wrong Time:

Selection Bias in the NHL Draft,” PLoS ONE, 2013, 8 (2).

DiPrete, Thomas A. and Gregory M. Eirich, “Cumulative advantage as a mech-

anism for inequality: A review of theoretical and empirical developments,” Annual

Review of Sociology, 2006, 32, 271–297.

Du, Qianqian, Huasheng Gao, and Maurice D. Levi, “The relative-age effect and

career success: Evidence from corporate CEOs,” Economics Letters, 2012, 117 (3),

660–662.

Duclos, Jean-Yves, Joan Esteban, and Debraj Ray, “Polarization: Concepts, Mea-

surement, Estimation,” Econometrica, 2004, 72 (6), 1737–1772.
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